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Abstract

This thesis investigates cost functions for evaluating and optimising the perfor-

mance of a timetable with mixed train services. Specifically, the performance

considered herein includes crowdedness, journey time, punctuality and waiting

time. In order to examine the implications of optimising using these cost func-

tions, a multi-objective optimisation algorithm is developed to derive an optimised

timetable for mixed train services. The optimisation algorithm consists of three

stages: a Genetic Algorithm (GA) is used to determine the optimal sequence of

train runs, followed by Dijkstras shortest path algorithm for determining the op-

timal schedule based on the sequence determined by GA, and finally an iterative

Hill-Climbing procedure for determining the optimal number of train runs in the

system. Experiments were carried out on the Brighton Main Line and exam-

ined the effect of different timetabling parameters. The first series of experiments

showed that the cost of the timetable can be driven down simply through rese-

quencing the trains such that trains exiting the network quickly are more evenly

distributed through the time period examined. This occurs due to the fact that

trains exiting early create a buffer which can absorb delays, preventing their prop-

agation. The experiments have also shown that different demand levels influence

the number of trains to be scheduled. The optimal number of trains to sched-

ule though relies on the equilibrium between the crowdedness and punctuality

cost function. Scheduling additional trains leads to a non-linear reduction in the

marginal gains in terms of the crowdedness function while, on the other hand,

the cost of punctuality increase exponentially. Finally, we derive the Pareto Fron-

tiers for different combinations of cost functions. This research contributes to the

state-of-art of railway system analysis and optimisation.
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Notation

Ai→j total number of seats offered by the train services from station i to station

j

an seating capacity of train n
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Vn,b speed of train n in block section b

Mi,j distance between station i and station j

δn,b sighting distance of the signal at the entrance of block b by the driver of

train n

λyi→j(t) arrival rate of passengers of type y going from station i to station j

(function of time)

σn,i→j departure time of train n from station i going to station j

τn,b arrival time of train n at block section b

Φ time deviation from the timetable which is allowed for the train to still

be considered on-time



Chapter 1

Introduction

1.1 Timetabling in the British railway industry

The British railway industry, which is the oldest in the world, has experienced a

vast increase in usage since its privatisation in 1994. At the same time nonetheless,

there has been a dramatic surge in the complexity of its organisational structure,

underscoring inter alia the importance of having efficient timetabling procedures

in place [20, 53, 64]. Currently, such procedures are viewed to be overly lengthy

and thus in merit of further streamlining to optimise the required involvement of

the various stakeholders in the railway industry.

Every five years, the government defines the level of service expected from the

railway industry and determines the level of public expenditure. The government

1



Chapter 1. Introduction 2

then enters into a series of negotiations with Network Rail (the infrastructure

manager) and the Office of Rail and Road (Network Rail’s economic regulator) to

determine the requirements in terms of system capacity and its reliability [20, 44]1.

The final set of specifications are formalised in the High Level Output Statement

(HLOS) which defines the performance targets for the railway sector during the

five-year period [29].

At the moment, there are two ways for train operators2 to gain access to the

railway network: purchasing specific slots in the timetable (known as open access

operations) and purchasing the right to run contracted services on given parts of

the network (known as franchises). Most of the services operating on the network

right now are franchises [12]. The process of franchising starts with the Govern-

ment defining the performance targets a franchise should meet by referring to the

specifications formalised in HLOS. Operators then submit bids which are evalu-

ated by the Government during the passenger franchising process [12]. Once a bid

is accepted, a franchise agreement is signed between the Government and the train

operator which binds the operator to provide a railway service for the agreed pe-

riod [65]. A list with all franchises along with their expiration dates can be found

in [75]. Freight operators are not legally bound to provide a specific franchise and

are not subject to the performance standards which apply for train operators. The

freight market is only governed by freight customers but freight operators must

1System capacity is measured as the number of passengers and freights the network can
accommodate while reliability refers to the percentage of services arriving at their destination
on time [29]

2The term ’train operators’ refers to the companies which operate passenger trains. On the
other hand, freight operators are only responsible for operating freight services
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still liaise with Network Rail to gain access to the infrastructure [44].

The process of franchising and bidding described above leads to the production of

the static timetable which can be broken down to two processes [20, 44]. The Long

Term Planning (LTP) process produces two timetables per year; one in December

and one in May [20, 44]. These timetables are being devised 28 weeks before their

introduction and are being made available to the public 12 weeks before their

introduction in order to give time to passengers to plan their journey in advance

[20]. The Short Term Planning (STP) process has the purpose of scheduling trains

which missed the LTP deadlines and also considers the impact of engineering works

by Network Rail [20]. The STP planning process is initiated 18 weeks before the

timetable’s introduction but, like the LTP timetable, the STP timetable is being

made available 12 weeks before its actual date of introduction [20]. Changes can

still be made to the timetable even on the day before the actual implementation,

but these changes usually concern freight trains rather than passenger trains [20].

The final timetable must comply with the rules set for each one of the ten available

routes which exist in the UK [65]. The Timetable Planning Rules are route-specific

guidelines which are devised by Network Rail and the operators and provides the

set of rules that the timetable should abide by [44]. These rules provide information

including minimum headway requirements, timing allowances, dwell times etc. [34]
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1.2 Project motivation

The increased complexity of the British railway structure along with the signifi-

cant increase in the traffic it attracts, have led to the creation of inefficiencies in

the industry [53]. The 2013 Rail Technical Strategy [72] has identified four key

areas for improvement for British railways: reduced carbon, increased capacity,

decreased operating costs and improved customer satisfaction. These criteria have

now become known as the 4C.

Timetabling construction has been identified as one of the areas upon which British

railways can improve on in order to meet the targets set by the 4C. At the moment,

railway timetabling in the UK is a manual process which aims to produce feasible

timetables with no consideration being paid on whether the final timetable is op-

timal [20]. The Future Traffic Regulation Optimisation (FuTRO) project, funded

by the Rail Safety and Standards Board (RSSB), aims to develop an optimisation

framework which can be used to construct a railway timetable which will be op-

timal in terms of the 4C criteria. Following the publication of the objectives of

FuTRO, Chen and Roberts [20] have stated the performance metrics for assessing

a railway timetable as well as the stakeholders for which each performance metric

is relevant (Table 1.1).

In its final form, the project can be used by the rail industry 3 to inform full

development of optimisation algorithms for use within the timetable planning and

3In the context of this project, the term ’rail industry’ refers to Network Rail, Train Operating
Companies, Freight Operating Companies and the Rail Safety and Standards Board
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Table 1.1: Key measures concerned by different railway stakeholders [20]

Transport
Volume

Travel
Time

Connectivity Punctuality Resilience Comfort Energy Resource
Usage

Infrastructure
Manager

∗ ∗ ∗ ∗ ∗ ∗

Train
Operators

∗ ∗ ∗ ∗ ∗ ∗

Railway
Customers

∗ ∗ ∗ ∗

Government ∗ ∗

traffic management systems, taking into account the impact on different stake-

holders. This will ensure that the railway timetable produced will contribute in

meeting the targets set by the 4C.

1.3 Research objectives

One of the objectives of the project is to identify the performance metrics appli-

cable to railway timetables and provide their mathematical formulations. Rather

than focusing on the performance metrics relevant to a single stakeholder in the

railway industry, the interests of multiple stakeholders will be considered. This

will fill a gap in literature which, up to now, only focuses on the simultaneous op-

timisation of two or three objective functions that are usually tailored according

to the needs of just a single stakeholder (e.g. [11, 32, 88, 89]).

Following the identification of the performance metrics, the next step is to trans-

form the metrics such that they have the same dimension; enabling for the esti-

mation of a timetable’s total ’cost’. This is a novelty since in the literature, when

authors optimise under different objectives, either the objectives have the same
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dimension (e.g. [11, 88, 89]) or multi-objective optimisation techniques are used

(often ε constraints which constrain all objectives but one which is the one opti-

mised) which avoid the problem of dealing with differently dimensioned objectives

(e.g. [4, 37]). Even though such techniques may be effective when dealing with a

couple of objectives, when the number of objectives increases, their effectiveness

suffers. Consequently, since in this project more than two objectives will be used

to evaluate a timetable, a different approach is required.

An important aspect of the project is to understand how sensitive the optimal

solution is to a range of different parameters. Such parameters are:

• In what ways does the off-peak hours optimal solution differ from the peak

hours solution.

• Is there a way to sequence the trains such that the new sequence leads to

lower timetable cost.

• What impact (if any) does the passenger mix have on the optimal solution.

• How do different multi-objective optimisation techniques influence the opti-

mal solution.

The above does not represent an exhaustive list of the parameters to be examined

but rather provides the foundation upon which the experiments can be carried

out. Such an analysis is important since, to the best of the author’s knowledge,

no such analysis has been carried before and will help to shed light into the many

different factors which may influence the quality of railway timetables.
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The main purpose of the project can therefore be summarised as the formulation

of a set of cost functions which capture the performance of a railway timetable,

and the analysis of how the optimal decision changes if any timetabling parameters

vary.

1.4 Thesis overview

The thesis is structured as follows: Chapter 2 provides the literature upon which

this research is based on to calculate the cost functions for British railway opera-

tions. Algorithms which are often used to solve the timetabling problem will also

be given.

In Chapter 3, the formulation of the constraints used to construct a feasible

timetable is given and their formulation explained. The objective functions to

be used in the optimisation problem are also provided by first identifying perfor-

mance metrics to evaluate a timetable’s performance, and then a monetary cost

is associated to these metrics to transform them to cost functions.

Chapter 4 explains the optimisation algorithm developed which will act as the main

tool for carrying out the analysis. The optimisation model is then validated by

using it in conjunction with a simulation environment and comparing the output.

Chapter 5 presents a case study based on the Brighton Main Line and more specifi-

cally the section between Gatwick Airport and Brighton. The case study examines
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different timetabling parameters and how they impact on the optimal solution.

The Pareto Frontiers for different combinations of cost functions are also con-

structed.

Finally, Chapter 6 concludes the thesis and outlines the project’s future steps.



Chapter 2

Literature Review

2.1 Introduction

A review of the current literature dealing with the performance metrics used for

railway timetable optimisation is provided in this chapter. Literature on multi-

objective railway timetabling is examined to identify the different optimisation

techniques used by various authors as well as the objectives used to evaluate

timetable performance.

This chapter is organised as follows: Section 2.2 examines the different perfor-

mance metrics that have been employed over the years to assess the effectiveness

of a railway timetable. A summary is also provided which examines the different

performance metric combinations which have been employed by different authors

9
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to formulate the multi-objective train timetabling problem. Finally, Section 2.3

provides an overview into the different optimisation models developed over the

years to tackle the railway timetabling problem.

2.2 Cost functions for railway timetable optimi-

sation

An extensive literature currently exists which aims to optimise a railway timetable

given a set of cost functions. Section 2.2.1 provides the existing literature on the

different techniques used by authors when optimising timetables under different

objectives. Section 2.2.2 describes the various methodologies which have been

developed over the years to assess timetable-related performance metrics. These

metrics have been divided into four broad categories: network and system capacity,

journey time, punctuality and waiting time

2.2.1 Cost functions for multi-objective timetable optimi-

sation

As of the time of writing, a number of existing studies examine a railway timetable

using more than one objective. Abril et al. [1] analyse the trade-off between net-

work capacity and punctuality by adding buffer time in the timetable but, even
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though the impact on network capacity is shown, the improvements in punctuality

are not quantified. Yuan and Hansen [96] analyse the trade-off between network

capacity and punctuality as well but, rather than timetabling, they calculate net-

work capacity as a function of the train frequency in critical components within

a given time interval. This train frequency is a function of running times, buffer

time, supplements and dwell time [96]. Goverde et a. [40] examine how capacity

utilisation and delays are impacted under different signalling systems. Gibson et

al. [38] have used empirical data to establish a relationship between network util-

isation and the delay of all trains over a section by fitting a non-linear regression

of the form:

Dit = Ai exp(βCit) (2.1)

The term Dit is defined as the total reactionary delay of all trains over a line i

during time interval t. Gibson et al. [38] define reactionary delays as the extent

to which an operator’s trains delay another operator. Ai and β are the section

specific and route specific constants respectively and Cit is the utilisation of section

i during time t. The analysis of the empirical data suggests that as the section’s

utilisation increases, reactionary delays increase exponentially. This formulation

is less likely to be of relevance to networks with minimal utilisation levels. This

is because when a primary delay occurs in such networks, the large time period

between services is very likely to absorb the delay, preventing it from delaying

any subsequent trains. Hallowell and Harker [41] have run simulations where the

delay in a timetable is examined for three different traffic levels (low, average and
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high traffic). In general, they show that increases in traffic levels lead to higher

delays but they also report several cases where the standard deviation of delays

seems to be inversely proportional to the level of traffic. Even though Harker and

Hallowell [41] attribute this fact to the difference in the number of simulated train

movements between traffic volume levels, it may also be attributed to the fact that

they only consider two stations in the experiments (origin and destination). Also

the fact that they use different weights for the delays of each train type might

have also had an impact on their experiments.

The term Dit is defined as the total reactionary delay of all trains over a line i

during time interval t. Gibson et al. [38] define reactionary delays as the extent to

which an operator’s trains delay another operator. Ai and β are the section spe-

cific and route specific constants respectively and Cit is the utilisation of section i

during time t. The analysis of the empirical data suggests that as the section’s util-

isation increases, reactionary delays increase exponentially. Hallowell and Harker

[41] have run simulations where the delay in a timetable is examined for three

different traffic levels (low, average and high traffic). In general, they show that

increases in traffic levels lead to higher delays but they also report several cases

where the standard deviation of delays seems to be inversely proportional to the

level of traffic. Even though Harker and Hallowell [41] attribute this fact to the

difference in the number of simulated train movements between traffic volume lev-

els, it may also be attributed to the fact that they only consider two stations in

the experiments (origin and destination). Also the fact that they use different

weights for the delays of each train type might have also had an impact on their



Chapter 2. Literature Review 13

experiments.

Peterson [74] evaluates the trade-off between journey time and punctuality by

redistributing allowance time in a pre-constructed timetable.

Bussieck et al. [11] construct a timetable which minimises travelling time and

waiting time for transfer passengers.

Albrecht [4] maximises average train loading and minimises the average time pas-

sengers spend on the platform waiting for their train to arrive but instead of

constructing a timetable, the train frequency during a time interval is calculated.

Ghoseiri et al. [37] minimise fuel consumption and passenger travelling time.

Albrech et al. [2, 3] devise a control strategy for a single train to minimise energy

consumption while ensuring that the journey time does not exceed a given limit.

In their work, Albrech et al. [2, 3] show that such a unique optimal control strategy

exists and that it can be found within acceptable time frames.

Fuel consumption is also examined by Higgins et al. [42] who develop a timetable

which also minimises delays. However, fuel efficiency maximisation during the

timetabling process can be called into question due to the fact that accurate con-

sumption rates require dynamic information (e.g. acceleration, deceleration) which

is not available in static timetables.

Some authors consider more than two objectives in the timetabling process but
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focus extensively only one aspect. For example, Dorfman and Medanic [32] and

Li et al. [48] analyse a timetable using four criteria: total time to clear a line,

total delays, maximum delay which can occur in the timetable and time efficiency

of the timetable. This means that the above authors place a lot of emphasis on

punctuality which is evaluated using different metrics.

A similar approach is adopted by Goverde et al. [40] and Sama et at. [80] who

develop a multi-objective optimisation problem to minimise the impact of distur-

bance management through real-time rescheduling. The objectives considered are

the following:

• Maximum tardiness - the maximum positive difference between a train’s

estimated and scheduled arrival time at any node in the network.

• Cumulative tardiness - calculated as the sum of all delays at all nodes in the

network.

• Cumulative tardiness end - calculated as the sum of all delays at the time of

their last operation 1.

• Punctuality - the number of trains arriving late at their last operation 2.

• Priority cumulative tardiness end - the sum of weighted delays associated

with a train’s last operation.

• Priority cumulative tardiness end cost - similar to above with the extensions

of a delay threshold Φ and a penalty cost for each delay which occurs.

1Last operation is defined by Sama et al. [80] as the time that a train enters or exits a network
as well as the time a train stops at any intermediary nodes in its path

2Trains are considered late if they arrive at a node Φ minutes after its scheduled arrival time
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• Scheduled deviation - penalises both early and late arrivals and penalises

late departures at the nodes.

• Total completion - the sum of delays of all the trains at their last node in

the network.

• Travel time - the sum of the time that all scheduled train spend in the

network.

These objectives are then combined using an adaptation of Data Envelopment

Analysis (DEA) which ’uses linear programming to determine the relative efficien-

cies of a set of homogeneous (comparable) units’ [80]. For any feasible solution to

the problem, DEA provides an efficiency score for each objective function, indi-

cating how well each objective performs for the given solution [40]. The problem

with DEA is that it provides an efficiency metric for each function individually

rather than the optimisation problem as a whole so, in cases were an objective is

preferred over the rest, this is not captured by the DEA.

Sameni and Preston [81] also use Data Envelopment Analysis to analyse the effi-

ciency of railway operations since they recognize that some performance metrics

have different units of measurement, making it difficult to compare with each other

in a holistic way. The two performance metrics used by Sameni and Preston[81]

are: the number of kilometres a timetable offers and delay minutes. The model

though is likely to favour timetables with low frequency trains since trains will

have more time between them, allowing the timetable to absorb delays but also
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make sure that sufficient demand has been generated during that time, leading to

high train loading values.

2.2.2 Performance metrics for railway timetabling

Throughout the literature, authors use different performance metrics to evaluate

railway timetables. For example, the British railway industry has two ways of

assessing delays: the number of services which arrive at their destination within

three minutes and the second is the average delays of each train at each station in

its path [60]. In literature, punctuality can be measured as the total delays by all

trains or the maximum delay expected to occur [32]. This chapter has the purpose

of presenting all the different methodologies used in the literature and industry

to assess railway timetable performance metrics which cover the following areas:

capacity, journey time, punctuality and waiting time.

Section 2.2.2.1 explains the complications behind the estimation of the capacity

of a railway network as well as the different methods which attempt to calculate

network capacity. It also provides a description of system capacity and relates it to

train loading. Section 2.2.2.2 provides the literature for evaluating travelling time.

The different methods for modelling train delays as well as the formulations used

to calculate a timetable’s performance in terms of the delays on arrival are given

in Section 2.2.2.3. Finally, Section 2.2.2.4 analyses the literature for assessing a

timetable’s waiting time from the passengers point of view.
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2.2.2.1 Capacity

In the railway industry, the term ’capacity’ encompasses a wide range of defini-

tions, creating the need to clarify what does the term ’capacity’ really refers to.

The British railway industry has two definitions for capacity. Network capacity is

measured as the number of passenger and freight trains the network can accom-

modate while system capacity refers to the number of passengers or freights that

a given timetable can serve [29].

Network capacity

Analysing railway capacity is important from the infrastructure manager’s (IM)

and train/freight operators’ point of view since train/freight operators pay a fee to

use the infrastructure to run their services [45]. Therefore, the maximum number

of trains that can traverse through the network in a given period of time can serve

as a benchmark to evaluate the performance of a railway timetable.

Static methods for calculating capacity, model the railway environment using

mathematical formulae and calculate a value of capacity which represents the

maximum number of trains that can traverse the network within the time period

examined [10, 28, 56]. The downside of static approaches is that the decision vari-

ables refer to the maximum train services a railway network can support during

time interval T without assigning a value to the entry/exit time of the trains from

the locations they will visit. The absence of such information makes it impossible
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to construct a timetable using the information provided from static models. On

the other hand, if the frequency is used to derive timetables, the timetable is likely

to be infeasible due to the conflict of trains in junctions.

The above is also supported by the International Union of Railway (UIC) which

argues that ”Capacity as such does not exist. Railway infrastructure capacity de-

pends on the way it is utilised” [87]. UIC in Code 405 has proposed a methodology

to assess railway capacity by evaluating line sections to identify bottlenecks [1].

The formula in Code 405 for estimating capacity is given by Equation 2.2.

L =
T

tfm + tr + tzu
(2.2)

In the formulation, L refers to the total capacity the line section can support

measured as the total number of trains within time interval T . The term tfm

refers to the average time span at minimal sequence of trains (i.e. the average

minimum time headway when trains are moving at average speed), tr is the average

buffer time and tzu the time supplements [1]. All the values in the denominator

are dimensioned as average time per train. The UIC 405 Code was succeeded by

the UIC Code 406 which, rather than measuring capacity as the total number

of trains, the term capacity utilisation is used instead [87]. The parameters that

influence capacity utilisation are: average speed, the number of trains, stability

(i.e. margins and buffers) and train heterogeneity (Figure 2.1).

Figure 2.1 illustrates the different characteristics of mixed-train timetables and
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Figure 2.1: Railway capacity parameters [87]

metro-train timetable. For example, mixed-train timetables are comprised of

highly heterogeneous services which operate at high average speeds and, in com-

parison to metro-services, mixed-train timetables have a smaller number of trains

and are less stable. In the leaflet, UIC also presents a formula which can be used

to evaluate the utilisation of network components [87]. Equation 2.3 shows the

infrastructure utilisation formula proposed by UIC [87]:

K =
A+B + C +D

T
∗ 100 (2.3)

In Equation 2.3, K is the infrastructure percentage utilisation, A the total occu-

pation time, B total buffer time while C and D the supplements for single-track

lines and supplements for maintenance respectively [87].
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System capacity

System capacity has an inverse relationship with train loading and is the perfor-

mance metric used by the ORR to reduce crowdedness [29]. Hence, as the system

capacity of a network increases, train loading levels decrease which translates into

a decrease in the levels of crowdedness. Naturally, this metric is of interest to rail-

way passengers who are likely to feel that railways are not a satisfactory substitute

to other means of transport. Subsequently, this metric may be of relevance to the

government as well.

Evaluating train loading is vital for train/freight operators since it is in the op-

erator’s best interest to run the trains close to maximum carrying capacity. On

the other hand, railway passengers and the government are more likely to prefer

services which are less crowded. Train loading calculations require knowledge of

the number of passengers in the train at any point in time and the maximum

seating capacity of each train in the timetable. Albrecht [4] considers a similar

cost function by estimating what is defined as operational efficiency; that is the

ratio between demand and supply for passenger kilometres per unit of time. How-

ever, the value of operational efficiency calculated is an average for a given unit of

time and as such information about the occupancy rate of each individual train is

diluted.

Provided that an Origin-Destination matrix (O-D matrix) is made available, the
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number of passengers in the train can be found through the simple recursive for-

mula [37]:

Pk(m+1) = Pk(m) − αk(m) + βk(m) (2.4)

In the formula above, Pk(m) represents the number of passengers in train k when

departing from station m, αk(m) the number of passengers alighting train k at

station m and βk(m) the number of passengers boarding train k at station m.

2.2.2.2 Journey time

The importance of journey time cannot be underestimated in public transport since

it is an important factor influencing the attractiveness of a means of transit [37].

In this context, journey time is defined as in-vehicle time (IVT) since other forms

of journey time are either calculated in other cost functions (e.g. headway time,

delay time) or are irrelevant to timetable optimisation and as such not calculated

at all (e.g. walking time to the station). The importance of maintaining as low

journey times as possible is well documented by numerous authors such as Mackie

et al. [51, 52] and Wardman [90]. In particular, Wardman [90, 91] identifies

that railway customers value their time higher than car users, highlighting the

importance of achieving low journey times to maintain the competitiveness of

railways. Consequently, this metric is of relevance to the regulators as well as the

passengers and freight customers.
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The minimisation of journey time is analysed by a number of authors [5, 11,

83]. However, these papers focus on the minimisation of travelling time without

considering how many passengers are aboard. Ghoseiri et al. [37] minimise journey

time while also considering the number of passengers on board but, even though

they refer to the value of time concept, the actual value is not used in their

formulation to express journey time as a monetary cost.

Dorfman and Medanic [32] and Li et al. [48] consider an alternative objective

for the minimisation of the total travelling time whereby they try to minimise

the total time J needed for all trains in the schedule to clear the line and the

formulation is

J = tNa − t1d (2.5)

where tNa is the arrival time of the last train in the schedule at the last node in

its path and t1d the departure time of the first train in the schedule from the first

node in its path. This objective is also known as the timetable’s makespan (or

simply span) and is also used by D’Ariano [26].
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2.2.2.3 Punctuality

Punctuality modelling

Punctuality of service (defined as the extent to which trains arrive at stopping

stations on time) is a performance measure highly valued by railway customers,

regulators and train operators [16, 91].

Real-time railway operations are stochastic in nature meaning that operations (e.g.

sectional running times and dwell times) are not constant since they are subject

to disturbances which cause delays [47]. The delay of a train is taken to be the

difference between its scheduled arrival time and its actual arrival time. A positive

delay means that the actual arrival of a train occurs later than its scheduled arrival

time, while a negative delay means that a train arrives earlier than scheduled.

Kroon et al.[74] provide three measures for assessing a timetable’s robustness:

primary delays that can be absorbed before they lead to knock-on delays, minimal

knock-on delays from one train to the next and the ability to eliminate delays

quickly. Primary delays are caused by external stochastic disturbances (i.e. any

event other than the conflict with a delayed train) while knock-on delays occur

when a delayed train knocks its delay on to other trains [47]. Allowance times are

inserted in the timetable to absorb primary delays while buffer times are inserted

to prevent the propagation of delays on to other trains.

Primary delays are modelled by fitting a probability distribution to consider the
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likelihood of an external event taking place (e.g. driving behaviour differences,

adverse weather conditions etc.) as well as their magnitude. Primary delays are

often modelled using the exponential distribution [18, 88, 89].

Modelling delay propagation is much more complicated though than the modelling

of primary delays but is still essential in evaluating the robustness of the timetable

[16]. Meester and Muns [54] identify three different methods for modelling delay

propagation: queuing models, analytical models and simulation models. Queueing

models are generic mathematical models which are timetable independent, making

them inappropriate for analysing a timetable’s performance in terms of punctu-

ality [54]. Furthermore, queueing models tend to become less accurate as the

network becomes more complex, limiting their ability to provide accurate results

for decision making purposes [82]. Analytical models rely on the use of condi-

tional probability distributions (e.g. [54, 95, 96]) or heuristic approximations (e.g.

[16, 18]) to incorporate knock-on delays. Such methods though require a deep

understanding of statistics or are heuristics which try to approximate the effect

of delays, limiting their applicability in a real world context. Robust optimisation

techniques can be used to model the effects of primary and knock-on delays but the

inherent conservatism of such techniques makes them inefficient for industry appli-

cations [7, 8, 36, 45]. Lastly, simulation models can take too long to run, limiting

their applicability [16, 54]. Consequently, since all methods have their limitations,

the purpose of modelling delays should be carefully taken into account in order to

determine which one of the above methods is the most appropriate.
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Measuring punctuality

Over the years, a number of different methodologies have been developed aimed at

evaluating the punctuality of a railway timetable. Meester and Muns [54] propose

three methods for calculating penalties associated with delays:

• Expected fraction of arrivals at most n minutes late

• Average expected delays

• Average expected penalty on delays above n minutes

In their optimisation model though, Dorfman and Medanic [32] and Li et al. [48]

use three different performance measures to assess a timetable’s reliability:

• Total delay experienced by all trains

• Maximum delay experienced by a train

• Timetable time-efficiency

The formulation for the timetable time-efficiency objective is:

η =
tfNa
− tf1d

tobNa
− tf1d

(2.6)

where tfNa
is the scheduled time of arrival of the last train in the schedule, tf1d the

scheduled departure of the first train in the schedule and tobNa
the actual arrival
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of the last train in the schedule. As the timetable experience delays from which

it cannot recover, tobNa
will increase, making the denominator larger which in turn

provides lower values for the timetable’s time-efficiency with respect to reliability

of service. Goverde et al. [40] and Sama et at. [80] use a wider range of objectives

to calculate delays which have all been listed in Section 2.2.1.

However, the above two lists are not conclusive and, in literature, a number of dif-

ferent methods are being utilised to analyse the reliability of a given timetable. For

example, Vansteenwegen and Van Oudheusden [88, 89] minimise a function which

penalises weighted waiting times which result from primary delays. Peterson [74]

minimises primary delays of two services in the timetable by redistributing the

allowance times in the existing timetable. He also uses different weights to reflect

the fact that passengers weigh delay time higher than travel time [74]. Carey and

Kwiecinsky [18] minimise total primary and secondary delays by inserting buffer

times but their problem is very small is size. Liebchen et at. [49] focus on delay

resistant timetables but only transfer passengers are considered when evaluating

a timetable’s performance. Kraay and Harker [46] present a scheduling formu-

lation which aims to reduce delays but their focus is only on freight trains and

their objective function is divided into two parts which are being minimised simul-

taneously. The first term penalises actual arrival and departure time deviations

from the scheduled time, while the second part of the objective function penalises

missing scheduled connections and violations of the 12 hour rule (the maximum

number of driving hours).
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Finally, it should be noted that, in the United Kingdom, punctuality is measured

as the percentage of services which arrive on time at their terminal stations. This

punctuality metric is widely known as Public Performance Measure (PPM) [60].

Commuter services which arrive within 5 minutes from their scheduling time are

assumed to arrive on time while that number rises to 10 minutes for long distance

services [60]. This measure of performance though has some serious disadvantages

as it does not consider other stations in the train’s path while it also does not

provide information on how late a train is. For example, a commuter service

which is 6 minutes late is treated in the same way as a train which is 30 minutes

late, undermining the usefulness of this performance measure. The rail industry

also measures delays using what is known as ’delay minutes’ which are defined

as ’...a loss of time against a schedule between two consecutive locations on the

train’s journeys’ [59]. This metric is currently being used to determine the penalty

that Network Rail or the Train Operator have to pay (depending on who will be

allocated responsibility for the delay) as a result of the delay [66]. Consequently, a

train which is described as ’on-time’ using the PPM, may have accumulated ’delay

minutes’ on its way until the terminal station.

2.2.2.4 Waiting time

Waiting time is found by estimating the time customers have to spend on the

platform waiting for their service to arrive. Albrecht [4] minimises the mean

waiting time of passengers using the average wait formulation by Osuna and Newell
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[70]. The formulation considers the headway between services and, by assuming

that customer arrivals are uniformly distributed, the expected average wait is

estimated. Calculating the average though has the downside that if a group of

customers wait for too long, the impact of their waiting time can be mitigated if

the rest of the waiting times are short enough.

Albrecht notes that suburban trains have easily recallable departure times and this,

in conjunction with the availability of pre-trip and on-trip information, allows for

passengers to arrive at the platform just in time to catch the train [4]. However,

the fact that passengers are aware of the scheduled departure time of their service

does not imply that demand for a service does not exist; it may as well exist

but not being served frequently due to the sporadic arrivals of the service. The

importance of this performance metric is identified by Wardman [91] who states

that: ’Public transport users can either plan their activities around scheduled

departure times, which involves inconvenience and transaction costs along with

some amount of wait time, or else turn up at the departure point at random,

which avoids the scheduling costs but incurs additional waiting...’. This is an idea

also shared by the Department for Transport [78] which claims: ’...the time people

actually spend waiting at a station or stop might not fully reflect the inconvenience

of the service frequency, which might also affect when people have to (rather than

when they would prefer to) leave or arrive’. Therefore, it is preferable to have

regular headways between services while also communicating that information

to the public to prevent them from experiencing any inconveniences related to

excessive waiting.
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2.3 Optimisation algorithms

The train timetabling problem is an NP-Hard problem3 and, as a consequence,

good heuristics and meta-heuristics are necessary to obtain solutions which are

close to optimality [13, 17, 32, 42, 68] . At the moment, a number of different

optimisation algorithms are being used which can output a feasible timetable. To

eradicate the problem faced by exact algorithms, multiple heuristics have been

applied over the years to tackle the train scheduling problem. Unlike exact algo-

rithms, heuristics attempt to find approximate solutions to the problem within a

reasonable period of time.

Several papers propose exact algorithms to solve the problem by implementing

variations of the Branch and Bound algorithm [39, 42, 57]. However, due to

the computational complexity of the problem, the efficiency of such algorithms

suffers severely when the problem grows in size. Branch and Bound algorithms

can be used as a heuristic by terminating them before they converge to the global

optimum [26]. Branch and bound algorithms can be terminated before reaching

the optimal so they rely on their ability to converge to a good solution within an

acceptable time interval. One of the most recent and used algorithms for tackling

timetabling problem is the Branch and Bound algorithm developed by D’Ariano

which formulates the problem as an alternative graph [23, 26]. The problem then

becomes a job-shop problem with no store 4 as well as the constraints relevant to

3Optimisation problems classified as NP-Hard are those problems for which no polynomial
algorithms exist that can solve the problem to optimality [71]

4The job-shop problem is a class of problems where a number of jobs need to be processed
by one or more resources (also known as machines) with each resource needing a given amount
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timetable optimisation. A branch and bound procedure takes advantage of specific

problem characteristics so that the algorithm can be truncated relatively quickly

as it converges to good solutions in very little time [19, 26, 27].

A constraint generation algorithm is proposed by Odijk [68] specifically designed

to solve the periodic timetabling problem. The algorithm formulates constraints

which capture the periodic time window of each timetable (called timetable struc-

ture) and uses a branch and bound in conjunction with a feasible differential algo-

rithm to determine whether a feasible solution to the periodic timetable problem

exists.

Genetic algorithms are a well known class of heuristics which numerous authors

have relied on in the past to approach large scale timetabling problems [5, 58, 83].

Each implementation differs in terms of the problem encoding and the way the

timetable is determined. For example, Suttewong [83] makes the use of two types

of binary variables to encode the problem, the first variable is encoded as a three

dimensional array and the entry xi,j,s takes a value of one if train i visits node s

before train j. The second variable is encoded as a two dimensional array and the

entry Yi,s takes the value of one if a train i utilises node s and is zero otherwise.

One the other hand, Barber et al. [5] encode the problem using a single binary

variable which contains information about the sequence with which all trains will

of time to process each job. The goal of the problem is to find a way to schedule each job to
each machine such that the timespan of all the jobs in minimised [19]. The ’no store’ variation
prevents each resource from storing a job and accepting another one before passing on the job
it processed. This means that once a resource starts processing a job, the job needs to move to
the next resource before the current resource accepts any new jobs [19]
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visit the stations in their path. The departure time from a given node is calculated

by finding the closest feasible node.

Nonetheless, several other optimisation techniques are being used such as sub-

gradient optimisation algorithms, greedy heuristics, simulated annealing and La-

grangian relaxation heuristics [14, 37]. Finally, certain researchers rely on the use

of simulation to find approximate solutions to the problem [32, 48].

2.4 Summary

At the moment, even though literature exists on the optimisation of railway timeta-

bles using a wide range of objectives, when it comes to the simultaneous optimi-

sation of numerous objectives, literature is quite limited. This is because the vast

majority of the authors only consider two objectives simultaneously and these ob-

jectives are usually shaped according to the needs of a single railway stakeholder.

This might also explain the lack of research on how to find a common dimension

to measure numerous timetabling objectives.

The reason for only choosing two objectives lies in the fact that researchers, quite

often, want to analyse the trade-off between cost functions so they only pick two

objectives to prevent the impact of a third objective interfering with the results.

Authors defend their decision to use only two objectives by arguing that in the

timetabling process, capacity and punctuality are the main metrics of interest
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while for real-time rescheduling, punctuality and energy consumption are the main

metrics of interest.

With regards to network capacity, static capacity estimation approaches estimate

the maximum number of trains which can traverse the network in a given amount

of time but the static nature of such approaches makes them inappropriate for

timetabling. UIC Codes 405 and 406 offers different methods of estimating capac-

ity which both rely on a given timetable. Code 405 counts the total number of

trains a network can support while Code 406 measures infrastructure utilisation

instead. System capacity (or train loading) is an objective which is not commonly

used in optimisation and the only paper found to consider it, measures the aver-

age utilisation of all trains without taking into account the carrying capacity of

each train as well as the number of passengers in it. Journey time is commonly

used for optimisation due to its importance for numerous stakeholders but few

authors compute journey time by considering the number of passengers on board.

Punctuality is an objective used very often in timetabling optimisation and there

is extensive literature on how to model primary and knock-on delays as well as

how to penalise delays. We will be measuring waiting time by estimating the time

customers spend on the platform waiting for the train to arrive. This objective has

not been extensively studied in literature and the only paper found to use waiting

time at the platform for multi-objective optimisation, uses it in conjunction with

average train loading. The above is not a conclusive list of performance metrics

used in timetabling and a more detailed discussion of other performance metrics

can be found in [20] and [77].
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Finally, numerous optimisation algorithms are in place for solving the train timetabling

problem but, due to the computational complexity of the problem, exact algo-

rithms become inefficient as the problem grows in size. Therefore, multiple heuris-

tics have been developed to find approximate solutions to the problem while some

authors resort to the use of simulations.





Chapter 3

Cost Functions

3.1 Introduction

This chapter explains the methodology used to formulate the cost functions and

the method used to make sure that all cost functions have the same dimension. The

cost functions measure a wide range of performance metrics which may concern

multiple stakeholders in the railway industry. The cost functions are subsequently

re-dimensioned such that they measure a timetable’s monetary cost; a metric easily

understood by both academics and industry professionals.

Section 3.2 introduces the different variables used in formulating the cost functions

and explains how they relate to the train timetabling problem. Section 3.3 provides

the formulation of the cost functions and finally Section 3.4 explains how the

35



Chapter 3. Cost Functions 36

concept of travel time savings (also known as values of time) is employed so as to

calculate the monetary cost of each individual cost function.

3.2 Specification of timetable and associated con-

straints

A timetable is typically constructed by specifying the arrival τn,i and departure

times σn,i→j of each train n over a set of control points i, j (∀i 6= j) (which can be

a station, junction, etc.) along its service route. An example is shown in Figure

3.1 in which the horizontal and vertical axes represent the time and position along

the train route respectively. Each line on the diagram represents a train run which

is specified by a series of departure σn,i→j and arrival times τn,i at station i for

each train n as specified by the timetable. Given a set of σn,i→j and τn,i, we can

derive the running time Tn,i→j of each train n between station i and j as

Tn,i→j = τn,j − σn,i→j, (3.1)

and also the dwell time Dn,i of train n at station i

Dn,i = σn,i→j − τn,i, (3.2)
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Figure 3.1: Timetabling variables illustration

The setting of the variables σn,i→j and τn,i will be subject to a set of operational

constraints in practice. We first have the minimum sectional running time con-

straints to reflect the speed limit imposed on each track section:

τn,j ≥ σn,i→j +
∆i,j

v∗n
, (3.3)

where ∆i,j is the distance between stations i and j, v∗n is a constant representing

the maximum speed a train can achieve given the train’s maximum speed and

the speed limit on the current track section for train n travelling from station

i to j. This means that, for the purpose of this project, a train’s motion in

any given section will not be modelled using any dynamic information such as

acceleration and deceleration. The formulation only provides a lower bound for

the time needed for a train to travel any given distance. The exact method for
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calculating the running times of trains is given in Section 4.5.4. Moreover, we also

have the minimum dwell time constraints which define the minimum time each

train n has to spend at station i:

σn,i→j − τn,i ≥ D∗n,i, (3.4)

The minimum dwell time D∗n,i imposed here will typically be determined by a

number of factors on the demand side such as demand level of passengers or

freight for that specific train at that specific station, and/or the consideration of

connectivity where it is necessary to ensure a long enough dwell time for passengers

or goods to transfer from one train to another at the station or interchange [73].

To implement the signalling system, each track section is further disaggregated into

a series of blocks. Under the current fixed block signalling systems in practice, each

block can only accommodate up to one train at a time to ensure safe operations

(see Figure 3.2). Referring to Figure 3.2, denote the arrival and departure times

of train n at block b between station pair (A,B) as τ1,b and σ1,b→B respectively.

The shaded region in the figure represents the location and time period (during

times tinn,b and toutn,b ) that is occupied by the train of interest during which other

trains are prohibited from entering. Following the specification in the current UIC

(International Union of Railways) operational code [87], we have:

tinn,b = τn,b +
δn,b
vn,b

, (3.5)
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Figure 3.2: Signalling block example occurrence

where δn,b is the visual distance of train n to the entrance of block b; vn,b is the

nominal speed of train n travelling through block b. The time tinn,b represents the

time when the driver of train n observes the signal aspect at block b and starts

to take according action(s). Moreover, the time at which block b is released from

train n is defined as:

toutn,b = σn,b→c +
Ln
vn,b

, (3.6)

where Ln is the length of train n. The time toutn,b represents the time when the tail

of the train n clears from the block section b and enters block section c. Because

of the signalling system, congestion is expected to occur when the train volume

on a track section is high [31, 38]. Following the definitions of tinn,b and toutn,b set

in Equations 3.5 and 3.6 respectively, the signal blocking constraint can then be
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written mathematically for all station pairs (i, j) and signal blocks b as

τn+1,b ≥ σn,b→c +
Ln
vn,b

, (3.7)

in which train n + 1 is the train following immediately after train n in block sec-

tion b. This constraint prevents trains from simultaneously occupying a signalling

block. Finally, a headway constraint is imposed which maintain safety time mar-

gins between trains. This constraint is formulated as

τn+1,s,j ≥ τn,i + h∗b (3.8)

where h∗b denotes the minimum time headway which must be kept between the

arrival time of two trains at any time in signalling block b.

A detailed formulation of the train scheduling problem is given by multiple authors

such as Ghoseiri et al. [37], Higgins et al. [42] and Barber et al. [5]. However,

the constraints identified above, in conjunction with the optimisation procedure

outlined in Chapter 5, ensure that feasible timetables are generated which can be

evaluated using the cost functions formulated in Section 3.3.

3.3 Performance metrics and cost functions

With the timetable and the associated constraints specified, we can then formu-

late the cost functions to be used in the optimisation framework. Following the
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comprehensive review in [20] and [77], we have selected four representative per-

formance metrics in the railway industry: train running times, customer waiting

times, service punctuality and crowdedness. We expect that all cost functions are

of interest for train operators and passengers while the Government is likely to

be interested in monitoring the performance of the last three metrics although

the Government might want to have in mind the journey times to make sure that

railways remain competitive. Finally, the Infrastructure Manager will be more

interested in punctuality of services.

3.3.1 Running times of trains

The running times (Tn,i→j) of trains n over all sections (i, j) can be obtained from

Equation 3.1 in the previous section following the specification of timetable vari-

ables σn,i→j and τn,i. Given all running times Tn,i→j, we define the cost associated

with the running time components as:

CT = cT

N∑
n=1

∑
{∀(i,j)∈Sn}

Tn,i→jpn,i, (3.9)

where N represent the total number of trains and Sn the stations in the path of

train n. The variable pn,i is a quantity associated with the passenger demand for

train service n running between stations i and j. With this pn,i, the corresponding

timetable will then give higher priority to trains carrying more passengers. Finally,

the notation cT represents a monetary cost associated with the running times. We
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will have further discussion on the choice of this cT and other monetary cost

coefficients in Section 3.4.

3.3.2 Waiting times of passengers

The waiting time cost function will penalise the time spent by passengers waiting

for their service to arrive. Estimating the cost associated with waiting times first

requires knowledge of λi→j(t) which denotes the demand profile for passengers

requesting a service from station i to station j over time t. Fundamental queueing

analysis (e.g. [25]) gives the total waiting time W (in the unit of [persons-time])

as

W =
∑

{∀(i,j)∈S}

∑
{∀n∈(Ni∩Nj)}

∫∫ τn+1,i

τn,i

λi→j(t)dt
2, (3.10)

where Ns is the total number of trains serving station s over the study time period.

The nested summation over the elements {n ∈ (Ni ∩Nj)} serves the purpose of

prohibiting passengers from boarding trains which do not stop in the stations the

passengers demand. Consequently, the set intersection makes sure that train n

stops both at station i and station j. The time interval between τn,i and τn+1,i

specifies the headway of train service at station i which will also serve station j.

Equation 3.10 can be simplified by assuming a uniform demand λ̄i→j = λi→j(t)
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for all times t during the study period as:

W =
∑

{∀(i,j)∈S}

∑
{∀n∈(Ni∩Nj)}

∫∫ τn+1,i

τn,i

λ̄i→jdt
2,

=
∑

{∀(i,j)∈S}

∑
{∀n∈(Ni∩Nj)}

∫ τn+1,i

τn,i

λ̄i→j(τn+1,i − τn,i)dt,

=
∑

{∀(i,j)∈S}

∑
{∀n∈(Ni∩Nj)}

λ̄i→j[(τn+1,iτn+1,i − τn,iτn+1,i)− (τn,iτn+1,i + τn,iτn,i)],

∴ W =
∑

{∀(i,j)∈S}

∑
{∀n∈(Ni∩Nj)}

λ̄i→j[τn+1,i − τn,i]2. (3.11)

As reflected from Equation 3.11, the total waiting time grows linearly with the

average demand rate λ̄i→j but quadratically as the service headway increases (i.e.

frequency of service decreases). However, the uniform demand assumption made

in deriving Equation 3.11 may be valid for high frequency service (e.g. metro)

while it may not be appropriate for low frequency mainline services as it is known

that the arrival of passengers will cluster around the publicised scheduled service

times in the timetable. Hence some detailed survey will be needed for obtaining

the demand pattern if one wants to have a reasonable estimate of waiting times

when deriving mainline timetable.

Finally, following the calculation of W , the eventual cost associated with waiting

times is determined as:

CW = cW
∑

{∀(i,j)∈S}

∑
{∀n∈(Ni∩Nj)}

∫∫ τn+1,i

τn,i

λi→j(t)dt
2, (3.12)
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where ĉW is the monetary cost associated with waiting times.

The purpose of incorporating the waiting time into the optimisation framework is

to ensure that there are enough services for number of passengers or goods at the

station without creating excessive waiting times. Empirical studies conducted by

the UK Department for Transport (e.g. [85, 90, 91]) suggest that this cW will be

around two or three times larger than cT as the waiting time is generally regarded

as a dead loss. More information can be found in Section 3.4.

3.3.3 Punctuality of service

Punctuality is measured herein as the time discrepancy between the scheduled

and the actual arrival times of the train services. To quantify the punctuality in

monetary units (see [15, 66]), we adopt a punctuality cost function as shown in

Figure 3.3.

Figure 3.3: Punctuality cost function
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In the figure, τ ∗n,i denotes the scheduled arrival time of the train service while Φ is

a time allowance for lateness meaning that no time penalty is charged if the train

arives within its allowance time (e.g. Φ is considered to be three minutes under

the UK railway operational regulations [66]). If the corresponding train is delayed

by more than Φ from the scheduled arrival time τ ∗n,i, a schedule delay cost will be

imposed on the Train Operator by the Infrastructure Manager for lateness. It is

considered here that this schedule delay cost increases linearly with a slope of cP

over arrival time τn,i, where τn,i ≥ τ ∗n,i+Φ. This penalty rate cP represents the loss

in value of time of customers (passengers or freight companies) per unit lateness

in time [66, 69]. Following this linear specification, the total schedule delay cost

associated with punctuality can be determined, taking the arrival of passengers

and/or goods into account, as

CP = cP
∑

{∀(i,j)∈S}

∑
{∀n∈(Ni∩Nj)}

∫ τn+1,j

τn,j

λi→j(t)(τn+1,i − τ ∗n+1,i − Φ)+dt, (3.13)

where τ ∗n+1,i is the arrival time for train n+1 at station s as given in the timetable,

(τn+1,i − τ ∗n+1,i − Φ)+ = max[(τn+1,i − τ ∗n+1,i − Φ), 0]. Similar to Equation 3.10,

Equation 3.13 can be simplified by assuming uniform arrival λ̄i = λi(t) for all

times t as

P =
∑

{∀(i,j)∈S}

∑
{∀n∈(Ni∩Nj)}

∫ τn+1,j

τn,j

λ̄i→j(τn+1,i − τ ∗n+1,i − Φ)+dt,

=
∑

{∀(i,j)∈S}

∑
{∀n∈(Ni∩Nj)}

λ̄i→j(τn+1,i − τ ∗n+1,i − Φ)+t
]τn+1,j

τn,j

,
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∴ P =
∑

{∀(i,j)∈S}

∑
{∀n∈(Ni∩Nj)}

λ̄i→j(τn+1,j − τn,j)(τn+1,i − τ ∗n+1,i − Φ)+. (3.14)

Finally, it is noted that this punctuality cost analysis is generally applicable to

other schedule cost functions, apart from the linear assumption in Figure 3.13, by

revising the cost function term

(τn+1,i − τ ∗n+1,i − Φ)+ (3.15)

in Equation 3.13.

Certain authors (e.g. [88, 89]) also penalise trains when arriving at a station

ahead of schedule. The rationale for penalising early arrivals is that passengers

who will not exit at the current station, will incur a penalty for waiting rather than

travelling. The penalty for waiting is higher than the penalty for travelling so early

arrivals are also penalised. The British Department for Transport defines waiting

time as the time that passengers spend on the platform waiting for their service [52,

85]. Since the definition of waiting time provided by the Department of Transport

does not incorporate the in-vehicle waiting time penalised by Vansteenwegen and

Van Oudheusden [88, 89], no penalty will be applied in the case of early arrivals.

Another justification for not penalising early arrivals is the fact that if a train

arrives early it may impact other trains leading to their delay and this delay will

be captured by the ccost function provided in Equation 3.13. If on the other hand

a train’s early arrival does not impact on other trains, then there is no harm in

arriving at a station early.
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3.3.4 Crowdedness

The crowdedness cost function measures the difference between travelling in crowded

versus uncrowded trains and is an important aspect for the passengers when as-

sessing the attractiveness of public transport [92]. The difference is derived from

the fact that passengers value their time higher when they travel in crowded trains.

CD = cD

N∑
n=1

∑
{∀(i,j)∈Sn}

Rn,i→j(p)pn,iTn,i→j (3.16)

In the above formulation, R denotes the time multiplier, given the number of

passengers on board, relative to the train’s seating capacity. At low crowdedness

values, the time multiplier is equal to zero meaning that no penalty is charged

for overcrowding. After the train’s loading levels exceed a given threshold, the

penalty increases linearly with the train loading [86, 92]. The time multiplier for

standing passengers is much higher than that for seating passengers to reflect the

increased dissatisfaction of passengers when they are unable to find a seat [86, 92].

3.4 The cost of travel time savings

The history of travel time savings (also known as value of time) in the UK starts

in the 1960s with the need to evaluate a journey’s non-monetary costs to carry out

cost benefit analysis for the construction of the M1 motorway and the Victoria
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Line in London [52]. The Department for Transport classifies travel-related costs

into two broad categories [52, 78].

• Monetary costs cover the travel-related costs that a person must pay using

real life currency (e.g. the cost of purchasing a train ticket, the cost of

refuelling the vehicle).

• Non-monetary costs are being used to penalise a wide variety travelling be-

haviours such as in-vehicle time, waiting time and walking time. These costs

do not involve the exchange of real-life currency so their monetary value is

estimated by monetising the passengers’ time.

Non-monetary costs along with any monetary costs comprise what is known as

the generalised cost of a journey and represent the opportunity cost (in financial

terms) of travelling [52].

Over the following years, it became evident that different time valuations should be

calculated depending on whether the passenger is travelling during working hours

or not. Consequently, time valuations were estimated for travelling during working

and non-working time [52]. Subsequent research [51, 52, 85, 90, 91] identified three

different passenger types

• Business passengers are the passengers who travel during working hours

• Commute passengers travel to and from work
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• Leisure passengers travel for any other purpose except the two mentioned

above

Recent research findings though show that the time valuations for commuting and

business passengers travelling a short distance are close to each other, blurring the

lines between the time valuations for different journey purposes [78].

The travel time for business passengers is valued differently depending on the mode

they are travelling while for commute and leisure passengers their time valuation is

mode-independent [85]. The reason for the business values being mode-dependant

is because the values are based on the average income of business passengers using

each specific mode [52, 78, 90, 91]. Business passengers travelling via rail were

found to have the highest VoTs followed by car and bus passengers [78, 85].

Recently, VoTs has been used by the DfT on a strategic level to carry out a cost-

benefit analysis to evaluate the impact of transport investments such as Crossrail

and the High Speed Two (HS2) lines [9, 43, 78]. The fact that VoTs are used to

evaluate such important and expensive projects shows the importance the British

government places on evaluating a project’s non-monetary costs using travel time

savings.

The fact that all cost functions measure passenger hours enables us to apply the

’value of time’ concept in order to transform all cost functions such that they are

expressed in monetary terms. The monetary coefficients in the cost functions are

set from official documents published by the British Department for Transport and
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Network Rail. The monetary coefficients are set according the ’webTAG Unit 3.5.6’

guidance [85] published by UK Department for Transport which specifies the values

of time of travellers based on an empirical study conducted by University of Leeds

[52]. Due to confidentiality issues outlined in Section 3.5, calculating a timetable’s

monetary cost is not possible. Therefore, by applying time valuations to our cost

function formulations, it is possible to assess a timetable’s non-monetary cost.

Valuations of journey time differ according to the passenger’s travel purpose so dif-

ferent time valuations are given depending on each purpose. Furthermore, the time

for waiting, arriving late and travelling in crowded trains is given by multiplying

the passengers’ travelling time by a time multiplier which represents the oppor-

tunity cost of the passenger for waiting, arriving late and travelling in crowded

trains. Sections 3.4.1 to 3.4.3 give the monetary coefficients to be applied to each

performance metric while Section 3.4.4 updates formulation of the cost functions.

3.4.1 Values of travelling and waiting

The time valuations for railway passengers are provided in the ’Passenger Demand

Forecasting Handbook’ and the validity of the VoTs for railway passengers has been

further enhanced by research carried out by the DfT in 2015 [78, 85]. An analysis

carried out in recent years by the DfT [78] was designed to understand whether

the VoTs for business passengers using railways should be adjusted to reflect the

fact that passengers are now able to use mobile devices and access the internet
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while on board. However, the research failed to report any statistically significant

changes in the VoTs due to technological developments [78].

Following the guidelines set in WebTag 3.6.5 and the Passenger ’Demand Fore-

casting Handbook’, the cost of waiting is set to 2.5 times the cost of travelling

[78, 85]. Research carried out by the DfT in 2015 has shown that the waiting time

multiplier should be reduced to 2.0 but, as of the time of writing, this revision has

not been made official [78].

The final costs used in this project to penalise travelling time and waiting time are

summarised in Table 3.1. These values are officially used by the DfT in WebTag

3.6.5 and the ’Passenger Demand Forecasting Handbook’ [78, 85]. The meaning

of the costs can be interpreted to be the opportunity cost of travelling in financial

terms.

Table 3.1: Monetary coefficients [85]

Value of time of each passenger type (£/hour)
Cost Function Coefficient Business Commute Leisure
Journey Time CT £31.96 £6.81 £6.04
Waiting Time CW £79.90 £17.03 £15.10

3.4.2 Punctuality multipliers

Train delays are being penalised through the use of punctuality multipliers which

are applied to the value of time [78]. Punctuality multipliers differ for each mode
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so the multipliers for lateness are taken from the recommended values included in

the ’Passenger Demand Forecasting Handbook’ [78]. Research carried out in 2015

shows that the value of punctuality multipliers has not changed significantly since

the publication of the ’Passenger Demand Forecasting Handbook’ [78]. Table 3.2

illustrates the values of the punctuality multipliers used in the project. Unlike the

Table 3.2: Lateness multipliers [78]

Less than 20 miles More than 20 miles
Flow type Commuting Other Commuting Other

London TCAa 2.5 2.3 2.5 2.3
SEb- London 2.5 2.3 2.5 2.3

SEb- SE 3.0 2.3 3.9 3.4
London - Outside LSEc 2.5 3.0 2.5 3.0

Non LSEc 3.0 2.3 3.9 3.4
Airports 6.0 6.0 6.0 6.0

a London Travel Card Area
b South East
c London and South East

multipliers presented in Section 3.4.1, punctuality multipliers depend on the flow

type (e.g. if the train travels from London to south east) and also on distance.

3.4.3 Crowdedness multipliers

Crowdedness in trains is penalised by the DfT since it is assumed to lead to lower

comfort levels for the passengers and decreased productivity while in the train [78].

The monetary coefficients for the Crowdedness cost function are the same as in

the Journey Time cost function since they both penalise travelling time. The time

multipliers for travelling in crowded trains have been published by Network Rail
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[86] and are supported by the findings reported by a number of authors [84, 92].

In general, both the industry and academia seem to agree that the multipliers

increase linearly with crowdedness levels [78, 86, 92]. Different time multipliers

are applied depending on the geographical area, crowdedness levels, passenger type

and whether the passengers are sitting or standing [86]. These time multipliers

can be seen in Table 3.3 and Table 3.4.

Table 3.3: Sitting penalties for crowdedness [86]

Load
Factora

London-based Services Non-London-based Services

Leisure
Business Commute

Leisure Business Commute
Standard First Class Outer Inner

60% - - - - - - - -
70% 0.04 0.04 - - - 0.02 0.04 -
80% 0.07 0.08 - - - 0.04 0.08 -
90% 0.15 0.16 0.23 0.04 - 0.07 0.11 0.11
100% 0.20 0.23 0.47 0.07 0.08 0.09 0.15 0.22
110% 0.27 0.31 - 0.11 0.16 0.15 0.21 0.32
120% 0.33 0.39 - 0.14 0.23 0.22 0.27 0.43
130% 0.40 0.46 - 0.18 0.31 0.28 0.34 0.54
140% 0.45 0.54 - 0.22 0.39 0.35 0.40 0.65
150% - - - - 0.47 - - -
160% - - - - 0.55 - - -

a ’Load factor’ is the percentage of passengers on board relative to a train’s seating capacity.

Table 3.4: Standing penalties for crowdedness [86]

Load
Factora

London-based Services Non-London-based Services

Leisure
Business Commute

Leisure Business Commute
Standard First Class Outer Inner

100% 2.12 1.70 - 1.28 1.28 2.12 2.86 1.76
110% 2.33 1.87 - 1.33 1.33 2.33 2.93 1.89
120% 2.54 2.04 - 1.38 1.38 2.54 3.01 2.03
130% 2.75 2.21 - 1.44 1.44 2.75 3.08 2.16
140% 2.96 2.38 - 1.49 1.49 2.96 3.15 2.30
150% - - - 1.54 1.54 - - 2.43
160% - - - 1.60 1.60 - - 2.57

a ’Load factor’ is the percentage of passengers on board relative to a train’s seating capacity.

To calculate multiplier values up to 300%, a linear extrapolation must be carried

out from the multiplier values at 120% and 140% loading factors [86].
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As obvious from Tables 3.3 and 3.4, seated commuters have higher valuations of

their time compared to business passengers in non-London based services. At a

first glance, this seems as a counter-intuitive result since the time valuations for

travelling, waiting and arriving late shows that business passengers have by far

a higher valuation of their time. One potential reason which may explain this

paradox is given by [55] in which it is claimed that business passengers’ ability

to work is not affected significantly by the levels of crowdedness. This may be

due to the fact that business passengers are more likely to plan in advance and

as such secure seats which favour working (e.g. table seats) [55]. It is recognised

though that further analysis must be carried out so as to draw definitive inferences.

The time multipliers for standing passengers are more intuitive since business

passengers have the highest time valuations.
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3.4.4 Cost function formulations

Following the specification of the monetary coefficients mentioned in Sections 3.4.1

to 3.4.3, the cost functions can be formulated as:

CT =
Y∑
y=1

cyT

N∑
n=1

∑
{∀(i,j)∈Sn}

Tn,i→jp
y
n,i, (3.17)

CW =
Y∑
y=1

cyW
∑

{∀(i,j)∈S}

∑
{∀n∈(Ni∩Nj)}

∫∫ τn+1,i

τn,i

λyi→j(t)dt
2, (3.18)

CP =
Y∑
y=1

cyP
∑

{∀(i,j)∈S}

∑
{∀n∈(Ni∩Nj)}

∫ τn+1,j

τn,j

λyi→j(t)(τn+1,i − τ ∗n+1,i − Φ)+dt, (3.19)

CD =
Y∑
y=1

cyD

N∑
n=1

∑
{∀(i,j)∈Sn}

Ry
n,i→j(p, an)pyn,iTn,i→j (3.20)

where cy specifies the monetary coefficient for each passenger type y (∀y ∈ Y ).

3.5 Summary

Section 3.2 of this chapter provides the definition of variables used for the purpose

of this study and it also formulates the constraints used to construct a feasible

timetable. Section 3.3 presents four performance metrics widely used in the railway

industry and the formulations of the corresponding cost functions while Section 3.4

illustrates the monetary coefficients associated with each of the four cost functions.

In terms of the contribution of this project in the area of formulations of cost
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functions for railway timetables, the inclusion of the crowdedness metric is a novel

idea which enables the evaluation of a network’s capacity. This is a significant

contribution since, until now, authors evaluate the trade-off between network ca-

pacity and punctuality but their analysis does not help decision makers in deciding

the number of trains to schedule. For example, Equation 2.1 suggests that at very

low utilisation levels, scheduling one additional train may be a wise decision since

the deterioration in timetable punctuality is minimal. However, if passenger de-

mand is low, scheduling one additional train may not be the best option since the

decrease in the cost of crowdedness is likely to be surpassed by the increase in

the cost of punctuality. This is an obstacle that the formulation for the cost of

crowdedness manages to overcome. With regard to the rest of the cost functions,

a number of authors investigate formulations which are similar to the punctuality

and journey time cost functions provided in this work while no author has been

found to provide a similar formulation for calculating the waiting times. Further-

more, the fact that each cost function is evaluated in terms of its monetary cost, is

not something that has been used in academia for any metrics, apart from journey

time and punctuality, while in the British railway industry such an analysis is only

being carried out at a strategic level. This means that no formulations are being

used in the operational level to evaluate timetable related performance metrics.

It should be emphasised that the four cost functions considered herein do not

present all the possible performance metrics of a timetable’s performance. Other

performance metrics such as train loading, track utilisation and energy consump-

tion can be included to provide a more all-round assessment of assessing a timetable’s
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performance. However, no reliable monetary costs could be attributed to train

loading and track utilisation due to the strict confidentiality which surrounds the

cost of scheduling train services. Efforts have been made to obtain information

about operating costs and the costs of the franchises but they were unsuccessful

in not only failing to find the exact amount being paid to win a franchise but they

also failed to obtain an order of magnitude for these costs. This is because the

cost of the franchises in only known to a closed circle of people who are directly

involved in the bidding process. This circle consists of people from the train op-

erators who submit the bids for the franchise, the infrastructure manager and the

DfT. Furthermore, once a train operator wins a franchise, it receives certain sub-

sidies to provide further services on the network for which the franchise has been

awarded and the amount paid as subsidies is also very difficult to obtain. What

this means is that if anyone outside the aforementioned circle of people wants to

estimate how much it costs to run a service on a network, he will be unable to not

only calculate rough estimates for such costs but will also be unable to calculate

the order of magnitude of the cost.

Unlike the cost of the franchises, the energy consumption of a train is more readily

found and can be estimated with relative accuracy if information is provided about

a train’s dynamic characteristics (e.g. acceleration and its aerodynamics) as well

as terrain characteristics (e.g. gradient) [6]. Such information though is not used

when timetabling and, as such, energy minimisation is more accurately calculated

using real-time models.





Chapter 4

Optimisation of a railway

timetable

4.1 Introduction

An optimisation procedure has been developed to enable the analysis of the cost

functions formulated in Chapter 3. The reason for developing a new algorithm

rather than relying on one of the multiple existing algorithms is because it is felt

that none of the current algorithms can capture the tasks required to carry out the

analysis. Existing algorithms start with an already constructed timetable which

may be infeasible (due to the occurrence of delays) and carry out rescheduling in

order to make it feasible or further improve its quality given the set of objective

functions. For the purpose of this project, not only a timetable needs to be

59
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constructed from scratch but, as will be shown in subsequent sections, the number

of trains to be scheduled must also vary. It is therefore felt necessary to develop a

dedicated algorithm which will allow for the analysis of the cost functions to take

place.

The optimisation algorithm developed, evaluates different realisations of a timetable

and outputs the one with the lower cost. The results from the algorithm are then

validated by entering the output in a simulation environment which is designed to

model the movement of trains along the East Coast Main Line.

Section 4.2 describes the optimisation procedure and Section 4.3 the methodology

for calculating the passengers on the trains at any point in time. Section 4.4 de-

scribes how delays are inserted into the timetable. Section 4.5 explains how the

model was validated by both validating the timetable construction method (Sec-

tion 4.5.4) and the optimisation procedure (Section 4.5.5). Section 4.6 concludes

the chapter.

4.2 Description of the optimisation algorithm

The cost functions developed in the previous section are applied to formulate a

multi-objective optimisation problem. The optimisation aims to determine the

train timetable, in terms of arrival τn,i and departure times σn,i for all trains n
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over all stations i, such that the following linear combination of costs is minimised:

min
τ,σ

: C = CT + CW + CP + CD (4.1)

The cost in Equation 4.1 is in monetary units and its cost components are inte-

grated through the monetary cost coefficients cT , cW , cP and cD we described. The

cost minimisation problem is subject to the operational constraints (3.3), (3.4),

(3.7) and (3.8).

The train timetable optimisation problem is a combinatorial optimisation problem

that involves different feasible combinations of τn,i and σn,i representing different

sequencing and scheduling of trains [27, 94]. Considering a scenario where there are

N trains to schedule, the number of possible sequences for scheduling these trains

will be N !. This has not included the numerous ways of setting the departure and

arrival times of these trains along the service route given a sequence.

To derive a solution within a reasonable time, an optimisation algorithm was

developed in Visual C# which works in the stages shown in Figure 4.1. In the

first stage a Genetic Algorithm produces a train sequence which is then passed

to the second stage which utilises Dijkstra’s Algorithm to determine the path

of the train through the network. Finally, a Hill-Climbing Algorithm schedules

additional trains until the timetable’s time span exceeds a predefined threshold.

After Dijkstra’s Algorithm terminates, the Hill-Climbing heuristic schedules one

additional train in each direction and their departure time from their respective
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Figure 4.1: Flowchart of the optimisation algorithm

origin comes after the departure time of all the previous trains scheduled up to

that point. Dijkstra’s Algorithm is then re-run to determine arrival and departure

times only for the newly added trains and those arrival and departure times are

subject to the constraints imposed by all the trains which have been scheduled

before the newly added trains. The constraints imposed are the ones defined in

Equations (3.3), (3.4), (3.7) and (3.8.
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The way the optimisation procedure has been designed means that the optimal-

ity of the timetable cannot be guaranteed since neither the Genetic Algorithm

nor the Hill-Climbing heuristic are algorithms which are guaranteed to find the

optimal solution; they are both approximate methods which may (or may not)

return the optimal solution. Nonetheless, the three stage optimisation procedure

was designed such that it enables the examination of two of the timetabling char-

acteristics that we want to analyse: train sequencing (controlled by the Genetic

Algorithm) and the number of trains on the track (controlled by the Hill-Climbing

heuristic). The fact that train sequencing and the number of trains is controlled

by different algorithms also allows for the analysis of how the cost of the timetable

changes by only changing the sequence or the number of trains while keeping the

other constant. Dijkstra’s Algorithm is only needed to assign arrival and departure

times to the trains.

These stages are further elaborated upon in Sections 4.2.1, 4.2.2 and 4.2.3

4.2.1 First stage - Genetic Algorithm

Genetic Algorithms are based on the concept of natural selection and their use

mainly revolves around tackling combinatorial problems for which no efficient al-

gorithms exist [76].

Genetic Algorithms work by encoding possible solutions to the problem as a bi-

nary string called chromosome while the entries in the binary string are termed
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Algorithm 1 Genetic Algorithm pseudo-code

1: procedure GeneticAlgorithm(N)
2: Initialise
3: Evaluate starting chromosomes
4: while Termination condition is FALSE do
5: Select parents
6: Crossover Parents
7: Mutate offspring
8: Create new population
9: end while

10: Return best individual
11: end procedure

the chromosome’s genes. The algorithm starts by generating an N number of chro-

mosomes which are then recombined through the process of crossover. Crossover

is carried out by selecting the chromosomes to be recombined (called parents) and

then replacing the genes of one parent by the genes of the other in order to gen-

erate a new chromosome called offspring. For example, assume that we have two

parents given in Table 4.1.

Table 4.1: Parent chromosomes for crossover

P1 1 0 0 1 0 0 1
P2 0 1 0 0 1 1 0

Assuming a crossover point 4, the offspring is given as the pair in Table 4.2.

Table 4.2: Offsprings after crossover

P1 1 0 0 1 1 1 0
P2 0 1 0 0 0 0 1

Following the offsprings’ formation, random mutations are then inserted, usually

by making each gene in the offsprings having a small probability of changing from
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1 to 0 or vice versa. Each chromosome in the population is then evaluated using

an objective function which assigns a fitness value f to each chromosome. The

process of elimination then follows which removes the chromosomes with a low

fitness value. The chromosomes that survive form the new generation. The process

of creating new generations continues until a user-defined number of generations

is reached upon which the algorithm terminates and returns the chromosome with

the higher fitness value [76]. The above procedure is summarised in Figure 4.2

while further details regarding Genetic Algorithms can be found in a number of

books and papers including [50, 76, 79].

Figure 4.2: Genetic algorithm flowchart

Train timetabling involves different feasible combinations representing different

sequencing and scheduling of trains at a network’s nodes [22, 26, 94]. To derive

a solution within a reasonable time, an optimised sequence of trains is searched

using a Genetic Algorithm. The Genetic Algorithm starts by generating an ini-

tial (random) set of chromosomes with each chromosome representing a different
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sequence with which the trains are to be dispatched from their origin. Unlike the

traditional binary encoding approach, a permutation encoding scheme is adopted

in which each gene within the chromosome represents a train to be scheduled. For

example, consider eight trains (A, B,. . . , H) to be scheduled, a total of 8! = 40320

possible sequences can arise. Each of these 40320 possible combinations can be

represented by an 8−bit chromosome. Two possible chromosomes are given in

Table 4.3.

Table 4.3: Permutation sequencing

A B C D E F G H
B A C D E F G H

For the purpose of the project, the initial population is comprised of 200 train

sequences. Given that a sequence is produced, the arrival and departure times of

the trains is determined using an implementation of Dijkstra’s Algorithm which

is further elaborated upon in Section 4.2.2. Evaluating the population’s fitness is

carried out using the cost functions described in Chapter 3. Essentially a higher

fitness value will be assigned to a train sequence if the resulting timetable achieves

lower total cost, and the fitness function FITi for each sequence i is defined as:

FITi = 1− Cg
Cmax

, (4.2)

where Cg is the total cost of a given timetable g and Cmax is the cost of the most

expensive timetable as of the current iteration.
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For the reproduction step, the number of train sequences to be selected for crossover

is determined using a crossover proportion which is set to 80% meaning that 160

pairs of train sequences are selected for crossover. The parents are then selected

using a roulette wheel selection method also known as fitness proportional selec-

tion. This method uses a probability distribution for selecting chromosomes based

on their respective fit. Random numbers are then used to choose the parents [76].

For example, consider the case of three chromosomes with fitness values 0.7, 0.5

and 0.1 respectively (i.e. each chromosome occupies a section of the roulette pro-

portionate to its fitness value). The roulette can be imagined as being divided into

three parts with the first chromosome occupying 54% of the roulette, and chro-

mosome two and three occupying 38% and 8% respectively. A random number x

between zero and one is then generated which determines the train sequence to be

selected based on the following:


Train sequence 1 if x ≤ 0.54

Train sequence 2 if 0.54 < x ≤ 0.92

Train sequence 3 if 0.92 < x

Furthermore, selection with replacement takes place which means that sequences

that lead to the construction of low-cost timetables have a chance of being selected

multiple times, increasing the likelihood of generating strong offsprings. The Ge-

netic Algorithm crosses chromosomes over by separating each parent chromosome

into two parts, swaps with each other, and forms the new pair of chromosomes.

The mutation process then follows whereby it randomly selects some bits in the
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population of train sequences with a predefined probability (in this case a 2%

probability is used) and swaps them with another gene within the sequence. This

is done to prevent the optimisation process from getting trapped in a local optima.

Once the mutations have been finalised, the fitness of the offsprings is calculated

and the process of elimination begins. This process has the task of deleting train

sequences which lead to the construction of high-cost timetables to prevent them

from crossing over with other sequences. The process of elimination is prohibited

from deleting the top 5% of the chromosomes from the previous generation in

order to make sure that the current generation is at least as strong as the previous

one.

The optimisation process described above (reproduction-crossover-mutation) will

continue until the predefined maximum number of iterations (400 generations) is

reached. Section 4.5.2 provides the evidence on why 400 generations were chosen

as the stopping criterion.

4.2.2 Second stage - Dijkstra’s Algorithm

Cormen et al. [24] describe Dijkstra’s algorithm as one designed to solve single-

source shortest-path problems on weighted, directed graphs. The optimisation

process is described below.

Dijkstra’s algorithm is a form of Greedy Heuristic but, unlike greedy heuristics
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Algorithm 2 Dijkstra’s Algorithm pseudo-code

1: procedure DijkstrasAlgorithm(G, V)
2: Initialise
3: Distance from sourceNode to all nodes = ∞
4: Distance from sourceNode to sourceNode = 0
5: Add all v ∈ G to priority queue Q
6: while Q is non-empty do
7: u = Q.removeMin
8: for all neighbours n of u in Q do
9: if D[u] + w(u, z) < D[z] then

10: D[z] = D[u] + w(u, z)
11: Change key of z in Q to D[z]
12: end if
13: end for
14: end while
15: Return shortest path
16: end procedure

which tend to perform badly when the problem increases in size, Dijkstra’s algo-

rithm always return the shortest path on a graph [24].

This stage in the optimisation algorithm determines the σn,s and τn,s as the ear-

liest time that each train can travel from origin to destination while considering

constraints (3.3), (3.4), (3.7) and (3.8).

Figure 4.3 presents a small network with four nodes and four edges the weight

of which indicates the time needed to travel from one node to the next and the

headway is 30 units. Assume one train departs from node A at 08:00 and its

destination is node D. It is easy to see that the shortest path is via node B in

which it is expected to arrive at 08:15 and its arrival time at D is 08:35. Now

assume that after the first train, a second train departs from node A at 08:05 and

its destination is once again node D. The headway on the edge from A to B means

that the earliest the second train can arrive at B is 08:35 so the shortest path from
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Figure 4.3: Sample network

A to D is via C . The implementation in this project incorporates these changes in

the distance matrix so all that has to be done is for the algorithm is to determine

the shortest path given the time matrix and then update it as necessary given the

constrains (3.3), (3.4), (3.7) and (3.8).

Following the calculation of σn,i and τn,i, the timetable’s total cost is calculated

as the sum of the timetable’s cost of journey time, waiting time, punctuality and

crowdedness as defined by the equations 3.17 which are then added as shown

in Equation 4.1. Once the timetable’s total cost is found, Hill-Climbing is run

to determine whether the cost of the timetable can be reduced by scheduling

additional trains. This is further explained in Section 4.2.3.
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4.2.3 Third stage - Hill-Climbing Algorithm

Hill-climbing algorithms are best described by Russell and Norvig [79] as ’. . . a

loop that continually moves in the direction of increasing value . . . [and] terminates

when it reaches a peak where no neighbour has a higher value’.

As mentioned in Section 4.2.2, once the timetable’s total cost with N trains is

found, we seek to decrease the cost of the timetable by adding more trains to

the schedule. This is done by arranging for two more trains to be added to the

schedule; one in each direction (one train in the ’up’ direction and one in the

’down’ direction). Arrival and departure times of the two newly added trains is

determined by keeping the existing timetable the same and finding arrival and

departure times only for the two newly added trains. Consequently the arrival

and departure times for the added trains is determined subject to the arrival and

departure times of all trains scheduled before them.

For example, assume three trains A,B and C are scheduled which are sequenced

by the Genetic Algorithm as

B,C,A (4.3)
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The Hill-climbing heuristic will add a new train D at the end of the above sequence,

making the new sequence

B,C,A,D (4.4)

Arrival and departure times for train D will consequently be calculated using the

constraints imposed by the arrival and departure times of trains B,C and A.

Now suppose that all trains depart from the same origin in 10 minute intervals

and trains B, C and A have been scheduled to depart at 09:00, 09:10 and 09:20

respectively. If a new train D is added to the timetable using the Hill-Climbing

heuristic, its departure from its origin will be 09:30 while the departure times for

trains B, C and A will remain unaffected.

The rationale for the introduction of this step is that increasing the number of

trains to be scheduled will reduce crowdedness but will have an adverse impact on

overall punctuality. The additional train is scheduled after all the previous have

been scheduled first. There are two termination criteria for the Hill-climb process

• If the timetable’s timespan (σ1,S1(1)−τN,SN (I)) is exceeded, then the timetable

is rendered infeasible

• If the cost of the timetable with N trains is higher than the cost of the

previous timetable with N − 1 trains
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In case that either of the above conditions are met, Hill-climb terminates and

returns the cheapest timetable.

4.3 Passenger calculations

As the formulation of the cost functions suggests, information regarding the arrival

rate of customers is needed for each origin-destination pair. However, such infor-

mation is collected by the train operators but is confidential due to data privacy

issues and as such it is not available for the public. Therefore, a methodology

was developed which allows for the estimation of the number of passengers with

relative accuracy.

Section 4.3.1 explains how demand information is summarised in a matrix form

and Section 4.3.2 explains how the matrix is used to generate information about

the number of passengers on board each train.

4.3.1 Origin-destination matrix

The relative importance of each origin-destination in the network was calculated.

This was based on field observations and consultation with the railway industry,

allowing for the estimation of approximate values for the proportion of passengers

arriving at each station and their destination. Then, based on reports published

by Network Rail (e.g. [30]), the average train loading for peak and off-peak hours
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was found for a given route. Therefore, by combining the average train loading

information with the matrix providing the relative importance of each station,

not only the number of passengers on board can be estimated but also their orig-

in/destination can be found in order to calculate the cost functions.

Figure 4.4: Sample network for origin-destination matrix illustration

Table 4.4: Origin-Destination matrix example

Destination
Station A Station B Station C Station D

Origin

Station A 0 0.2 0.3 0.5
Station B 1 0 0.4 0.6
Station C 0.7 0.3 0 1
Station D 0.5 0.3 0.2 0

Table 4.4 demonstrates an example of how passenger information data will be

incorporated in the model based on the network in Figure 4.4. Each element (i, j)

in the matrix shows, as a proportion, the number of passengers to board a train

at station i going to station j. For example, during morning peaks, trains may

be operating at 120% of their seating capacity. This means that if a train with

100 seats arrives at Station B going to Station D with 75 passengers on board,

45 more passengers will board. Table 4.5 shows how those 45 passengers will be

divided according to their destination.
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Table 4.5: Passengers boarded example

Origin → destination Number of passengers boarded
Station B → Station C 45 * 0.4 = 18
Station B → Station D 45 * 0.6 = 27

4.3.2 Derivation of train demand

The Origin-Destination Matrix described in Section 4.3.1 is used to calculate the

total demand which will be generated during the study period. The algorithm for

calculating the total demand generated in the network is given in the pseudo-code

below.

Algorithm 3 Total demand calculation pseudo-code

1: procedure DemandCalculation(N,Sn)
2: for all n ∈ N do
3: for all i ∈ Sn do
4: for all j > i do
5: totalDemand(i, j) += toBoard * ODMatrix(i, j)
6: end for
7: end for
8: end for
9: end procedure

The procedure described above derives the matrix with the total demand generated

by all trains for all origin-destination combinations. For example, assume that only

five trains are considered which travel from Station A to Station D (and vice versa)

visiting all stations in between. Each train has a seating capacity of 100 passengers

and the average loading factor for trains is assumed to be 100%. The resulting

matrix for the total demand is given in Table 4.6.
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Table 4.6: Demand matrix example for four stations

Destination
Station A Station B Station C Station D

Origin

Station A 0 100 150 250
Station B 160 0 40 60
Station C 70 30 0 190
Station D 250 150 100 0

In order to better understand how Table 4.6 was calculated, one should refer back

to Table 4.4. The fact that five trains will arrive at Station A going to Station

D and each train has a seating capacity of 100 passengers means that a total of

500 passengers will demand a service from Station A to any subsequent station.

The destination of those 500 passengers is determined by referring to Table 4.4.

Consequently, if 500 is multiplied by each of the entries in the first row of Table 4.4,

the entries in the first row of Table 4.6 are obtained. At Station B, a total of 100

passengers will alight from all trains which leads to 100 seats being vacated which

are then filled by the same number of passengers. Using the entries in the right

hand side of the diagonal of Table 4.4 gives the values found in the corresponding

entries in Table 4.6.

Once the timetable is derived, passengers are allocated to each train scheduled

in order to calculate the cost functions. The formula for allocating passengers to

train n at each of the stations in its path is given as:

pyn,i =
∑
∀j>i

an
Ai→j

∗ totalDemand(i, j) ∗ y% (4.5)
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Equation 4.5 shows that the number of passengers to board train n in its journey

from station i to station j is a function of the train’s seats relative to the total

number of passenger seats offered by all trains from station i to station j. Con-

sidering the example above where five trains travel from Station A to Station B

(and vice versa), the total number of seats for each origin-destination is given by

Figure 4.7.

Table 4.7: Total seats offered example

Destination
Station A Station B Station C Station D

Origin

Station A 0 500 500 500
Station B 500 0 500 500
Station C 500 500 0 500
Station D 500 500 500 0

The term y% in Equation 4.5 denotes what percentage of the passengers to board

are of type y. When the number of passengers of each type are determined, the

final step is to determine which passengers will take a seat. Obviously, this issue

only arises when the number of passengers to board exceeds the train’s seating

capacity. Consequently, when passengers board a train, business passengers are

first allocated a seat and if any seats remain, these will be given to commuting

passengers. Finally, any remaining seats (if any) are given to passengers who travel

for leisure purposes. This is supported by the fact that business and commuting

passengers are more likely to plan their trip in advance, making them more likely

to reserve a seat for their journey. This assumption is also supported by Network

Rail which states that business and commuting passengers tend to plan their trip
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in advance [55]. This method for allocating seats to the passengers is much more

important than expected since, as Tables 3.3 and 3.4 suggest, the penalties for

standing passengers can differ greatly depending on the passenger type. This

makes the solutions to the problem very sensitive to the passenger mix, an issue

which emphasises the importance of determining the appropriate passenger mix

to enter in the model given the hour of the day.

It is important to note that the demand matrix is derived before any additional

trains are scheduled through the Hill-Climbing heuristic. This achieves the pur-

pose of scheduling additional train without increasing demand at the same time,

enabling for the examination of the reductions in the levels of crowdedness.

4.4 Punctuality modelling

In Chapter 2, three different methods have been identified which model the uncer-

tainty in railway timetables: queueing models, analytical models and simulations.

For the purposes of this experiment, it has been decided to model the randomness

in the running times of the trains using simulation. Queuing models were ruled out

since they are timetable independent, rendering them inappropriate for timetable

evaluation purposes. Furthermore, the computational intractability of many ana-

lytical models (e.g. [16, 96]) leads to the use of heuristics approximations which

is likely to reduce the quality of the outcome.
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The procedure to incorporate delays into the timetable has been developed as

follows. Primary delays will be modelled using an exponential distribution, the

Probability Density Function of which is given as:

µe−µx, (4.6)

Where x represents the sectional running time over any given section and µ is

the rate parameter. When the optimisation procedure (Figure 4.1) is initialised,

and before any Genetic Algorithm generations are created, the stochastic time

matrices are calculated as shown in Figure 4.5.

The process starts by filling the two-dimensional arrays which contain information

about the deterministic running times of the trains along all edges in the network.

The running times will differ depending on the train class type (e.g. class 75, class

442) so a time matrix exists for each train class.

To better understand how a time matrix is constructed, consider the small network

in Figure 4.6 which consists of a single track going from Node 1 to Node 2 via the

signalling blocks b and c. The time needed to traverse the distance from block b to

block c is 5 time units and from signalling block c to Node 2 is 7 time units. The

time-space diagram for this movement is shown in Figure 4.7. The time matrix

constructed from the information provided in Figure 4.6 is shown in Table 4.8.

The two-dimensional time matrix array will have three entries in each dimension

and the non-zero entries will correspond to the feasible links in the network. The
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Figure 4.5: Construction of the stochastic matrices flowchart
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Figure 4.6: Network for time matrix illustration

Figure 4.7: Time-space diagram for time matrix illustration

Table 4.8: Time matrix example

B C N2

B 0 5 0
C 0 0 7
N2 0 0 0

stochastic running time matrix of each class type is then derived from the deter-

ministic time matrices. This is done by examining each entry in the deterministic

matrix and if the entry is zero, no feasible link exists and the algorithm moves on

to examine the next entry in the matrix. If the entry in non-zero, a feasible edge

exists and the stochastic running time for that edge is calculated. The stochastic
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running time is calculated by generating another random number in the range

0.635 ≤ rand < 0.8 (4.7)

which is then used to calculate the stochastic running times ˜SRT using the equa-

tion

˜SRT = − ln(1− rand) ∗ µ, 0.635 ≤ rand < 0.8 (4.8)

The above procedure is repeated an N number of times (in this project N = 100)

and the average value of the simulation runs is then entered in the stochastic time

matrix. The λ parameter of the exponential distribution (λ = µ−1) and the range

of values of the rand variable were chosen such that the base case (i.e. where

no extra trains are added) stochastic timetable meets the punctuality metrics

published by Network Rail [60]. This procedure is repeated until a stochastic

running time is computed for each non-zero entry in the time matrices of each

train class. After this process terminates, each train class has two time matrices:

one deterministic and one stochastic.

The above procedure ensures that the same stochastic matrices are used in all the

generations produced by the Genetic Algorithm. This ensures that the Genetic

Algorithm will converge.

It is understood that the large number of times that Equation 4.8 is run (i.e. 100
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times) and then averaged means that the elements to be entered in the stochas-

tic matrix will be close to their average values (following from the law of large

numbers); this, in turn, has one important implication. If two stochastic time

matrices are generated and an arbitrary element (ηi,j) is selected from matrix η

and compared to the corresponding element (θi,j) from matrix θ, it will be ob-

served that the two elements will be very close (i.e. ηi,j ≈ θi,j). This is because, as

mentioned above, the large number of iterations will fill the matrices with values

which are close to the average sectional running times. Although this suggests

that the timetable generated does not exhibit much variability, this is actually de-

sirable since the purpose of this procedure is to generate small disturbances rather

than large scale disruptions. This decision can be justified since timetables are

not designed to cope with big disruptions for two reasons. The first is that the

magnitude of the disruption is unknown making it difficult to compensate for it a-

priory and the second is that if the timetable is designed such that it minimises the

impact of large scale disruptions, robust optimisation methods will be used which,

as shown in Section 2.2.2.3, provide undesirably conservative solutions. Therefore,

timetables are usually designed such that they absorb small disturbances while

large scale disturbances are dealt with real-time using specialised algorithms (e.g.

[46, 49]). Therefore, multiple runs of Equation 4.8 had to be taken to calculate

the average in order to prevent the scenario where an extremely large delay was

generated from the exponential distribution. Nonetheless, if the need ever arises

to make the timetable truly stochastic by inserting more volatile sectional running

times, the number of times that Equation 4.8 is run and then averaged can be
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reduced. For example, if Equation 4.8 is only run once and the running times gen-

erated are used to construct the stochastic running times matrix, the timetable

which will be created will exhibit much higher variability.

After the stochastic time matrix for all train types is constructed, the optimisation

algorithm described above is initiated. When Dijkstra’s Algorithm constructs a

deterministic timetable, the timetable is recalculated using the stochastic time

matrix. Trains are dispatched using the same sequence as before, and the path

they follow is exactly the same as the one determined by Dijkstra’s Algorithm.

In one of the locations in their path the trains experience delays and the delay is

incorporated by referring to the time in the stochastic time matrix. The location

that each train is delayed is chosen by generating a random number which refers to

one of the signalling blocks in each train’s path. When this procedure is repeated

for all trains, the algorithm will output two timetables: one deterministic and

one stochastic. The time deviation of a train’s stochastic timetable from the

deterministic timetable is the amount of time that the train is delayed.

It should be stressed that this procedure does not change the initial train order in

any way, it only introduces small amount of noise to the deterministic timetable.

It is also important to understand that the scope is to only consider very small

small disturbances since no timetable can be proactively prepared to recover from

large scale disruptions since such disruptions are dealt with real time.
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4.5 Model validation

Model validation is important in order to make sure that the solutions the op-

timisation algorithm generates are feasible in a real life context and, if deemed

necessary, fine-tune the model if deemed necessary. This is achieved by generating

timetables for a section on the East Coast Main Line (ECML) which is then input

into the BRAVE simulation. Section 4.5.1 provides an outline for the network to

be used for validation and Sections 4.5.3 and 4.5.4 describe the BRaVE simulation

environment and the results of the validation process respectively. Lastly, Section

4.5.5 validates the convergence of the optimisation procedure.

4.5.1 East Coast Main Line

The ECML is a part of Network Rail’s Route G and provides the most direct,

high-speed connection between London and Edinburgh [62]. The main part of the

line is being powered through overhead electrification [62].

The route serves several high-speed intercity services such as from London to

Leeds. On top of intercity services, the ECML provides a number of important

local services such as the Moorgate Branch and the Hertford loop which experience

heavy congestion especially during peak hours [62, 63]. The ECML is an important

route for freight trains which mainly operate on the northern part of the route,
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parallel to the A1 motorway. In the southern part of the route freight trains often

utilise the Hertford loop [62].

Train operators operating on the ECML network include among others Virgin

Trains East Coast, East Midlands Trains and CrossCountry. Due to the enormous

size of the ECML and the numerous operators utilising it, a wide range of both

passenger and freight rolling stocks can be found. For example, local services are

usually run by 313, 317 and 321 classes while intercity services use the class 125

High Speed rolling stock [67].

4.5.1.1 Alexandra Palace to Hatfield section

Modelling a big network such as the ECML is considered impractical due to the

time needed to prepare the optimisation model as well as due to the the huge

increase in computational time. Therefore, a smaller section of the network has

been chosen which is illustrated in Figure 4.8 enclosed in a green square. The

section includes all the stations between Alexandra Palace and Hatfield but in the

Hertford loop, only Bowes Park is considered. This section was chosen due to the

fact that it has the necessary complexity both in terms of multiple train paths as

well as the heterogeneity of train services operating on it.

Between Alexandra Palace and Hatfield four tracks exist, two either way. The

outer two tracks in each direction are used by local services while intercity services

run non-stop on the inner tracks. Between Alexandra Palace and Bowes Park, one
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Figure 4.8: ECML between Alexandra Palace and Hatfield

line exists in the ’down’ direction (towards Welwyn Garden city) and two lines

in the ’up’ direction (towards London) with one of the lines passing through the

Bounds Green depot 1.

For the purposes of the simulation, the train mix between the weekday hours of

08:00-09:00 will be used. Information about the train mix was collected from

Network Rail’s working timetable [67] and the results are summarised in Table

1The railway operations in the United Kingdom refer to routes being in the ’up’ direction if
they lead towards London and in the ’down’ direction if they lead away from London
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4.9. No freight trains operate on the network during the 08:00-09:00 time interval

potentially due to the need to minimise the risk of disruptions caused by the

increased speed heterogeneity during the morning peak.

Table 4.9: Train mix between 08:00-09:00 on a weekday

Class 313 Class 317 Class 125
Down Up Down Up Down Up

Alexandra Palace - Hatfield 8 5 10 8 8 7
Alexandra Palace - Bowes Park 8 6 0 0 0 0

Local services are run by class types 313 and 317 while intercity services are run

by class type 125. It should be noted that, for simplification purposes, only 313

class types stop at all stations while all semi-fast services utilise a 317 rolling stock

(Table 4.9). This has very little impact on the quality of the experiments but it

considerably speeds up the optimisation algorithm.

Data regarding the sectional running times of all class types was collected by

referring to the working timetable [67] and, if the need arose, fine-tuned further

during the validation process.

Finally, information needed to fill the origin-destination matrix was gathered

through field observations, consultation with industry professionals and passenger

statistics published by the ORR [61]. Appendix A shows the matrix constructed

from the information collected.
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4.5.2 Algorithm convergence - ECML network

An initial analysis was run on the network to determine whether the algorithm

converges and how quickly it does so. This was done in order to fine-tune its pa-

rameters such that a good quality solution is achieved within a reasonable amount

of time. The analysis was carried out on the East Coast Main Line network for

demand levels equal to 100% of the available seats. The train mix used is the one

given in Section 4.5.1.1 and the criteria to consider the algorithm as having con-

verged is for five consecutive improvements to improve the cost of the timetable

by less than 0.5% or no further improvements take place after 50 iterations.

Figure 4.9: Initial iterations of the optimisation algorithm

Figure 4.5.2 indicates that 400 iterations provides for a more than an adequate

termination criterion for the algorithm. This is because the last iteration which

led to an improvement of more than 0.5% was the 149th iteration. Furthermore,

the last 200 iterations only had one occurrence where any improvements were

achieved. Even though the algorithm seems to perform well for 150 generations,
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Figure 4.10: Algorithm convergence after 400 iterations

such tests will be carried out again in Chapter 5 since both the network and the

train mix will change completely.

4.5.3 BRaVE simulation environment

BRaVE is a microscopic simulation environment developed by the University of

Birmingham and is capable of simulating all the basic functionality of railway

systems [93]. A user is able to define numerous parameters such as infrastruc-

ture data, rolling stock characteristics, interlocking arrangements and timetable

information [93]. For example, infrastructure data refers to the physical layout

of the network, rolling stock characteristics defines the acceleration, deceleration
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and top speed of all different train types and the timetable is entered by defining

arrival/departure times for all stations in the trains’ path.

One of the main reasons for developing BRaVE was to address the need to assess

a timetable’s performance with respect to the energy consumed and punctuality.

Energy consumed is calculated by considering several dynamic characteristics such

as acceleration and deceleration rates and terrain characteristics. Punctuality is

evaluated by introducing either systematic or random delays. Systematic delays

are introduced by selecting the driving profile of each train’s driver (e.g. slow,

fast). Each profile introduces a systematic variation to the running times of the

trains. Random delays are entered by using a seeded random number generator

which increases the dwell time of the trains by a random value between 0 − 15

seconds. The seeds can be stored so that further simulations can be carried out

by using the same set of random numbers.

A problem with BRaVE is that it is unable to calculate the cost of any of the

cost functions the way they have been defined in Chapter 3. Therefore, the option

offered by BRaVE to insert delays was not utilised during the validation process.

This means that BRaVE was only used as platform to enter the deterministic

timetable constructed by the optimisation algorithm described above and check

whether the timetable can be replicated in BRaVE. Consequently, BRaVE is used

to make sure that the algorithm constructs feasible timetables but a different

method needed to be devised to make sure that the timetables the optimisation

algorithm constructs are optimised (4.5.5).
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4.5.4 Validation of timetable construction method in BRaVE

Model validation is carried out by generating a timetable using the optimisation

algorithm described above and entering it in BRaVE. A simulation run is then

carried out and an output is produced by BRaVE which provides the arrival

and departure time of all trains from the stations. The output generated from

BRaVE is not necessarily the same as the timetable entered, the two can differ

in cases where the timetable entered in BRaVE is infeasible. If an infeasible

timetable is entered, BRaVE has the flexibility of altering the timetable in order

to make it abide by the feasibility criteria. Finally, the timetable produced by

the optimisation algorithm is compared to that generated by BRaVE and if the

two timetables match, the optimisation algorithm is deemed to produce feasible

timetables. The validation process is summarised in Figure 4.11.

Figure 4.11: Validation process flowchart

The validation process starts by feeding the ECML data outlined in Section 4.5.1
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into the optimisation algorithm and using it generate timetables. An small excerpt

of the timetable is shown in Table 4.10 and a more detailed version in provided in

Table B.1 of Appendix B.

Table 4.10: Timetable excerpt from the optimisation algorithm

Service Alex. Palace Bowes Park N. Southgate Oakleigh Park
S62 08:00:00 08:03:00 08:06:30
S857 08:03:00 08:06:00 08:09:30
S31 08:29:05 08:26:05 08:22:35

The timetable is then input in BRaVE which is subsequently run to generate a

report with the arrival times as calculated by BRaVE. A small sample from the

report is summarised in Table 4.11 and a more detailed version is given in Table

B.2 of Appendix B.

Table 4.11: Timetable excerpt from BRaVE

Service Alex. Palace Bowes Park N. Southgate Oakleigh Park
S62 08:00:00 08:03:00 08:06:37
S857 08:03:00 08:05:51 08:09:18
S31 08:28:54 08:25:54 08:22:28

Tables 4.10 and 4.11 show that the two timetables have slight differences with re-

spect to the arrival times of trains at the stations. Initially, the timetable produced

from the optimisation algorithm had larger deviations from BRaVE’s timetable

and a closer examination showed that this was caused by significant differences in

the running time of the trains between stations. This was caused by the fact that

the time matrix used by the optimisation algorithm to calculate the values for τn,i
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and σn,i→j were significantly different from the actual time needed by trains to

traverse the same distance as calculated by BRaVE. Another source of variation

was the fact that BRaVE records arrivals when a train stops at a station while the

optimisation algorithm records arrivals when a train starts occupying a signalling

block. This means that the optimisation algorithm and BraVE have inherently

different methodologies for recording delays, meaning that an exact match be-

tween the two models is impossible to be achieved. A few simulation runs were

carried out in BRaVE in order to collect information to enable the construction of

a more representative time matrix to be used by the optimisation algorithm. As

a consequence, the running times in BRaVE were observed in more detail which

led to a update of the data used by the optimisation algorithm such that they

closely match the data from BRaVE. This process was iterated multiple times

(Table 4.11) with each iteration providing more accurate sectional running times.

This process was terminated when the timetable constructed by the optimisation

algorithm was almost the same as the one produced by BRaVE.

As evident from Tables 4.10 and 4.11 small differences in the two timetable persist

and this can be attributed to two factors. The first one is the difference in the

method of calculating the sectional running times of the trains. The optimisation

algorithm calculates the timetable by referring to a time matrix while BRaVE

calculates the running times dynamically by utilising information about the ac-

celeration/deceleration rates, top speed and terrain characteristics. It is obvious

that BRaVE has a more sophisticated and more accurate method of calculating

running times which cannot be replicated by the optimisation algorithm due to
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its inability to incorporate the dynamic characteristics of the trains. Efforts were

made to construct the time matrix as accurately as possible but small discrepancies

are expected to persist due to the different methods employed by the optimisation

algorithm and BraVE. The second factor is the difference of the two models in

calculating the arrival time at stations which is illustrated in Figure 4.12.

Figure 4.12: Monitoring point recording the arrival of trains for the optimi-
sation algorithm (A) and BRaVE (B)

The arrival time at a station as given by the optimisation algorithm is the time the

train enters the station tracks (point A) while the arrival time in BRaVE indicates

the time when a train stops at the station (point B). The optimisation algorithm

reports the arrival time at any node in its path as the time that the node will

be marked as occupied by the specific train (Equation 3.5). This was deemed

necessary as it allowed the model to quickly identify which nodes were available

or occupied at any point to prevent to trains from occupying the same signalling

block simultaneously. On the contrary, BRaVE is a much more sophisticated
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software which can store information regarding single-block occupancy while also

being able to report the actual time that a train stops at a station.

Despite the fact that the optimisation algorithm and BRaVE work in a way that

makes it unlikely to provide identical output, the time discrepancies evident in

Tables B.1 and B.2 in Appendix B were deemed to be insignificant due to their

small magnitude. This implies that the timetables generated by the optimisation

algorithm are feasible.

4.5.5 Validation of the optimisation procedure

This chapter focuses on validating the optimisation procedure to make sure that

the timetables it constructs are indeed optimised. Unlike Section 4.5.4 which used

BRaVE for validation, this section required a different approach due to the fact

that BRaVE does not have a method of calculating the cost of the timetable as de-

fined by the cost functions formulated in Chapter 3. The adopted approach aimed

to identify whether the timetable sequence provided by the Genetic Algorithm

and the optimised number of trains introduced by the Hill-Climbing heuristic do

indeed produce timetables of lower cost.

Checking whether the timetable produced by the algorithm was indeed optimised

was achieved by finding the optimal solution by manually trying all possible so-

lutions (i.e. brute force) and then comparing it to the result produced by the
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optimisation algorithm. Furthermore, in order to make it easier to find the op-

timal timetable using brute force, only five trains were considered which only

travel in the direction from Alexandra Palace to Hatfield (Figure 4.8). All five

trains scheduled are class 313 and four out of the five trains travel from Alexandra

Palace to Hatfield while stopping at all stations in between while the fifth train

travels from Alexandra Palace to Bowes Park. Moreover, the passenger demand

was set at 100% of train seats leading to the construction of the matrix in Fig-

ure 4.13. Finally, the delayed running times of the trains were calculated once

and then used in both brute force calculations and in the calculations run by the

algorithm in order to ensure that the results were comparable.

Figure 4.13: Passenger matrix used for algorithm validation

The first section of the algorithm to be validated was the resequencing stage carried

out by the Genetic Algorithm. Since four out of the five trains are essentially the

same service (i.e. rolling stock 313 from Alexandra Palace to Hatfield) and one

train goes to Bowes Park, there were only five different ways the sequence could

be set up and these possible sequences are shown in Table 4.12.
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Table 4.12: Possible train sequences for algorithm validation

Sequence 1 A B B B B
Sequence 2 B A B B B
Sequence 3 B B A B B
Sequence 4 B B B A B
Sequence 5 B B B B A

In Table 4.12, A refers to the train from Alexandra Palace to Bowes Park while

trains which travel from Alexandra Palace to Hatfield are denoted as B. The

timetables arising from the sequences in Table 4.12 were then found using brute

force and their cost calculated. The results from the brute force calculations are

shown in Table 4.13.

Table 4.13: Timetable cost for all sequences using brute force

Timetable Cost (£)
Sequence 1 A B B B B 11305
Sequence 2 B A B B B 9603
Sequence 3 B B A B B 8913
Sequence 4 B B B A B 10725
Sequence 5 B B B B A 11305

It is therefore apparent that the sequence

BBABB (4.9)

is the one which provides the best solution. The next step was to enter the same

train mix in the optimisation algorithm and allow it to run in order to see what

train sequence it will consider as the one with the best fit. The output from the

algorithm agreed with the results from the brute force experiments in that the
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sequence in Equation 4.9 leads to the construction of the most efficient timetable

at a cost close to the one calculated by the brute force procedure2. Nonetheless,

slight discrepancies were expected in the calculation of the cost of the timetable

since the calculations for the brute force procedure were carried out by hand and

involved a great deal of rounding which was the reason for the slight difference in

the total cost of the timetable. Consequently, since both the brute force procedure

and the optimisation algorithm produced the same sequence, it was concluded that

the sequence generated by the Genetic Algorithm does indeed tend to converge to

the optimal timetable.

The second section of the algorithm to be validated was the Hill-Climbing heuristic

and whether or not it operates in such a way that it converges to the optimal

timetable. Similar to the validation of the Genetic Algorithm, the optimal solution

for the small instance of the problem was found using a brute force procedure and

then compared to the solution given by the optimisation algorithm. Since the

instance of the problem used in validation was composed of only five trains, the

maximum span of the timetable was set to 45 minutes. This meant that only a

handful of additional trains could be scheduled before the span of the timetable

exceeded the 45 minute constraint. Furthermore, the trains added were 313 classes

which travel from Alexandra Palace to Hatfield while stopping at all intermediate

stations. The sequence used to validate the Hill-Climbing heuristic is the one in

Equation 4.9 and the results from the brute force procedure are given in Table

2The cost of the timetable calculated by the brute force procedure was £8913 while the cost
of the timetable calculated by the optimisation algorithm was £8927
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4.14.

Table 4.14: Timetable cost for the number of trains scheduled (Brute force)

Number of trains scheduled Timetable Cost (£)
5 Trains 8913
6 Trains 8472
7 Trains 8057
8 Trains 8092

The solution derived from the brute force procedure shows that scheduling two

additional trains lead to the most efficient timetable with a cost of £8057. The

train sequence in Equation 4.9 was then inserted in the optimisation algorithm and

the Hill-Climbing heuristic was run to schedule additional trains without changing

the initial sequence. The results obtained are summarised in Table 4.15.

Table 4.15: Timetable cost for the number of trains scheduled (Optimisation
algorithm)

Number of trains scheduled Timetable Cost (£)
5 Trains 8927
6 Trains 8482
7 Trains 8061
8 Trains 8108

Table 4.15 is consistent with Table 4.14 in the sense that when two additional

trains are scheduled the cost of the timetable is minimised. The results differ

slightly but this can once again be attributed to the effect of rounding. Therefore,

both the Genetic Algorithm and the Hill-Climbing heuristic are deemed to produce

timetables which converge to optimality.
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The above two validation checks ensured that both the Genetic Algorithm and

Hill-Climbing heuristic, when run separately, can produce the optimal solution for

the problems they examine (i.e. trains sequence and number of trains). Therefore,

the final stage of the optimisation algorithm validation was aimed at determining

whether the combination of Genetic Algorithm and Hill-Climbing heuristic does

indeed return the optimal timetable. Following the same methodology used until

this stage, the optimal sequence combined with the optimal number of trains was

found first by trying all possible solutions. The results are shown in Table 4.16.

The results from the algorithm are summarised in Table 4.17.

Table 4.16: Timetable cost per sequence and optimal number of trains (Brute
force)

Sequence Optimal number of trains Timetable Cost (£)
ABBBB 1 10585
BABBB 2 8920
BBABB 2 8057
BBBAB 2 9288
BBBBA 2 10031

Table 4.17: Timetable cost per sequence and optimal number of trains (Op-
timisation Algorithm)

Sequence Optimal number of trains Timetable Cost (£)
ABBBB 1 10601
BABBB 2 8932
BBABB 2 8061
BBBAB 2 9297
BBBBA 2 10040

Both the results from the brute force procedure (Table 4.16) and optimisation

algorithm (Table 4.17) agree that the optimal timetable is the one where trains
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are sequenced in the order given in Equation 4.9 where two additional trains are

added to the sequence meaning that the optimised timetable will look like

BBABBBB (4.10)

Finally, since in all three validation checks the result from the optimisation proce-

dure matched the results from the brute force procedure, it can be deduced that

the optimisation algorithm is valid.

4.6 Summary

An optimisation algorithm is developed which allows for the examination of the

cost functions formulated. The optimisation algorithm works in three stages with

the first stage being an implementation of a Genetic Algorithm producing a se-

quence with which trains are to be dispatched from their origin station. Dijkstras

Algorithm then constructs the timetable by determining the shortest path between

the origin and the destination of each train subject to the constraints of minimum

sectional running times, headway and single train occupancy of each block. The

third stage of the algorithm schedules additional trains until the timetable either

becomes infeasible or the cost of the timetable cannot be minimised any further.

The optimisation model is validated by comparing its output with the timetable

produced by the BRaVE simulation software. To enable the comparison, a timetable
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is constructed on the ECML network using the train mix traversing the Alexan-

dra Palace to Hatfield subsection between 08:00 to 09:00. A timetable from the

optimisation algorithm is then input in BRaVE in order to see if the timetable

is feasible. The results from BRaVE show that the result from the optimisation

algorithm can be replicated in BRaVE without any significant changes. Small

deviations from the timetable entered in BRaVE are observed with a magnitude

of a few seconds but these deviations can be attributed to the fact that BRaVE

calculates travelling times dynamically while the optimisation model relies on a

distance matrix. Consequently, it can be argued that the timetable constructed

by the optimisation algorithm is feasible.

Finally, Section 4.5.5 validates the optimisation procedure by taking a small in-

stance of the timetable with five trains and then finding the optimal solution by

manually calculating all possible scenarios. Once the optimal solution is found,

the algorithm is run on the same instance of the problem and the results it pro-

duces are compared to the ones obtained manually. It is shown that the results

from the algorithm do indeed match the optimal solution obtained from manual

calculations, supporting the argument that the algorithm returns timetables which

converge to optimality.





Chapter 5

Case study

5.1 Introduction

The cost functions and the optimisation algorithm were applied on a subsection

of the Brighton Main Line in order to tackle the research questions stated in

Section 1.3. The information is provided by initially explaining the context of

each research question, followed by the graphs summarising experimental results

and finally discussing the results obtained.

Section 5.2 describes the network in terms of its physical characteristics, train mix

and the passenger demand between each origin-destination pair. Section 5.3 serves

the purpose of determining how many generations of the Genetic Algorithm are

required before the algorithm converges to a solution. Section 5.4 answers the

105
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question of whether the timetable cost can be reduced by only resequencing the

trains. Section 5.5 determines what is the impact on the timetable when additional

trains are scheduled. In Section 5.6 the interaction between the cost functions

is furter analysed by constructing the Pareto Frontier of different pairs of cost

functions. The chapter concludes in Section 5.7.

5.2 Brighton Main Line

The network used for the experiments is composed of a subsection of the Brighton

Main Line. The Brighton Main Line is approximately 80-km long electrified con-

nection linking London Victoria and London Bridge with Brighton via East Croy-

don and Gatwick Airport. The line itself has a complex structure with a variable

number of tracks (four tracks from London down to Balcombe Tunnel Junction

and two tracks thereafter), different speed limits along the line, multiple branch

lines (e.g. at Junctions Horsham, Lewes), and sidings (e.g. along Ardingly, Lovers

Depot). Govia is the primary passenger operator that operates on the BML. [35].

For practicality purposes, we chose to model only the section between Gatwick

Airport and Brighton which is highlighted in Figure 5.1. This is one of the busiest

sections along BML and the Keymer Junction is a flat junction identified as one

of the network’s major bottlenecks [30]. The study period is 08:00 - 10:00, which

is regarded as the morning peak, on weekdays. During the study period, a total

of 22 trains run from Brighton toward Gatwick and hence Central London (the
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Figure 5.1: Brighton Main Line between Gatwick Airport and Brighton

’Up’ direction) and 18 trains running from Gatwick toward Brighton (the ’Down’

direction) (Table 5.1).

Table 5.1: Train mix between 08:00-10:00 on a weekday

Class 375 Class 442 Total
Gatwick Airport → Brighton 10 8 18
Brighton → Gatwick Airport 14 8 22

The ’base case’ train timetable is derived from information obtained from Network

Rail. The idea is to derive an optimised timetable from the proposed optimisation

framework with the same number of trains within the same study period. We

then compare the ’optimised’ timetable with this ’base case’ timetable to see how

much improvement, in terms of reduction in costs, can be achieved in different
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aspects through re-sequencing and re-scheduling. There are two different train

classes running through the section during the study period: Classes 375 and 442

with Class 375 used for the express connection (Gatwick to/from Brighton with

no intermediary stops).

Similar to the East Coast Main Line in Section 4.5.1 information regarding the

passengers was collected by referring to reports published by Network Rail and

through consultation with industry professionals. Considering the fact that the

study will cover the time period 08:00 - 10:00, the origin-destination matrix was

constructed (Appendix C) and the passenger mix has been decided to be set as

follows:

Table 5.2: Passenger mix for the time period 08:00 - 10:00

Passenger Type
Business 20%
Commute 60%
Leisure 20%

The origin-destination matrix matrix constructed for the case were the loading

factor equal 100% is shown in Figure 5.2.
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Figure 5.2: Origin-destination matrix for a 100% loading factor
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Validation for the figures presented in Appendix C, Table 5.2 and Figure 5.2 was

carried out both through industry consultation and site visits.

With respect to punctuality, the parameter Φ in Equation 3.13 is set equal to zero.

This means that any deviations from the scheduled arrival time will be penalised,

irrespective of their magnitude. The decision to set Φ equal to zero was taken

after consultation with industry professional and despite the fact that the current

industry standards assume all deviations of less than three minutes do not incur

any penalties [59, 60, 66]. Section 4.4 explains how the exponential distribution

will be used to model delays so, in order to model delays as accurately as possible,

the parameter λ in Equation 4.6 was taken to have a value of 1.1 for all the delayed

trains. This ensured that delay statistics are in line with the figures published by

Network Rail [60].

5.3 Algorithm convergence - BML network

Following the network’s incorporation into the optimisation model, experiments

are run in order to better understand how quickly the algorithm terminates. This

is an important test to carry out before the experiments begin so as to make sure

that enough chromosome generations are run in order for the solution to converge

but, at the same time, an excessive number of generations will come at the expense

of excessive computation time.
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Figure 5.3 shows the convergence rate of the algorithm when the termination

criterion is set to 400 iterations.

Figure 5.3: Convergence with 400 iterations

The figure above shows that, as expected, the largest reductions in the timetable

cost occur during the initial iterations with later iterations leading to reductions

of lower magnitude. Nonetheless, by the 100th iteration the algorithm seems

to converge with only minimal reductions being observed after that point. The

biggest decreases in the cost function seem take place before the 100th iteration

with minimal improvements taking place after the 200th iteration. In more detail,

no improvements more than 0.5% are observed after the 100th iteration. Conse-

quently, it has been determined to terminate the algorithm after a maximum of

200 iterations which appears to offer a satisfactory balance between the quality of

the solution and the time needed to produce it. However, if the network increases
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in size or the time span examined extends, it is likely that more iterations will be

needed before the algorithm converges.

5.4 Optimised sequence process

Experiments were carried out in order to understand whether the trains can be

sequenced in a different way such that the timetable cost is reduced. This will

be achieved by comparing the current sequence with which trains are scheduled

in the existing timetable and then running the optimisation algorithm to examine

whether a more efficient sequence can be found. This process will be undertaken

for three different demand levels

• Low demand - Average train loading is set equal to 50% and corresponds to

hours with little demand

• Average demand - Average train loading is set equal to 100% and corresponds

to hours with moderate demand

• High demand - Average train loading is set equal to 130% and corresponds

to hours with very high demand (e.g. morning and afternoon peak)

In order to isolate the impact from sequencing, no further trains will be added in

the timetable.



Chapter 5. Case study 113

5.4.1 Optimised sequence traits - Presentation of results

Figures 5.4, 5.5 and 5.6 present the results from the experiments and Table 5.3

summarises the results in the figures presented.

Figure 5.4: Optimised train sequencing for low demand levels

The results indicate that resequencing the trains can lead to lower timetable costs

and this reduction is driven by reductions in the cost of punctuality. The cost of

journey time and crowdedness increases slightly but this increase is mitigated by
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Figure 5.5: Optimised train sequencing for average demand levels

Table 5.3: Sequencing results for different demand levels

Low Demand Average Demand High Demand
Current Optimised Current Optimised Current Optimised

Crowdedness 0 0 37805 39386 138806 145998
Journey Time 64646 66689 135221 137477 176503 179386
Punctuality 48910 39664 97954 73815 140716 112679

Waiting Time 16576 15451 32458 32458 46207 42154

the significant improvements in the cost of punctuality1. The results are consistent

1The cost of crowdedness for the low demand scenario is zero due to the fact that no crowd-
edness penalty is charged for demand levels below 60%
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Figure 5.6: Optimised train sequencing for high demand levels

for all demand levels, implying that crowdedness levels do not affect the impact

of sequencing.

5.4.2 Optimised sequencing traits - Discussion

The impact of reducing the timetable cost through sequencing can be understood

by referring to the optimised sequence provided by the optimisation algorithm and
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comparing it to the initial sequence. A closer look into the optimised sequence

reveals that the reduction in punctuality comes from better distributing the trains

which exit the network sooner.

Figure 5.7: Optimised train sequencing illustration

Figure 5.7 illustrates an occasion in the current timetable where three trains are

scheduled immediately after one another, leaving no time-buffer between trains
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which can be used in case of a delay. This leads to higher punctuality costs since,

if one train is delayed, the delay will inevitably be propagated onto other trains.

The optimised sequence in 5.7 on the other hand shows that between the first and

third train, a significant time gap exists as a result of the existence of a train which

is scheduled in the time-gap between the above two trains but exits the network

at Three Bridges instead of continuing all the way until Brighton. This serves

the purpose of introducing time-buffers between the preceding and the succeeding

train which can be used to absorb the buffer. Consequently, distributing the

trains which exit the network early more evenly across the timetable contributes

in reducing the impact of delays.

It should be emphasised that such a scheduling may not be possible in real life

due to the fact that trains exiting Three Bridges will visit other stations in their

path and this resequencing will affect the feasibility of the timetable as a whole.

Boundary conditions nonetheless are bound to lead to certain inherent limitations

in the problem due to the fact that only a subsection is considered rather than

the network as a whole. However, the results shown in this section can provide a

useful insight into the timetabling procedure when timetabling is carried out for

the network as a whole.
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5.5 Impact of scheduling additional trains

A series of experiments were carried out to gain an insight into how different

crowdedness levels affect the optimal number of trains to be scheduled. As shown

in Section 5.4, the optimised sequence traits remain the same irrespective of the

number of passengers expected to utilise the services. However, crowdedness levels

are expected to influence the optimised number of trains to be scheduled through

the Hill Climbing heuristic.

For the purpose of this experiment, three demand levels will be examined which

are the same as the ones used in Section 5.4

• Low demand - Average train loading is set equal to 50% and corresponds to

hours with little demand

• Average demand - Average train loading is set equal to 100% and corresponds

to hours with moderate demand

• High demand - Average train loading is set equal to 130% and corresponds

to hours with very high demand (e.g. morning and afternoon peak).

In the low demand scenario, crowdedness levels are below the threshold for ap-

plying a penalty and, as such, no further trains are expected to be added since

the increase in the cost of journey time and punctuality will offset any gains in

terms of the waiting cost. In the average and high demand scenarios, trains are
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expected to be added until the marginal improvements in crowdedness are offset

by the increase in punctuality cost.

Each time the Hill Climbing heuristic adds a train, it does so by adding one

train in each direction. Since in this case study there are two possible directions

(Gatwick to Brighton and vice versa), each iteration of the heuristic adds a total

of two trains. The extra trains to be added by the Hill Climbing heuristic are

the express 375 classes which travel from Gatwick to Brighton (and vice versa)

without stopping at any stations in between. The reason for adding express ser-

vices rather than regional is the fact that the majority of passengers request a

service for the specific destination (Appendix C), implying that faster trains can

be added while serving a high proportion of the passengers at the same time. As

mentioned in Section 5.2, in the current timetable there are 18 trains scheduled

for the ’down’ direction (Gatwick Airport to Brighton) and 22 trains scheduled in

the ’up’ direction (Brighton to Gatwick Airport).

5.5.1 Impact of overcrowding - Presentation of results

The results from the experiments are summarised in Figures 5.8, 5.9 and 5.10.

The blue column indicates the optimised number of trains to schedule while the

rightmost column in the figures (painted violet) indicates the point where the cost

of scheduling an additional train overcomes the benefits.

The results show that, for low demand levels (Figure 5.8) adding one train in each
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Figure 5.8: Optimised number of trains for low demand

Figure 5.9: Optimised number of trains for average demand
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Figure 5.10: Optimised number of trains for high demand

direction causes the total timetable cost to rise and the optimisation procedure

returns the optimised solution as the one which is comprised of 40 trains. The

average demand scenario (Figure 5.9) allows for three additional trains to be added

in each direction (six total) before the timetable cost rises. If the demand is raised

even further (Figure 5.10), the total number of trains to be added is raised to five

for each direction. It is important to note that if six further trains are added in

each direction the timetable will be rendered infeasible due to the fact that the

timetable’s span will exceed two hours.

Figures 5.11, 5.12 and 5.13 show the marginal changes in timetable cost after the

introduction of additional trains. It appears that, as expected, if the demand

is low, scheduling additional trains leads to the timetable cost to be higher by
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approximately 1200. When the demand is sufficiently high though, scheduling

additional trains leads to lower timetable cost but the cost reductions are experi-

encing diminishing marginal return as the number of additional trains increases.

Figure 5.11: Marginal timetable improvements for the low demand scenario

In order to understand what cost functions are affected by the insertion of addi-

tional trains, a closer look is required on the value of each individual cost function.

The results are summarised in Figures 5.14, 5.15, and 5.16 and Tables 5.4, 5.5 and

5.6 provides the cost of each function under each scenario.

Table 5.4: Optimised number of trains for low demand - Solution table

Crowdedness Journey Time Punctuality Waiting Time Total cost
40 Trains 0 66689 39664 15451 121804
42Trains 0 66900 40975 15178 123053
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Figure 5.12: Marginal timetable improvements for the average demand sce-
nario

Figure 5.13: Marginal timetable improvements for the high demand scenario
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Figure 5.14: Optimised number of trains for low demand - Timetable break
down

Figure 5.15: Optimised number of trains for average demand - Timetable
break down
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Table 5.5: Optimised number of trains for average demand - Solution table

Crowdedness Journey Time Punctuality Waiting Time Total cost
40 Trains 39386 137477 73815 32458 283136
42 Trains 23758 138900 75446 31910 270014
44 Trains 13919 139786 78014 31371 263090
46 Trains 9564 141049 81021 30718 262352
48 Trains 6770 142448 85129 30089 264436

Figure 5.16: Optimised number of trains for high demand - Timetable break
down

Breaking down the total timetable cost to the individual cost functions shows

that the introduction of additional trains has an impact on all cost functions but

the ones which are mostly affected are crowdedness and punctuality. This is also

evident in Figures 5.17, 5.18, 5.19 and 5.20.

Introducing trains drives the cost of crowdedness down since more seats are offered
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Figure 5.17: Changes in the cost of crowdedness when additional trains are
scheduled

Figure 5.18: Changes in the cost of journey time when additional trains are
scheduled
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Figure 5.19: Changes in the cost of punctuality when additional trains are
scheduled

Figure 5.20: Changes in the cost of waiting time when additional trains are
scheduled
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Table 5.6: Optimised number of trains for high demand - Solution table

Crowdedness Journey Time Punctuality Waiting Time Total cost
40 Trains 145998 179386 112679 42154 480217
42 Trains 112006 181404 116960 41800 452170
44 Trains 83182 184132 120581 40943 428838
46 Trains 67443 185423 125027 40035 417928
48 Trains 53609 186832 129753 39030 409224
50 Trains 40078 188457 136352 38146 403033
52 Trains 30931 190159 145053 37288 403431

between stations, leading to reduced crowdedness levels in the trains which is

translated into a lower penalty. On the other hand, the scheduling of additional

trains drives the cost of punctuality up due to the fact that more trains are now

likely to be delayed and the delays have a knock-on effect on subsequent trains as

well. With regards to the cost of journey time, the scheduling of additional trains

causes more congestion in the bottleneck, leading to trains requiring more time

to reach their destinations. This eventually translates into increases in the cost of

journey time cost function as the number of trains increases. The cost of waiting

time decreases slightly as the number of scheduled trains increases as there are

more frequent trains to carry people to their destinations.

5.5.2 Impact of overcrowding - Discussion

A closer look at the results presented in Section 5.5 reveals that the scenario with

low demand is a trivial solution to the issue of adding further trains while the

solutions by the average and high demand scenarios present similar trains which
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require further analysis to understand. These traits concern the behaviour of the

cost of crowdedness and punctuality as well as the interaction between these two

cost functions.

The scenario with low demand (Figure 5.14) shows that scheduling additional

trains leads to increases in the cost of punctuality and the cost of journey time

while the cost of waiting time decreases slightly. Crowdedness levels are below

the threshold level of 60% meaning that the no penalty is applied for crowded-

ness. Consequently, the addition of one extra train has a negative impact on the

timetable.

The solutions for the scenarios with average and high demand (Figure 5.15 and

Figure 5.16) presents interesting results with respect to the impact of scheduling

additional trains on the cost of crowdedness. The high demand scenario (Figure

5.16) shows that the scheduling the first two additional trains in each direction

has a disproportionately high impact due to the fact that the addition of those

trains helps to eliminate standing passengers who have extremely high penalties.

It is interesting to note that, despite the fact that crowdedness penalties Rn,i→j

in Equation 3.16 decrease linearly as crowdedness levels decrease (Table 3.3 and

Table 3.4), the results in Figure 5.15 and Figure 5.16 show the timetable’s crowd-

edness cost decaying non-linearly as the number of scheduled trains increases. This

is attributed to the fact that the cost function given in Equation 3.16 is non-linear

and also due to the way passengers are allocated to the trains by Equation 4.5.
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When an additional train is scheduled, the equation’s numerator remains con-

stant but the denominator rises, resulting in trains experiencing a loading factor

that decreases non-linearly. Consequently, each additional train leads to smaller

reductions in the number of people on board each train, leading to the decreas-

ing marginal benefits in the crowdedness cost shown in Figures 5.15 and 5.16.

However, the total journey time increases which means that the trains may be

less crowded but passengers spend more time inside the trains which leads to the

reductions in the cost of crowdedness to be slightly mitigated by the increase in

running times. The increase in cost of journey time is caused by the fact that trains

need more time to travel from their origin to destination because f congestion in

the bottleneck in Keymer Junction.

Punctuality is influenced by the scheduling of additional trains in a more straight-

forward way. With the addition of each extra train, the number of trains likely

to be delayed increases and since the delay of a train has a knock-on effect on

subsequent trains, the timetable’s cost of punctuality increases exponentially as

the number of scheduled trains increases (Figures 5.15 and 5.16). These results

are consistent with the findings of previous authors such as Gibson et al. [38] who

showed that impact of punctuality increases exponentially as the railway network

gets more congested.

The behaviour of the crowdedness and punctuality cost functions leads to an

important trade-off which governs the optimal number of trains to be scheduled

given the different demand levels. The marginal cost is always bound to exceed
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the marginal benefits of crowdedness through the scheduling of more trains. This

occurs due to the fact that as extra trains are scheduled, the marginal losses

from punctuality increase exponentially while the marginal benefits of crowdedness

decrease. As illustrated in Figures 5.14, 5.15 and 5.16, the equilibrium point

depends on the levels of crowdedness. The number of trains which constitute part

of the optimised solution changes depending on whether there is low, average or

high demand.

5.6 Pareto analysis

Analysing the different trade-offs also involves examining the Pareto Frontier to

better understand how the optimised solution to the problem changes when the

cost function coefficients vary. The Pareto Frontier for two objective functions

can be represented by a curve where each point on the curve indicates an efficient

solution when the two objective functions are being optimised simultaneously [33].

The objective function in Equation 4.1 is constructed by adding all the individual

cost functions which comprise it. The Pareto Frontier will be constructed by

multiplying each cost function by a scalar aq such that:

min
τ,σ

: C = a1CT + a2CW + a3CP + a4CD

4∑
q=1

aq = 1, (5.1)

Equation 5.1 will enable for the construction of the frontier which will represent
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all the solutions that are Pareto efficient since, as Ehrgott [33] states, all optimised

solutions of scalarised problems are always Pareto efficient.

According to Equation 5.2, eleven different combinations could be selected to use

in the Pareto analysis.

4!

2!2!
+

4!

3!1!
+

4!

4!0!
(5.2)

However, it was decided that analysing all combinations was not possible due to

the time required to run the experiments needed to construct the Pareto Frontier.

Consequently, only three combinations were used in the Pareto analysis:

• Crowdedness against punctuality

• Crowdedness against journey time

• Punctuality against journey time

These three combinations were chosen since, together they have the largest con-

tribution towards the timetable’s total cost. This is evident by referring to Tables

5.3, 5.4, 5.5 and 5.6 where the cost of waiting has the smallest impact out of all

four cost functions. Even though it is understood that all possible trade-offs need

to be analysed, the time constraints imposed by the project necessitates that the

focus be shifted on the combinations which are the most likely to provide the most

useful insight.
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The Pareto Frontier was determined by solving the optimisation problem using

different values for the scalars aq. Sections 5.4 and 5.5 have shown that changes

in the value of the Crowdedness and Punctuality cost functions dominate the

decisions made to derive the optimised timetable. Following this, experiments were

aimed at constructing the Pareto Frontier for the Crowdedness and Punctuality

cost function. Table 5.7 shows the different values of aq used to construct the

Pareto Frontier for the Crowdedness and Punctuality cost functions. The Journey

Time and Waiting Time cost functions which are not included in the experiment

have the parameters set equal to zero (i.e. a1 = 0 and a2 = 0) so as not to interfere

with the Pareto analysis of the Crowdedness and Punctuality cost functions.

Table 5.7: Pareto Frontier construction for Crowdedness and Punctuality

Crowdedness Punctuality

Scenario 1 0.00 1.00
Scenario 2 0.15 0.85
Scenario 3 0.25 0.75
Scenario 4 0.35 0.65
Scenario 5 0.40 0.60
Scenario 6 0.50 0.50
Scenario 7 0.60 0.40
Scenario 8 0.65 0.35
Scenario 9 0.70 0.30
Scenario 10 0.75 0.25
Scenario 11 0.85 0.15
Scenario 12 1.00 0.00

Experiments only focused on the scenarios with average and high demand since, in

the low demand scenarios the cost of crowdedness is zero making the low demand

scenario trivial.
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The trade-off between the Crowdedness and Journey Time cost function deter-

mines the optimised solution in cases where the marginal changes in punctuality

are lower than the marginal changes in the journey time. Table 5.8 shows the dif-

ferent values of aq used to construct the Pareto Frontier for the Crowdedness and

Journey Time cost functions. The parameters for the Punctuality and Waiting

Time cost functions (i.e. a3 and a2 respectively) are set equal to zero.

Table 5.8: Pareto Frontier construction for Crowdedness and Journey Time

Crowdedness Journey Time

Scenario 1 0.00 1.00
Scenario 2 0.15 0.85
Scenario 3 0.25 0.75
Scenario 4 0.35 0.65
Scenario 5 0.40 0.60
Scenario 6 0.50 0.50
Scenario 7 0.60 0.40
Scenario 8 0.65 0.35
Scenario 9 0.70 0.30
Scenario 10 0.75 0.25
Scenario 11 0.85 0.15
Scenario 12 1.00 0.00

As mentioned before, the low demand scenario was excluded from the analysis

since the interaction of the Crowdedness and Journey Time cost functions is of

interest only the cost of the Crowdedness cost function is not zero.

The Pareto Frontier for the Punctuality and Journey Time cost functions was con-

structed since the Journey Time cost function has a cost of high magnitude (see

Tables 5.4, 5.5 and 5.6), with the potential to have a significant impact during

the optimisation process. This is more evident in the low demand scenario where
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the interaction between Punctuality and Journey time determines the optimised

solution. Table 5.9 shows the different values of aq used to construct the Pareto

Frontier for the Punctuality and Journey Time cost functions. Once again the

parameters for the cost functions not included in the experiments (namely Crowd-

edness and Waiting Time with parameters a4 and a2 respectively) are set equal to

zero.

Table 5.9: Pareto Frontier construction for Punctuality and Journey Time

Punctuality Journey Time

Scenario 1 0.00 1.00
Scenario 2 0.10 0.90
Scenario 3 0.15 0.85
Scenario 4 0.25 0.75
Scenario 5 0.35 0.65
Scenario 6 0.40 0.60
Scenario 7 0.50 0.50
Scenario 8 0.60 0.40
Scenario 9 0.65 0.35
Scenario 10 0.70 0.30
Scenario 11 0.85 0.15
Scenario 12 1.00 0.00

In total, seven different Pareto Frontiers will are summarised in Table 5.10.

Table 5.10: Pareto Frontier to be constructed

Demand levels
Cost function 1 Cost function 2 Low Average High

Crowdedness Punctuality ∗ ∗
Crowdedness Journey Time ∗ ∗
Punctuality Journey Time ∗ ∗ ∗
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When the experiments for the seven scenarios in Table 5.10 are run, results will be

plotted on a scatter plot and a line will be fitted to understand the mathematical

relationship governing the relationship of the variables in the plot.

The Waiting Time cost function was omitted from the Pareto analysis due to the

fact that waiting time has the lowest magnitude of all the cost functions and it

also experiences the smallest marginal changes when the trains are resequenced

and when additional trains are being scheduled.

5.6.1 Pareto analysis - Presentation of results

The results shown in this section, illustrate the Pareto Frontiers which examine

the relationships identified in Table 5.10. On top of each figure, the equation of

the curve fitting the points is given.

The Pareto Frontier for Crowdedness against Punctuality can be seen in Figure

5.21 for average demand levels and Figure 5.22 for high demand levels.

Points located at the bottom-right of the plots indicate the scenarios where punc-

tuality had a much bigger weight than crowdedness. As the weight of crowdedness

increases, the cost of crowdedness also decreases but this improvement comes at

the expense of an exponentially increasing cost of punctuality. Both graphs show

that a logarithmic relationship governs the dynamic between the Crowdedness



Chapter 5. Case study 137

Figure 5.21: Pareto frontier for crowdedness against punctuality - Average
demand

Figure 5.22: Pareto frontier for crowdedness against punctuality - High de-
mand
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and Punctuality cost functions. This implies that, as the cost of crowdedness in-

creases, the cost of punctuality decreases but the marginal improvements decrease

at a logarithmic rate. For example, consider Figure 5.21 which illustrates that,

under average demand, the Pareto Frontier is expressed as

y = 297505− 22554 ln x (5.3)

Equation 5.3 indicates that when Punctuality has a coefficient ap = 1 and Crowd-

edness a coefficient ac = 0, the optimisation algorithm will only focus on minimis-

ing the cost of punctuality by setting Equation 5.3 equal to zero. This is achieved

when Crowdedness has a cost of approximately £5349882. Similarly, when Punc-

tuality has a coefficient ap = 0 and Crowdedness a coefficient ac = 1, crowdedness

will be minimised when the cost of punctuality is set to an arbitrarily high number3

Figures 5.23 and 5.24 depict the interaction between the Crowdedness and Journey

Time cost functions. The results from these experiments fall closer to the Pareto

Frontier compared to the results in Figures 5.21 and 5.22 due to the fact that both

Crowdedness and Journey Time are deterministic, decreasing the variability in the

plot.

Similar to Figures 5.21 and 5.22, the relationship between these two objective

functions can be represented using a logarithmic curve. In addition, akin to the

2In practice, the cost of punctuality cannot be completely eradicated due to the presence of
primary delays

3This value is not necessarily feasible since, if enough trains are added, the timetable span
may exceed the threshold, setting a lower bound to the minimum cost of crowdedness



Chapter 5. Case study 139

Figure 5.23: Pareto frontier for crowdedness against journey time - Average
demand

Figure 5.24: Pareto frontier for crowdedness against journey time - High
demand
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Crowdedness against Punctuality frontier, the extremes of the curves fitted in

Figures 5.23 and 5.24 may not necessarily be feasible. This is attributed to the

fact that, as long as the timetable consists of a single train, the cost of Journey

Time will never be zero while Crowdedness may be prevented from being set to

zero due to the constraints concerning the span of the timetable4.

The final Pareto Frontiers will analyse the interaction between Punctuality and

Journey Time and the results are summarised in Figures 5.25, 5.26 and 5.27.

Figure 5.25: Pareto frontier for punctuality against journey time - Low de-
mand

The low demand and average demand case, indicate that a logarithmic curve best

fits the data. The high demand case is slightly different since a second order

4See footnote 3
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Figure 5.26: Pareto frontier for punctuality against journey time - Average
demand

Figure 5.27: Pareto frontier for punctuality against journey time - High de-
mand
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polynomial curve best fits the data with an R2 value

R2
Low = 0.972 (5.4)

R2
Average = 0.962 (5.5)

R2
High = 0.971 (5.6)

Nonetheless, a logarithmic curve is, from a conceptual point of view, a more ap-

propriate fit, leading to the attempt to fit a logarithmic curve to the data. The

results obtained indicate that the logarithmic curve is an equally good fit with an

R2 value

R2
Low = 0.921 (5.7)

R2
Average = 0.964 (5.8)

R2
High = 0.953 (5.9)

Due to the minimal differences in terms of the R2 of the curves fitting the data,

it was decided to keep the logarithmic curve.

Consequently, for all the Pareto Frontiers constructed (Table 5.10), a logarith-

mic curve offers the best mathematical representation for the Pareto Frontier. As

demonstrated though, the extreme points of the curve may not always be attain-

able in practise.
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5.6.2 Pareto analysis - Discussion

A detailed discussion of the results in Section 5.6.1 is provided in this section so

as to get a more thorough of the Pareto Frontiers governing the interaction of the

Crowdedness, Punctuality and Journey Time cost functions.

The first thing that becomes apparent from the results is that, certain plots exhibit

less variability than others. For example, Figures 5.21, 5.22, 5.25, 5.26 and 5.27

have data points lying further away from the frontier compared to Figures 5.23

and 5.24. In theory, all of the optimisation results should lie on the Pareto Frontier

but, in practice, this is unlikely to happen due to two reasons. The first one is

that the optimisation algorithm may not necessarily return the optimal solution

but a solution which is good enough; leading to the result being present close to

the frontier but not on it directly. The second reason concerns the fact that one of

the objectives plotted is Punctuality which is determined in a stochastic way, as

explained in Section 4.4. This implies that, in every realisation of the timetable,

different trains will be delayed and by a different amount which will leads to

inherent inconsistencies that become apparent when the results are plotted.

The second thing to note, is the difference in the slope of the figures and its

relation to the different demand levels. For example, Figure 5.21 describes the

Pareto Frontier by plotting the cost of Crowdedness on the x-axis (CDav) against

the cost of Punctuality on the y-axis (CPav) for average demand levels. The slope



Chapter 5. Case study 144

of Pareto Frontier is

CPav = 297505− 22554 lnCDav (5.10)

d

dCDav

(297505− 22554 lnCDav) (5.11)

dCPav

dCDav

= −22554

CDav

(5.12)

for Crowdedness levels approximately in the range

5000 < CDav < 25000 (5.13)

Calculating the slope of the frontier for the range provided gives

−4.51 <
dCPav

dCDav

< −0.9 5000 < CDav < 25000 (5.14)

Extending this to Figure 5.22 which constructs the Pareto Frontier for Crowded-

ness (CDhi
) against Punctuality (CPhi

) for high demand results in

CPhi
= 520651− 36575 lnCDhi

(5.15)

d

dCDhi

(520651− 36575 lnCDhi
) (5.16)

dCPhi

dCDhi

= −36575

CDhi

(5.17)

which leads to the slope

−2.44 <
dCPhi

dCDhi

< −0.46 15000 < CDhi
< 80000 (5.18)
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It is therefore apparent that the frontier for average demand levels has, on average,

a steeper slope (Equation 5.14) compared to the frontier for high demand levels

(Equation 5.18). This makes intuitive sense since, when crowdedness is being

multiplied by a scalar aq close to zero, no extra trains will be added, leading

to the timetable having a huge Crowdedness cost. However, as the scalar aq

for crowdedness increases, more trains are likely to be added. In the average

demand scenario, this means that initial improvements in the cost of Crowdedness

will be achieved without sacrificing the timetable’s cost of Punctuality. As the

Crowdedness scalar moves closer to one, the curve will quickly steepen due to the

fact that the improvements in the cost of Crowdedness come at the expense of

significant losses in the cost of punctuality. In the high demand scenario though,

the trains are so overcrowded that, even when the scalar for Crowdedness is close to

one, significant improvements in terms of the cost of Crowdedness can be achieved

without the cost reductions being offset by the cost of Punctuality. These findings

can also be extended to Figures 5.23 and 5.24 which also have Crowdedness on

the x-axis.

5.7 Summary

This chapter has used the formulations of the cost functions provided in Chapter

3 and the optimisation algorithm in Chapter 4 to carry out experiments which

provided an insight into different timetabling parameters and the summary of
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those experiments is provided in this section.

Section 5.2 outlines the Gatwick Airport to Brighton section of the Brighton Main

Line which is the network used for the experiments. The timetable considered

covers the morning peak time period 08:00-10:00 during which two different train

types traverse the network and the passenger mix is comprised of 20%, business

and leisure passengers and 60% commuting passengers.

Following the description of the network, experiments were carried out in Section

5.3 to determine how quickly the optimisation algorithm converges for the given

problem. It as therefore been determined to run 200 iterations since the specific

number of runs was striking an acceptable balance between the solution quality

and computation time.

Section 5.4 signals the beginning of the main bulk of the experiments by examining

whether trains can be sequenced in such a way that the cost of the timetable can

be reduced through resequencing only. The results have shown that, when the

trains scheduled to exit the network quickly are distributed more evenly across the

timetable, then an artificial buffer is inserted which can absorb delays, reducing

the cost of a timetable. This is a trait which remains irrespective of whether the

the loading factor of the trains.

While Section 5.4 focuses purely on train sequencing, Section 5.5 examines the

effect of scheduling additional trains. In general, the number of additional trains

to be scheduled depends on the levels of loading factor of the trains, with timetables
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constructed under heavy demand scenarios being the ones that benefit the most

from the introduction of additional trains. Furthermore, the optimised number of

additional trains is mainly depended on the equilibrium between the Crowdedness

and Punctuality cost functions. The reason for this is because as the number of

scheduled trains increases, the timetable cost of crowdedness is showing traits of

marginal diminishing returns while the cost f punctuality increases exponentially.

Finally, Section 5.6 explains how a series of experiments is run in order to con-

struct the Pareto Frontier for a number of cost function combinations. A logarith-

mic curve has been decided to represent to represent the frontier since, not only

provides the best fit for the data, but is also meaningful from a conceptual point

of view. When Crowdedness is considered in the analysis, it has been shown that

the Pareto Frontier becomes flatter for the range of crowdedness values the exper-

iments were carried out. This has been shown to be due to the high crowdedness

penalties associated with high demand levels and the ability of the timetable to

incorporate more trains before the reductions in terms of the cost of crowdedness

become trivial.





Chapter 6

Conclusions

6.1 Thesis overview

Chapter 1 of the thesis introduces the British railway industry and the describes

timetabling process that is currently being undertaken. As of the time of writing,

there is no way of calculating a objective value for the performance of a railway

timetable. Consequently, there is no way to objectively compare two timetables

in order to determine which one is better. This creates the need to formulate a

set of objective functions which can systematically evaluate a railway timetable to

determine how good it is. This set of the objectives will be based on the framework

created by Chen and Roberts [20]. In case of formulating more than one objective,

an analysis should be carried out to examine how these objectives interact under

different problem parameters.

149
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The first part of Chapter 2, reviews the literature on railway timetabling. Even

though extensive literature exists which formulates the train timetabling problem

as a multi-objective optimisation problem, most of the papers only use two formu-

lations. However, a small number of authors optimise more than two objectives

but these objectives measure punctuality using different formulations, resulting to

a limited breadth of analysis. Furthermore, little to no attempt is being made

to analyse the interaction between the objective functions the authors are using.

This arises from the fact that the vast majority of the literature focuses on the

algorithm used to solve the problem instead of provided an extensive analysis of

the cost functions used. An exception to this is the case where punctuality and

network capacity are optimised in which case a significant amount of literature has

been devoted to explaining their relationship. The latter part of the first section

in Chapter 2 is devoted to the different formulations developed to examine perfor-

mance metrics related to capacity (both network and system capacity), journey

time, punctuality and waiting time.

Chapter 2 concludes by describing the different optimisation algorithms developed

over the years to tackle the train scheduling problem. The fact that the problem

is computationally intractable leads to the use of heuristics and meta-heuristics to

obtain approximate solutions. Some of the algorithms being used are Branch and

Bound algorithms, Genetic algorithms and sub-gradient optimisation algorithms.

In Chapter 3 the specification of a railway timetable is defined which defines the

variables used in the formulation of the cost functions as well as the constraints



Chapter 6. Conclusions 151

needed to formulate feasible timetables. The cost functions formulated evaluate a

timetable’s non-monetary cost by examining a its performance in terms of crowd-

edness, journey time, punctuality and waiting time. Crowdedness calculates the

time penalty for passengers who travel in congested trains and Journey Time calcu-

lates the time it takes to travel from the origin to the destination of all passengers.

Punctuality is measured as the time deviation of a train’s expected arrival time

from its scheduled arrival time at a station. Waiting Time penalises the time that

customers have to wait before their service arrives. Monetary costs (e.g. the price

that operators pay to buy the franchise, the operating costs of running a train

etc.) were not considered as they are considered strictly confidential information

and is not disclosed to the public.

It is immediately obvious that the objective functions have different dimensions

and, in order to be combined, they must be adjusted such that they have the same

dimension. The concept of travel time savings (also known as value of time) is

therefore introduced which assigns monetary costs to different actions related to

travelling. Travel time valuations are split into monetary and non-monetary costs

with monetary cost covering costs which are being paid by the passenger (e.g. the

cost of purchasing a ticket etc.) and non-monetary cost consider the opportu-

nity cost of travelling in monetary terms (e.g. the opportunity cost of travelling,

arriving late etc.). Travel time valuations has been used over the years by the

Department for Transport to evaluate the benefits of investments in transport.

This means that, up to now, travel time valuations are used more on a strategic

rather than an operational level. Applying the cost of travel time savings to each



Chapter 6. Conclusions 152

of the objectives we formulate, achieves the purpose of making each cost function

measure the monetary cost of each objective function. Consequently, adding the

objective functions together calculates a timetable’s total non-monetary cost.

An optimisation algorithm is then presented in Chapter 4 which will enable for the

analysis of the cost functions to take place. The algorithm works in three stages

with a Genetic Algorithm in the first stage which evaluates the different sequence

with which trains can be dispatched from their origin. Following the construction

of a sequence, Dijkstras Algorithm is run to determine the shortest path from

the origin to the destination of each train to be scheduled. In case of a clash

between two trains at an node, priority is given to the train which appears first

in the sequence given by the Genetic Algorithm. The final stage in the algorithm

run a Hill-Climbing Heuristic which adds trains in the timetable and stops doing

so when the extra train either increases the cost of the timetable or causes the

timetable’s time-span to exceed a given threshold.

Collecting information about the arrival rate of customers requesting a service for

each origin-destination in made impossible due to the confidentiality agreements

protecting such data. An alternative methodology is therefore described in the

second part of Chapter 4 which works by constructing an origin-destination matrix

each entry of which represents the origin and each row the destination station. The

entries of the matrix contain the proportion of passengers (as a function of the

train’s total seats) who wish to utilise the specific origin-destination.
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The BRaVE simulation software developed by Birmingham University is used to

validate the timetable produced by the algorithm. The algorithm generated a

timetable which was then entered in BRaVE to see if the software could execute

the timetable without any infeasibilities arising either due to train collisions or

sectional running time violations. The output from BRaVE has shown that the

timetable from the algorithm can be executed with minor alterations which arise

as a consequence of the difference in the way in which sectional running times are

considered in the model as opposed to BRaVE. The optimisation algorithm was

consequently deemed to generate feasible timetables.

Chapter 5 presents and analyses the results obtained from the experiments. The

chapter starts by introducing the Brighton Main Line, a subsection of which will be

used for the experiments. The subsection to be used covers the railway network

from Gatwick Airport to Brighton and the time interval to be examined is the

morning peak hours between 08:00 and 10:00. The passenger mix during the

given time interval is taken to be comprised of 60% commuting, 20% business and

20% leisure passengers. Prior to the initiation of the experiments, the optimisation

algorithm was run three times to determine how quickly it converges and it was

decided to terminate the algorithm after 200 iterations.

The first series of experiments was aimed to identify whether trains can be se-

quenced (without scheduling additional trains) in such a way such that the cost

of the timetable can be reduced. Experiments were carried out for three demand

levels (i.e. low, average and high demand) to determine whether demand levels
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can impact the optimised sequence. Results have shown that resequencing can

lower the cost of punctuality by evenly distributing the trains which exit the net-

work early. Such an action creates an artificial buffer between the train before and

after the train exiting early and this buffer absorbs delays, leading to lower punc-

tuality costs. Demand levels did not appear to have any impact on the optimised

sequence.

Analysing the effects of scheduling additional trains was the series of experiments

to be carried out. The trains added were taken to be the service from Gatwick

Airport and back since that is the route with the highest demand meaning that

the most major improvements can be captured by scheduling additional trains

serving that route. Three demand levels were examined which were the same as

the ones used for the experiments above. Results have shown that, as expected,

the optimised number of trains to be scheduled depends on the demand levels. If

demand is low, scheduling extra trains will only increase the cost of Punctuality

and Journey Time with minimal improvements in the cost of Waiting Time. This

is because if train loading falls below a threshold level, no penalty for overcrowding

is imposed, leading to the scheduling of additional trains to have an adverse effect

on the total cost of the timetable. When demand is sufficiently high, inserting

more trains in the timetable reduces the cost of crowdedness but also increases

the cost of punctuality. Due to the fact that crowdedness gains diminish while

punctuality costs increase exponentially, the optimised number of trains to be

scheduled relies on how crowded the train services are.
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The last series of experiments in Chapter 5 constructs the Pareto Frontiers for

three cost function combinations

• Crowdedness against Punctuality (frontier constructed for average and high

demand levels)

• Crowdedness against Journey Time (frontier constructed for average and

high demand levels)

• Journey Time against Punctuality (frontier constructed for low, average and

high demand levels)

All seven frontiers are expressed with a logarithmic curve since, not only does

it fit the data well, it is also meaningful from a conceptual point of view. The

Pareto Frontier represents the set of efficient solutions when the cost functions

are optimised with different scalar values. This means that depending on which

objective is prioritised, the optimal solution can be determined by referring to the

appropriate co-ordinates on the Pareto Frontier.

Moreover, when crowdedness is plotted on the x-axis, the slope of the Pareto

Frontier reduces as demand levels increase. This is attributed to the fact that, for

high demand levels, the existence of standing passengers leads to bigger decreases

in the cost of Crowdedness, smoothing the slope of the curve.



Chapter 6. Conclusions 156

6.2 Contribution to the research field

A significant contribution of the research has been the formulation of cost functions

to evaluate the non-monetary cost of a railway timetable. As evident from Chapter

2, the vast majority of the literature evaluates a timetable in terms of its network

capacity, punctuality and journey time while Waiting time is only rarely measured.

This project provides formulations to evaluate punctuality and journey time but

in addition it formulates a cost function which calculates the cost of waiting time

which is timetable depended. In addition, a cost function is presented which

calculates a timetable’s crowdedness cost. In the literature, crowdedness cost is

only used by the Office of Rail and Road to estimate the impact of investment

decisions but, as it is only used on a strategic level, no formulation exists which

can be used to evaluate railway timetables.

One of the experiments in Chapter 5 had the purpose of examining how different

passenger demand levels can affect the cost of the timetable. To the best of the

author’s knowledge, no effort has been made by previous authors to examine such

a timetabling parameter. This may be attributed to the fact that the decision

to carry out the specific experiments can be attributed to the decision to include

the Crowdedness cost function. Since the aforementioned cost function has not

been considered by any authors, the need to examine different demand levels never

arose. The experiments have indeed shown that the demand levels can influence

the optimal decision by determining the number of trains to be scheduled. This

is important since, until the time of writing, authors have examined the trade-off
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between network capacity and punctuality and established their relationship but,

without the Crowdedness cost function, they are unable to provide any meaning-

ful method for determining how many trains to schedule given the relationship

between capacity and punctuality. For example, it is known that as more trains

are added, the cost of punctuality increases exponentially but this does not pro-

vide enough information to make a decision on how many trains to schedule. The

inclusion of the crowdedness cost function suggests that at very low demand levels

no further trains need to be added while as demand levels increase more trains

need to be included in the timetable since the reduction in the cost of crowdedness

can offset the increases in the cost of punctuality.

In literature, numerous authors attempt to formulate the relationship between

network capacity and punctuality. However, when it comes to the rest of the ob-

jectives little attempt is being made to understand their relationship. This may be

attribute to the fact that the main focus of the authors is the development of new

algorithms with the objective functions only serving the purpose of being an input

to the algorithm. This has been one of the major targets of this research which

has presented the Pareto Frontiers for three different cost function combinations

and each combination was further analysed for different demand levels.

Finally, the optimisation procedure developed has not been based on any previous

algorithms developed for solving the railway timetabling problem. The need to

create timetables from scratch rather than rescheduling and the need to vary the

number of trains scheduled created the need to develop something new to tackle the
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demands set by this project. However, since the development of an optimisation

algorithm was initially out of the scope of this project, there are multiple areas

the algorithm can be improved on. A list of potential improvements in given in

Section 6.3.

6.3 Future work

A obvious limitation of the project, is the absence of cost functions which esti-

mate the timetable’s monetary cost such as the money Network Rail receives for

scheduling additional trains and the operational cost of running a service. This

was something that was impossible to do due to the inability to access the data

to accurately calculate these costs due to data privacy issues which could not be

overcome. Consequently, future research can seek to obtain the necessary data will

allow for the formulation of these cost functions. Combining the non-monetary

cost functions from this research with the monetary cost functions will enable a

holistic calculation of the total cost of a railway timetable. This will enable a

sensitivity analysis to be carried out to understand the dynamics which govern all

the cost functions relevant in the optimisation of railway timetables.

The monetary coefficients used in the research are based on the values proposed

by the British Department for Transport. In other countries, different values may

be used which will, inevitably, have an impact on the results. This is more obvious

from the formulation of the Crowdedness cost function which, as seen from the
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experiments, can have a big impact on timetabling decisions. In particular, if

significantly different crowdedness multipliers are used, they have the potential to

dramatically impact the interaction between the cost functions. Applying this set

of cost functions in a country with different travelling time valuations, different

results may be reported.

For the purpose of this project, the cost functions were combined using the weighted

sum multi-objective optimisation technique (i.e. linear combination of cost func-

tions). However, the problem can be formulated using different techniques such

as

Lexicographic optimisation optimises the problem using one objective, then

constraints its value and optimises the second objective with the additional

constraint imposed.

Goal Programming optimises a single objective function and imposes a soft

constraint on the rest of the functions. If any of the objective function

constraints is violated, a penalty is imposed which increases according to

the value by which the constraint was exceeded.

Data Envelopment Analysis for any feasible solution to the optimisation prob-

lem, DEA calculates a score in the range 0 − 1 for each objective function

scoring how efficient the objective is for the given solution.

Each of the above techniques can be used depending on the problem requirements

(e.g. if one objective is infinitely more important than the rest, lexicographic
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optimisation can be used). In particular, DEA can be implemented to efficiency

score of each objective when they are optimised under different circumstances (e.g.

different crowdedness levels, different monetary coefficients for each objective etc.).

The purpose of the project was the formulation and analysis of cost functions

rather than the development of an efficient and effective optimisation procedure.

Even though better algorithms have been developed to solve the train timetabling

problem, the algorithm developed in this project serves a slightly different purpose

and, as it presents the opportunity for further usage, it could be further refined.

Future researchers may focus on improving certain aspects of the algorithm to in-

crease its ability to construct efficient timetables. Some of the areas to be improved

are

• Modify the way train priorities are determined in cases of conflicts. At the

moment, when two trains clash at a junction, priority is given to the train

which appears higher in the sequence outputted by the Genetic Algorithm.

• The Hill-Climbing heuristic only adds a specific service (e.g. from Brighton

to Gatwick without any intermediary stops) without having the flexibility to

schedule different services. It will be interesting to add an additional feature

which, in each iteration, will examine the different alternatives and schedule

the service which offers the highest cost reductions.

• When the Hill-Climbing heuristic schedules an additional train, the train is

placed last in the sequence list. This implies that the train will be scheduled

subject to the constraints imposed by all the previous trains scheduled before
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it. Therefore, a procedure can be developed which will examine whether it

is more beneficial to insert the train in a different place in the sequence list

other than the last one.

Even if the changes above are not implemented, it will be worth coding the opti-

misation algorithm from scratch. When the algorithm was initially developed, the

foundations were laid to create something vastly different but, according to the

project’s changing demands, the algorithm ended up being build in a way that its

computational speed suffers significantly. Coding the whole algorithm from scratch

now that the procedure has been finalised will help to speed the algorithm up con-

siderably. One benefit of this is the ability to run more Monte-Carlo simulations

without the need to devote countless hours in computational time. When these

changes have been made, the effectiveness and efficiency of the algorithm can be

benchmarked against other optimisation algorithms used for railway timetabling.

Examining the Pareto Frontiers has shown that, when Punctuality was on of the

cost functions being analysed, the scatter plot was exhibiting high variability.

This is somewhat expected due to the fact that delays are generated randomly

but, in some cases (e.g. Figures 5.21 and Figure 5.22) certain data points were

lying very far from the Pareto Frontier. The variability can somewhat be reduced

by running an increasing number of Monte-Carlo simulations to construct the

stochastic timetable. The way the optimisation algorithm was structured and

implemented was rendering it impractical to run additional simulations due to it

being very time consuming to do so. Future research can therefore carry out the
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experiments using a higher number of simulation runs to construct the Pareto

Frontiers in order to examine whether the results will change.

The case study presented, only considered passenger trains. However, it will be

interesting to examine the impact of scheduling freight trains as well and also

whether any monetary coefficients can be assigned to the different activities re-

garding freight trains (e.g. journey time for freight trains).

Finally, a number of projects are currently under way by Network Rail (e.g. DE-

DOTS) which aim to improve the robustness and dependability of operations

while also making better use of railway capacity and minimising energy consump-

tion [21]. These project though focus on the algorithmic aspects of timetable

optimisation so the work presented in this project could supplement such project

by providing a set of cost functions which can be used to develop optimised train

timetables. This can provide an opportunity for implementation in the railway

industry since all the tools developed by academia supplement each other and

contribute towards the vision that Network Rail has outlined for the future of

traffic management systems.
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Table A.1: Origin-destination matrix between Alexandra Palace and Hatfield

Destination
Alexandra
Palace

Bowes
Park

New
Southgate

Oakleigh
Park

New
Barnet

Hadley
Wood

Potters
Bar

Brookmans
Park

Welham
Green

Hatfield

Origin

Alexandra
Palace

0.000 0.100 0.067 0.067 0.067 0.067 0.100 0.067 0.067 0.400

Bowes
Park

1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

New
Southgate

1.000 0.000 0.000 0.060 0.060 0.060 0.200 0.060 0.060 0.500

Oakleigh
Park

0.900 0.000 0.100 0.000 0.060 0.050 0.200 0.050 0.050 0.600

New
Barnet

0.800 0.000 0.100 0.100 0.000 0.067 0.200 0.067 0.067 0.600

Hadley
Wood

0.700 0.000 0.100 0.100 0.100 0.000 0.100 0.100 0.100 0.700

Potters
Bar

0.600 0.000 0.100 0.100 0.100 0.100 0.000 0.100 0.100 0.800

Brookmans
Park

0.600 0.000 0.075 0.075 0.075 0.075 0.100 0.000 0.100 0.900

Welham
Green

0.500 0.000 0.075 0.075 0.075 0.060 0.200 0.060 0.000 1.000

Hatfield 0.500 0.000 0.075 0.075 0.075 0.050 0.200 0.050 0.050 0.000
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Table B.1: Arrival times as generated by the optimisation procedure

Service Alexandra
Palace

Bowes
Park

New
Southgate

Oakleigh
Park

New
Barnet

Hadley
Wood

Potters
Bar

Brookmans
Park

Welham
Green

Hatfield

S62 08:00:00 08:03:00 08:06:30 08:08:30 08:11:00 08:15:00 08:18:00 08:20:00 08:23:30
S857 08:03:00 08:06:00 08:09:30 08:11:30 08:14:00 08:18:00 08:21:00 08:23:00 08:26:40
S31 08:29:05 08:26:05 08:22:35 08:20:20 08:17:20 08:12:50 08:09:30 08:06:40 08:03:00
S201 08:06:00 08:08:40
S32 08:32:05 08:29:05 08:25:35 08:23:20 08:20:20 08:15:50 08:12:30 08:09:40 08:06:00

S1031 08:15:00 08:14:04 08:12:49 08:12:19 08:11:23 08:10:00 08:09:04 08:08:30 08:06:00
S33 08:35:05 08:32:05 08:28:35 08:26:20 08:23:20 08:18:50 08:15:30 08:12:40 08:09:00

Table B.2: Arrival times as generated by BRaVE

Service Alexandra
Palace

Bowes
Park

New
Southgate

Oakleigh
Park

New
Barnet

Hadley
Wood

Potters
Bar

Brookmans
Park

Welham
Green

Hatfield

S62 08:00:00 08:03:00 08:06:37 08:08:35 08:11:17 08:15:17 08:18:11 08:20:15 08:23:31
S857 08:03:00 08:05:51 08:09:18 08:11:20 08:14:11 08:18:19 08:21:25 08:23:16 08:26:47
S31 08:28:54 08:25:54 08:22:28 08:20:11 08:17:07 08:12:41 08:09:08 08:06:34 08:03:00
S201 08:06:00 08:08:29
S32 08:31:54 08:28:54 08:25:28 08:23:11 08:20:20 08:15:03 08:12:18 08:09:34 08:06:00

S1031 08:15:00 08:14:04 08:12:49 08:12:19 08:11:23 08:10:00 08:09:04 08:08:30 08:06:00
S33 08:35:21 08:32:27 08:28:38 08:26:30 08:23:29 08:19:02 08:15:18 08:12:34 08:09:00
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Table C.1: Origin-destination matrix between Gatwick Airport and Brighton

Gatwick
Airport

Three
Bridges

Balcombe Haywards
Heath

Wivelsfield Burgess
Hill

Hassocks Preston
Park

Brighton

Gatwick
Airport

0 0.250 0.050 0.050 0.050 0.050 0.50 0.050 0.450

Three
Bridges

1 0 0.083 0.083 0.083 0.083 0.083 0.083 0.500

Balcombe 0.800 0.200 0 0.100 0.100 0.100 0.100 0.100 0.500
Haywards
Heath

0.500 0.300 0.200 0 0.125 0.125 0.125 0.125 0.500

Wivelsfield 0.500 0.300 0.100 0.100 0.000 0.167 0.167 0.167 0.067
Burgess
Hill

0.500 0.300 0.067 0.067 0.067 0.000 0.250 0.250 0.500

Hassocks 0.500 0.300 0.050 0.050 0.050 0.050 0.000 0.200 0.500
Preston
Park

0.500 0.300 0.040 0.040 0.040 0.040 0.040 0.000 1.000

Brighton 0.500 0.300 0.033 0.033 0.033 0.033 0.033 0.033 0.000



Appendix D

Terminology

Allowance time The time added into the nominal timetable to compensate the

additional train sectional running times, dwell times and other scheduled pro-

cess times due to unavoidable variability of physical characteristics, driver

behaviours, passengers boarding and alighting variations and other poten-

tial influencing factors to train operations in real life conditions. They are

included by increasing the scheduled SRTs of trains.

Arrival delay A deviation of the arrival time from the scheduled arrival time at

a station.

Block signal A stop signal that controls the entrance to or signifies the termi-

nation of a block or signal section and any other stop signal within station

limits.
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Blocking time The time interval in that a section of track is allocated to the

exclusive use of one train and therefore blocked to other trains.

Buffer time The time added into the nominal timetable (between train slots) to

reduce or avoid propagation of knock-on delays among running trains due

to initial and/or primary train delays.

Corridor All possible journey routes (main route or alternative routes), according

to market needs, between a defined source and target.

Crossing An assembly of rails that enables two tracks or two pair of tracks to

cross each other at grade.

Delay The deviation from either a scheduled event or process time of this train.

Departure delay A deviation of the departure time from the scheduled arrival

time at a station.

Dwell time The elapsed time from the time that a train stops at a station plat-

form until it starts moving again.

Flat junction Junctions which lead to conflicting moves between trains going in

one direction and trains coming in the opposite direction (flying junction is

the opposite).

Flighting Running consecutive trains of a similar type. This minimises the space

used by each group of trains and is used through the Channel Tunnel.

Freight operating company A company with access rights to operate freight

trains on the railway network.
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Headway The necessary time interval or space between two successive trains on

the same track.

Infrastructure manager A body responsible for development, operation and

maintenance of the railway infrastructure (Network Rail is the main IM for

the mainline network in the UK).

Infrastructure The fixed and capital equipment needed for running, maintain-

ing, signalling and dispatching trains.

Knock-on delay The delay cause to a train as a result of a delay to another

train.

Line A link between two large nodes and usually the sum of more than one line

section.

Line sections The part of a line, in which the traffic mix and the number of

trains as well as the infrastructure and signalling conditions do not change

fundamentally.

Network capacity The number of trains that can operate in a rail network in a

given time period, reflecting factors such as junction interactions, terminal

capabilities, the mix of train speeds and the number and order of trains of

different speed capabilities and stopping patterns called for by commercial

and regulatory requirements.

Node Points of a network in which at least two lines converge (can be stations

or junctions).
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Overlap The distance beyond a stop signal up to which the line must be clear

before the previous signal can show a proceed aspect.

Passenger journey The combination between the place of embarkment and the

place of disembarkment of the passengers conveyed by rail whichever itinerary

is followed.

Primary delay A delay generated within the network and not caused by other

trains.

Punctuality Defined by Network Rail as the percentage of the trains that arrive

at a location with a delay not exceeding the allowance time.

Public Performance Measure (PPM) The national standard for measuring

punctuality is the percentage of trains that arrive at their final destination

within ten minutes of the advertised time.

Route Consecutive lines and nodes as a whole, between a defined source and

target.

Railway network A train system or a particular area including all train running

elements which can communicate with other networks.

Siding The term siding may refer to any track where railway vehicles may be left

(i.e. are not an operating train for the time being). The duration that such

vehicles are in a siding may vary from few minutes to years.

Track circuit A portion of railway line having fixed boundaries and providing

information on its state of occupancy to the signalling system. Within this



Terminology 173

standard, this traditional name does not preclude alternative forms of train

detection.

Train operating company A company with access rights to operate passenger

trains on the railway network.

Signal section The line between two stop signals, whether or not these are within

the control of the same signal box.

Skip stop patterns Using pairs or patterns of trains to cover all stations using

semi-fast services with different stopping patterns. This avoids running slow

all-stations services which use more capacity.

System capacity The total capacity of the railway system to carry passengers or

freight. This is the resultant of passenger capacity of each vehicle of payload

of each freight wagon, the number of vehicles on each train and the Network

capacity (see above).

Timetabling The process for constructing a schedule outlining the arrival and

departure time of all the services run from all the stations in their path.

The schedule must adhere to a list of operational constraint (e.g. minimum

headway requirements).

Train loading The number of passengers on board relative to the train’s seating

capacity.

Train path That part of capacity of the railway infrastructure which is necessary

to schedule or run a train with a requested speed profile.
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