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Abstract

A phase transformation in a metastable solution can be affected when it is

subjected to high-intensity acoustic waves. Despite the extensive experimental

evidence, the nature of this phenomenon has been little studied theoretically.

This work aims to tackle this issue and develop the theoretical basis for in-

vestigating the thermodynamics and kinetics of crystallisation induced by an

acoustic field.

In the first part of thesis, we investigated the effect of acoustic waves on

the thermodynamics of crystallisation by the aid of the Gibbs droplet model in

a generic format. We have developed a new model based on non-equimolecular

clusters which can overcome some of the shortcomings of the conventional form

of the classical nucleation theory (CNT) in describing the thermodynamics of

small clusters. The model is validated by comparing the predicted kinetics of

water droplet formation from the gas phase against experimental data. Our

results demonstrate a close agreement with experimental data, better than

predictions by CNT.

In the second part, we studied the kinetics of phase transformation in an

acoustic field. We developed a master equation based on a hybrid Szilard-

Fokker Planck model, which accounts for mass transportation due to acoustic

waves. This model is employed to determine the kinetics of nucleation and

the early stage of growth of clusters including the Ostwald ripening pheno-

menon in an isothermal sonocrystallisation process and is solved numerically

for different scenarios in a system with and without mass transportation. Our

results show that the effect of pressure on the kinetics of nucleation is cluster

size-dependent in contrast to CNT. Furthermore, we calculated mass trans-

portation for different excitations modelled as plane waves propagating in a

semi-infinite medium which tends to be rather noticeable only in the case of

shock waves. The derivations are generic and can be used with any acoustic

source and waveform.
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Chapter 1

Introduction

1.1 Overview

Acoustic waves can promote a process of phase transition in a liquid phase.

In the case of a solid new phase, the process is called sonocrystallisation. The

particles produced by sonocrystallisation feature: i) a smaller mean size, ii) a

narrower cluster size distribution (CSD), and iii) a more uniform shape, compa-

ring to particles made by conventional modes of crystallisation in the absence

of acoustic waves (Ruecroft et al., 2005). These appealing characteristics have

boosted the application of sonocrystallisation for production and purification

of solid particles in various industries, in particular, pharmaceutical, food, and

fine chemicals sectors.

The first papers about the physical, chemical and biological effects of high

frequency acoustic waves were published in 1927 (Richards and Loomis, 1927;

Wood and Loomis, 1927). They are followed by numerous publications from

the former Soviet Union researchers in the post World War II era (Kapustin,

1963). Sonocrystallisation in solutions has been extensively investigated expe-

rimentally since then, though the nature of this phenomenon has been little

studied theoretically. This work attempts to tackle this issue and develop the

theoretical basis for investigating the thermodynamics and kinetics of crystalli-

sation induced by an acoustic field in a solution. Our overall aims are two fold:

i) develop a model that can describe the thermodynamics of phase transition
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for small clusters; such a model is deemed important as the size of the critical

cluster reduces as the intensity of the acoustic field increases, and ii) identify

and model the effects of acoustic waves on the aggregative and non-aggregative

mechanisms of the kinetics of sonocrystallisation.

In this chapter, we will outline background information on crystallisation

in a solution, and effects of acoustic waves propagating in a liquid medium.

We will provide a brief review of experimental sonocrystallisation literature

and of the existing theoretical models. Finally, the problem investigated in

this thesis will be stated and specific objectives will be defined.

1.2 Background

1.2.1 Phase transition in a solution

A supersaturated binary solution is a metastable phase made of a single com-

ponent solute species dissolved in a solvent. The solution tends to transform

from the metastable to the stable state because of the necessity to attain a

lower level of energy. This is the thermodynamic driving force for initiating

the nucleation process (Kashchiev, 2000) which is the first stage of a phase

transition. Nucleation is the formation of nanoscopic nuclei which are in equi-

librium with the old phase and is followed by the growth stage where nuclei

grow and reach a macroscopic size. Nuclei are formed through random collision

of solute molecules which creates an agglomerate of molecules, also known as

a cluster. Clusters may evolve or decay depending on the balance between the

energy they have gained because of the formation of a favourable stable phase

and the surface tension. This energy balance determines the work of cluster

formation. To predict the evolution of clusters, we need to determine the work

and kinetics of cluster formation together over time.

Nucleation in a supersaturated solution does not occur spontaneously up

to a certain level of supersaturation. The solubility curve indicates the equili-

brium supersaturation value as a function of temperature. The width of this

metastable zone between the solubility curve and the curve fitted through the
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supersaturation points at which nucleation experimentally takes place is called

the metastable zone width (MZW) (Mullin, 1972). A smaller MZW facilitates

nucleation and provides the advantages of crystallisation at lower supersatura-

tion levels, e.g. slow and controlled crystal growth which affect the final crystal

size and shape (Mullin, 1972).

The thermodynamic state of the old phase influences the nucleation work

and kinetics, hence the size distribution and morphology of final crystals in a

polymorphic crystallisation. If the old phase is exposed to an external field,

e.g. electric, magnetic, or acoustic field, nucleation is facilitated and crystal

properties are modified (Kapustin, 1963; Conrad, 2000; Munir et al., 2006;

Revalor et al., 2010). Electric and magnetic fields are usually used in the

process of solidification of metals and alloys, polymers and ionic solutions.

However, the acoustic field has been used in a wider range of applications,

e.g. ; metallurgy, crystallisation of proteins, polymers, organic and inorganic

salts (Atamanenko et al., 2010; Kitayama et al., 2013; Suslick and Price, 1999;

Sander et al., 2014; Ruecroft et al., 2005). To model nucleation in a sonocry-

stallisation process, we, therefore, need to identify the effects associated with

propagation of acoustic waves in a medium and quantify their links with the

physics (both thermodynamics and kinetics) of phase transformation.

1.2.2 Effects associated with acoustic waves propaga-

ting in a liquid medium

Acoustic waves are defined by the vibrations of fluid particles about their

normal configuration which lead to the transmission of mass and energy in the

fluid through consecutive compression and rarefaction cycles (Kinsler et al.,

1999). The rarefaction pressure swing of the wave can nucleate bubbles or

induce a liquid-gas transition (Neppiras and Noltingk, 1951; Blander and Katz,

1975; Akulichev, 1982; Baidakov et al., 1981), called acoustic cavitation.

The two types of acoustic cavitation which occur are broadly demarcated

into two categories: inertial and stable cavitation. Inertial cavitation is the

event when tiny cavities or dissolved gases in the liquid grow rapidly due to
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the rarefaction created by the acoustic waves and collapse violently in the

compression cycle of the waves. This collapse generates enormous shock waves

travelling at a speed of about 4000 m s−1 and with a magnitude of up to 1 GPa

as well as a temperature rise at the centre of the bubble of about 5000 K

(Flint and Suslick, 1991; Suslick and Flannigan, 2008). This can also lead to

a significant temperature variation at a rate of 1010 K s−1 (Flint and Suslick,

1991; Suslick and Flannigan, 2008). All these effects happen locally and over a

very short period of time, i.e. spatially and temporally on scales of the volume

of a bubble and nano-seconds respectively (Akhatov et al., 2001; Ohl et al.,

1999). In the case of an asymmetric collapse, e.g. due to an oscillation and

implosion of a bubble in the vicinity of a solid surface, a jet of fluid, at speeds

greater than 100 m s−1, is generated (Suslick and Price, 1999).

In the case of stable cavitation,the created bubbles periodically oscillate

in the acoustic field and irradiate pressure waves to the surrounding medium.

These bubbles may grow and implode, or dissolve into the fluid depending on

the boundary conditions and acoustic excitation. The total pressure amplitude

around these bubbles is of the order of that of the driving acoustic field, hence

considerably weaker relative to which occurs in inertial cavitation (Leighton,

1997). We should note that occurrence of acoustic cavitation in a solution

depends on several parameters, namely: the dissolved gas content of the solu-

tion, the driving pressure magnitude and frequency. Degassing a solution and

using a high driving frequency, e.g. greater than 3 MHz for water, (Neppiras

and Noltingk, 1951) may in fact inhibit acoustic cavitation (Leighton, 1997).

During propagation of acoustic waves in the fluid, acoustic energy may be

partially converted into random thermal energy through different mechanisms,

e.g. including viscous losses and/or relaxational losses, and temperature may

vary depending on the propagation distance or time of interest (Kinsler et al.,

1999). Further, acoustic waves may distort due to the nonlinearity in the

equation of state of the fluid and shock waves can be formed. The acoustic

absorption coefficient depends on the frequency of acoustic waves and may
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become important in liquids with high viscosity and/or in the (post-)shock

region where waves are already distorted and where higher harmonics appear.

The temperature, flow and pressure fields at each spatial location are

comprised of the direct field from the acoustic source and the indirect field

generated by acoustic cavitation when this phenomenon occurs. The latter

is a localised effect which is limited to locations in the vicinity of bubbles.

This effect can however be substantial if inertial cavitation occurs. These

variable temperature, flow and pressure fields imply that a phase transition

in an acoustic field is unsteady and the use of conventional equations which

bear the assumption of a stationary process is not justified in general. This

motivates the need to treat sonocrystallisation as an unsteady process which

shapes our vision in this work for modelling sonocrystallisation.

1.3 Experimental assessment of sonocrystalli-

sation

Experimental studies of sonocrystallisation are extensive and the majority of

them report the observed effects of sonication with different excitation parame-

ters on crystallisation in various solutions. However, few of these works were

designed to test hypotheses or perform a causality analysis. We will provide a

brief review of experimental works here with a focus on the latter category. A

review of theoretical works will be presented in the subsequent section.

The very first works that examined sonochemistry and phase transforma-

tion processes, date back to 1927 by Richards, Loomis, and Wood (Richards

and Loomis, 1927; Wood and Loomis, 1927; Tuulmets et al., 2014), where

effects of a standing wave field on different chemical reactions as well as cry-

stallisation in a supersaturated solution were investigated. They reported that

supersaturated solutions of crystalline solids and supercooled liquids are little

affected by the sound field; however crystals are modified.

Attention to the field of sonocrystallisation surged during the 1950s and

the 1960s and several researchers investigated the effects of ultrasound on cry-
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stallisation and developed several hypotheses about the interaction between

sound waves and crystallisation. One of the earliest reviews of such investiga-

tions was published by Kapustin in 1963 (Kapustin, 1963) and Hem in 1967

(Hem, 1967) summarising achievements until then. These papers present the

following potential mechanisms involved in sonocrystallisation

• agitation and streaming in the solution: the acoustically induced flow can

result in a more uniform temperature distribution throughout the bulk

of the solution, and consequently result in finer particles and a narrower

particle size distribution.

• dispersion of crystals: this hypothesis expresses that waves or cavitation

break up supernuclei (large stable clusters) and spread them in the bulk

of the solution by streaming and produce crystallisation sites. This can

boost the nucleation rate significantly.

• super cooling, shock waves and possible jetting after the implosion of

cavitating bubbles: supercooling leads to an enhanced supersaturation

ratio. The other two effects can promote crystallisation via the preceding

mechanisms.

• the surface of bubbles: the interface of gas/vapour bubbles with the

liquid may work as sites for heterogeneous nucleation of crystals.

Although the phenomena caused by acoustic cavitation are usually hypot-

hesised as the main mechanisms governing sonocrystallisation, it was experi-

mentally shown (Mazhul, 1963; Yu et al., 2012) that in a field that is weak

enough to inhibit cavitation or in a degassed medium where cavitation is not

observed, the nucleation rate is still increased and crystallisation is enhanced.

Likewise, Ward et al. (Ward et al., 2015) reported an increase in the nucle-

ation rate in the supersaturated aqueous potassium chloride (KCl) solution

subject to evanescent waves induced by laser and in the absence of cavitation.

They placed a micro-droplet of the supersaturated solution on the surface of
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a Dove prism and shone a laser to the prism to create evanescent waves at the

interface of the glass and the droplet. They reported a similar average number

of nucleation events relative to laser induced nucleation in bulk, but with a

laser power reduced by a factor of three.

These results imply that the wave field itself and potentially its associated

effects such as streaming, may enhance the crystallisation process in the ab-

sence of cavitation. Therefore, the effects of acoustic waves, either directly or

indirectly through cavitation, can be divided into variation in pressure, tem-

perature, and flow field. We will explore literature for each effect individually.

Static pressure can be more readily controlled experimentally, therefore

reviewing crystallisation and solidification in supersaturated solutions and su-

percooled liquids under static pressure can be insightful. This has been studied

and presented in several works in different disciplines, e.g. (Larson and Gars-

ide, 1986; Lorber et al., 1996; Groß and Jaenicke, 1993; Munir et al., 2006).

In a nutshell, they showed that pressure can stimulate or inhibit nucleation,

depending on the properties of the old and new phases, by influencing the

difference in the chemical potentials of these phases and consequently the nu-

cleation work.

In a very interesting work about the phase transition of supercooled water

and aqueous solutions to ice using observations from clouds containing ice, it

was shown that pressure has a similar effect on homogeneous nucleation of

ice as the addition of solutes to supercooled water (Koop et al., 2000). For

instance, adding 4 mol of NaCl per kg of water reduces the melting and freezing

temperatures to almost similar values as applying 0.14 GPa pressure to pure

water. The authors explained this observation as follows: in either mentioned

situation, the effective activity of water molecules is similar and that is the

decisive factor. So for any combination of the solute concentration and pressure

magnitude that yields an equivalent effective activity, one should expect to

achieve a similar nucleation work. They also claim that for a given volume

of the test setup, the nucleation rate (hence the kinetics of nucleation) is a
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function of ∆aw only, where ∆aw = aw,eff(T )−aw,l(T ) is the difference between

the effective activity of water and its activity in a solution in equilibrium with

ice at temperature T under zero pressure.

Several studies have shown that wave propagation in melts and super-

cooled liquids causes periodic phase transformation (Kapustin, 1963; Arake-

lyan, 1987; Chavanne et al., 2001). One of the most precise sets of experiments

were conducted by Caupin and Balibar’s group using supercooled liquid helium

exposed to a high intensity focused ultrasound field. In one set of experiments,

they irradiated ultrasound at 1 MHz from a focused hemispherical transducer

onto the surface of a glass placed on the hemisphere plane (Chavanne et al.,

2001). The reflection of the laser from the glass-helium interface was measured

to detect formation of the solid phase. Heterogeneous nucleation of the solid

helium was observed to happen over the compression cycle followed by a decay

and finally melting during the rarefaction cycle. They did not report whether

cavitation occurred prior to nucleation of crystals or not but they mentioned

that cavitation was observed around the focus of the transducer.

A similar trend was experimentally observed in solidification of super-

cooled liquids (Hunt and Jackson, 1966), where the authors demonstrated that

nucleation occurs after the collapse of a cavity rather than through or after the

expansion phase. The large positive pressure generated by the collapse of a ca-

vity lowers the freezing temperature of the liquid and results in nucleation. In

their experiments, cavities were produced in absence of acoustic waves, made

through the release of entrapped gas by impact in the U-shaped tubes.

In another set of experiments by the Caupin and Balibar team, the glass

piece was removed and a similar hemispherical focused transducer was attached

to a vessel, and was driven by a burst of 6 pulses at 1 MHz and at 140 kHz

(Werner et al., 2004; Ishiguro et al., 2007; Balibar and Caupin, 2006). They

observed cavitation in the supercooled liquid helium through rarefaction cycle.

The pressure magnitudes when cavitation took place were in agreement with

theoretical cavitation thresholds. However, nucleation of clusters could not be
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detected even at pressure magnitudes greater than the thresholds for crystal

nucleation obtained by CNT. To explain this observation, they suggested that

CNT is too simple to capture the entire physics of such an involved process,

the fact that CNT does not account for a change in the surface tension with

pressure was specifically mentioned.

The problem of crystallisation in 4He induced by acoustic waves has also

been investigated by other groups. Abe et al. (Abe et al., 2005) and Kimura

et al. (Kimura et al., 2004) conducted experiments using planar transducers at

the higher driving frequency of 9 MHz compared with that employed in Cau-

pin’s experiments. Nucleation was detected using imaging of the test vessel, of

about one centimetre in size, at a rate of 1000 fps which is less precise for de-

tecting the onset of nucleation compared to the laser-based system of Caupin’s

group, and is quite slow relative to the driving frequency. Their results showed

that at temperature, i.e. T < 400 mK, nucleation is temperature independent

and can take place at the melting pressure if the acoustic intensity exceeds a

specific threshold. The threshold was almost constant within this temperature

range and exponentially increased with temperature for 400 < T < 600 mK.

The authors could not observe nucleation at higher temperatures with the

maximum driving pressure the transducer could generate, and no theoretical

explanation was provided for this.

To rigorously investigate nucleation induced by acoustic waves in a su-

persaturated solution, Soare et al. (Soare et al., 2011) conducted nucleation

experiments in supersaturated (NH4)2SO4 and KMnO4 solutions. Nucleation

is triggered by controlled laser induced cavitation (a nano-second laser source).

The justification for use of laser induced cavitation was based on the fact that

effects associated with acoustic cavitation are usually considered as the main

contributors to nucleation in a sonocrystallisation process. Although the type

of bubble, cavitation and sequence of events in the acoustic cavitation and la-

ser induced cavitation are different, this work allows deducing very interesting

and useful information about nucleation in a dynamic pressure field. They
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demonstrated that crystals are nucleated in a ring around the laser focus,

where the bubble is created and collapses. Temporally, their observations are

as follows: i) cavitation is taking place over 200 µs, ii) disturbances in light

emission were recorded after 30 − 50 µs, and iii) visible crystals identified at

about 1 s. Therefore, they concluded that crystallisation tends to take place

almost at the same time as cavitation due to initial evaporation of the solution

by laser (we should note that in the case of acoustic cavitation, this high initial

temperature is not present). Also, the thermal effects in the liquid due to the

collapse of the bubble do not play an important role, mainly because of the

large thermal heat capacity of surrounding water. Furthermore, temperature

transients increase solubility and relieve supersaturation which is the driving

force of nucleation. A similar reasoning about temperature effects was mentio-

ned in the classic work by Richards and Loomis (Richards and Loomis, 1927).

Considering ultrasonically induced nucleation, they suggest that an explana-

tion in terms of the pressure transient or shock waves generated by collapse

should be sought.

One should note that at the focus of the laser, a pressure wave is launched

by the laser plasma which is sometimes referred to as the primary shock. A

vapour bubble is subsequently formed, the collapse of which creates a secon-

dary shock (Akhatov et al., 2001; Andreev et al., 2006). Given that crystals

are formed over a similar time scale as the bubble, see (Soare et al., 2011), we

can theorise that the primary compression shock tends to play an important

role in initiating nucleation. This was overlooked in the discussion by Soare

et al.. A similar argument was put forward in laser induced ice formation in

supercooled water by Lindinger et al. (Lindinger et al., 2007). They reported

homogeneous ice nucleation in supercooled water was mediated by the optical

breakdown induced by a focused Nd:YAG laser pulse. They reported that the

primary pressure wave generated by the breakdown plasma expansion, and the

secondary pressure waves emitted by the collapse of the laser induced bubble

are the potential mechanisms initiating nucleation. This two-step mechanism
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was also suggested for crystallisation in a supersaturated solution irradiated

by a femtosecond laser shot (Yoshikawa et al., 2006; Nakamura et al., 2007).

In an eminent work, Ohsaka and Trinh attempted to answer whether the

positive or negative pressure phase of the shock will trigger nucleation. A

single bubble was deployed in supercooled water using a needle syringe and

excited by an acoustic source. The bubble was observed to oscillate stably for

a few cycles after which it either collapsed or ejected away from its original

location. In the cases that the bubble oscillated and shattered at its location,

the ice nuclei were formed at the bubble’s spot after its disappearance. They

estimated the maximum undercooling in water for the positive and negative

pressure pulses and showed that enough undercooling could only be achieved

by the positive pressure phase.

Nalajala et al. (Nalajala and Moholkar, 2011) measured CSD in a solution

which was subjected to the mechanical agitation (stirring) and the same solu-

tion was exposed to an ultrasonic field with a frequency of 20 kHz. The mean

and variance of the CSD in the sonocrystallisation experiment compared to

the stirring experiment were lower and higher, respectively. They concluded

that the nucleation rate is higher in the sonocrystallisation experiment but

the growth rate is lower relative to the stirring experiment. Comparing these

two experiments and given that pressure and shock waves were only present in

sonocrystallisation but noting that stirring provides uniform convective flow

only, they concluded that shock waves promote nucleation and enhance the

nucleation rate, and streaming mainly influences the growth of crystals in a

similar fashion to stirring.

Guo et al. (Guo et al., 2006a,b) investigated the hypothesis relating the

enhancement of the nucleation rate to the improved mass transfer in the solu-

tion due to sonication. They surmised that the diffusivity of solute molecules

in the solution is a function of energy injected into the solution through ul-

trasound irradiation. They attempted to obtain diffusivity by fitting the the-

oretical predictions of the induction time exploiting CNT to the experimental
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values. The main limitation of this work is that several quantities can be

affected by ultrasound, of which only one parameter was considered.

With regards to the effect of temperature on sonocrystallisation, it is

known that solubility increases with temperature which leads to reducing su-

persaturation hence the driving force of nucleation. Based on this observation,

many works reasoned that temperature variation due to absorption of acou-

stic waves or transient events such as the collapse of bubbles cannot be the

driving mechanism of nucleation (Richards and Loomis, 1927; Hunt and Jack-

son, 1966; Lindinger et al., 2007; Soare et al., 2011). The large temperature

rises associated with inertial cavitation reported in the literature refer to the

maximum temperature inside the bubble at its centre. This high temperature

significantly plummets over time and across space, and with the concentration

of non-condensable gas inside the bubble, e.g. see (Akhatov et al., 2001).

We have reviewed the effect of acoustic waves, shock waves, flow and

temperature on crystallisation. The reported experiments were carried out

with transducers running at different frequencies in the range of 20 kHz <

f < 9 MHz. The frequency of acoustic waves influences wave propagation,

absorption and hence temperature variation and even acoustic cavitation. In

addition to the works reviewed so far, we will further investigate the effect of

the frequency of sound waves on crystallisation here.

Experiments performed on a supersaturated solution of adipic acid at

three different excitation frequencies of 204,355.5 and 610 kHz showed that

the MZW and CSD narrowed down compared to the silent condition, i.e. no

ultrasound irradiation, and became the narrowest at the driving frequency of

355.5 kHz (Wohlgemuth et al., 2010). No explanation was provided for these

observations, though. Likewise, an experiment conducted on the anti-solvent

sonocrystallisation of glycine at excitation frequencies of 20 kHz and 1.6 MHz

showed that sonocrystallisation at the higher frequency favoured crystal growth

rather than crystal nucleation. The authors drew this conclusion based on

the observation that the mean size of crystals was larger than in the 20 kHz
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sonication case and within the range of the silent condition while the CSD was

narrower than in both cases (Nii and Takayanagi, 2014). A similar observation

was also reported by Wohlgemuth et al. (Wohlgemuth et al., 2010). They

observed that at the frequency of 610 kHz the mean value of the CSD is

almost equal to that one in the silent condition. However, the CSD narrows

the most compared to cases with other driving frequencies.

To summarise, the attributes of sonocrystallisation are as follows:

i) low induction time, i.e. the time that crystals appear, ii) fast nuclea-

tion rate, iii) narrow MZW 1, and iv) CSD with lower variance and typically

lower mean. These effects are correlated and are influenced by the parameters

of acoustic waves, and the properties of the solution. The former includes

frequency, amplitude, and sonication protocol. The latter is comprised of

temperature, cooling rate, and the supersaturation ratio. In order to control

the entire process, it is required to study the interaction between the physics

of acoustic waves (together with their associated effects) and the physics of

crystallisation.

In the beginning of this section, we represented the potential mechanisms

of how acoustic waves may influence crystallisation in a liquid from Hem’s

review paper published in 1967 (Hem, 1967). Review papers published half a

century later, similar hypotheses are still discussed, suggesting the little insig-

htful progress, especially theoretically, has been made (Castillo-Peinado and

Luque de Castro, 2016; Sander et al., 2014; Ruecroft et al., 2005; Ratsimba

et al., 1999). Nonetheless, new applications have been developed, e.g. sonocry-

stallisation in a continuous flow and micro/milli channels/vessels which reveal

novel applications of sonocrystallisation.

Clearly, the interaction between acoustic waves and crystallisation in a

supersaturated solution is very complex. Several effects rendered by acoustic

1Reducing MZW can allow the formation of crystals of different shapes in the case of
polymorphic substances, e.g. see Gracin et al. (Gracin et al., 2005), which is practically
difficult to produce in the silent condition. This is because some morphologies only appear
when nucleation takes place at a very low supersaturation level which can be achieved in
sonocrystallisation
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waves contribute to both nucleation and growth stages of crystallisation. Cor-

relation between these effects and the output of crystallisation process have

been primarily studied experimentally. A well-developed theoretical model

that can explain the interaction between these two physical phenomena is still

absent. The related theoretical and numerical works are reviewed in the follo-

wing section.

1.4 Modelling approaches

As we discussed in the former section, acoustic waves create fluctuations in

the temperature, pressure and flow fields (both directly and indirectly through

cavitation) in the old phase. We will review works attempting to incorporate

these effects into the thermodynamics and kinetics of phase transition in a

supersaturated solution. Our intention is to focus only on works which em-

ploy classical thermodynamics to investigate the phase transition in a variable

pressure or temperature field.

Within the scope of our work, the Gibbs droplet model is extensively used

to determine the thermodynamics of phase transformation. This model is tho-

roughly explained in Chapter 2, but for the ease of the reader and to facilitate

our current discussion, it will be briefly outlined here. The Gibbs model con-

siders that a mechanical work is required to make the old phase metastable

and initiate nucleation of the new phase. The new phase is characterised as a

cluster of molecules with a density that differs from the old phase. This work

becomes maximum in the case of a critical cluster, which is the cluster in an

unstable thermodynamic equilibrium with the old phase, and is given by

W = − n∆µ + Wσ = − (pn − p) Vn + Wσ,

where ∆µ is the difference between the chemical potentials of the old and new

phases, pn is pressure of the new phase with volume Vn and size n, p is pressure

of the old phase and Wσ is the interfacial excess energy needed to create the

new phase with the surface area An. The first and second terms on the right
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hand side (RHS) are usually referred to as volume work, and surface work,

respectively. The work of the formation of the critical cluster (W ) is called the

nucleation work. If we write the surface work as Wσ = Anγ∞, where γ∞ is the

equilibrium planar surface tension, this equation turns into the conventional

form of CNT.

The stationary nucleation rate is proportional to the nucleation work as

follows

J ∝ exp(
−W
kBT
),

where kB is the Boltzmann constant.

The nucleation rate is sensitive to changes in temperature, pressure, and

impurities in the old phase (Oxtoby, 1992). The correlation between variation

in pressure of the old phase and nucleation has been first studied in the problem

of droplet formation from a gas phase in the presence of inert carrier gases,

see for example (Ford, 1992; Oxtoby and Laaksonen, 1995; Kashchiev, 1996;

Luijten and van Dongen, 1999; Luijten et al., 1999; Wedekind et al., 2008).

Ford used a statistical mechanical approach to model the effect of a carrier

gas on the phase equilibrium between the old (vapour) and the new (droplet)

phases. The other works are, however, based on classical thermodynamics.

The majority of theoretical works were originally accomplished by the for-

mer Soviet Union scientists mainly focusing on crystallisation in metals and

were published in Russian. Akulichev and Bulanov (Akulichev and Bulanov,

1983) investigated the effect of a standing sound field on the size of nuclei in

melts, and a supersaturated solution. They used a perturbation method to

calculate hydrodynamic equations and the nucleation kinetics. Consequently,

the variable size of nuclei was estimated at variable pressure and tempera-

ture. They modelled the effect of the acoustic field on the kinetics of cry-

stallisation through variation in solubility due to temperature and pressure

fluctuation, i.e. ∂Z
∂T
dT + ∂Z

∂p
dp where Z is the equilibrium supersaturation.

They showed that nuclei undergo periodic melting/dissolution and solidifica-
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tion/crystallisation.

In a work concerned more about the effects of sound fields on crystal-

lisation from a thermodynamic point of view, Arakelyan (Arakelyan, 1987)

considered that acoustic waves influence ∆µ through changing the supersatu-

ration ratio by two mechanisms: i) changing the solubility due to temperature

fluctuation resulting from the absorption of sound energy, i.e. ∆ZT = − ∂Z
∂T

∆T

where ∆T is temperature variation due to acoustic waves (likewise Akulichev

and Bulanov (Akulichev and Bulanov, 1983) ), and ii) change in solubility due

to the second order pressure effects (if we use a second order equation of state

and accounting for nonlinear density variation in a pressure field), i.e. ∆Zp.

Therefore one gets ∆µ ∝ ∆Zs + ∆ZT + ∆Zp where ∆Zs is the supersatu-

ration ratio. For the range of excitation parameters they were interested in,

i.e. high driving frequency (10 to 90 MHz) and low pressure amplitude, the

temperature effect on crystallisation was more pronounced than the pressure

effect, i.e. ∆ZT ≫∆Zp.

Kashchiev and Van Rosmalen (Kashchiev and Van Rosmalen, 1995) pro-

posed a variation of CNT estimating the pressure dependent nucleation rate of

a condensed phase in a solution. They showed that when pressure in a solution

changes from p0 to p, the nucleation work varies by (p − p0)(1 − ρ/ρn)Vn where

ρ and ρn are the number density of the old and new phases, respectively. One

should note that this model only considers the effect of pressure on the volume

work but not the surface work (Wσ). Caupin et al. (Balibar and Caupin,

2006) consider this shortcoming as a possible reason for the failure of CNT in

explaining experimental results.

In spite of this, the Kashchiev and Van Rosmalen model was used to

estimate the effects of shock waves on nucleation (Virone et al., 2006). Vi-

rone et al. estimated the magnitude of pressure at the centre of an inertially

collapsing bubble excited by ultrasound waves at the frequency of 20 kHz

and substituted in this model to theoretically estimate the nucleation rate in

the presence of strong shock waves emitted from bubble implosion. Since the
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magnitude of pressure was so high, they obtained an extremely high rate of nu-

cleation. This agrees with experimental observations that crystals are formed

almost instantly in a sonocrystallisation process. However, nucleation induced

by shock waves is an unsteady process and the use of modified CNT (with the

above-mentioned relationship) to estimate the nucleation rate is questionable.

Calculations based on the Kashchiev and Van Rosmalen model for a so-

lution with the condensed new phase show that the size of the critical cluster

will decrease with increasing pressure magnitude. This is in agreement with

the experimental observation of the CSDs with smaller mean values. Nevert-

heless, it does not provide any information about the effect of pressure on the

variance of the CSD.

This model and these analyses based on it for crystallisation in a super-

saturated solution are challenged by another set of works (Harzali et al., 2011;

Dodds et al., 2007). These works present sonocrystallisation experiments using

a specific solution with ρ/ρn ≈ 1, i.e. the aqueous solution of ZnSO4. Thus, the

mentioned model predicts a negligible effect of pressure on the nucleation work,

and hence on the nucleation rate. In contrast, substantial effects were obser-

ved experimentally. To explain these observations, they suggested the segre-

gation hypothesis which is described as follows: the forced convective-diffusion

stimulated by oscillation and collapse of bubbles segregate heavier molecules

(e.g. solute) from lighter molecules (e.g. solvent) and creates high concentra-

tion zones where nucleation is highly promoted (Louisnard et al., 2007). The

envisaged mechanism for improving nucleation is enhancement in transition

frequencies of molecules to clusters in these high concentration zones. They

claim that the thermodynamic effects of acoustic waves are negligible and can

be overlooked.

In contrast to this hypothesis, there exists experimental evidence,

e.g. (Mazhul, 1963; Yu et al., 2012), that the direct acoustic field in the

absence of cavitation can enhance nucleation. As this hypothesis will be scru-

tinised in the coming chapters, the thorough review of this work will not be
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undertaken here.

Regarding nucleation under non-isothermal conditions, Kashchiev

(Kashchiev, 1982) and Oxtoby and Kashchiev (Oxtoby and Kashchiev, 1994)

developed a model based on the generic form of the Gibbs model to calculate

the nucleation work and the size of nuclei in a non-isothermal phase transfor-

mation process. Ford (Ford, 1996) derived a relationship for the temperature

dependence of the nucleation work (including both volume and surface works)

and the nuclei size based on the thermodynamics of small systems developed

by Hill (Hill, 1962). This work which led to the second nucleation theorem

was further elaborated and exploited to analyse several experimental results

(Ford, 1996, 1997, 2001; Kashchiev, 2006). Ford in derived the second nucle-

ation theorem using the generic Gibbs model and demonstrated its generality

beyond the Gibbs model (Ford, 2001). Through these derivations, Ford also

derived the pressure dependence of the nucleation work in a generic format.

Ford’s results showed that the Gibbs model in its generic format can pro-

vide a surprisingly good estimate of the thermodynamic properties of small

nanoscopic clusters, and of the pressure and temperature dependence of the

nucleation work, when compared with the results obtained by the thermodyn-

amics of small systems (Hill, 1962; Ford, 1996). Hill’s method uses statistical

mechanics to determine the thermodynamic properties of small systems inclu-

ding clusters and colloidal particles. The key concept in Hill’s approach is that

the differential and integral forms of some intensive thermodynamic quantities

are different in the limit of small systems. However, this difference vanishes in

the limit of large (macroscopic) systems and therefore Hill’s thermodynamics

converges to the ordinary thermodynamics. The detailed discussion of Hill’s

thermodynamics is beyond the scope of the work in this thesis and the reader

is referred to (Hill, 1962) or for a simpler representation (Ford, 1996).

Saclier et al. (Saclier et al., 2010), and Cogné et al. (Cogné et al., 2015,

2016) studied the influence of pressure and temperature oscillations around a

collapsing bubble stimulated by ultrasonic waves, on the nucleation work and
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the rate of ice formation. Instead of using the second nucleation theorem,

they incorporated the effects of variable pressure and temperature into CNT

as follows: i) the classical Clausius-Clapeyron equation was used to deter-

mine the pressure dependent melting enthalpy, ii) a set of empirical equations

was used to interpolate melting temperature at different pressure magnitu-

des, and iii) likewise, the temperature and pressure dependence of density and

surface tension were accounted for using empirical equations. This method is

material dependent as it uses empirical relationships and suffers from the shor-

tcomings of CNT; namely the premise of stationary kinetics for a physically

unsteady system.

The problem of non-stationary nucleation in a system with time varying

temperature was studied by solving the Becker-Döring (BD) master equation

(Koek and Chvoj, 1983; Kož́ı̌sek, 1990). They showed that both the nucleation

rate and the concentration of supercritical clusters are higher/lower compared

to the quasi-stationary values for different heating/cooling rates.

The cluster dynamics in either discrete (e.g. the BD model) or continuous

format (e.g. the Fokker-Planck equation (FPE)) has been successfully used to

determine the kinetics of nucleation in time variable and unsteady situations

(Kashchiev, 1969b; Koźısek and Demo, 1993; Kož́ı̌sek et al., 2004; Holten and

van Dongen, 2009; van Putten and Kalikmanov, 2009). The cluster dyna-

mics is determined by means of aggregative and non-aggregative mechanisms

(Kashchiev, 2000). Aggregative mechanisms include nucleation, growth, and

ageing, that give rise to the flux of the cluster concentration along the size axis.

The non-aggregative mechanism accounts for change in the concentration of

clusters driven by mass flux along the space parameter axis. These two fluxes

together determine the cluster distribution over time.

An alternative approach for modelling the kinetics of nucleation and gro-

wth, is to employ a population balance equation; e.g. the general dynamic

equation (GDE) (Holten and van Dongen, 2009; Vetter et al., 2013). The main

differences between the GDE and the cluster dynamics are as follows: (Holten
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and van Dongen, 2009; van Putten and Kalikmanov, 2009; Vetter et al., 2013)

i) the GDE does not provide any information about the kinetics of subcritical

clusters, ii) it uses a deterministic growth model and hence the stochastic ef-

fects are ignored, and iii) it does not account for phenomena like the Ostwald

ripening. Nonetheless, the GDE has been modified to address some of these

shortcomings.

Comparing the GDE with the cluster dynamics, i.e. the BD model or the

FPE, the latter shows the advantage of correctly describing nucleation and

growth simultaneously. Cluster dynamics is regarded to provide a rigorous

description of the kinetics of a system with nucleation (Kož́ı̌sek et al., 2004;

Chesnokov and Krasnoperov, 2007).

1.5 Aims and objectives

1.5.1 Problem statement

Crystallisation in a supersaturated solution exposed to an acoustic field is a

complex problem at the interface of several disciplines. Sonocrystallisation is

an inherently non-stationary process with time variable thermodynamic sta-

tes. Depending on the excitation parameters and solution properties, various

effects have been experimentally observed. However, the interaction between

a sound field and the phase transition in a solution has been little studied

theoretically. This lack of theoretical knowledge has hindered the controlla-

bility of sonocrystallisation and hence releasing its considerable potentials for

industrial applications.

1.5.2 Research objectives and contributions

This work aims to achieve a deeper insight into the interaction between an

acoustic field and the crystallisation process. The main objectives are to un-

derstand the physics of the process and identify the mechanisms through which

sonication influences crystallisation. We set our aims as follows: i) to develop

a model that can describe the thermodynamics of phase transition for small

clusters. The preceding discussion proved this to be important as the size of
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the critical cluster reduces with an increase in the intensity of the acoustic field,

and ii) to identify and model the effects of acoustic waves on the aggregative

and non-aggregative mechanisms of the kinetics of sonocrystallisation.

The preceding discussion revealed that the generic form of the Gibbs drop-

let model and cluster dynamics can successfully determine the thermodyna-

mics and kinetics of nucleation and growth of (even nanoscopic) clusters in a

non-stationary system. Consequently, the following objectives are defined

(i) develop a cluster model based on the Gibbs droplet model to adequately

predict the properties of a cluster in the limit of small clusters,

(ii) identify and determine the effects of fluctuation in temperature, pressure

and supersaturation ratio on the thermodynamics of cluster formation

for both critical and non-critical clusters,

(iii) determine the kinetics of cluster formation, using cluster dynamics equa-

tion, for the developed cluster model in a mass conserved system,

(iv) consider a non-mass conserved system and incorporate the effect of mass

transportation into the thermodynamics, i.e. nucleation with variable

supersaturation ratio, and the kinetics of cluster formation,

(v) validate the developments qualitatively and quantitatively, where possi-

ble, against available experimental data.

1.6 Thesis structure

In this chapter, we presented an overview of the sonocrystallisation process,

reviews of the experimental and theoretical achievements in this field, the sta-

tement of the problem to be investigated, and the research objectives. The

thesis is divided into three parts, namely: thermodynamics of nucleation, ki-

netics of nucleation, and simulation results. In Chapter 2 we will discuss the

Gibbs droplet model and develop a new cluster model. The work of cluster

formation will be determined for critical and non-critical clusters. We will
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compute the effect of fluctuation in the thermodynamic state of the old phase

on the work of clustering in Chapter 3. These two chapters will construct

the thermodynamics of nucleation part of the thesis. We will then proceed

to Chapter 4, which describes the kinetics of nucleation in a mass-conserved

system using the thermodynamic model constructed in the first two chapters.

This chapter will be followed by studying the kinetics of cluster formation in a

non-mass conserved system by incorporating the effect of mass transportation

in a sound field into the kinetics equation, presented in Chapter 5. Chapters 4

and 5 will make the second part of the thesis; kinetics of nucleation. Validation

of the developed cluster model against experimental water nucleation data will

be presented in Chapter 6. Finally, we will discuss the numerical simulation

results of sonocrystallisation in a generic aqueous solution in Chapter 7 and

attempt to explain qualitatively some experimental trends. Finally, Chapter 8

will present the conclusions from this thesis work followed by a discussion of

areas for future work.



Chapter 2

Thermodynamics of cluster

formation I: Silent condition

In this chapter, we will study the thermodynamics of phase transformation

based on the Gibbs droplet model with an arbitrary dividing surface. We will

take this model to determine: i) the work of cluster formation for both critical

and non-critical clusters, and ii) the size of critical clusters, see Sections 2.4

and 2.5.

The Gibbs droplet model is usually simplified by considering the equi-

molar dividing surface (EDS) or the surface of tension with the capillarity

approximation which results in a conventional form of CNT. The EDS clusters

are identified by zeroing the surface concentration. The capillarity approxima-

tion assumes that the surface tension of an n-size cluster is equal to the planar

surface tension. This approximation has contributed to the inability of CNT

in explaining some experimental results (Ford, 1997). It has been shown that

by choosing a size-dependent surface tension model, a better agreement with

some experiments can be achieved. Nevertheless, these equations are useful

for larger clusters but are expected to break down for small clusters. We will

show in the next chapter that this issue becomes more significant in the case of

sonocrystallisation as the critical cluster size typically decreases as the pressure

magnitude increases. Therefore, we opt not to employ the EDS or the surface

of tension in this work. Instead, we have developed a new model by defining a
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new dividing surface (DS) and estimating its associated size and surface ten-

sion in Section 2.3. Finally, we will look at some properties of clusters defined

by this new DS.

2.1 Model of cluster formation

Mechanical work is required to convert the homogeneous old phase into a me-

tastable state and start the formation of a new phase. The new phase is a

density fluctuation which appears within the old phase and makes the entire

system heterogeneous. Based on classical thermodynamics, the coexistence be-

tween two distinct phases, separated by a flat surface, happens if the chemical

potential and pressure of the two phases are equal. Under this condition, the

new phase is in an unstable equilibrium with the old phase. The free energy

required to create such a density fluctuation is called the nucleation work.

The new phase can then grow spontaneously and form a stable particle when

it randomly absorbs molecules. Therefore, it is of crucial importance in the

physics of phase transformation to determine the nucleation work.

To this purpose, it is required to describe the density fluctuation in the

old phase, and to determine its growth over time. The two main approaches

to describe this density variation within the old phase are the cluster method

and the density functional theory (DFT) (Kashchiev, 2000). The former ap-

proach was established by Volmer 1926 (Volmer and Weber, 1926) and Gibbs

1928 (Gibbs, 1928). Whilst it remains the cornerstone of nucleation theories

and CNT, it suffers from some shortcomings which will be further discussed

in the following. However, the DFT is more recent (Cahn and Hilliard, 1959)

and overcomes the inconsistencies associated with the cluster representation

of the density fluctuation. Nevertheless, the implementation of the DFT met-

hod requires the knowledge of interaction potentials between molecules and

subsequently the molecular model of the system ought to be known. As we

aim to stay within the realm of continuum mechanics and thermodynamics,

the cluster formalism and the Gibbs droplet model will be used to analyse the
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Figure 2.1: Density fluctuation in the old phase described by the cluster and DFT
approaches. The vertical dashed lines show the abrupt change in the
spatial density at an arbitrary location of the dividing surface. Refer
to the text for details.

nucleation process. Albeit, we will employ the Gibbs model in its generic form

and develop an improved model of nucleation.

Gibbs used a zero volume arbitrary dividing surface to split the hetero-

geneous system into two homogeneous subsystems of the old and new phases.

Hereafter, a Gibbs geometrical dividing surface will be referred to as DS. The

chemical potential of the macroscopic subsystem including the old phase is

equal to the chemical potential of the original state of the system prior to

the formation of the density fluctuation. We will show that this also leads to

equal pressures. The nanoscopic subsystem of the new phase is assumed to

possess a uniform pressure and density with the physicochemical properties of

the bulk new phase. This nanoscopic subsystem identified by the DS is called

a cluster. It should be noted that representing the density fluctuation by a

cluster of molecules is hypothetical and differs from the real physical density

fluctuation. Moreover, assigning the bulk density to a cluster of molecules is

arguable, in particular, for small clusters. In spite of this, the simplicity of

the cluster formalism and its overall success in explaining some experimental
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Figure 2.2: Cluster formation in a system with constant volume, temperature and
chemical potential. Refer to the text for details.

observations have led to its widespread use and made it a basis for further

developments in this field.

The DS is a smart mathematical notion which Gibbs introduced to derive

a general and exact formulation of the thermodynamics of phase transforma-

tion. Nevertheless, the Gibbs method is unable to give a realistic and physical

representation of the spatial density fluctuation, see Fig. 2.1.

Thermodynamically, we model the DS as an interface phase between the

new phase inside the cluster surface and the old phase surrounding the DS.

Therefore, the system includes three phases after cluster formation, namely the

core of the cluster taking the new phase, the old phase surrounding the new

phase and the interface phase. The properties of the old phase are displayed

below with no suffix whereas the suffices n and σ label the new and interface

phases, respectively.

We consider the whole system, represented by Σ, as a volume element

coupled to a heat and particle bath. The phase change takes place within this

system. The choice of heat and particle bath essentially means that tempera-

ture and volume of the system remain constant and the old phase in the system

has the same chemical potential as that of the bath. This set of constraints is

usually experimentally favoured and will be adopted in the following analysis.

Figure 2.2 shows the system in two different states: the initial state in the

absence of a cluster, denoted by the prime superscript; and after formation

of a cluster where three phases are present. The energy of the system at the
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initial state reads (Guggenheim, 1985; Abraham, 1974)

U ′Σ = TS′Σ − p′VΣ + µn′Σ, (2.1)

where S′Σ, p′, and n′Σ are entropy, pressure and the size of the old phase at

the initial state, respectively. T , VΣ, and µ are the temperature, volume,

and chemical potential of the system, respectively. These quantities remain

constant as we assumed that the system is coupled to a heat and particle

bath. At the final state where the system consists of three phases; energy,

volume, entropy and size, i.e. number of molecules, are extensive properties of

the system and thus we have (Guggenheim, 1985; Abraham, 1974)

UΣ = U + Un + Uσ

SΣ = S + Sn + Sσ

VΣ = V + Vn + Vσ. (2.2)

Likewise, the number of molecules in the old phase after cluster formation is

equal to nΣ −nn −nσ = nΣ −n where n is the total size of the cluster, i.e. n =

nn + nσ, see Fig. 2.2. The energy of the old and new phases is obtained using

equations similar to Eq. (2.1) but evaluated at their corresponding properties.

However, the energy of the interface phase will include an additional term

accounting for the excess energy required to balance the interfacial tension of

the dividing surface and reads (Guggenheim, 1985)

Uσ = TSσ − pσVσ + µσnσ + Ωσ, (2.3)

where Ωσ is the grand potential associated with the interface phase. Thus,

adding up the energy of all subsystems gives (Guggenheim, 1985; Abraham,

1974)
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UΣ = U + Un +Uσ = TS − pV + µ (nΣ − nn − nσ)

+ TSn − pnVn + µnnn + TSσ + µσnσ − pσVσ + Ωσ,

(2.4)

Ωσ is also represented by Aσγ where Aσ is the interfacial surface area and

γ is the specific surface energy which has been referred to with different terms,

e.g. the interfacial tension by Guggenheim (Guggenheim, 1985) or the super-

ficial intensive parameter by Abraham (Abraham, 1974) or surface tension by

Gibbs (Gibbs, 1928). In this work, we will use the term surface tension to

address the parameter γ although this term somewhat lacks generality, as we

will discuss further below. Regardless of the terminology, the surface tension

is defined to make the free energy of the interface phase independent of the

location of the dividing surface (Ford, 1996). It is hence a function of the

cluster size, temperature and chemical potential of the interface phase.

In Eq. (2.4), we modelled the interface phase as a layer with volume

Vσ; however, this term vanishes in the case of a Gibbs DS. Moreover, we

can plausibly postulate that the composition of the old phase stays constant

during the phase transformation(Abraham, 1974; Kashchiev, 2000). Writing

the Gibbs-Duhem relation for the old phase yields

− νdp + dµ = 0
µ=const.ÔÔÔ⇒ νdp = 0 Ô⇒ p = p′, (2.5)

where ν is the specific volume of the old phase. Therefore, pressure of the old

phase remains unchanged through the phase transformation process.

Utilising the cluster model and the fundamental thermodynamics equa-

tions 2.1-2.5, the thermodynamics of the phase change can be studied. We

will continue this chapter by studying different dividing surfaces and will pro-

pose a new cluster model. Subsequently, we will determine the work of cluster
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formation for different types of clusters.

2.2 Dividing surface

The interface phase separates the new and old phases and divides up a he-

terogeneous system into two homogeneous subsystems with different physical

properties. In van der Waals treatment of an interface phase, the surface layer

is assumed to be a layer with well-defined volume, material content and ther-

modynamic properties (Guggenheim, 1985). Using Eq. (2.3), the Helmholtz

free energy of a single species interface phase reads

Fσ = Uσ − TSσ = − pσVσ + nσµσ + Ωσ. (2.6)

Defining the boundary of an interface layer and subsequently identifying

its physical properties are challenging. Gibbs introduced a geometrical surface

with Vσ = 0 and allowed nσ to take negative values as well, to account for

this simplification in the calculation of Helmholtz free energy of the interface

phase. Thus, the Helmholtz free energy of an interface phase defined by a

Gibbs surface is given by

Fσ = nσµσ + Ωσ. (2.7)

In the Gibbs model, the free energy of the surface, i.e. given by Eq. (2.7),

is independent of the location of the DS (Ford, 1996) but surface tension γ

changes accordingly. In the simplest scenario, the DS can be positioned such

that nσ = 0. This particular surface is called the EDS and has the Helmholtz

free energy of Fσ = Ωσ = Aσγ (Kashchiev, 2000). This is a common choice of the

DS which together with the capillarity approximation form the conventional

format of CNT. The correct value of the interfacial Helmholtz free energy can

be obtained if the size, temperature and chemical potential dependence of γ is

known.

Gibbs introduced and used a specific DS called the surface of tension

(Gibbs, 1928). Assuming a spherical cluster with a zero volume interface
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layer, and therefore no rigidity, the surface of tension is placed at a location

that satisfies the mechanical equilibrium condition between the two phases

surrounding it, given by the Laplace equation

pn − p =
2γt

Rt
n

. (2.8)

Here γt is the surface tension of the surface of tension, and Rt
n is the radius of

the cluster defined by the surface of tension. Gibbs used this DS and derived

the exact equation for the nucleation work.

The main difficulties associated with the EDS and the surface of tension

pertain to the unknown size dependency of the surface tension. In practice,

the capillarity approximation is usually exercised, which assumes γ(n) = γ∞

where γ∞ is the planar surface tension between two phases in equilibrium and is

therefore constant. The choice of EDS and the capillarity assumption which is

often made in the conventional form of CNT trades the accurate calculation of

the interfacial Helmholtz free energy with simplicity in implementation. This

approximation is limited to the equilibrium condition and rather large clusters

but deviates from the real free energy of the interface for small clusters of

few molecules or the non-equilibrium condition as demonstrated by the DFT

and molecular dynamics (MD) simulations (Lau et al., 2015b; Talanquer and

Oxtoby, 1995). Gibbs developed an equation to estimate the size-dependent

surface tension (Gibbs, 1928) which was taken and further expanded by Tolman

(Tolman, 1949). The formula of Tolman reads

γt(n) =
γ∞

1 +
2δt
Rt

n

, (2.9)

where δt is the unknown Tolman length, i.e. the distance between the surface of

tension and the EDS. Several methods have been developed to determine the

Tolman length (Samsonov et al., 2003; Kashchiev, 2003b) and improvements on

Tolman’s formula were also suggested using higher order polynomial functions

(Helfrich, 1973; Holten et al., 2005). The MD or DFT simulations are usually
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required to determine an appropriate Tolman length. Nevertheless, the Tolman

equation is useful for larger clusters but is expected to break down for small

clusters.

Recently Kashchiev introduced a new DS called the conservative surface,

which is characterised by the size-independent surface tension ∂γ(n)
∂n

= 0

(Kashchiev, 2003a). This condition leads to γ(n) = γ∞ for all clusters defined

by this DS. An approximate formula for finding the location of this conserva-

tive DS was suggested in that study, despite its justification being criticised by

others (Schmelzer and Baidakov, 2004). However, the idea of identifying a DS

which is characterised by the size-independent surface tension is appealing, as

it removes some complexity in calculation of the thermodynamics and kinetics

of cluster formations. In this thesis, this concept will be employed for the

specification of clusters and will be further explained in the following section.

2.3 The new cluster model

2.3.1 The new surface

Now, we specify the dividing surface and associated surface tension which will

be used in this work. A suitable DS is a surface which can more precisely

approximate the excess free energy. An accurate estimation of the excess free

energy of the surface requires the knowledge of the size of the interface phase

nσ and the size-dependent surface tension γ(n), see Fσ in Eq. (2.7). The former

is zero for the EDS but ought to be determined for any non-EDS surface. This

will be addressed in Section 2.3.2.

As we have discussed before, finding γ(n) requires a suitable model of the

size-dependent surface tension, e.g. the Tolman equation or other polynomial

expansion models. In the case of the sonocrystallisation process, a model which

is valid for very small clusters is needed: we will show that the critical cluster

size (for a condensed new phase with ∆nexc > 0) decreases as the pressure

magnitude increases. Therefore, we opt not to employ the EDS or the surface

of tension in this work. Instead, we considered a new dividing surface which is
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identified as follows: 1) this surface has the size-independent surface tension

of γ∞, and 2) the surface is positioned such that we obtain a reference excess

free surface energy. The former condition leads to γ(n) = γ∞ and consequently

Ωσ = Aσγ∞ for a spherical cluster. We denote this surface as the new surface

in this work.

The mathematical definition of the new surface is similar to that of the

conservative surface of Kashchiev, i.e. ∂γ(n)
∂n

= 0. However, the method for

finding the location of the DS is different. We will evaluate the effective surface

tension for the new surface and compare the results with statistical mechanics

simulations or the effective surface tension retrieved from experimental data

to determine the position of the surface (the equations will be presented in

Section 2.4.2). This ensures that an accurate approximation of the excess

free energy of the cluster is achieved. Kashchiev, however, proposes a linear

interpolation between the size of critical clusters at spinodal and at the present

state of the system. This formula therefore generates exact values for critical

clusters at two extremes but not necessarily for other non-critical clusters.

This approximation has been shown to fail in some circumstances (Schmelzer

and Baidakov, 2004) and therefore was avoided here.

All the former cluster models share the concept of defining a cluster only

by its volume. To the best of our knowledge, no model is available or used

in the literature to determine nσ for an arbitrary DS. However, in order to

determine thermodynamics of the interface phase in non-EDS clusters, we

need to have a suitable approximation of nσ depending on the type of the

DS in place. This becomes more important when we study clusters of few

molecules as the notion of the condensed core with bulk properties does not

hold for such clusters (Ford, 2001; Kalikmanov, 2012). We developed a new

model to determine nσ for any arbitrary DS which is presented in the next

section.
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2.3.2 Number of surface molecules

At the final state of the system which contains a new cluster within the old

phase, we can write (Guggenheim, 1985)

nΣ = ρnVn + ρV + nσ = ρnVn + ρ(VΣ − Vn) + nσ, (2.10)

where ρn and ρ are the molecular number density of the new and old phases,

respectively, see Fig. 2.2. This equation can be re-arranged to give

nΣ − ρVΣ = (ρn − ρ)Vn + nσ, (2.11)

where the left hand side (LHS) is invariant with respect to the choice of the

dividing surface. If we choose the EDS, we will have by definition nσ = 0

and therefore LHS = (ρn − ρ)V e
n where V e

n is the volume of a cluster defined

using the EDS. Given the LHS is invariant with the choice of the surface, the

equation for an arbitrary surface becomes LHS = (ρn − ρ)V e
n = (ρn − ρ)Vn + nσ

which yields

nσ = (ρn − ρ)(V e
n − Vn), (2.12)

and substituting Vn = nnνn = nn

ρn
and V e

n = neνn = ne

ρn
where ne is the size of

an EDS-defined cluster and Vn is the specific volume of a molecule in the new

phase, this equation simplifies to

nσ = (1 −
ρ

ρn
)(ne − nn) = kρ(ne − nn), (2.13)

where kρ = 1 − ρ

ρn
. This is a generic equation and is valid for any shape of

cluster. We can write

kρne = kρnn + nσ = ∆nexc, (2.14)

where ∆nexc is the excess number of molecules in the cluster of volume Vn

comparing to the same volume of old phase. This quantity is independent of



2.3. The new cluster model 63

the choice of dividing surface. In the case of a condensed new phase we have

kρ > 0 and consequently ∆nexc > 0. However, when the new phase is less dense

than the old phase, e.g. bubble formation, kρ and ∆nexc become negative.

Now, explicit equations that completely specify a cluster of a given size

for any arbitrary DS must be obtained. To this end, Eq. (2.12) for a spherical

cluster reads

nσ = (ρn − ρ)(V e
n − Vn) =

4π

3
(ρn − ρ)(Re

n
3 −R3

n)

=
4π

3
(ρn − ρ)(Re

n −Rn)(Re
n
2 +RnR

e
n +R2

n), (2.15)

where Re
n is the radius of a cluster defined by the EDS. Considering δ = Re

n−Rn

which is the radial separation between the EDS and the arbitrary surface, it

follows

nσ =
4π

3
(ρn − ρ)δ(Re

n
2 +Re

n
2 −Re

nδ +Re
n
2 + δ2 − 2Re

nδ)

=
4π

3
δ(ρn − ρ)(3Re

n
2 − 3Re

nδ + δ2). (2.16)

Substituting Re
n = (

3νn
4π
)
1/3
n

1/3
e = R0n

1/3
e , where R0 = (3νn4π

)
1/3

is the radius of a

molecule 1 in the new phase, in the above equation yields

nσ = 4πR2
0
δ(ρn − ρ)(n2/3

e −
δ

R0

n
1/3
e +

δ2

3R2
0

) = kσ (nβ
e −

δ

R0

n1−β
e +

δ2

3R2
0

) ,
(2.17)

where kσ = 4πR2
0
δ(ρn − ρ) and β = 2/3. Given that R0 = (3νn4π

)1/3 and ρnνn = 1,

we can write kσ as follows kσ = kρ3λ where λ = δ
R0

is a dimensionless quantity

that distinguishes an arbitrary dividing surface from the EDS.

1a molecule is considered to be a sphere with radius R0 obtained from the effective
molecular volume using the equation shown above.
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Considering a cubic cluster of length le, we have V e
n = l3e = neνn. Inserting

this into Eq. (2.12) and after some algebra we arrive at

nσ = kσ (nβ
e −

λ

Sf

n1−β
e +

λ2

3S2
f

) , (2.18)

where kσ = 1
Sf
kρ3λ, and Sf = (4π3 )1/3 is the shape factor and β = 2/3. Therefore

we can use the formula in the form of Eq. (2.18) for both spherical and cubic

clusters with shape factors of Sf = 1 and Sf = (4π3 )1/3, respectively.
Having determined the number of excess molecules and utilising

Eq. (2.14), the number of molecules in the new phase is obtained by

nn = ne −
nσ

kρ
= ne −

3λ

Sf

(nβ
e −

λ

Sf

n1−β
e +

λ2

3S2
f

) . (2.19)

Therefore, in general we can write

nσ(ne) = kρF(ne), (2.20)

nn(ne) = ne −F(ne), (2.21)

where

F(ne) = 3λ

Sf

(nβ
e −

λ

Sf

n1−β
e +

λ2

3S2
f

) . (2.22)

If λ ≪ 1, i.e. δ ≪ R0, the number of molecules in the interface and new

phase can be approximated by the second order error (O(λ2)) as follows

nσ(ne) = kρ
3λ

Sf

nβ
e +O(λ2), (2.23)

nn(ne) = ne −
3λ

Sf

nβ
e +O(λ2). (2.24)

These equations give nn and nσ as a function of ne which is the size of an EDS-

defined cluster. We are, however, interested in determining these quantities
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and the size of a cluster as a function of either the core size or the number of

molecules in the interface. In this regard, we start with Eq. (2.19) and solve

it for ne while employing β = 2/3 as follows

nn = ne −
3λ

Sf

(n2/3
e −

λ

Sf

n
1/3
e +

λ2

3S2
f

) = (n1/3
e −

λ

Sf

)
3

, (2.25)

which gives

ne = (n1/3
n +

λ

Sf

)
3

, (2.26)

by substituting this relationship in Eq. (2.18), we obtain nσ and the cluster

size in the following format

nσ(nn) = kρG(nn),
n(nn) = nn + nσ(nn) = nn + kρG(nn), (2.27)

where

G(nn) = 3λ

Sf

(n2/3
n +

λ

Sf

n
1/3
n +

λ2

3S2
f

) . (2.28)

Henceforth, we assume the cluster is spherical and therefore Sf = 1. De-

pending on the density of the new and old phases and the location of the

dividing surface, nσ can become positive or negative. For the case of a con-

densed new phase, i.e. kρ > 0, if the dividing surface is placed beyond the

EDS; this gives λ < 0 and subsequently G(nn) < 0. On the other hand, if the

arbitrary dividing surface is enclosed in the EDS, we have λ > 0,G(nn) > 0.
Finally, this model satisfies the following conditions

lim
n→∞

nσ

n
= 0 , lim

n→∞
nn

n
= 1. (2.29)
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These conditions imply that for large clusters the number of molecules in

the core becomes dominant and the EDS becomes acceptable for defining the

boundary of a cluster. However, for a small cluster for which a core with

bulk properties does not exist, the contribution of interface phase takes on an

important role which can be modelled through interface terms with non-zero

nσ (or λ in our model).

If the arbitrary surface is selected such that it coincides with the surface

of tension, then Rn = Rt
n and in the limits of Rt

n → ∞ the separation length

converges to the Tolman length δ → δt and subsequently λ→ λt = δt
R0
.
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Figure 2.3: (a) Size of the new phase (nn), and (b) the interface phase (nσ) at
different location of the DS obtained by solving Eq. (2.27).
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Figure 2.3 shows the size of the new and interface phases for different

values of λ. The value of kρ = 0.66 was used for these calculations. The

material properties used for simulations presented in this chapter are listed in

Table A.1 in Appendix A and all simulations are carried out at T = 293 K.

Since kρ is positive a DS within the EDS (which gives a positive λ) results

in positive nσ whereas placing the DS beyond the EDS gives negative values

for the interface phase size. Furthermore, we can see that the larger the cluster

size n, the larger the new phase size nn compared to the interface size nσ which

in limit fulfills the relationships shown in Eq. (2.29).

In summary, the equations required to estimate the size of the new and

interface phases for any arbitrary DS were derived in this section. Now, we

can use this model to completely define a cluster of given size identified by any

arbitrary DS and calculate the thermodynamics of phase transformation from

a metastable old phase.

2.3.3 Cluster size and volume

The Gibbs geometrical surface is characterised by Vσ = 0 while allowing nσ to

take a negative value. This results in Vc = Vn = nnνn, where Vc is the cluster

volume, and the cluster size n = nn + nσ. Therefore, the mass of the cluster

becomes m = nm0, where m0 is the mass of a monomer in the new phase. Since

different number of molecules are used to determine the mass and volume of

the cluster, n and nn respectively, the effective density of the cluster will be

different from the bulk density of the new phase. The effective density is

obtained by

ρc,eff =
m

Vc
=

nm0

nnνn
=

n

nn

m0

νn
= (1 + nσ

nn

)m0ρn

= (1 + nσ

nn

)ρc, (2.30)

where ρc is the bulk mass density of the new phase. We surmised that the

physiochemical properties of the new phase, i.e. νn and m0, are equal to their
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corresponding bulk values. Likewise, the effective number density of the cluster

reads

ρn,eff =
n

Vc
=

n

nnνn
=

n

nn

ρn = (1 + nσ

nn

)ρn. (2.31)

Depending on the sign of nσ, the effective density of a cluster can be higher

or lower than the bulk density of the new phase. This is more noticeable for

small clusters since for large clusters we have lim
n→∞

nσ

nn

= 0, see Eq. (2.29). When

the new phase is denser than the old phase, i.e. kρ is positive, a positive λ gives

a positive nσ and vice versa, see Section 2.3.2 and Fig. 2.3. Therefore, a positive

λ for a denser new phase results in clusters with higher effective density than

the bulk new phase density.

Figure 2.4 shows the ratio of the effective to the bulk density for different

positions of the DS. We can see that the density of the EDS clusters are size-

independent, in contrast to the simulation results of statistical mechanics (Lau

et al., 2015a; Factorovich et al., 2014; Angélil et al., 2014, 2015; Malijevsky

and Jackson, 2012). However, the non-EDS clusters show a size-dependent

trend which is in qualitative agreement with statistical mechanics simulations.

Moreover, this figure shows that at a positive λ, the smaller the clusters, the

higher their density. As is shown in the inset of this figure, we can infer that

Figure 2.4: Ratio of ρn,eff to ρn for different locations of the DS. The dot-dashed
line represents this ratio for the EDS cluster (λ = 0).
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nσ is larger than nn for small clusters when λ is positive. Therefore, in small

clusters of a condensed phase, the majority of molecules may accumulate on

the interface than inside the volume of the new phase. This deduction is in

general agreement with the simulation results of statistical mechanics manifes-

ting an inhomogeneous small water droplet (with n = 9) with a denser interface

(Factorovich et al., 2014). This demonstrates that the non-EDS cluster may

provide a representation of the agglomerate which is in a better agreement

with the simulation results obtained by means of statistical mechanics. The

dividing surface is the unphysical element of the Gibbs model. Therefore, the

validity of calculating the density of a cluster and making comparison with sta-

tistical mechanics results may seem questionable. We should remark that the

objective of this comparison in the preceding discussion was only to illustrate

that non-EDS clusters can represent the new phase more realistically compared

with EDS-defined clusters, despite the mentioned feature of the Gibbs model.

2.4 Work of cluster formation

The reversible work of creating a cluster is equal to the change in the thermo-

dynamic potential of the system at its initial and final states (Abraham, 1974).

For the system shown in Fig. 2.2 and considering the imposed constraints of

constant VΣ, T , and µ, the grand potential Ω = U −TS −µn = F −µn is the

suitable thermodynamic potential (Reiss, 1965; Ford, 2001; Vehkamaki, 2006)

and therefore the work of formation is written ∆Ω = ΩΣ −Ω′Σ. Here F is the

Helmholtz free energy . For the initial state of the system, by using Eqs. (2.1)

and (2.5) we can write

Ω′Σ = U ′Σ − TS′Σ − µn′Σ = − pVΣ. (2.32)

Similarly by using Eqs. (2.2) and (2.4) with a Gibbs DS, the grand potential

in the final state becomes
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ΩΣ = UΣ − TSΣ − µnΣ = − pV + µ (−nn − nσ) − pnVn

+ µnnn + µσnσ + Ωσ. (2.33)

The work of cluster formation is obtained by subtracting the last two equations

as follows

∆Ω = − pV + µ (−nn − nσ) − pnVn

+ µnnn + µσnσ + Ωσ + pVΣ, (2.34)

which simplifies to

∆Ω = (p − pn)Vn + nn (µn − µ) + nσ (µσ − µ) + Ωσ. (2.35)

It should be noted that µ and µn are evaluated at temperature T and at

pressures p and pn, respectively. The chemical potential of the new phase at

the pressure of the old phase can be determined by writing the Gibbs-Duhem

relation for the new phase:

Vndpn = nndµn, (2.36)

and integrating this equation gives
p∫

pn

Vndpn = nn (µn(p) − µn(pn)) which

rearranges to

nnµn(pn) = nnµn(p) −
p

∫
pn

Vndpn. (2.37)

Substituting this into Eq. (2.35) yields
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∆Ω = − nn∆µ(p, T, x) − nσ (µ − µσ) + (p − pn)Vn
−

p

∫
pn

Vndpn +Ωσ, (2.38)

where ∆µ(p, T, x) is difference in the chemical potentials of the old and new

phases at temperature T , pressure p and composition x of the old phase and

is given by

∆µ(p, T, x) = µ(p, T, x) − µn(p, T ). (2.39)

For the sake of brevity of notation, independent variables, i.e. p, T , x, will not

be displayed unless required. Nevertheless, we shall note that they may vary

over time in the system and in time and space in the bath. Henceforth, µn

is always evaluated at pressure pn except in ∆µ as shown in Eq. (2.39). In

the case of a condensed new phase, the cluster can be considered practically

incompressible. Thus, the work of formation of a condensed cluster becomes

∆Ω = − nn∆µ − nσ (µ − µσ) + Ωσ, (2.40)

where substituting Ωσ with Aσγ gives

∆Ω = − nn∆µ − nσ (µ − µσ) + Aσγ. (2.41)

Equations 2.40 and 2.41 are generic and valid for a condensed cluster of

any size identified by any DS. To be able to use these equations, nσ and µσ

should also be determined for a generic dividing surface. A model to deter-

mine the former was explained in Section 2.3.2. The latter is discussed in the

following sections for two different types of clusters, the critical clusters and

non-critical clusters.
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2.4.1 Critical cluster

The system at the final state contains three phases all of which are at the

same temperature T but at different pressures. The system is in complete

equilibrium if any infinitesimal change in it is reversible (Guggenheim, 1985).

To derive the equilibrium conditions, or “features” as Reiss remarks, (Reiss,

1965) we need to estimate the increment in the grand potential of the system

arising from an infinitesimal variation in the system variables

dΩΣ = − pdV − V dp − dµ (nn + nσ) − µ (dnn + dnσ) − pndVn

− Vndpn + µndnn + nndµn + µσdnσ + nσdµσ

+ Aσdγ + γdAσ. (2.42)

By virtue of Eq. (2.36), a similar Gibbs-Duhem relation for the old phase,

and the Gibbs-Duhem relation of nσdµσ = −Aσdγ together with the fact that

dVΣ = dV + dVn = 0 and dµ = 0 (thus dp = 0),2 Eq. (2.42) simplifies to

dΩΣ = [(p − pn)dVn + γdAσ] + (µσ − µ)dnσ + (µn − µ)dnn.

(2.43)

The first term, enclosed by a square bracket is equal to the total work w done

on the system and the last two terms account for the openness of each phase

within the system (Guggenheim, 1985; Reiss, 1965). The imposed isothermal

change is natural if (Guggenheim, 1985)

dΩΣ < w, (2.44)

and reversible if dΩΣ = w. From Eqs. (2.43) and (2.44), we obtain

2µ, T and VΣ are the constrained variables of the system in the bath and are constant.
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(µσ − µ)dnσ + (µn − µ)dnn < 0, (2.45)

to have a natural isothermal change taking place in the system. Likewise,

for the reversible change in the system we have equality instead of inequality:

(µσ − µ)dnσ + (µn − µ)dnn = 0. Here nσ and nn are independent variables, 3

hence this equation yields

µ = µn(pn) = µσ, (2.46)

for the reversible change happening in the system. This indicates the system

and all the phases within it are in complete equilibrium if all the phases have

the same chemical potential values.

A cluster which is in thermodynamic equilibrium with the old phase is

called the critical cluster or nucleus. We will use an asterisk to denote the

properties of such a cluster.

The generalized Laplace equation for the critical cluster reads p∗n−p =
dΩ∗σ
dV ∗n

(Guggenheim, 1985; Kashchiev, 2000). Substituting this equation and the

former relations derived for the equilibrium state into Eq. (2.40) gives the

work of formation of the critical cluster as follows

∆Ω∗ = − n∗n∆µ +Ω∗σ = −(p∗n − p)V ∗n +Ω∗σ (2.47)

= −
dΩ∗σ
dV ∗n

V ∗n +Ω∗σ = −n∗n
dΩ∗σ
dn∗n
+Ω∗σ,

given that n∗ = n∗n + nσ
∗, this equation may be reformulated as

∆Ω∗ = −n∗∆µ + n∗σ∆µ +Ω∗σ. (2.48)

The last two terms in the above equation essentially represent the excess

Helmholtz free energy of the interface phase of the critical cluster size n∗,

3for our cluster model they in fact translate to λ and nn, see( Section 2.3.2.
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i.e. F ∗σ = nσ
∗∆µ+Ω∗σ. The work of formation of a critical cluster is called the

nucleation work and can be determined by any of the formulas in Eqs. (2.47)

and (2.48).

The grand potential of the interface phase can be written as a function of

nσ (Kalikmanov, 2012) or the area of the cluster, basically a function of nn. In

any case, we can plausibly consider Ωσ = Ωσ(nn). Therefore, the Taylor series

expansion of Ωσ about n reads

Ωσ(nn) = Ωσ(n) − nσ

dΩσ

dnn

∣
n

+
nσ

2

2

d2Ωσ

dn2
n

∣
n

−
nσ

3

6

d3Ωσ

dn3
n

∣
n

+O(nσ
4).
(2.49)

Evaluating this equation at the critical cluster and inserting the results in the

last formula of Eq. (2.47) gives

∆Ω∗ = Ωσ(n∗) − ⎛⎝n∗ndΩσ

dnn

∣
n∗n

+ nσ
∗dΩσ

dnn

∣
n∗

⎞⎠ + nσ
∗2
2

d2Ωσ

dnn
2
∣
n∗

−
nσ
∗3
6

d3Ωσ

dnn
3
∣
n∗

+O(nσ
4). (2.50)

If a cluster is defined by the EDS, see Section 2.2 for details, and the capillarity

approximation is imposed, the above equation simplifies to the nucleation work

given by the conventional form of CNT, i.e. ∆Ω∗ = A∗σγ∞/3 = a0n∗2/3γ∞/3. This
equation indicates that the work required to create a critical cluster mainly

depends on the grand potential of the surface phase and its derivatives with

respect to the cluster size. Henceforth, the choice of an appropriate DS with

known size-dependency of its corresponding grand potential is necessary in

order to achieve an accurate estimate of the nucleation work. This equation

highlights the usually overlooked significance of choosing an appropriate DS.

The equilibrium state of a thermodynamic system may be stable or metas-

table (Guggenheim, 1985). In the nucleation theory literature, the metastable
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state is usually referred to as unstable equilibrium (Ford, 1996, 2001; Vehka-

maki, 2006; Schmelzer et al., 2005). The equilibrium state is stable/unstable,

if the grand potential becomes a minimum/maximum at the equilibrium. Fol-

lowing Guggenheim (Guggenheim, 1985) for the phase stability, the first de-

rivative is zero at an extremum and the sign of the second derivative with

respect to independent variables indicates the type of the extremum, i.e. ne-

gative at a maximum or positive at a minimum. Using Eq. (2.42), the second

order derivative of the grand potential with respect to the volume of a critical

cluster reads

d2ΩΣ

dV 2
n

∣
T,µ

= γ
d2Aσ

dV 2
n

. (2.51)

Considering a spherical cluster, we can write dAσ

dV
= dAσ

dR
. 1
dV /dR = 2/R and the-

refore d2Aσ

dV 2
n
= −R−4/2π, which is a negative number. Thus, the RHS of the last

line of the above equation will be negative. This implies that the equilibrium

is unstable and consequently the critical cluster is in unstable equilibrium with

the old phase. This agrees with the fact that ∆Ω > 0 hence the work required

for cluster formation becomes a maximum for a critical cluster. Thus, if a

perturbation is introduced into the system, the state of the critical cluster will

change. For example, the absorption of monomers due to random impinge-

ments will lead to the spontaneous growth of the critical cluster whereas the

depletion of monomers from the critical cluster will lead to the dissolution of

the nucleus.

2.4.2 Non-critical cluster

The equality of the chemical potentials of all phases is a necessary condition for

a cluster in equilibrium with the old phase, as shown in Eq. (2.46). However,

this condition may not hold for a non-critical cluster, i.e. a non-equilibrium

cluster, which makes it a complicated situation to analyse. For a non-critical

cluster we assume µσ ≈ µn(pn). This assumption is justified if the diffusive
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exchange of molecules from the interface phase to the new phase is faster than

the diffusion of molecules towards the interface from the old phase (Vehkamaki,

2006). By virtue of Eq. (2.37) evaluated for a condensed new phase and of this

approximation, we obtain µ−µσ ≈∆µ−νn(pn−p) and subsequently Eq. (2.40)

transforms to

∆Ω = − n∆µ + nσνn(pn − p) +Ωσ. (2.52)

We now need to determine the quantity pn − p for a non-critical cluster. This

is not a trivial problem and needs knowledge from statistical or molecular

models. Nevertheless, the following two methods have previously been used to

estimate this quantity using continuum thermodynamics (Vehkamaki, 2006).

In the first method, we evaluate Eq. (2.37) at pressure of the critical

cluster p∗n for an incompressible cluster which gives

µn(pn) = µn(p∗n) + νn (pn − p∗n) . (2.53)

As shown in Eq. (2.46), the equilibrium condition for a critical cluster yields

µn(p∗n) = µ(p). Substituting this relationship in Eq. (2.53) and using Eq. (2.37)

and ρn = ν−1n gives

pn − p = ρn∆µ + (pn − p∗n). (2.54)

The last term in the above equation is the difference between the inner pressure

of a non-critical cluster and a critical cluster for the same pressure of the old

phase p. Inserting this into Eq. (2.52) yields

∆Ω = − n∆µ + nσ (∆µ + νn (pn − p∗n)) +Ωσ. (2.55)

pn for 9 < n < 960 was calculated for the case of water droplet formation by

(Factorovich et al., 2014) using statistical mechanics simulation at different

temperatures: 278 K,298 K,318 K. As shown there, the pressure difference

pn − p∗n is within the range of few bars maximum. Given that νn is of the
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order of a fraction of nm3, we can approximate the second term in the above

equation by nσ∆µ as νn(pn−p∗n) is relatively small compared to ∆µ. Therefore

this equation simplifies to

∆Ω = − n∆µ + nσ∆µ +Ωσ = −nn∆µ +Ωσ, (2.56)

which can also be written as

∆Ω = − n∆µ + Fσ,1, (2.57)

where Fσ,1 = nσ∆µ + Ωσ. Making comparison between Eqs. (2.56) and (

2.40) reveals that this approximation essentially sets µ − µσ to zero. This

condition is a result of mathematically cancelling the pressure term against the

supersaturation term in the former equations whilst not enforcing the physical

equilibrium conditions. Evaluating this equation for the critical cluster n∗

yields Eq. (2.48) as anticipated. This reveals that the work of formation of

a non-critical cluster can be reasonably approximated by the equation that

determines the work of formation of a critical cluster.

In the second method, the pressure difference between the inside and

outside of a cluster is approximated using the generalised Laplace equation

pn − p = dΩσ

dVn
(Vehkamaki, 2006). This method basically assumes that the

Laplace equation can be extended to sub-critical and supercritical clusters

despite the fact that it was derived for the critical cluster. Employing this

approximation transforms Eq. (2.52) to

∆Ω = − n∆µ + nσνn
dΩσ

dVn
+Ωσ, (2.58)

and given dΩσ

dVn
= dΩσ

dnn
.dnn

dVn
= dΩσ

dnn
. 1
νn

it follows that

∆Ω = − n∆µ + nσ

dΩσ

dnn

+Ωσ = −n∆µ + Fσ,2, (2.59)

where Fσ,2 = nσ

dΩσ

dnn

+Ωσ. This equation simplifies to the following relationship
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by using Eq. (2.49)

∆Ω = − n∆µ +Ωσ(n) + nσ (dΩσ

dnn

−
dΩσ

dnn

∣
n

)
+
nσ

2

2

d2Ωσ

dn2
n

∣
n

−
nσ

3

6

d3Ωσ

dn3
n

∣
n

+O(n4
σ). (2.60)

The work of formation of a non-critical cluster varies depending on the

way it is being identified. To elaborate on this effect, we keep the cluster size

n constant and compare the work of formation of a classical cluster (identified

with the EDS and the capillarity approximation) with a non-EDS cluster of the

same size. The identical cluster size implies equivalent “bulk” work (i.e. −n∆µ,

it should be noted that this is different from volume work as volume depends

on nn not n), whereas the excess free energy is different. The ratio of excess

free energies is determined by

Fσ,r =
Fσ,1

Fσ,cl

=
nσ∆µ +Ωσ

Ωσ,cl

. (2.61)

For a spherical cluster, we can write Ωσ = Aσγ(n) = a0γ(n)n2/3
n where a0 = 4πR2

0

and Ωσ,cl = Aclγ∞ = a0γ∞n
2/3, thus the above equation simplifies to

Fσ,r =
nσ∆µ + a0γ(n)n2/3

n

a0γ∞n
2/3 =

∆µ

a0γ∞
( nσ

n2/3) + γ(n)γ∞
(nn

n
)2/3 . (2.62)

We can use the EDS cluster to define the effective surface free energy as Fσ,eff =

Ωσ,eff = Aclγeff . Considering that the majority of simulations conducted by

means of MD or other statistical mechanical approaches report results for the

EDS-defined clusters, this choice also allows us to make a comparison between

our γeff and excess free energy with their counterparts in these works. For

an n-size cluster, the excess free energy should be independent of the DS

and therefore we can set Fσ,eff = Fσ,1. This yields γeff = Fσ,1/Acl. Employing

Eqs. (2.61) and 2.62, we can write γeff = γ∞Fσ,r which simplifies to
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γeff =
∆µ

a0

( nσ

n2/3) + γ(n) (nn

n
)2/3 . (2.63)

The first term accounts for temperature and concentration dependence of the

effective surface tension and the second term describes the curvature depen-

dence of the effective surface tension. The fact that concentration influences

the excess free energy and consequently the effective surface tension, based

on our definition, was demonstrated and formulated in different works too

(Baidakov et al., 1997; Ford, 1997; Horsch et al., 2008).

We have developed two models to determine the work of cluster formation

for non-critical clusters. In order to use these models, we need to determine ∆µ

and specify the dividing surface and the associated surface tension. Calculation

of ∆µ at different supersaturation ratios is explained in Section 2.6. With

regard to the DS, we will use the new surface explained in Section 2.3 in this

work.

Thus far, we have utilised two methods for calculating pn − p for a non-

critical cluster which gave rise to two models as follows

New model 1 Equation (2.57) and use of Fσ,1 to determine the work of clus-

ter formation and the excess free energy of clusters together with the

new surface to specify the cluster boundary.

New model 2 Equation (2.59) and use of Fσ,2 to determine the work of clus-

ter formation and the excess free energy of clusters together with the

new surface to specify the cluster boundary.

Both Eqs. (2.57) and (2.59) become identical for the EDS cluster. Howe-

ver, evaluating Eq. (2.59) for the critical non-EDS clusters give the nucleation

works which are different from those obtained from the exact Eq. (2.50). Fi-

gures 2.5 and 2.6 show the work of cluster formation at two different super-

saturation ratios determined by calculating Eqs. (2.57) and (2.59) for clusters

identified by the new surface with λ = 0.35. Considering the CNT curve,

the cluster is defined by the EDS, and the capillarity condition is imposed.
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Figure 2.5: Work of cluster formation obtained by both new models, i.e. Equa-
tion (2.57) presented as new model 1 and Eq. (2.60) shown as new
model 2 for λ = 0.35, and the conventional form of CNT at the super-
saturation ratio r = 15.

Figure 2.6: Work of cluster formation obtained by both new models, i.e. Equa-
tion (2.57) and Eq. (2.60) for λ = 0.35, and the conventional form of
CNT at the supersaturation ratio r = 50.

These figures show i) these models predict different sizes of the critical cluster,

i.e. where the cluster formation work peaks, ii) the new model 1 which refers

to Eq. (2.57) and the new surface-defined clusters and CNT predicts identical

height for the clustering work whereas the new model 2, i.e. Equation (2.59)

and the new surface-clusters, estimates higher peak values.

The excess free energy and the effective surface tension are determined

and plotted in Figs. 2.7 to 2.10. We can see that at a constant supersaturation
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Figure 2.7: Excess Helmholtz free energy Fσ,1 for clusters defined by the new sur-
face with different λ at the supersaturation ratio r = 15.
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Figure 2.8: Excess Helmholtz free energy Fσ,2 for clusters defined by the new sur-
face with different λ at the supersaturation ratio r = 15.

ratio, Fσ,1 considerably varies with a shift in the position of the DS whereas the

change in Fσ,2 is negligible and its value is approximately equal to the excess

free energy of the EDS clusters.

The effective surface tension calculated by Eq. (2.63) and shown in Fig. 2.9

varies in an increasing and decreasing fashion for positive and negative λ values,

respectively, converging to the asymptote of γ∞ in the limit of large clusters.

In contrast, γeff computed by evaluating Eq. (2.61) with Fσ,2 is larger than γ∞

for any position of the DS. This does not agree with the size-dependent surface

tension obtained from statistical mechanics simulations (Lau et al., 2015b,a;
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Figure 2.9: Effective surface tension obtained by calculating Eq. (2.63) using Fσ,1

for clusters defined by the new surface with different λ at the supersa-
turation ratio r = 15.
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Figure 2.10: Effective surface tension obtained by calculating Eq. (2.63) using Fσ,2

for clusters defined by the new surface with different λ at the super-
saturation ratio r = 15.

Samsonov et al., 2003; Kashchiev, 2003b). This together with Fig. 2.8 implies

that Fσ,2 cannot suitably approximate the excess free energy of clusters. Thus,

the new model 1 is favourable. In addition, this formulation can estimate

cluster formation work for both critical and non-critical non-EDS clusters.

Consequently, this model suits our needs better and will be utilised in this

work. It should be noted that the nucleation work is a physical property of

the system and is independent of the location of the dividing surface. Con-
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sequently, the desired formulation has to agree with the result of the exact

Eq. (2.50) for the critical cluster with non-zero nσ.

2.5 Nucleus size

It was shown that the critical cluster (nucleus) is in unstable equilibrium with

the old phase. The size of the critical cluster is then the extremum of the

equilibrium equation which can be found by solving d∆Ω
dn
= 0 for n. Using

Eq. (2.56) to model the work of cluster formation and differentiating it with

respect to the cluster size n gives

∂∆Ω

∂n
= − n′n(nn)∆µ + a0γ(n)2

3
n
−1/3
n n′n(nn) + a0n

2/3
n γ

′(n) = 0, (2.64)

where the prime superscript denotes the derivative with respect to the cluster

size n. γ(n)′ depends on the type of the DS used to define the cluster and its

corresponding model. n′n will be non-zero if nn ≠ 0 which allows to simplify

this relationship to

−∆µ + a0γ(n)2
3
n
−1/3
n + a0n

2/3
n

γ′(n)
n′n(nn) = 0. (2.65)

Enforcing the capillarity approximation or using a specific DS which has a

size-independent surface tension associated to it, this equation can then be

solved which yields the following familiar expression

n∗n = (23 a0γ∞

∆µ
)3 . (2.66)

If the EDS is used, then this equation reduces to the equation of a nucleus

size presented in the nucleation literature (Kashchiev, 2000; Vehkamaki, 2006;

Schmelzer et al., 2005). nσ
∗ cannot be determined by this formulation. Howe-

ver, taking a model of the DS should allow the determination of nσ
∗ associated

with the n∗n as it is explained in Section 2.3. As shown in Fig. 2.11, the nucleus

size linearly increases with the inverse of the difference in the chemical poten-
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Figure 2.11: Size of the critical cluster at different supersaturation ratios. Clusters
are defined by the new surface with λ = 0.35.

tial cubed, as stipulated by Eq. (2.66). Furthermore, we can see that the new

model 1 estimates larger nuclei compared to CNT and to the new model 2.

The results presented in Fig. 2.11 are computed as follows: i) Eq. (2.57) was

solved for 1 ≤ n ≤ 1000 at different supersaturation ratios, ii) the cluster size

at which the work of cluster formation peaks was found as the nucleus size at

the corresponding supersaturation ratio. As shown in this figure, the results

are linear as predicted by Eq. (2.66).

2.6 ∆µ in crystallisation from a solution

Physically, a solution is modelled as a mixture of two species; the one which

is liquid in the pure state at a given temperature and pressure and present in

the highest proportion is called the solvent and the other species is referred

as the solute (Guggenheim, 1985). The solvent is treated as an inert medium

for phase transition and therefore the old phase is mainly characterised by the

properties of the solute species, e.g. ρ is equal to the number density of solute

molecules in the solution.

The chemical potential of the old phase can be written as µ = kBT ln(a)
where a is the activity of the solute molecules in the solution and kB is the

Boltzmann constant (Guggenheim, 1985). For an ideal and dilute solution, we
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can write a = a∞ r where r is the supersaturation ratio (the solute mole ratio)

and a∞ is the solute activity in the solution where the solute and condensate

are in phase equilibrium (Kashchiev, 2000) (in an infinitely dilute solution).

a∞ only depends on the nature of the solute, the solvent, pressure and tempe-

rature but not r or x. The supersaturation ratio r in a dilute solution can be

approximated by the ratio of x
xe

where xe is the mole fraction of the solute at

the phase equilibrium state.

The difference between the chemical potentials of a supersaturated solu-

tion and the solution at the equilibrium state then reads µ − µ∞ = kBT ln( a
a∞
),

which rearranges to µ = µ∞ + kBT ln(r) (Guggenheim, 1985).

The activity of the new phase is approximated by the activity of the

condensate in equilibrium with the solute, i.e. a∞, and therefore its chemical

potential becomes µn = µ∞. Consequently, at constant pressure and tempe-

rature we can write ∆µ = kBT ln(r) (Guggenheim, 1985; Kashchiev, 2000).

2.7 Summary

We have established the thermodynamics of critical and non-critical clusters

based on the Gibbs droplet model with an arbitrary dividing surface. The

conservation of mass was used to determine the number of molecules in the

interface phase nσ as a function of the cluster size n, see Eq. (2.27). We have

also calculated the effective surface tension of this arbitrary surface, Eq. (2.63),

and demonstrated its size and chemical potential dependencies.

With the aid of these new contributions, we can model the cluster by any

DS and estimate its associated surface tension. The new developments may

resemble a classical model with a variable surface tension as a function of the

cluster size and chemical potentials of the new and old phases.

Finally, we have defined the new surface which is characterised by the

parameter λ, and the size-independent surface tension of γ∞. This new DS

facilitates numerical implementations and removes some complexity.

Now, we require to study the effect of pressure and temperature variation
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on the thermodynamics of phase transition modelled by non-EDS clusters. In

the next section, we will proceed to derive the required equations when the old

phase is subject to such thermodynamics.



Chapter 3

Thermodynamics of cluster

formation II: With acoustic

waves

In Chapter 2 we developed a model for characterising a cluster and computing

the work of cluster formation when the thermodynamic state of the old phase

remains unchanged. This condition does not hold if the old phase is exposed

to acoustic waves. Propagation of acoustic waves in the bath creates pressure

fluctuation, temperature variation and mass transportation due to a spatial

pressure gradient (Bird et al., 1960). The effect of the variation in pressure,

temperature and composition on the work of formation of a cluster should then

be quantified which is the subject of this chapter. We will begin to formulate

the work of cluster formation for a generic cluster when the old phase expe-

riences temperature and pressure perturbations. Initially, we will consider the

influence of acoustic waves on non-critical clusters of fixed size. Subsequently,

we will study the effect of the variation in the thermodynamic state of the old

phase on the nucleation work and the size of the critical cluster. Finally, we

will present a simplified form of these equations for an isothermal condition

and an incompressible solution by employing the new model 1 explained in the

previous chapter.
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3.1 Work of cluster formation

3.1.1 Non-critical cluster

To compare with the silent condition, we are interested in evaluating the ef-

fect of acoustic waves on the work of formation of a cluster of a given size n.

Consequently, we consider the invariant cluster size but variable thermodyn-

amic parameters. The total differential of ∆Ω is calculated by differentiating

Eq. (2.41) which gives

d∆Ω = − (nn + nσ)dµ − (dnn + dnσ)µ + nndµn + dnnµn

+ nσdµσ + dnσµσ + dAσγ +Aσdγ, (3.1)

and subsequently, this re-arranges to

d∆Ω = − (nn + nσ)dµ + nndµn + nσdµσ +Aσdγ

− dnn(µ − µn) − dnσ(µ − µσ) + dAσγ. (3.2)

Imposing the invariant cluster size condition gives dnn = dnσ = dAσ = 0.

Hence, the above equation simplifies to

d∆Ω = − (nn + nσ)dµ + nndµn + nσdµσ +Aσdγ. (3.3)

The change in the chemical potential of the old phase with respect to pressure

and temperature can be estimated using a Gibbs-Duhem relation

dµ = ( ∂µ
∂T
)
p

dT + (∂µ
∂p
)
T

dp = − sdT + νdp, (3.4)

where s is the specific entropy of the old phase. Likewise a Gibbs-Duhem

relation for the interface phase reads dµσ = −sσdT − Aσ

nσ
dγ and for the new
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phase becomes dµn(p) = −sndT +νndp. Substituting these equations of dµ, dµn

and dµσ in Eq. (3.3) then gives

d∆Ω = − [−s(nn + nσ) + nnsn + nσsσ]dT − [ν(nn + nσ) − nnνn]dp,
(3.5)

which can be written as

d∆Ω = −∆sexcdT − ν∆nexcdp, (3.6)

where ∆sexc = −s(nn + nσ) + nnsn + nσsσ is the excess entropy gained by the

system through the formation of a cluster of size n and ∆nexc is defined in

Eq. (2.14). This equation is basically independent of the method of determi-

ning the chemical potential of different phases. Thus, it holds for the new

model 1 developed in Section 2.4.2 which assumes µσ ≈ µ.

Integrating Eq. (3.6) gives the work required to form clusters at a tempe-

rature, pressure and composition which differ from the reference state. This is

expressed as

∆Ω(nn, nσ, p, T ) = ∆Ω0(nn, nσ) −∫ T

T0

∆sexcdT − ∫ p

p0

ν∆nexcdp, (3.7)

where ∆Ω0(nn, nσ) is the work required to create an n-sized cluster while the

system is at the reference thermodynamic state (T0, p0, x0).

In sonocrystallisation experiments, a supersaturated solution is usually

made first, and then an acoustic wave is introduced. Therefore, it is practically

desirable to choose the supersaturated state in silent condition, i.e. prior to the

application of the acoustic waves, as the reference state. The difference in the

chemical potentials at the reference state needs then to be obtained. Using the

formulation explained in Section 2.6, at constant pressure and temperature of
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the reference state we can write ∆µ0 = kBT0ln(r0) where r0 = x0

xe
and xe is

evaluated at T0 and p0.

Employing the new model 1 , the work of cluster formation in the reference

state is obtained by evaluating Eq. (2.57) which yields

∆Ω0 = − nkBT0ln(r0) + nσkBT0ln(r0) + a0γ∞n
2/3
n . (3.8)

Substituting this equation into Eq. (3.7) allows us to determine the effect of

perturbation in the thermodynamic state of the old phase on the work of

cluster formation for non-critical clusters.

3.1.2 Critical cluster

Now, we need to determine the change in the nucleation work due to variation

in the thermodynamic state of the old phase. We start with Eq. (3.1) and sub-

stitute µn by the following relation obtained by evaluating the Gibbs-Duhem

relation of Eq. (2.37) for a condensed new phase

µn(p) = µn(pn) − νn (pn − p) , (3.9)

which gives

d∆Ω = − (nn + nσ)dµ + nndµn + nσdµσ +Aσdγ

− dnn(µ − µn(pn) + νn (pn − p)) − dnσ(µ − µσ) + dAσγ.

(3.10)

Applying equilibrium conditions stated in Eq. (2.46) simplifies this equation

for a critical cluster as follows

d∆Ω∗ = − (n∗n + nσ
∗)dµ + n∗ndµ∗n + nσ

∗dµσ
∗ +A∗σdγ, (3.11)

which is akin to Eq. (3.3) being evaluated at the critical cluster. Therefore, by

using the same Gibbs-Duhem relations used to simplify Eq. (3.3), we arrive at
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d∆Ω∗ = −∆s∗excdT − ν∆n∗excdp, (3.12)

where ∆s∗exc and ∆n∗exc are the excess quantities evaluated for a critical cluster.

The integral form obtained by integrating this equation reads

∆Ω∗(p, T ) = ∆Ω∗
0
−∫ T

T0

∆s∗excdT − ∫ p

p0

ν∆n∗excdp. (3.13)

This equation was first derived by Hill (Hill, 1962) and re-established by

Ford (Ford, 2001). We should note that in the above derivations, no assump-

tion is considered for the critical cluster at either thermodynamic states (prior

and after pressure and temperature variation). Despite that this equation

and Eq. (3.7), which is developed in this work, look similar, they are for two

different cluster types and have developed based on different assumptions.

3.2 Nucleus size

We determined the nucleus size in the silent condition in Section 2.5. Now, we

are interested in assessing the influence of the variation in the thermodynamic

state of the old phase on the size of the critical cluster.

As we have mentioned before, the size of the critical cluster is the extre-

mum of the equilibrium equation which can be found by solving d∆Ω
dn
= 0 for n.

Thus, differentiating Eq. (3.7) with respect to n gives

∂∆Ω

∂n
=
∂∆Ω0

∂n
−∫ T

T0

∆s′excdT −∫ p

p0

∆n′excνdp, (3.14)

where ∆s′exc = −s+snn′n(nn)+sσn′σ(nn) and ∆n′exc = 1− ρ

ρn
n′n(nn) where n′σ(nn)

and n′n(nn) are the first derivative of nσ and nn with respect to the cluster size

n and are given in Appendix D. This is a complete equation for calculation

of the variation in the work required for cluster formation with respect to the

size of cluster at different thermodynamic states and is valid for any cluster

model. Substituting ∆Ω0 from Eq. (3.8) yields
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∂∆Ω

∂n
= − kBT0ln(r0)(1 − n′σ(nn)) + a0γ∞

2

3
n
−1/3
n n′n(nn)

−∫ T

T0

∆s′excdT −∫ p

p0

∆n′excνdp. (3.15)

This relationship uses the new model 1 to determine the work of cluster

formation at the reference state. The size of the critical cluster is the root of

∂∆Ω
∂n
= 0. The generic solution for the critical cluster size in an arbitrary state

depends on material properties and change in density and entropy of all phases

with pressure and temperature, respectively. The solution for special cases

though can be derived. The case of an isothermal process with incompressible

old and new phases is considered and discussed below.

3.3 Incompressible solution and isothermal

condition

The absorption of propagating acoustic waves in a medium mainly depends

on the viscosity of the medium and the wavelength. Wave propagation in an

aqueous medium can be considered as an isothermal process since the absorp-

tion is low, especially during a short exposure. This is further discussed in

Chapter 7. In this case, the effect of a pressure perturbation on the work

of formation of an n-sized cluster is determined by omitting the temperature

term in Eq. (3.6) which reads

(∂∆Ω

∂p
)
T

= − ν(nn + nσ) + nnνn = −ν∆nexc. (3.16)

This equation states that the pressure rise reduces the work of formation of a

cluster size n if the new phase is denser than the old phase, i.e. ∆nexc is positive,

and vice versa. Consequently, in comparison with the silent condition, the

energy required to create an identical cluster is reduced over the compression

interval of an acoustic wave and increased over the rarefaction cycle.
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The RHS of Eq. (3.16) can be reformulated as follows

− ν(nn + nσ) + nnνn = − νkρnn − νnσ = − νkρn − νnnσ, (3.17)

where the nn and nσ terms after the first equal sign show the effect of pressure

on the work of formation of the new and interface phases, respectively, which

can also be re-arranged to display the effect of pressure on the “bulk” work

and the excess free energy, i.e. the n and nσ terms after the second equal sign.

Integrating Eq. (3.16) gives the integral form of the work of cluster for-

mation which is equal to Eq. (3.7) with the temperature term eliminated. If

the partial molecular density of the old and new phases are assumed pressure

independent, e.g. in sonocrystallisation process where the old phase is a liquid

and the new phase is a solid, the integral form of the work of cluster formation

simplifies to

∆Ω(nn, nσ, p) = ∆Ω0(nn, nσ) − ∆nexcν∆p, (3.18)

where ∆p = p − p0 is the variation in pressure. This equation is solved for

different positions of the DS and static pressure magnitudes at the supersa-

turation ratio of r0 = 15, see Fig. 3.1. The physicochemical properties of the

solution are the same as those used in the previous chapter, listed in Table A.1

in Appendix A. For all the simulations presented in this thesis, we consider the

room temperature and atmospheric pressure as the reference state, T0 = 293 K

and p0 = 0.1 MPa respectively. We can see in Fig. 3.1 that the nucleation

barrier and the size of the critical cluster are inversely proportional to the

pressure magnitude and are functions of the position of the DS. The latter will

be further discussed below.

In the case of isothermal acoustic wave propagation, the nucleation work

varies with pressure as follows
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Figure 3.1: Work of cluster formation for clusters defined by different values of λ
with r0 = 15 and a) ∆p = 10 MPa, and b)∆p = 100 MPa. Pressure
change is static.

(∂∆Ω∗
∂p
)
T

= − ν∆n∗exc, (3.19)

which tells that the height of the nucleation barrier reduces with pressure

elevation if the new phase is condensed. It conveys the physical implication

that a change in pressure can have an effect on the nucleation rate. The

consequent dependence of the nucleation rate on pressure was investigated

in the context of an extension to the nucleation theorem by Luijten et al.,

(Luijten and van Dongen, 1999; Luijten et al., 1999) and was also discussed
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in Ford (Ford, 1992). We will extensively discuss this subject in the following

two chapters.

Finally, the nucleation work in an incompressible solution experiencing

isothermal acoustic wave propagation becomes

∆Ω∗(p) = ∆Ω∗
0
− ∆n∗excν∆p. (3.20)

The nucleation work at the reference state determined by the new model

1 is independent of the location of the DS, e.g. see the barrier height shown

in Figs. 2.5 and 2.6 for λ = 0 and λ = 0.35, respectively. Thus, the first

term in Eq. (3.20) remains unchanged if the supersaturation ratio is constant.

However, the second term in the RHS varies depending on the position of the

DS. This is because of the variation in the surface tension with respect to the

chemical potential of the old phase which has been accounted for in Eq. (3.11)

(i.e. term A∗σdγ). Nonetheless, if we calculate the LHS of Eq. (3.19) and plot

the results against pressure variation, we expect to obtain the excess size of

the critical cluster.

Figures 3.2 and 3.3 display the results of calculations of the LHS and

the RHS of Eq. (3.19) at r0 = 15. The LHS was calculated by computing

the numerical differentiation of the nucleation work with respect to pressure.

The nucleation work at each pressure magnitude was obtained by numerically

finding the maximum of Eq. (3.18) determined for 1 ≤ n ≤ 1000 at each pres-

sure. Subsequently, the RHS was obtained by calculating Eq. (2.14) for each

critical cluster. We can see that these curves follow a similar trend in both

figures. The trend shows the excess critical cluster size is roughly independent

of the position of the DS at high pressure magnitudes. This is because the nu-

cleus size decreases and becomes of the order of few molecules as the pressure

magnitude increases.

The consensus for the effect of pressure on the nucleation work is that

pressure contribution is more significant at lower supersaturation ratios;

(Kashchiev and Van Rosmalen, 1995; Kashchiev, 2000) observable in Figs. 3.4
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Figure 3.2: Numerical differentiation of the nucleation work with respect to static
pressure variation (isothermal), see the LHS of Eq. (3.19).
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Figure 3.3: Excess size of the critical cluster in the system exposed to isothermal
static pressure rise, see the RHS of Eq. (3.19).

and 3.5 for clusters defined by the EDS and λ = 0.35, respectively. For in-

stance, in Fig. 3.4 at r0 = 50 we see lower changes in the nucleation work with

pressure rise of eight orders of magnitude than a similar situation at r0 = 15.

We can see a similar trend in Fig. 3.5 where λ = 0.35.

In addition, Figs. 3.6 and 3.7 depict the isobaric nucleation work contours

showing alike behaviour projected by converging isobaric curves towards the

upper end of the supersaturation ratio axis. Furthermore, the slope of the

isobaric curves changes more at lower pressure magnitudes. This means that

at high pressure magnitude, the nucleation work does vary a little by making
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Figure 3.4: Contour plot of the nucleation work at different supersaturation ratios
and static pressure magnitudes. The DS coincides with the EDS.

15 20 25 30 35 40 45 50

r0 [DL]

0

20

40

60

80

100

∆
p
 [
M
P
a]

7
16
24
32
40
49
57
65
73
82

∆
Ω

∗ /
k
B
T

Figure 3.5: Contour plot of the nucleation work at different supersaturation ratios
and static pressure magnitudes. The DS is placed within the EDS with
λ = 0.35.
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Figure 3.6: Isobaric nucleation work at different supersaturation ratios. The labels
on curves refer to the pressure magnitude in MPa, the DS is positioned
at λ = 0.
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Figure 3.7: See the caption of Fig. 3.6. Here the DS is positioned at λ = 0.35.
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Figure 3.8: Isobaric nucleation work at different supersaturation ratios (1 ≤ r0 <
50). The DS is positioned at λ = 0.35.

the solution more supersaturated, e.g. see the 90 MPa flat curve. This ef-

fect leads to the following deductions: i) in theory, increasing pressure high

enough (where the exact value depends on the solution properties) would allow

phase transformation to happen even in very dilute solutions since the nucle-

ation barrier can be surmounted. ii) The MZW is narrowed down which also

results in crystallisation in reduced supersaturations which are widely repor-

ted in the sonocrystallisation literature (Ruecroft et al., 2005; de Castro and

Priego-Capote, 2007). This finding elucidates the experimental application

of sonocrystallisation in situations that the solution has to be dilute, e.g. to

prevent clogging a channel or wetting a membrane. iii) The influence of the

supersaturation ratio is more substantial at lower pressure magnitudes. There-

fore, pressure effect becomes more notable at lower supersaturations and vice

versa.
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Additionally, a similar nucleation barrier can be observed for different

combinations of the pressure magnitude and supersaturation ratio. For in-

stance, Figs. 3.8 and 3.9 demonstrate that almost an equal nucleation work

can be obtained when r0 = 1, ∆p = 100 MPa and r0 = 28.5, ∆p = 0 MPa. To

clarify this, we can use Eq. (3.8) to reformulate Eq. (3.18) as follows

∆Ω(nn, nσ, p) = ∆Ω0(nn, nσ) − ∆nexcν∆p

= − nkBT0 ln(r0) + nσkBT0 ln(r0) + a0γ∞n
2/3
n − ∆nexcν∆p

= − nn (kBT0 ln(r0) + ∆nexc

nn

ν∆p) + a0γ∞n
2/3
n , (3.21)

which simplifies to

∆Ω(nn, nσ, p) = − nnkBT0 ln(reff(n)) + a0γ∞n
2/3
n , (3.22)

where

reff(n) = r0 exp (∆nexcν∆p

nnkBT
) , (3.23)

presents the effective supersaturation ratio. Different combinations of the pres-

sure magnitude and supersaturation ratio that give a similar effective supersa-

turation ratio will predict the same nucleation barrier. Employing Eq. (2.29)

gives lim
nn→∞

∆nexcν∆p

nnkBT
= kρν∆p

kBT
. This means that in contrast to the EDS clus-

ters and the conventional CNT, this model predicts a size-dependent pressure

effect specifically for small clusters which tends to become constant for rela-

tively large clusters. Using Eq. (3.17), the second line of Eq. (3.21) can be

reformulated as
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Figure 3.9: Work of cluster formation for two different supersaturation ratios and
pressure magnitudes. The DS is positioned at λ = 0.35.

∆Ω(nn, nσ, p) = − n (kBT0 ln(r0) + kρν∆p) +
nσ (kBT0 ln(r0) − νn∆p) + a0γ∞n

2/3
n , (3.24)

which comparing this equation with Eq. (2.57) gives

Fσ,1(nn, nσ, p) = nσ (kBT0 ln(r0) − νn∆p) + a0γ∞n
2/3
n . (3.25)

This demonstrates that the excess free energy of the non-EDS cluster is a

function of the supersaturation ratio and pressure and hence it will be time

dependent (besides being size dependent).

As we can see in Fig. 3.9, although the effective supersaturation ratio and

the nucleation work are the same, the nuclei sizes are different. To elaborate

on this, we need to determine the nucleus size.

Using Eq. (3.15) and imposing the isothermal and incompressibility con-

ditions, we can find the nucleus size which reads



3.3. Incompressible solution and isothermal condition 101

∂∆Ω

∂n
= − kBT0ln(r0) + a0γ∞

2

3
n
−1/3
n n′n(nn)

+ kBT0ln(r0)nσ
′(nn) −∆n′excν∆p. (3.26)

By virtue of the relationship n′n(nn)+nσ
′(nn) = 1; see Appendix D, and setting

Eq. (3.26) equal to zero, we arrive at the following polynomial equation

−kBT0ln(r0) + a0γ∞
2

3
n
−1/3
n −

1

n′n(nn)∆n′excν∆p = 0. (3.27)

Expanding n′n(nn) and after some algebra, we obtain

nn (1 + kBT0ln(r0)
kρν∆p

) − (2
3

a0γ∞

kρν∆p
− 2λ)n2/3

n + λ2n
1/3
n = 0, (3.28)

which changing variable nn =X3 reformats it to

X3 (1 + kBT0ln(r0)
kρν∆p

) − (2
3

a0γ∞

kρν∆p
− 2λ)X2 + λ2X = 0. (3.29)

This is a cubic polynomial equation which can have three distinct roots. By

factoring out X, we can deduce that one root is zero (which is not acceptable

in the physical sense) and obtain the following quadratic equation

X2 (1 + kBT0ln(r0)
kρν∆p

) − (2
3

a0γ∞

kρν∆p
− 2λ)X + λ2 = 0. (3.30)

We can numerically solve this equation at any time instant and obtain n∗n
and consequently n∗ as pressure varies over time. If we define the cluster by

the EDS, this equation simplifies and gives the analytic solution for the size of

the nucleus (n∗e) as follows
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n∗e =
⎛⎜⎜⎜⎝
2

3

a0γ∞

kBT0

ln(r0) + kρν∆p

kBT0

⎞⎟⎟⎟⎠
3

. (3.31)

This equation demonstrates the effect of pressure fluctuation and composition

variation on the size of the EDS-defined nuclei. This equation for the EDS

clusters was first derived by Kashchiev and van Rosmalen (Kashchiev and

Van Rosmalen, 1995). This equation can be represented in the following format

as well

n∗e = (23 a0γ∞

kBT0ln(reff,e))
3

. (3.32)

where reff,e = r0 exp (kρν∆p

kBT
) is the effective supersaturation ratio for the EDS

clusters. Unlike the non-EDS clusters, the nucleus size remains the same for

the similar values of the effective supersaturation if clusters are defined by the

EDS. Having determined n∗, the nucleation work is given by Eq. (2.57) for the

cluster size of n∗.

Thus far we have considered the static pressure condition. In the case of

a system exposed to an acoustic wave, we will show in Chapter 7 that for a

system located in the pre-shock region the local pressure is given by p = pa+p0

where p0 is the ambient pressure at the reference state and pa = pm cos (2πft)
is the acoustic pressure in the system with magnitude pm and frequency f .

The pressure difference then reads ∆p = p − p0 = pa. As pressure magnitude

oscillates during the cycle of an acoustic wave, both the nucleation work and

the size of the nucleus vary. Over the compression phase of the wave, ∆p > 0

hence the nucleation barrier substantially drops when kρ > 0, see Fig. 3.10,

whereas during the rarefaction phase the negative pressure difference causes a

significant increase in the nucleation work. Consequently, over one part of the

acoustic wave, nucleation is promoted whereas over another part it is impeded.

Compared to the reference state, i.e. ∆p = 0, the ratio of increase or decrease

is asymmetric which will lead to an unequal influence on the nucleation rate
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Figure 3.10: Nucleation work calculated for the EDS and non-EDS (λ = 0.35) clus-
ters at different supersaturation ratios over one cycle of excitation.
The second axis on the RHS illustrates ∆p for pm = 100 MPa and
f = 100 kHz. The time axis is non-dimensionalised with respect to
the driving frequency, i.e. τ = tf . The magnified area at the top
shows the nucleation work at the peak positive pressure instant.

which is the subject of the next two chapters.
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Figure 3.11: The same as Fig. 3.10 but with pm = 10 MPa.
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Comparing Figs. 3.10 and 3.11, we can observe that the estimates of the

nucleation barrier using the EDS and non-EDS clusters are similar in values at

low pressure magnitudes. However, these estimates may considerably diverge

as the pressure magnitude increases. Nonetheless, the estimated nuclei sizes

would be different despite the fact that the nucleation barrier height may not

change noticeably at lower pressure magnitudes, see Fig. 3.1.

3.4 Summary

We have determined the effect of pressure and temperature variation on the

thermodynamics of cluster formation. The work of formation of non-critical

and critical clusters change under this circumstance, see Eqs. (3.7) and (3.13),

as well as the size of the critical cluster. We have derived a generic equation to

estimate the non-EDS nucleus size, Eq. (3.14), which simplifies to Eqs. (3.30)

and (3.32) for the non-EDS cluster identified by the new surface and the EDS

cluster, respectively.

Under isothermal conditions, this theory predicts that the nucleation bar-

rier is reduced or raised with an increase in pressure if the new phase is more

or less dense than the old phase, respectively. The nucleation work contour

plots as a function of both the pressure magnitude and supersaturation ratio

were obtained. They show an identical nucleation barrier could be surmoun-

ted with different combinations of the pressure magnitude and supersaturation

ratio. This can be elucidated by defining an effective supersaturation ratio,

Eq. (3.23), which includes both supersaturation ratio and pressure terms. It

was shown using the non-EDS cluster model predicts a size-dependent pressure

effect which is stronger for smaller clusters.

Moreover, the nucleation work and the size of nuclei vary over a period

of an acoustic wave revealing that nucleation is enhanced over half a period

of the acoustic wave and is impeded over the other half a period. More spe-

cifically, nucleation is promoted over the rarefaction/compression cycle and is

obstructed over the compression/rarefaction cycle if kρ is negative/positive,
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respectively. Here, we assumed the acoustic wave is a simple sinusoidal wave

and the system is mass-conserved. We will extend these calculations using

more complex waveforms and elaborate more on these findings in Chapter 7.

Employing the theory developed in this chapter and Chapter 2, we can

determine the thermodynamics of phase transformation for a solution exposed

to an acoustic field. In the next section, we will proceed to develop the kinetics

of cluster growth and decay subject to such thermodynamics.



Chapter 4

Kinetics of cluster formation I:

Mass conserved system

We have studied the thermodynamics of phase transition in a system exposed

to pressure and temperature perturbations. The cluster model which relies on

continuum thermodynamics was used to mathematically formulate this pro-

cess. The subject of this chapter is to study the dynamics of this process. To

this end, we will begin this chapter with explaining some definitions borrowed

from statistical mechanics, namely: the microstate and the macrostate of a

system.

The microstate is a conceivable microscopic configuration that an isolated

system of constant energy and number of particles can adopt with a certain

probability (Ford, 2013). The set of all microstates of a system forms the phase

space of the system. A particular collection of microstates with a common spe-

cific property is called a macrostate and is characterised by a probability distri-

bution of this collection of microstates over the phase space (Ford, 2013). The

study of macrostates allows the expected state of the system to be determined

without the need for a detailed investigation of the microscopic behaviour of

particles. We now aim to model the evolution of these macrostates and their

associated time-dependent probability distributions for the problem of phase

transformation.

We employ the same model of the system and bath described in
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Section 2.1, i.e. the system has a small volume and can exchange particles

with the bath (environment), but we consider the density fluctuation repre-

sentation instead of the cluster model temporarily. Since the volume of the

system is constant, we can identify the macrostates of the system by the num-

ber of particles occupying the system. Therefore system macrostates evolve

with fluctuations in the number of molecules in the system. In the case of nu-

cleation, we assume that the system initially contains only monomers, i.e. the

probability of having n-mers with n > 1 is negligible. Dispersion of these par-

ticles changes the particle density of the system over time; in other words, the

system moves from one macrostate to another.

The evolution from the initial state to the final state can then be repre-

sented by time-dependent transition probabilities for moving between macro-

states. For instance, the system may move from the macrostate i, i.e. the

system encloses i particles, to the macrostate j with the transition probability

of T (i→ j; t). If we assume that these transition probabilities are Markovian,

i.e. they only depend on the macrostates i and j not on earlier history, the evo-

lution of macrostate probabilities can then be modelled by the master equation

as follows(Ford, 2016)

dPi(t)
dt

= ∑
j≠i
(Pj(t)T (j → i; t) − Pi(t)T (i→ j; t)) , (4.1)

where Pi is the time-dependent probability of embracing the macrostate i. This

master equation models the propagation of the probability into the phase space

as the evolution of the probability of each macrostate with time. This is the

fundamental equation for studying the kinetics of a dynamic process, e.g. phase

transformation, without the need to delve into expressing microstates. This

formulation is a discrete representation of the dynamics. Thus, we need to solve

a set of ordinary differential equations (ODEs) with as many equations as the

number of possible macrostates. We will continue this chapter by presenting

a simplified form of this master equation, in both discrete and continuous

formats, suitable for the problem of nucleation. We will then determine the
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transition probabilities and investigate the effect of wave propagation on them.

In this chapter we will assume that the system is closed, hence do not consider

mass transfer due to wave propagation. The effect of mass transportation on

the cluster dynamics is the subject of next chapter and will be discussed there.

4.1 Master equations for nucleation

Equation (4.1) is a generic master equation for estimating the propagation

of probability into the phase space. We can develop a simple form of this

master equation to suit modelling the kinetics of nucleation. Following the

assumption that the system volume is quite small, we can plausibly postulate

that single bound molecular clusters are the main microstates of the phase

space. Consequently, density fluctuation and as a result the transition between

macrostates take place by the attachment or depletion of single molecules.

Furthermore, the concentration of monomers is very high, especially at the

beginning of nucleation, which justifies this assumption and the overlooking of

transition by the collision of n-mers, n > 1 (Ford, 2016; Kashchiev, 2000). The

snapshots of the evolution of such clusters and macrostates are illustrated in

Fig. 4.1. Therefore the generic master equation is simplified to

dPi(t)
dt

=
j=i+1∑

j=i−1,j≠i
(Pj(t)T (j → i; t) − Pi(t)T (i→ j; t)) . (4.2)

As in Section 2.1, density fluctuation will be represented by the cluster

model and therefore macrostates are identified by the size of molecular clusters

in the system.1 Thus, Pn reads the probability of containing n-size clusters in

a small system. Equation (4.2) can then be expanded as follows

dPn(t)
dt

= fn−1(t)Pn−1(t) − gn(t)Pn(t) − fn(t)Pn(t) + gn+1(t)Pn+1(t),
(4.3)

1in fact the shape of the cluster should be accounted for as well, because the equally-
sized clusters may exist in different shapes. However, this restriction can be relaxed and
usually the fixed shape of a cluster in equilibrium is used (Kashchiev, 2000).
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Figure 4.1: Transitions between system macrostates and the snapshots of mole-
cular clusters. Macrostates are identified by the number of molecules
in the system creating the density fluctuations. Following the cluster
modelling methodology, they are represented by the size of emerged
clusters. Growth and decay processes take place according to transi-
tion probabilities per unit time fn and gn, respectively.

where fn and gn are the attachment and detachment frequencies of monomers

to and from an n-size cluster, respectively.

The probability Pn in a small system corresponds to the population,

i.e. the number density, of n-size clusters in a large system. This is a corollary

which results from applying the law of large numbers: the accumulation of

many random draws from the probability distribution Pn for the small system

actually corresponds to the system populations. Therefore Pn can be replaced

by the number density of n-size clusters Zn which casts a master equation in

the following format

dZn(t)
dt

= fn−1(t)Zn−1(t) − gn(t)Zn(t) − fn(t)Zn(t) + gn+1(t)Zn+1(t),
(4.4)

This master equation is known as the Szilard equation or the Becker-Döring

equation and is used for modelling a birth/death process including nucleation

of the new phase from the old phase. This process is illustrated in Fig. 4.1. If

N is the time-dependent total number of monomers in the old phase, we will

need to solve a set of N ODEs together as n = 1,2, . . . ,N .

In terms of the physics of nucleation, the process is initiated due to ther-
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modynamic instability or metastability. Clusters emerge and grow by the

positive net flux of monomers. This gradually tends to drop the concentration

of monomers (in other words the supersaturation ratio) which terminates the

nucleation stage at the limit of the supersaturation ratio of unity. Thus, nu-

cleation terminates when stable thermodynamic equilibrium is reached. With

an increase in the concentration of clusters, these may aggregate and form lar-

ger clusters which then begins a new stage of the phase transition, termed as

the ageing stage. A phenomenon which tends to appear under this condition

is Ostwald ripening, which is a process where large clusters absorb monomers

from small clusters and decay the concentration of small clusters. The Ostwald

ripening regime can be modelled by modifying the above master equation for

n = 1 as follows (Vetter et al., 2013)

dZ1(t)
dt

= −2f1(t)Z1(t) + 2g2(t)Z2(t) + N∑
n=3

gn(t)Zn(t) − N∑
n=2

fn(t)Zn(t), (4.5)
Equations (4.4) and (4.5) allow determining the kinetics of nucleation,

the growth governed by monomers and the Ostwald ripening processes. The

forward flux of a cluster size n along the size axis, i.e. n → n + 1, is given by

Jn(t) = fn(t)Zn(t) − gn+1(t)Zn+1(t). (4.6)

Employing this definition, the master equation shown in Eq. (4.4) transforms

to

dZn(t)
dt

= Jn−1(t) − Jn(t), (4.7)

which shows that the change in the concentration of n-size clusters is governed

by an aggregative mechanism and determined by the net flux along the cluster

size axis. This holds true if the system is closed for mass exchange. In a system

open for mass transportation the non-aggregative change in the concentration

of the cluster size n is modeled by adding the following two terms: i) Kn: the
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inward flux of n-size clusters to the system from the bath, and ii) Ln: the

outward flux of n-size clusters from the system to the bath. Therefore, we

arrive at a master equation which encounters the effects of both aggregative

and non-aggregative processes on the cluster dynamics

for n = 1 ∶

dZ1(t)
dt

= − 2f1(t)Z1(t) + 2g2(t)Z2(t) + N∑
n=3

gn(t)Zn(t) − N∑
n=2

fn(t)Zn(t)
+ K1(t) − L1(t), (4.8)

for n ≥ 2 ∶

dZn(t)
dt

= fn−1(t)Zn−1(t) − gn(t)Zn(t) − fn(t)Zn(t) + gn+1(t)Zn+1(t)
+ Kn(t) − Ln(t). (4.9)

The Szilard model is a discrete representation of the master equation and

the N equations should be solved consecutively to determine the kinetics of the

process. This is computationally expensive and hence a continuous model is

favoured. The truncated second-order Taylor expansion of the discrete Szilard

equation about point n produces the continuous form of the Szilard model

which is known as the Fokker-Planck Equation (FPE) and reads (Kashchiev,

2000)

∂Z(n, t)
∂t

= −
∂

∂n
(v(n, t)Z(n, t) − 1

2

∂ [d(n, t)Z(n, t)]
∂n

)
+ K(n, t) − L(n, t), (4.10)

where v(n, t) and d(n, t) are given by
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v(n, t) = f(n, t) − g(n, t) (4.11)

d(n, t) = f(n, t) + g(n, t). (4.12)

v(n, t) is the drift velocity along the size axis, known as the growth rate,

specifying the rate of deterministic incrementation of the cluster size n. d(n, t)
is the rate of random change of the cluster size along the size axis or the

dispersion of the cluster size along the size axis.

We explained the discrete and continuous master equations for nucleation,

each of which have advantages and disadvantages. To treat the shortcomings

associated with either of these, we use a hybrid model in this work which is

explained in the next section.

4.1.1 Hybrid model

The FPE is computationally favoured if the concentration of large clusters is

desired. However, because of approximations in the derivation of the FPE, it is

inaccurate at small clusters compared to the Szilard equation. Therefore a hy-

brid model is envisaged to take advantage of both the discrete and continuous

description of the cluster dynamics (Ozkan and Ortoleva, 2000).

The cluster size axis n is divided into two sections, a discrete part

n = 1, . . . ,Nd and a continuous part n = [Nd + 1,N] where Nd is the boun-

dary between the discrete and the continuous sections. Nd is chosen such that

the simulation results are independent of this choice and the FPE numerically

converges to the result of the Szilard model, i.e. ∥Zn −Z(n)∥2 ≈ 0. The boun-

dary condition of the continuity of cluster flux, see Eq. (4.6), is applied at the

transition point between the discrete and the continuous models.

The hybrid model allows determination of the dynamics of cluster for-

mation for a broad range of cluster sizes, even up to clusters of a few billion

molecules. The hybrid method is schematically illustrated in Fig. 4.2.

For the benefit of the reader, all the equations constructing the hybrid
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Z1 Z2 Z3 ZNd−1 ZNd
Z(Nd + 1) Z(N)

1 2 3 Nd − 1 Nd Nd + 1 N

discrete equation (Szilard) continuous equation (FPE)

flux conservation

Figure 4.2: Schematic representation of the hybrid model. See the text for details.

model are reproduced below

for n = 1:

dZ1(t)
dt

= − 2f1(t)Z1(t) + 2g2(t)Z2(t) + N∑
n=3

gn(t)Zn(t) − N∑
n=2

fn(t)Zn(t)
+ K1(t) − L1(t), (4.13a)

for 1 < n ≤ Nd:

dZn(t)
dt

= fn−1(t)Zn−1(t) − gn(t)Zn(t) − fn(t)Zn(t) + gn+1(t)Zn+1(t)
+ Kn(t) − Ln(t),

for Nd < n ≤ N :

∂Z(n, t)
∂t

= −
∂

∂n
(v(n, t)Z(n, t) − 1

2

∂ [d(n, t)Z(n, t)]
∂n

)
+ K(n, t) − L(n, t). (4.13b)

4.2 Nucleation rate

Nucleation rate is the rate of appearance of supercritical clusters per unit

volume in the system at each time instant. This is also interpreted as the rate

of passage of particles over the nucleation barrier. The hybrid model gives the

time variable concentration of different clusters which can be used to determine
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the nucleation rate as follows

J(t) = dζ(t)
dt

, (4.14)

where

ζ(t) = ∑
n>n∗(t)

Zn(t), (4.15)

and the size of the critical cluster n∗ is obtained by solving for the root of

Eq. (3.15). This is the generic definition of the nucleation rate and can be

used for both stationary and non-stationary phase transition when the old

phase is exposed to acoustic waves. This equation requires the solution of

the hybrid model over a range of cluster sizes with N ≫ n∗. However, these

calculations can be circumvented under two particular conditions: i) when the

system reaches a steady state and therefore the rate at which supercritical

clusters appear is constant, and ii) when the system is in equilibrium and

hence the detailed microscopic balance holds. The former condition is further

discussed in Section 4.2.1 and the latter is explained and used in Section 4.3

to determine the detachment frequencies.

4.2.1 Quasi-stationary and stationary nucleation rate

When the stable supercritical clusters are formed steadily, this follows

dZn/dt = 0 for all cluster sizes which results in J1 = J2 = ⋯ = Jn∗ = ⋯ =

JN−1 = const. = Js, where Js is the stationary nucleation rate. Writing the

rate equation, Eq. (4.6), and applying the stationary condition, we can ap-

proximate the stationary nucleation rate by (Kashchiev, 2000)

Js = J0 exp(− ∆Ω∗
kBT
) , (4.16)

where J0 is a kinetic prefactor and the height of nucleation barrier ( ∆Ω∗) is

determined from Eq. (2.47) or Eq. (2.48). J0 weakly depends on thermodyna-

mic variables controlling the nucleation process and is defined by (Kashchiev,
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2000)

J0 = zfn∗C0, (4.17)

where z is the Zeldovich factor and C0 is the concentration of nucleation sites

in the old phase. For homogeneous nucleation (HON) in a condensed old

phase, C0 is approximated by the number density of molecules as each molecule

can work as an active centre for cluster formation. Therefore we can write

C0 = N
VΣ
= 1

ν
= ρ (Kashchiev, 2000). The Zeldovich factor is given by

z =
⎡⎢⎢⎢⎢⎣
− d2∆Ω(n)/dn2∣

n=n∗
2πkBT

⎤⎥⎥⎥⎥⎦
1/2
, (4.18)

which takes the following form by using the new model 1 (Eq. (2.57 ) and using

the new surface to define clusters)

z2 = (2
9
a0γ∞n

∗
n
− 4

3n′∗n
2 − (−∆µ + 2

3
a0γ∞n

∗
n
−1/3)n′′n∗)/ (2πkBT ) .

(4.19)

where ∆µ = kBT ln(r0), and n′′n = d2nn

dn2 and is given in Appendix D. Quantities

with asterisks are evaluated at the size of the critical cluster. The second

term in the numerator ((−∆µ + 2
3
a0γ∞n∗n−

1/3)n′′n∗) appears only if a non-EDS

cluster is used. For the conventional form of CNT, we will have n
′′

n = 0 and

hence this equation simplifies to the typical form of the Zeldovich factor, see

(Kashchiev, 2000) for example.

In the physical sense, the Zeldovich factor manifests the probability that

a critical cluster can transform to a supercritical cluster and hence 0 < z ≤ 1.

Perturbations in the thermodynamic state of the system lead to the varia-

tion in the nucleation work and consequently the Zeldovich factor. This effect

can be modelled if we use Eq. (3.13) to calculate the cluster size derivative of

the nucleation work in Eq. (4.18). By doing so, we will arrive at
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z2 =
⎛⎜⎝ − d2∆Ω0(n)/dn2∣

n=n∗ +
T

∫
T0

∆s
′′

excdT +
p

∫
p0

∆n
′′

excνdp
⎞⎟⎠/(2πkBT )

=
⎛⎜⎝
2

9
a0γ∞n

∗
n
− 4

3n′∗n
2 − (−∆µ + 2

3
a0γ∞n

∗
n
− 1

3)n′′n∗ +
T

∫
T0

∆s
′′

excdT

+
p

∫
p0

∆n
′′

excνdp
⎞⎟⎠/(2πkBT )

= z2
0
+
⎛⎜⎝

T

∫
T0

∆s
′′

excdT +
p

∫
p0

∆n
′′

excνdp
⎞⎟⎠/(2πkBT ) ,

(4.20)

where z0 is the Zeldovich factor at the reference state, ∆s
′′

exc = snn
′′

n

∗ + sσnσ
′′∗

and ∆n
′′

exc = −
ρ

ρn
n
′′

n

∗
. For an isothermal condition and an incompressible solu-

tion, this equation reads

z2 = z2
0
−

∆p νn n
′′

n

∗

2πkBT
. (4.21)

Computing the Zeldovich factor for the supersaturated solution using the

new model 1 at different pressure magnitudes shows that the squared Zeldo-

vich factor can be raised by one order of magnitude for an isothermal pressure

increase of two orders of magnitude from the ambient pressure, see Figs. 4.3

and 4.4. Also for non-EDS clusters, z2 deviates from z2
0
by a very small margin

only at high pressure magnitudes, see the dashed curves in Fig. 4.3. There-

fore, we can safely invoke the following approximation over this pressure range

z2(p) ≈ z2
0
(p) and with a negligible error in the calculation of the nucleation

rate, especially given the experimental precision, z2(p) ≈ z2
0
(p0). Likewise,

the pressure and temperature dependence of the Zeldovich factor is usually

considered to be weak and hence ignored (Kashchiev, 2000).

Under a typical stationary nucleation condition, the thermodynamic state

varies slowly compared to the rate of nucleation of critical clusters. Therefore,

the transition rates are considered constant and time-independent. However,
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Figure 4.3: z2, solid curves, and z2
0
, dashed curves, at different pressure magnitu-

des and at two different supersaturation ratios of r0 = 15 and r0 = 30.
The non-EDS cluster model with λ = 0.35 is considered here.
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Figure 4.4: Likewise Fig. 4.3 but for the EDS clusters. The small variations at
high pressure values are due to numerical calculations.

when the old phase is exposed to acoustic waves, this condition may not hold

true due to perturbations in temperature, pressure and the localised supersa-

turation ratio. Under this condition, transition frequencies and the clusters

concentration will be time varying. Nevertheless, when the following condi-

tion is satisfied, we can assume the process to be quasi-stationary and use Js(t)
as a first order approximation for the quasi-stationary nucleation rate Jqs(t)
(Kashchiev, 1970, 2000).
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∣ d
dt
(∆Ω∗(t)
kBT (t) )∣ < 16

π3τn(t) , (4.22)

where τn is the time variable nucleation time lag, i.e. the time required to reach

to the steady state nucleation at a specific thermodynamic state of the system,

and is given by (Kashchiev, 1969b)

τn(t) = 4

π3z2(t)fn∗(t) . (4.23)

By virtue of Eqs. (3.20) and (4.23), we can identify the condition for

quasi-stationary nucleation in an incompressible old phase while experiencing

isothermal wave propagation. This reads

∣ d
dt
(∆Ω∗

0
(t)

kBT
) − ∆n∗exc(t) ν

kBT

d∆p

dt
∣ < 4z2(t)fn∗(t). (4.24)

The instantaneous isothermal Zeldovich factor is obtained from Eq. (4.20) by

eliminating the integral of excess entropy. Defining the nucleation work at the

reference state as before, the time dependent component at the reference state

would be the supersaturation ratio r0 hence ∆µ. In a closed system, super-

saturation is practically variable as the concentration of monomers gradually

decays during nucleation. In addition, in the case the system is open and mass

transfer occurs, the concentration of monomers and the supersaturation ratio

will be variable as time progresses. n∗ changes with time but as a result of va-

riations in the thermodynamic state of the old phase. Therefore, we can write

d∆Ω∗
0
(t)

dt
= d∆Ω∗

0
(t)

d∆µ

d∆µ

dt
= −n∗n(t)d∆µ

dt
, which becomes

d∆Ω∗
0
(t)

dt
= −n∗n(t) kBT ṙ0(t)

r0(t) ,

if we use the equation of ∆µ = kBT ln(r0(t)) and assume that the equilibrium

surface tension at the reference state, i.e. γ∞, is independent of the supersa-

turation ratio r0. The single overdot denotes the first derivative of a variable

with respect to time. This relationship together with d∆p

dt
= d(p(t)−p0)

dt
= dp(t)

dt
,

allow simplifying Eq. (4.24) to the following format

∣−n∗n(t) ṙ0(t)r0(t) − ∆n∗exc(t) ν
kBT

ṗ(t)∣ < 4z2(t)fn∗(t), (4.25)
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it subsequently follows that

∣ṙ0(t) + r0(t) ∆n∗exc(t) ν
n∗n(t) kBT ṗ(t)∣ < 4

n∗n(t)r0(t)z2(t)fn∗(t). (4.26)

This relationship states that if the total rate of an isothermal change in the

supersaturation ratio and pressure in the system is slower than the rate with

which monomers collide with a critical cluster, the process can be considered

quasi-stationary and the nucleation rate can be approximated by Eq. (4.16). In

the closed system, the rate of the variation in the supersaturation ratio (ṙ0(t))
is related to the depletion of monomers and is quite slow (Kashchiev, 2000).

Thus, the LHS of the above equation can be approximated by the pressure

term only which gives

∣ṗ(t)∣ < 4kBT

∆n∗exc(t) ν z2(t)fn∗(t). (4.27)

This equation allows checking the condition for quasi-stationary nuclea-

tion in a closed system exposed to isothermal wave propagation. Considering

Eq. (4.27), the quasi-stationary condition holds when an isothermal perturba-

tion of pressure at any point in the wave field happens more slowly than the

weighted attachment rate of monomers to a critical cluster.

Equation (4.27) is valid for a closed system exposed to any acoustic wa-

veform. Modelling the pressure oscillation in the system by a single frequency

tone of pa = pm cos(2πft) further simplifies this equation to

2πf ∣pm sin(2πft)∣ < 4kBT

∆n∗exc(t) ν z2(t)fn∗(t), (4.28)

which rearranges to

f <
2kBT

π ∆n∗exc(t) ν ∣pm sin(2πft)∣z2(t)fn∗(t), (4.29)

and can be reformulated as
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f < kp(t)fn∗(t), (4.30)

where

kp =
2

π

kBT

∆n∗exc(t) ν pm

z2(t)∣sin(2πft)∣ = 2

π

1(∆n∗exc(t) ν pm) /kBT
z2(t)∣sin(2πft)∣ .

(4.31)

The coefficient kp is the instantaneous weight of the attachment frequency to

the critical cluster at that time instant and conveys a physical meaning which

can be inferred by using Eq. (3.19) as follows

kp =
2

π

kBT

−pm (∂∆Ω∗
∂p
)
T

z2(t)∣sin(2πft)∣ . (4.32)

The second fraction in the above equation is the inverse of the pressure

induced change in the nucleation work (or the height of nucleation barrier)

normalised by the thermal energy kBT . Thus, if pressure substantially incre-

ases the nucleation barrier, the denominator of this term tends to become a

large number which may result in a small value of kp. This may violate the

condition shown in Eq. (4.30) if the driving frequency is high enough.

As shown in Figs. 4.5 to 4.8, kp can drop to 10−13 for the solution with

supersaturation ratio r0 = 15, at pm = 100 MPa and 10−4.5 at pm = 10 MPa. For

this supersaturated solution, fn∗ is of the order of 108 − 1010 s−1 (Kashchiev,

2000). Therefore, the quasi-stationary condition will be violated at a driving

frequency of the order of kHz and MHz if pm is about 100 MPa and 10 MPa,

respectively. This combination of frequency and pressure magnitude can be

readily created experimentally when the acoustic field is generated by a high

intensity focused ultrasound (HIFU) transducer.

Computation of the kinetics of nucleation and the nucleation rate require

the transition frequencies. This is the subject of Section 4.3.
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Figure 4.5: kp(t) over non-dimensionalised time (one period of excitation) with
parameters pm = 10 MPa, f = 100 kHz at r0 = 15 and r0 = 30. Clusters
are defined by λ = 0.35.
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Figure 4.6: kp(t) calculated for EDS over non-dimensionalised time (one period of
excitation) with parameters pm = 10 MPa, f = 100 kHz at r0 = 15 and
r0 = 30.
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Figure 4.7: Similar to Fig. 4.5 but with parameters pm = 50 MPa, f = 100 kHz at
r0 = 15 and r0 = 30. Clusters are defined by λ = 0.35.
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Figure 4.8: Similar to Fig. 4.5 but with parameters pm = 100 MPa, f = 100 kHz at
r0 = 15 and r0 = 30.
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4.3 Transition frequencies

In the master equation, Eq. (4.1), the probability that the system reaches

the macrostate j from the macrostate i is given by T (i→ j; t). In the case

of nucleation, we identified macrostates by the size of clusters emerging in

the old phase and assumed that the transition mechanism is the attachment

and detachment of monomers to and from a cluster. Therefore we used the

monomer attachment and detachment frequencies to model the dynamics of the

process of cluster formation. In this section, we present equations for these

transition frequencies and will study the effect of pressure and temperature

perturbations on them.

4.3.1 Monomer attachment frequency

The monomer attachment to a condensed-phase cluster depends on the state

of the old phase. The three main governing mechanisms of the monomer at-

tachment in HON are (Kashchiev, 2000): i) direct impingement of molecules,

ii) volume diffusion of molecules and iii) transfer of molecules through the

interface of the cluster with the old phase. The direct impingement is the

governing mass transport mechanism when the old phase is gaseous. In the

case of homogeneous nucleation in liquid or solutions, the latter two mecha-

nisms are mainly considered. The interface-transfer is governed by a random

jump of monomers in the vicinity of a cluster over a distance comparable with

the molecular diameter. Thus, the probability of the interface transfer is pro-

portional with the concentration of monomers in immediate contact with the

cluster. This quantity is unknown and usually approximated by the concen-

tration of monomers in the bulk old phase Z1. Nevertheless, this concentration

tends to fade in dilute solutions. Volume diffusion happens by the diffusion

flux of monomers towards the surface of a cluster. Therefore it depends on the

surface area of the cluster, the diffusivity and the concentration of monomers

in the old phase.

Given the physics of the interface transfer, the models that have been de-

veloped for this process bear many approximations, see (Kashchiev, 2000) for
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example, though volume diffusion models are laid out based on solid foundati-

ons. Nevertheless, both mechanisms may take place simultaneously depending

on the cluster size, e.g. for small clusters interface transfer may be dominant

and once the cluster has grown enough the volume transfer becomes more im-

portant. Kashchiev showed that for n > 8, the attachment of monomers in

solutions is expected to be controlled by volume diffusion (Kashchiev, 2000).

In spite of this, the rates obtained by either of this methods are of the same or-

der of magnitude (Kashchiev and Van Rosmalen, 2003). Consequently, we can

postulate that volume diffusion is the controlling monomer attachment mecha-

nism for all clusters if homogeneous nucleation of solids in a dilute solution

exposed to acoustic waves is the matter of concern.

Volume diffusion can be modelled based on two different approaches: i)

the continuum approach, i.e. modelling the conservation of condensable mass

in a supersaturated solution, and ii) the atomic approach, i.e. using a random-

walk model to determine the probability of collision of a monomer with a

cluster and estimating the attachment frequency accordingly. Using the first

approach, the attachment frequency of monomers to a spherical n-size cluster

in the condensed phase is given by (Kashchiev, 2000)

fn(t) = kf(nn)Z1(t), (4.33)

where

kf(nn) = 4παnDR0(1 + n−1/3n )(1 + n1/3
n ), (4.34)

where αn is the sticking coefficient which is nearly unity in a dilute solution and

D is the diffusivity of a monomer in the old phase. Here we assumed that both

cluster and monomers are mobile and diffusing through the medium. This is

implemented by using the effective diffusivity and radius for collision between

a monomer and an n-size cluster, as shown by Smoluchowski (Ziff et al., 1985).

The diffusivity of a cluster was estimated based on the Stokes-Einstein
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equation. kf resembles the collision kernel of a monomer with an n-mer in

the Smoluchowski coagulation equation. This notion may be employed to

generalise this equation for the case of non-spherical clusters by making a

modification of the collision kernel using the fractal dimension of the cluster

(Ziff et al., 1985). These equations are valid for both discrete and continuous

cluster size variable n.

The RHS of Eq. (4.30) is calculated using Eq. (4.33) and results are plotted

for different excitation settings in Figs. 4.9 to 4.11. We can see that the quasi-

stationary condition only holds for the setting of r0 = 15, f = 100 kHz, pm =

1 MPa and is violated for other settings. Hence, nucleation in a dilute solution

exposed to low excitation amplitude and frequency may be treated as a quasi-

stationary process. However, nucleation in a high frequency/intensity sound

field is a non-stationary process.

4.3.2 Monomer detachment frequency

The rate at which monomers detach from an n-size cluster depends on the

characteristics of the clusters rather than properties of the bulk new phase.

This rate can be estimated following the Zeldovich method which integrates the

thermodynamics under equilibrium condition into the cluster dynamics. At the

thermodynamic equilibrium state, a balance between the number of monomers

gained and lost by two adjacent clusters on the size axis, i.e. Jn,eq = 0, should

hold. The generalised form of the Zeldovich method for the case of time-

variable supersaturation and a quasi-equilibrium condition, reads (Kashchiev,

1969a)

gn(t) = fn−1(t) exp(∆Ωn(t) −∆Ωn−1(t)
kBT (t) ) , (4.35)

and this equation for the case of continuous cluster size n becomes

g(n, t) = f(n, t) exp

⎛⎜⎜⎝
∂

∂n
∆Ω(n, t)
kBT (t)

⎞⎟⎟⎠ . (4.36)
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Figure 4.9: The RHS of Eq. (4.30) calculated with pm = 1 MPa, f = 100 kHz at
r0 = 15 and r0 = 30 for non-EDS clusters with λ = 0.35 over (a) an
oscillation period, (b) magnified about time interval 0 < τ < 0.2.

For the sake of brevity, the time variable t will not be noted in the following

equations while all parameters are considered to be time-dependent. Substi-

tuting Eq. (3.14) into above equation results in

g(n, p, T, x) = f(n,x) exp( 1

kBT

∂∆Ω0

∂n
)

× exp( 1

kBT
∫ T0

T
∆s′excdT)

× exp( 1

kBT
∫ p0

p
∆n′excνdp) . (4.37)
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Figure 4.10: Likewise Fig. 4.9 with pm = 50 MPa, f = 100 kHz at r0 = 15 and
r0 = 30 for non-EDS clusters with λ = 0.35.
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Figure 4.11: Likewise Fig. 4.9 with pm = 100 MPa, f = 1 MHz at r0 = 15 and
r0 = 30 for non-EDS clusters with λ = 0.35.

The minus signs before the integrals in Eq. (3.14) are removed here by rever-

sing the integration limits. This equation manifests the effect of a change in

temperature and pressure on the detachment frequency of monomers from a

cluster of the size n. In our case where we are interested in investigating the

effects of acoustic waves on nucleation and growth, this equation gives the full

picture within the framework of the cluster dynamics by accounting for the

effect of: i) pressure fluctuation, ii) temperature variation due to absorption or

cavitation of a bubble, and iii) mass transportation via pressure diffusion. If
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we use the same reference state as before, after some manipulations we obtain

g(n, p, T, x) = f(n,x) r[T0

T
(nσ

′(nn)−1)]
0

× exp(2
3

a0γ∞

kBT
n
−1/3
n n′n(nn))

× exp( 1

kBT
∫ T0

T
∆s′excdT)

× exp( 1

kBT
∫ p0

p
∆n′excνdp) . (4.38)

So far, we considered the cluster size n to be a continuous variable. It is

shown in Appendix E that equations derived for the detachment frequency for

the case of continuous n can also be used for the case of discrete representation

of the cluster formation work. Consequently Eqs. (4.37) and (4.38) can be

employed in conjunction with the Szilard model, too.

4.3.2.1 Incompressible solution and isothermal condition

The nucleation work and nucleus size in an incompressible solution which is

exposed to an acoustic wave were studied in Section 3.3. Here we are inte-

rested in calculating the attachment and detachment frequencies under this

condition. Given the volume diffusion mechanism, the diffusivity and the con-

centration of monomers are the main factors affecting the attachment rate of

monomers to an n-mer. The effect of pressure on diffusivity is almost neg-

ligible due to weak pressure dependence of viscosity and incompressibility of

the solution. The concentration of monomers can be spatially influenced by

mass transportation due to pressure diffusion. This effect is negligible at low

and medium pressure magnitudes. Nevertheless, in strong acoustic fields and

especially in the vicinity of an oscillating surface, e.g. near the wall of an iner-

tially collapsing bubble, mass transportation can be significant and should be

accounted for (Louisnard et al., 2007).

An acoustic wave propagating in a solution alters the thermodynamic

state and consequently changes the detachment frequency, as demonstrated in
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Eq. (4.38). In the case of an isothermal condition and pressure independent

partial molecular density, this equation simplifies to

g(n, p, T, x) = f(n,x) r(nσ
′(nn)−1)

0 exp(2
3

a0γ∞

kBT
n
−1/3
n n′n(nn))

× exp(−ν∆p
kBT

∆n′exc) . (4.39)

Subsequently, approximating the molar concentration with the concentration

of monomers, i.e. r0 = x0

xe
= Z1

Ce
where Ce is the solubility at the reference state,

we arrive at

g(n, p, T, x) = kf(nn) Cer
nσ
′(nn)

0 exp(2
3

a0γ∞

kBT
n
−1/3
n n′n(nn))

× exp(−ν∆p
kBT

∆n′exc) . (4.40)

The latest assumption is justified because the concentration of monomers in

the system at the initial time and during nucleation is significantly greater

than that of n-mers. The situation that n-size clusters, 2 ≤ n ≤ 4, are present

in the initial condition was studied before (Koźısek and Demo, 2005) and it

was shown that the nucleation rate would change by less than one order of

magnitude. Consequently, the considered initial condition is justified for our

work.

Equation (4.40) predicts a detachment frequency which is supersaturation-

dependent for very small clusters but almost supersaturation-independent in

the limit of large clusters (as shown in Appendix D, in the limit of large clusters

nσ
′(nn) tends to zero, i.e. lim

nn→∞n
′
σ = 0). In the literature, the detachment

frequency (also denoted by evaporation or decay rate) is usually reported to

be intrinsic to the cluster, i.e. it is explicitly independent of the surrounding

supersaturation (Ford, 1997; Schaaf et al., 2001; Kashchiev, 2000). However,

Kashchiev (Kashchiev, 2000) states that, this holds true as long as the excess
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free energy of the cluster is ∆µ-independent and the process is isothermal.

Unlike the EDS-defined clusters, the excess free energy of non-EDS clusters

depends on ∆µ as is shown in Eq. (2.57) and also Eq. (3.88) in (Kashchiev,

2000).

In addition, the MD simulations of homogeneous nucleation of a super-

saturated vapour phase at the triple point temperature for a Lennard-Jones

fluid show a supersaturation-dependent decay rate for small clusters (Yasuoka

and Matsumoto, 1998). Yasuoka and Matsumoto have shown that decay rates

in the supersaturated vapour are larger than those in the vacuum for small

clusters of 10 < n < 40. In contrast, the decay rates in these two situations

fairly match for larger clusters (n > 40). This trend of the supersaturation

ratio dependence of the detachment frequency is in qualitative agreement with

the theoretical predictions of Eq. (4.40). In spite of this agreement, further

elaborations require access to the values of the detachment frequency calcula-

ted by statistical mechanical simulations in the limit of small clusters. Apart

from the work of (Yasuoka and Matsumoto, 1998), we are not aware of such

published works.

4.4 Non-dimensionalisation

We will non-dimensionalise the hybrid model for a mass conserved system to

reduce the number of parameters, to estimate the relative physical significance

of different terms, and to facilitate the numerical implementation of the hybrid

master equations. Given the terms in Eq. (4.13) while imposing the mass

conserved condition Kn(t) = Ln(t) = 0, we can write the following relationships

for the non-dimensionalisation

t = tc τ, Zn = zc Zn, fn = fc fn, gn = gc gn. (4.41)

Taking Eq. (4.38) into account, essentially gn = fn◻ where ◻ is a dimen-

sionless quantity which results in gc = fc. Substituting these relations into the
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first line of Eq. (4.13) and after some manipulations we arrive at

dZ1

dτ
= − 2fctc f1(t)Z1 + 2gctc g2(t)Z2 + gctc

N∑
n=3

gn(t)Zn

− fctc

N∑
n=2

fn(t)Zn. (4.42)

For simplicity, we choose the following set of non-dimensionalisation coeffi-

cients

fc tc = gc tc = 1, (4.43)

where tc = 1/4πR0DCe, see Eq. (4.34). The term 1/4πR0DCe is equal to the

rate of impingement of the solute monomers together in an infinitely dilute

solution in equilibrium and depends on the physical properties of the solution.

We also choose the equilibrium monomer concentration to non-

dimensionalise the concentration of clusters, i.e. zc = Ce. This technically

means that Z1(t) = r0(t) if we use the approximation just mentioned above.

Exploiting these scaling factors in Eq. (4.42) yields

dZ1

dτ
= − 2f1(t)Z1 + 2 g2(t)Z2 +

N∑
n=3

gn(t)Zn −
N∑
n=2

fn(t)Zn, (4.44)

where using Eqs. (4.34) and (4.40) gives

fn = (1 + n−1/3n )(1 + n1/3
n )Z1, (4.45)

gn = (1 + n−1/3n )(1 + n1/3
n )rnσ

′(nn)
0 exp(2

3

a0γ∞

kBT
n
−1/3
n n′n(nn))

× exp(−ν∆p
kBT

∆n′exc) . (4.46)

Terms
a0γ∞

kBT
and

ν∆p

kBT
are dimensionless quantities referring to the relative
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surface energy and relative change in chemical potential of the system because

of a pressure variation, respectively.

Repeating the same procedure for other equations in the hybrid model

gives the non-dimensionalised hybrid model for a mass conserved system as

follows

for n = 1:

dZ1

dτ
= − 2f1(t)Z1 + 2 g2(t)Z2 +

N∑
n=3

gn(t)Zn −
N∑
n=2

fn(t)Zn, (4.47a)

for 1 < n ≤ Nd:

dZn

dτ
= fn−1 Zn−1 − gn Zn − fn Zn + gn+1 Zn+1, (4.47b)

for Nd < n ≤ N :

∂Z(n)
∂τ

= −
∂

∂n

⎛⎜⎝v(n) Z(n) −
1

2

∂ [d(n) Z(n)]
∂n

⎞⎟⎠ , (4.47c)

where the dimensionless growth and dispersion rates read

v(n) = f(n) − g(n), (4.48)

d(n) = f(n) + g(n), (4.49)

where f(n) and g(n) are calculated by evaluating Eq. (4.45) for the continuous

cluster size n.

4.5 Summary

The kinetics of nucleation in a mass conserved system was studied in this

chapter. The attachment and detachment of monomers are assumed to be the
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controlling mechanisms of the cluster dynamics calculated by solving a hybrid

model. The hybrid model is essentially a combination of the discrete Szilard

equation and the FPE which allows computation of the cluster dynamics across

a broad range of cluster sizes. This model is valid for any thermodynamic state

of the old phase and gives a wealth of information about the process, e.g. the

CSD, the nucleation time lag, the nucleation rate.

To solve this hybrid model, equations of transition frequencies under acou-

stic excitation are required which were determined here. For a closed system

and an incompressible old phase, variations in pressure and temperature of

the old phase influence the detachment frequency of monomers whereas the

attachment frequency remains intact. Equations (4.37) and (4.38) account for

these effects on the monomer detachment rate from a generic cluster and a

cluster identified by the new surface and new model 1 , respectively.

Solving the hybrid model is computationally expensive and time-

consuming. When the kinetics of the cluster formation is a stationary or

quasi-stationary process, we can determine the kinetics using explicit equa-

tions which are favoured for numerical implementation. We derived the

condition for quasi-stationary phase transformation in a system exposed to

acoustic waves, see Eq. (4.26) for a generic system and Eqs. (4.27) and (4.30)

for a closed system. We showed that the quasi-stationary condition for cry-

stallisation in a solution is likely to be dismissed at high pressure magnitudes

and excitation frequencies, especially at a low supersaturation ratio.

Finally, we investigated the effect of pressure and temperature perturba-

tions on the Zeldovich factor and derived Eq. (4.20) which accounts for these

effects. The numerical calculations for a generic solution, under isothermal

condition, demonstrate that the Zeldovich factor is fairly pressure indepen-

dent and can be approximated by its value at the reference state.

In this chapter, we laid the foundations for the calculation of the phase

transformation kinetics in a closed system subjected to wave propagation,

hence overlooking mass transport effects of wave propagation. This phenome-
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non and its effect on the cluster dynamics are the subject of the next chapter.



Chapter 5

Kinetics of cluster formation II:

Non-mass conserved system

Hitherto, we have studied the thermodynamics and kinetics of phase transfor-

mation in a closed system subjected to pressure and temperature perturba-

tions. We have shown that in a closed system, these localised perturbations

influence the thermodynamics and kinetics of nucleation by changing the work

of cluster formation and consequently the detachment frequency of monomers.

Thus, a model based on the closed system assumption only explains the ef-

fect of wave propagation on the aggregative mechanism of cluster formation

(nucleation and growth). Nevertheless, acoustic waves propagate across space

and therefore pressure and temperature will vary across both space and time.

These spatial gradients and their second order effects such as acoustic stre-

aming may generate mass transportation and heat transfer. These effects

produce the non-aggregative mechanism which influences the kinetics of the

phase transition.

In this chapter we relax the assumption of the closed system and will in-

clude the effect of mass transportation mediated by wave propagation. The

objective is to cast a kinetic model, both in discrete and continuous forms,

which accounts for the effects of wave propagation on both aggregative and

non-aggregative mechanisms. We will determine the net flux of clusters to the

system, i.e. the term Kn − Ln in Eqs. (4.8) and (4.10), resulting from wave
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propagation. As it is explained in Section 2.6, the solution is modelled as a

mixture of two species, namely the solute and solvent. Therefore, we will begin

this chapter with the continuity equation for a mixture and we will proceed

with the calculation of forced diffusion created by wave propagation. Initially

in Section 5.1 we will consider only non-aggregative clusters to be present in

the system. We will then combine this contribution with the previous results

obtained in Section 4.1 to achieve a model which accounts for both aggre-

gative and non-aggregative effects of acoustic waves which we will present in

Section 5.2.

5.1 Conservation of mass in a mixture

This section concentrates on the non-aggregative mechanism and therefore we

will ignore clustering and coalescence of clusters and assume the behaviour of

clusters are independent of each other in the solution.

A schematic of the system in a bath is shown in Fig. 2.2. We now consider

the same system and assume that it is a volume element fixed in space. Its

position relative to the origin of a fixed system of coordinates is specified

by the position vector r. All the physical variables like density, pressure,

and temperature will therefore be functions of space and time. Denoting the

properties of the solution, the solvent and the solute with suffices m, 1 and 2,

respectively, the mass density of the solution reads ρm(t, r) = ρ1(t, r) + ρ2(t, r).
In the previous chapters, we have used number density instead of mass density.

The relationship between these densities are as follows: for instance for the

old phase number density is equal to ρ(t, r) = ρ2(t, r) NA
M2

where M2 is the

molar weight of the solute and NA is the Avogadro’s number.

The conservation of mass for the solution is given by (Bird et al., 1960)

∂ρm(t, r)
∂t

= −∇ ⋅ (ρm(t, r) u), (5.1)

which in the case of an incompressible fluid, i.e. a solution with constant mass

density, becomes
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∇ ⋅ u = 0. (5.2)

Here u is the velocity vector in the Cartesian coordinate system.

The generic form of the conservation of mass for the solute species in the

solution reads (Bird et al., 1960)

∂ρ2(t, r)
∂t

= − ρ2(t, r) ∇ ⋅ u − u ⋅ ∇ρ2(t, r) − ∇ ⋅ j2, (5.3)

where j2 is the molecular flux of species 2 (the solute). This equation expresses

the rate of change in the total number of the solute molecules accumulated in

the volume element resulting from different mass transport mechanisms: the

convective flux (the first two terms on the RHS) and the molecular flux of the

solute species (the last term on the RHS). Convection represents mass trans-

portation due to the average velocity of all molecules which is the average

velocity of the fluid as a whole. Diffusion is viewed as mass transportation

due to the instantaneously changing stochastic velocity of individual molecu-

les, compared to the averaged fluid velocity. For the transportation of dilute

species in a mixture where the solvent dominates the momentum of the sy-

stem, we can consider a reference velocity equal to the velocity of the dominant

component, i.e. the solvent here, and identify a diffusive flux and a convective

flux accordingly.

Considering the cluster size as a discrete variable, we can write mass

density of the solute species in terms of concentration of different clusters as

follows

ρ2(t, r) NA
M2

=
N(t)∑
n=1

nZn(t, r), (5.4)

Defining Yn(t, r) = M2NAnZn(t, r) as the mass density of n-size clusters in the

solution, this equation reformulates to

ρ2(t, r) = M2

NA

N(t)∑
n=1

nZn(t, r) = N(t)∑
n=1

Yn(t, r), (5.5)
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This equation tells that the solute can be considered to be made ofN(t) species
with mass densities of Yn(t), n = 1, . . . ,N(t). Zn (or Yn) and as a result ρ2

change in the system because of mass transportation. Thus, hereafter we will

use the superscript mt to distinguish the effect of mass transportation. Also,

the notation (t, r) will be omitted for the sake of brevity though concentrations,

densities and pressure are temporally and spatially variable. The conservation

of mass for the nth component in the solution, which n = 1, . . . ,N(t), is given
by (Bird et al., 1960)

∂

∂t
Y mt

n = − Y mt

n (∇ ⋅ u) − u ⋅ ∇Y mt

n − ∇ ⋅ j[n]. (5.6)

Here j[n] is the molecular flux of clusters of the size n. Invoking the definition

of Yn and dividing both sides by nM2/NA, we arive at the concentration form

of this equation as follows

∂

∂t
Zmt

n = −Zmt

n ∇ ⋅ u − u ⋅ ∇Zmt

n −
NA
M2 n

∇ ⋅ j[n]. (5.7)

These formulations are subject to the following considerations; i) the so-

lution is modelled as a binary mixture, ii) the solute species is a set of clusters

with various sizes and concentrations, iii) mass transportation is a non-ag-

gregative process, and iv) all the clusters travel with the flow velocity and

the no-slip condition holds. The latter consideration is plausible given that

clusters are in nanoscopic scales and the solution is dilute (Bird et al., 1960;

Hirschfelder et al., 1954).

The change in the concentration of clusters due to non-aggregative me-

chanism is therefore given by

Kn(t, r) − Ln(t, r) = ∂

∂t
Zmt

n (t, r). (5.8)

Replacing the RHS by Eq. (5.7) gives the discrete representation of the

net mass flux in the system. The equations derived in this section are in a

generic format and account for the variation in the concentration of clusters
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of different sizes because of mass convection and diffusion.

Now, we need to define the molecular flux term, i.e. j2, used in former

equations. The molecular flux of the solute species consists of four contri-

butions, (Bird et al., 1960) namely: ordinary diffusion driven by the spatial

concentration gradient of species (jx), pressure diffusion (jp) which describes

the tendency for the mass flux under the influence of pressure gradient, forced

diffusion (jg) which is a mass flux due to imposed external forces, and a thermal

diffusion (jT) term which expresses mass diffusion because of the temperature

gradient. The overall molecular flux is then equal to j2 = jx + jp + jg + jT.

The molecular flux for an ideal binary solution in the absence of external forces

becomes (Bird et al., 1960)

j2 = −
C2

m

ρm

M1M2 D12∇x2 −
C2

m

ρmRT
M2

2
M1 D12x2 ( V2

M2

−
1

ρm

)∇p
− DT

2
∇ lnT (5.9)

where Cm = C1 + C2 = ρm
Mm

is the total molar concentration of the solution

(the molar density of the solution), D12 and x2 and DT
2
are the diffusivity and

mole fraction and the thermal diffusion coefficient of the solute in the solution,

respectively. V2 = M2

ρ2
is the partial molal volume andMm andM1 are the molar

mass of the solution and solvent, respectively. The ratio of thermal diffusivity

over (mass) diffusivity is called the Soret coefficient, i.e. ST = DT
2

D12
.

A simpler form of this equation can be obtained if we impose some as-

sumptions. Such an approximation is discussed below.

5.1.1 Simplified conservation of mass equation

As discussed in Section 4.3.2.1, we can postulate that the solute species is

mainly constituted of monomers and therefore approximate the mole fraction

by the number concentration ratio of monomers. Therefore, we will have

x2 =
Zmt
1

CmNA . Substituting these relationships into Eq. (5.9) gives
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j2 ≈ j[1] = −
M1M2D

MmNA
∇Zmt

1 −
M1M2

2
D

MmNART
Zmt

1 ( V2

M2

−
1

ρm

) ∇p
− DT

2
∇ lnT, (5.10)

where D is the diffusivity of monomers used before in Section 4.3.1.

The effect of a temperature gradient on mass transport is usually conside-

red negligible unless there is a steep temperature gradient (Bird et al., 1960).

Thus, this term is negligible as far as acoustic wave propagation in the solution

is concerned and can be safely neglected. In the case of inertial cavitation, a

substantial temperature rise at the centre of the collapsing bubble occurs which

vanishes rapidly across space from the centre of the bubble as time progresses

(Storey and Szeri, 2000; Suslick and Flannigan, 2008; Shaw and Spelt, 2010).

However, the temperature rise in the solution in the vicinity of the surface of

the bubble is much lower and close to the temperature of the solution, rather

than that of the core of the bursting bubble (Cogné et al., 2015). In contrast,

the pressure gradient in the vicinity of the bursting bubble is substantially gre-

ater than the temperature gradient (Ohl et al., 1999; Storey and Szeri, 2000;

Akhatov et al., 2001; Shaw and Spelt, 2010; Cogné et al., 2015). Furthermore,

for an organic mixture and an aqueous solution, the absolute value of the Soret

coefficient is of the order of ∣ST ∣ ≈ 0.001 − 0.01 K−1 (Platten, 2006). Conse-

quently, the contribution of the thermal diffusion term to mass transportation

tends to be much smaller than that of the concentration and pressure terms

and can therefore be ignored. The above equation then transforms into

j2 = −
M2D

NA
(M1

Mm

∇Zmt

1 +
M1

Mm

k
p
j

T
Zmt

1 ∇p) ,
(5.11)

where kpj =
M2

R
( V2

M2

−
1

ρm

). In general, the densities and consequently kpj

are time and space dependent which makes the above equation nonlinear.
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Considering that the solution is dilute, we can writeMm ≈M1 and ρm ≈ ρ1,

hence the above equation becomes

j2 = −
M2D

NA
(∇Zmt

1 +
k
p
j

T
Zmt

1 ∇p) . (5.12)

Equations developed thus far in this section are based on the assumption

that the solute species is present mainly in the form of monomers with a

population considerably greater than n-mers. This literally transforms mass

transportation into monomer transportation which yields

K1 − L1 =
∂

∂t
Zmt

1 ,

Kn − Ln = 0, n ≥ 2. (5.13)

Likewise, in the theory of thin film condensation, the system is usually

assumed open by including the arrival and evaporation of monomers in the

kinetics model of the cluster formation (Zinsmeister, 1968, 1969; ZinkeAllmang

et al., 1992; Venables et al., 1984; Nieminen and Kaski, 1989; Ratsch and

Venables, 2003).

The net rate of monomer transportation is obtained by combining

Eqs. (5.12) and (5.7) which reads

∂

∂t
Zmt

1 = −Zmt

1 ∇ ⋅ u − u ⋅ ∇Zmt

1 −
NA
M2

∇ ⋅ j2, (5.14)

leading to

∂

∂t
Zmt

1 = −Zmt

1 ∇ ⋅ u − u ⋅ ∇Zmt

1

+ D ∇ ⋅ (∇Zmt

1 +
k
p
j

T
Zmt

1 ∇p) . (5.15)

Eventually, if we consider the solution is incompressible, utilising Eq. (5.2)

further simplifies this equation to the following format
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∂

∂t
Zmt

1 = − u ⋅ ∇Zmt

1 + D ∇ ⋅ (∇Zmt

1 +
k
p
j

T
Zmt

1 ∇p) . (5.16)

The assumption of incompressibility for wave propagation in an aqueous solu-

tion holds true for a vast range of excitation pressures and frequencies (Hamil-

ton and Blackstock, 1998). However, this condition may fail when the pressure

perturbation is generated from a violent inertial cavitation or at a strong shock

front with associated acoustic Mach number of unity or higher (Prosperetti,

1975; Hamilton and Blackstock, 1998). Equation (5.16) is highly nonlinear. In

favour of simplification in the mathematical implementation, following (Lou-

isnard et al., 2007), in the limit of a dilute and incompressible solution we can

consider making an additional approximation where kpj is constant and only

depends on the solution properties.

5.2 Hybrid model with mass transportation

Variation in the concentration of n-size clusters because of mass transporta-

tion to a non-mass conserved system can be estimated from Eq. (5.7) for the

discrete representations of cluster size. Substituting this relationship for the

term Kn − Ln , see Eq. (5.8), we will arrive at the Szilard equation which

accounts for the cluster formation as a result of association and dissociation of

monomers in a non-mass conserved system. The Szilard equation then reads

∂

∂t
Zn = fn−1(t)Zn−1 − gn(t)Zn − fn(t)Zn + gn+1(t)Zn+1

−Zn ∇ ⋅ u − u ⋅ ∇Zn −
NA
M2 n

∇ ⋅ j[n], (5.17)

The continuous format of this equation (the FPE with mass transportation)

was derived in Appendix C,and reads
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∂

∂t
Z(n) = −

∂

∂n
(v(n)Z(n) − 1

2

∂ [d(n, t)Z(n)]
∂n

)
− Z(n) ∇ ⋅ u − u ⋅ ∇Z(n) − NA

M2 n
(∇ ⋅ j[n]) . (5.18)

The terms on the RHS are divided into two main categories: the first four

terms on the RHS which represent the aggregative change in the cluster con-

centration, and the last three terms on the RHS indicating the non-aggregative

change in the cluster concentration governed by the convective and diffusive

transportation of clusters.

When we consider that the solute species is mainly made of monomers

and therefore utilise Eq. (5.13) and the relationships developed in the former

section, we can construct the following hybrid model

for n = 1:

∂

∂t
Z1 = − 2f1(t)Z1 + 2g2(t)Z2 +

N∑
n=3

gn(t)Zn −

N∑
n=2

fn(t)Zn

− Z1 ∇ ⋅ u − u ⋅ ∇Z1 −
NA
M2

∇ ⋅ j2, (5.19a)

for 1 < n ≤ Nd:

∂

∂t
Zn = fn−1(t)Zn−1 − gn(t)Zn − fn(t)Zn + gn+1(t)Zn+1, (5.19b)

for Nd < n ≤ N :

∂

∂t
Z(n) = − ∂

∂n
(v(n, t)Z(n) − 1

2

∂ [d(n, t)Z(n)]
∂n

) , (5.19c)

where the molecular flux j2 is given in Eq. (5.10).

From the perspective of thermodynamics and fluid mechanics, the follo-
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wing assumptions are made in this hybrid model; i) cluster formation is go-

verned by the association and depletion of monomers, ii) monomers have the

same convective velocity as that of the flow and the no-slip condition holds,

and iii) the solution is a continuum body and encompasses different species.

Since none of these assumptions restricts the temporal application of these

equations, this hybrid model should be valid for describing the cluster dyn-

amics during transient processes, e.g. under a rapid pressure fluctuation or

shock waves.

This model tells that the concentration of clusters is a function of three

variables, which are the cluster size n, time t, and space r. The concentration

change over time is determined by two fluxes, they are the flux along the

size axis n representing the aggregative process, see Eq. (4.7), and the mass

flux along the space axis r modelling the contribution of the non-aggregative

mechanism, Eq. (5.8). In a mass-conserved system, the latter flux disappears

and the flux of clusters over the size axis (aggregative mechanism) will be the

only driving mechanism of the cluster dynamics. The significant point here is

that these two mechanisms are coupled because attachment and detachment

frequencies are functions of the concentration of monomers, see Eqs. (4.33)

and (4.38) for details. This implies that these fluxes cannot be solved for

independently. Nonetheless, the question that arises here is whether or not

these two fluxes occur at comparable rates? If not, it would be physically

reasonable to overlook the slower process in favour of further simplifications.

This is further discussed in Chapter 7.

In the special case of an incompressible solution, the first line of this hybrid

model can be further simplified by taking Eq. (5.16) into account which reads

∂

∂t
Z1 = − 2f1(t)Z1 + 2g2(t)Z2 + ∑N

n=3 gn(t)Zn − ∑N
n=2 fn(t)Zn

− u ⋅ ∇Z1 + D ∇ ⋅ (∇Z1 +
k
p
j

T
Z1 ∇p) . (5.20)



5.3. Nucleation rate 145

Finally, ignoring the Ostwald ripening process, this equation can be even furt-

her simplified to

∂

∂t
Z1 = − f1(t)Z1 + g2(t)Z2 − u ⋅ ∇Z1 + D ∇ ⋅(∇Z1 +

k
p
j

T
Z1 ∇p) . (5.21)

In summary, Eqs. (5.19a), (5.20), and (5.21) allow the determination of

the concentration of monomers in a non-mass conserved system for the follo-

wing situations, respectively; i) accounting for the Ostwald ripening process,

the compressibility of the solution and all mechanisms contributing to mass

transportation, ii) accounting for the Ostwald ripening process but not the So-

ret effect and the compressibility of the solution, furthermore, the solution is

assumed to be dilute, iii) overlooking the Ostwald ripening process, the Soret

effect, and the compressibility of the solution which is assumed to be dilute.

Each of these situations can be taken to study the kinetics of the cluster for-

mation in a non-mass conserved system under sonication when the underlying

assumptions hold. For instance, the Ostwald ripening takes place towards the

end of nucleation where the concentration of large clusters is considerably high

and the supersaturation ratio is depleted significantly. Therefore, Eq. (5.21)

should be adequately precise to model the effect of acoustic waves, in parti-

cular, shock waves or transient pressure oscillations emitted from a collapsing

bubble, on the kinetics of nucleation.

5.3 Nucleation rate

In Section 4.2 we presented the generic equation for determining the nuclea-

tion rate, see Eq. (4.14). This equation is valid for nucleation in both mass-

conserved and non-mass conserved systems. Solving the hybrid model des-

cribed in Eq. (5.19), the concentration of clusters across the size axis will be

obtained which allows computation of the nucleation rate via Eq. (4.14).

Equation (4.16) gives the stationary nucleation rate in a closed system

which can also be utilised to obtain the first order approximation of the quasi-
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stationary nucleation rate if the quasi-stationary condition, Eq. (4.22), is satis-

fied. The stationary nucleation rate equation holds for a non-mass conserved

system as long as supercritical clusters do not appear or vanish through mass

transportation (Kashchiev, 2000). This condition will be achieved in our hy-

brid model since we considered the mobility and transportation of monomers

only. In the case of isothermal wave propagation, Eq. (4.22) simplifies to

Eq. (4.26) which is restated here

∣ṙ0(t) + r0(t) ∆n∗exc(t) ν
n∗n(t) kBT ṗ(t)∣ < 4

πn∗n(t)r0(t)z2(t)fn∗(t). (5.22)

We should bear in mind that the supersaturation ratio, the pressure oscillation

and all other variables in this equation are a function of time and of the

position vector r. Here ṙ0(t) includes the effects of both mass transportation

and the cluster formation. Taking the approximation of r0(t) = Z1

Ce
used in

Section 4.3.2.1, term ṙ0(t) is then equal to the LHS of the first line of Eq. (5.19).

As we mentioned before, this equation is a set of coupled ODEs and a partial

differential equation (PDE) and therefore ṙ0(t) cannot be explicitly solved.

Thus, we will numerically solve the hybrid model and use the generic equation

Eq. (4.16) to compute the nucleation rate.

5.4 Non-dimensionalisation

We will non-dimensionalise the hybrid model for an incompressible solution

here. Since we assumed that only monomers transport through a non-mass

conserved system, only the Szilard equation for monomers would be dif-

ferent from other equations in the hybrid model for a closed system pre-

sented in Chapter 4. We will use the following relationships for the non-

dimensionalisation
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t = tc τ, Zn = zc Zn, fn = fc fn, gn = gc gn,

u = uc u, p = pc p, ∇ =
1

lc
∇̄, ∇

2 =
1

l2
c

∇̄
2. (5.23)

Expanding the last term in Eq. (5.20) and substituting the above relationships

gives

zc

tc

∂

∂τ
Z1 = − 2fczc f1(t)Z1 + 2gczc g2(t)Z2 + gczc

N∑
n=3

gn(t)Zn

− fczc

N∑
n=2

fn(t)Zn −
zcuc

lc
u ⋅ ∇̄Z1 +

zcD

l2
c

∇̄
2Z1

+
zcDpc k

p
j

l2
c
T

∇̄Z1 ⋅ ∇̄p +
zcDpc k

p
j

l2
c
T

Z1∇̄
2p, (5.24)

which simplifies to

∂

∂τ
Z1 = − 2fctc f1(t)Z1 + 2gctc g2(t)Z2 + gctc

N∑
n=3

gn(t)Zn

− fctc

N∑
n=2

fn(t)Zn −
tcuc

lc
u ⋅ ∇̄Z1 +

tcD

l2
c

∇̄
2Z1

+
tcDpc k

p
j

l2
c
T

∇̄Z1 ⋅ ∇̄p +
tcDpc k

p
j

l2
c
T

Z1∇̄
2p. (5.25)

The non-dimensionalisation coefficients are not unique and different choi-

ces can be made. We set the coefficients as follows

lc = Λ, uc = um =
pm

ρ0c0
, tc =

lc

uc

, pc = pm, fc = gc =
1

tc
, (5.26)

where Λ is the mass diffusion length at the acoustic wave period of 1/f given

by Λ =
√
2D

f
, um is the magnitude of particle velocity in an acoustic field with

the pressure amplitude pm. c0 and ρ0 are the wave speed and mass density of
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the solution at the reference temperature T0. Unlike Section 4.4, here uc and lc

are exploited to determine tc through the relationship tcuc

lc
= 1. We also denote

the dimensionless quantity pck
p
j /T by β which depends only on the mixture

properties at the given temperature T and the scaling factor pc.

As we discussed in Section 5.1, the convective mass transportation and

pressure diffusion are driven by wave propagation in the fluid. The distance

that a wave travels over a wave period is called the wavelength and is usually

taken as the characteristic length of wave propagation. Diffusion happens by

the microscopic stochastic molecular motion. The mean square displacement

of particles from the starting position over a wave period is taken as a cha-

racteristic length of this process, i.e. Λ. Therefore, we can define the quantity

ε = Λ
λa

to represent the ratio of these two length scales. This quantity is relati-

vely small for a typical aqueous solution and acoustic wave parameters. When

ε → 1, the wave length will be comparable to the diffusion length. For exam-

ple, for a typical aqueous solution with 10−10 < D < 10−6 m2 s−1, a very high

frequency, i.e. of the order of 106 MHz, is required which gives a wavelength of

the same order of the mean free path 1 which tends to violate the continuum

hypothesis for wave propagation and mass transportation. In this work, we

will restrict ourselves to continuum mechanics hence parameters will be chosen

accordingly.

We define the dimensionless Péclet number by Pe = l2c
Dtc

= lcuc

D
=

Λum

D
= um√

Df/2 . We may define the mean diffusive particle velocity as

Λ
1/f =

√
2Df . Therefore Péclet number represents the ratio of the maximum

particle velocity because of wave propagation to the mean diffusive particle

velocity. The higher the Péclet number, the stronger the effect of pressure

diffusion relative to ordinary diffusion. Using the definition of ε, this Péclet

number can be written as Pe = ελaum

D
where the fraction constructs another

Péclet number as follows: Peλ = λauc

D
= λaum

D
= λ2

a
/D

λa/um

. Peλ can be inferred as

the ratio of the mean time required for a monomer to random walk a length

1the molecular mean path in water at room temperature and atmospheric pressure is
roughly 2.5Å = 0.25 nm.
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of λa (ordinary diffusion) to the time to travel λa with the maximum velo-

city it could gain through wave propagation. Therefore, a high Peλ means

convection and pressure diffusion become dominant over ordinary diffusion

through a wave period. In other words, the time scale of pressure diffusion is

smaller than the time scale of ordinary diffusion. We can deduce that in the

case of shock, ordinary diffusion can be ignored in favour of pressure diffusion

and convection.

Exploiting this set of non-dimensionalisation coefficients yields the non-

dimensionalised form of Eq. (5.20) and other equations in the hybrid model

which read

for n = 1:

∂

∂τ
Z1 = − 2f1(t)Z1 + 2g2(t)Z2 +

N∑
n=3

gn(t)Zn

−

N∑
n=2

fn(t)Zn − u ⋅ ∇̄Z1 +
1

Pe
∇̄

2Z1

+
β

Pe
∇̄Z1 ⋅ ∇̄p +

β

Pe
Z1∇̄

2p, (5.27a)

for 1 < n ≤ Nd:

∂

∂τ
Zn = fn−1 Zn−1 − gn Zn − fn Zn + gn+1 Zn+1, (5.27b)

for Nd < n ≤ N :

∂

∂τ
Z(n) = − ∂

∂n

⎛⎜⎝v(n) Z(n) −
1

2

∂ [d(n) Z(n)]
∂n

⎞⎟⎠ . (5.27c)

Here, the dimensionless attachment and detachment frequencies are different

from those obtained in Eq. (4.45) and are calculated by
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fn =
tc

tm,m

(1 + n−1/3n )(1 + n1/3
n )Z1, (5.28)

gn =
tc

tm,m

(1 + n−1/3n )(1 + n1/3
n )rnσ

′(nn)
0 exp(2

3

a0γ∞

kBT
n
−1/3
n n′n(nn))

× exp(−ν∆p
kBT

∆n′exc) . (5.29)

The quantity tm,m = 1/4πR0DCe has the unit of time and can be interpreted as

the mean monomer collision time in the solution. In the FPE in the hybrid mo-

del, the dimensionless growth and dispersion rates are obtained by calculating

Eq. (4.48) with transition frequencies given by the above equation.

Finally, the non-dimensionalised form of Eq. (5.16) which only accounts

for the transportation of monomers due to acoustic waves (when the phase

transition is ignored) reads

∂

∂τ
Z1 = − u ⋅ ∇̄Z1 +

1

Pe
∇̄

2Z1 +
β

Pe
∇̄Z1 ⋅ ∇̄p +

β

Pe
Z1∇̄

2p. (5.30)

We will numerically solve this equation and the whole hybrid model for

different boundary conditions in Chapter 7, where the non-dimensionalisation

of boundary conditions will also be explained.

5.5 Summary

In this chapter, we formulated the evolution of cluster concentration over time

in a non-mass conserved system. The Szilard and Fokker-Planck equations

were extended by including mass transfer in an acoustic wave field. The re-

lationships for mass transfer due to ordinary diffusion, thermal diffusion (the

Soret effect), and pressure diffusion were presented, see Eqs. (??), (5.7) and

(5.10).

We derived a set of equations for a hybrid model describing the cluster

dynamics in a dilute solution assuming only monomers transport through the
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system, Eq. (5.19). Moreover, the different variations of this equation for

incompressible solutions with and without the Ostwald ripening process were

derived and presented in Eqs. (5.20) and (5.21), respectively. These equations

were non-dimensionalised and the relative importance of their different terms

were also studied.

This chapter concluded the second part of the thesis. Here, a brief sum-

mary of the achievements made so far will be presented. In Chapters 2 and

3 we studied the thermodynamics of phase transition in a system under the

following circumstances, respectively: i) the silent condition, and ii) with pres-

sure and temperature perturbations. Subsequently, the kinetics of the cluster

formation in a mass-conserved system was investigated in Chapter 4. In the

present chapter, we progressed to develop the kinetics of cluster formation in

a non-mass conserved system. The contributions in the last four chapters por-

tray the influence of wave propagation on the thermodynamics and kinetics

of cluster formation. The major feature which distinguishes these contribu-

tions from other works is that the coupled effects of dynamic pressure on

both thermodynamics and kinetics of phase transformation are accounted for.

These effects are ascribed to the following governing mechanisms i) altering

the height of the nucleation barrier, and the clustering work for non-critical

clusters, ii) changing attachment and detachment frequencies, and iii) chan-

ging the spatial population of monomers resulting from the convective mass

transport and forced diffusion.

The kinetics of nucleation in an acoustic field could be easily non-

stationary within the range of the pressure magnitude and frequency achieva-

ble in practice, see Section 4.2. Therefore, the full set of the kinetic equations

should be solved numerically to determine the nucleation rate.

We will proceed with the validation of the cluster model developed in

Chapter 2 against the experimental data of water droplet nucleation. This

will be followed by evaluating the effect of acoustic waves on crystallisation

in an aqueous solution in Chapter 5. These results will elucidate some of the
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possible mechanisms in a sonocrystallisation process.



Chapter 6

Validation of the new cluster

model using water droplet

nucleation data

In this chapter, we will present the validation of the new model 1 by applying it

to the test case of water droplet nucleation from the gas phase. Homogeneous

nucleation of water droplets in vapour is very well understood and has been

extensively studied both experimentally and theoretically. Thus, the model of

water was chosen for validation of the developed model.

6.1 Water droplet nucleation

The excess free energies of water droplets of different sizes have recently been

calculated by means of a statistical mechanical approach at a temperature of

T = 300 K (Samsonov et al., 2003; Lau et al., 2015b). Wilhelmsen (Wilhelmsen

et al., 2015) showed that calculations using the TIP4P/2005 molecular model

can successfully estimate the surface energy in agreement with experiments.

Thus, we will use the calculations of Lau et al. (Lau et al., 2015b), which

are based on this molecular model to validate our nucleation model. We will

follow the ensuing procedure

(i) λ is deduced by comparing the effective surface tension determined by

our model, Eq. (2.63), with those obtained from statistical mechanics,
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(ii) the nucleation rate is determined using this value of λ and compared

with experimental data at T = 300 K obtained by Brus et al. (Brus

et al., 2008, 2009).

This specific temperature is selected based on the availability of MD simu-

lations and experimental data. Moreover, we selected the experimental results

by Brus et al. (Brus et al., 2008, 2009) for the following reasons: they used

the thermal diffusion cloud chamber for the measurement of the nucleation

rates. This allows water droplet nucleation experiments to be conducted at

high temperatures, where the required physical properties are known and MD

simulations available (Wyslouzil and Wölk, 2016).

In order to calculate the kinetics of water droplet nucleation by solving

the hybrid model, an expression for attachment frequency in the gaseous old

phase is required. Considering that for the gaseous old phase, clusters are

much smaller than the mean free path in the gas phase, the attachment rate

should correspond to a particle flux modelled by the kinetic theory of gases.

Consequently, the attachment frequency reads (Kashchiev, 2000; Vehkamaki,

2006)

fn(t) = kf,g(nn)Z1(t), (6.1)

where

kf,g(nn) = αna0

√
kBT
2πm0
(1 + 1

n
)1/2(1 + n1/3

n )2. (6.2)

With respect to the discussion presented in Section 2.3.3, the mass of an

n-size cluster is given by mn = nm0, where m0 is the mass of a monomer in the

new phase. However, the radius of a cluster is defined by nn. Subsequently, if

we use kf,g(nn) instead of kf(nn) given in Eq. (4.34), all the previous equations

are applicable and can be used for this exercise. The non-dimensionalisation

coefficient of time changes to kt = a0

√
kBT
2πm0

pve
kBT

where pve is the equilibrium

vapour pressure. At T = 300 K, we have kt = 5.9 × 107 s−1.
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6.2 Simulation results

Figure 6.1 shows the effective surface tension at different values of λ calculated

at the experimental supersaturation ratio r = 3.77 at T = 300 K. We can see

for small clusters of n = 3 and 6 molecules, the best fit is achieved at λ = 0.45

whereas for larger clusters (n > 12) the curve with λ = 0.37 happens to give the

best agreement with the statistical mechanic results. This may suggest that λ

is cluster size-dependent, similarly to the Tolman length (Talanquer and Ox-

toby, 1995; Lu and Jiang, 2005; Granasy, 1998) for the surface of tension as

the dividing surface. Nevertheless, since with λ = 0.37 we achieve an accep-

table approximation of the size-dependent surface tension over a wide range

of cluster sizes, we take this value for our calculations at this condition. The

validity of this choice will be evaluated by comparing the calculated kinetics

of nucleation with experiments.

The same procedure was repeated for all experimental supersaturation

ratios at T = 300 K reported by Brus et al. (Brus et al., 2008, 2009). We

observed a similar trend showing λ is larger for small clusters (n < 12) and

decreases for larger clusters (n > 12). Likewise, in the case of the surface of

tension as the dividing surface, a similar dependency of the Tolman length

n

Figure 6.1: Effective surface tension (γeff) at different λ calculated by Eq. (2.63) at
T = 300 K. ▲: Statistical mechanical simulations (Lau et al., 2015b)
at the cluster size of n = 3,6,12,24,48,76,96. Solid black curve shows
the best fit to statistical mechanical simulations.
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on the droplet sizes, i.e. an inverse relationship with the droplet size, and the

supersaturation ratio at a constant temperature were also reported (Lu and

Jiang, 2005; Granasy, 1998).

Having determined the parameter λ for a range of supersaturation ratios

at temperature T = 300 K, the hybrid model is then numerically solved and

the nucleation rate is calculated. The physicochemical properties of vapour

and water are given in Table A.2 in Appendix A.

Figures 6.2 and 6.3 depict the variation in the concentration of supercri-

tical clusters (ζ(τ)) and the supersaturation ratio over time, respectively, for

two cases; i) classical clusters which are defined by the EDS (λ = 0 ), and ii)

the new surface with the DS positioned at λ = 0.37. The equilibrium monomer

concentration of Ce = pve/kBT is used to determine the concentrations Z(n) in
the supersaturated state. The nucleation time is identified by the appearance

of the first ten supercritical clusters, i.e. log(Zs) ≥ 1. It is about τn,0 = 1 and

τn,1 = 7 for these EDS and non-EDS cases, respectively, and is indicated by

vertical dashed-dotted lines, see Fig. 6.2. We can see in Fig. 6.3 that around

τ = 0.001 the supersaturation ratio slightly drops and reaches a plateau where

the nucleation stage begins. This drop is due to the rapid formation of subcri-

tical clusters. The intervals between the beginning of the plateau at τ = 0.01

and τ = 0.1 for the EDS and non-EDS cases, respectively, and the nucleation

times indicate the time required to nucleate ten supercritical clusters. Basi-

cally, the supersaturation ratio curves shown in Fig. 6.3 can be divided into

three parts: i) the relaxation part where subcritical clusters and the first ten

supercritical clusters are created, ii) the part corresponds to nucleation and

growth stage where the supersaturation ratio plateaus and sharply drops to

unity, i.e. r ≈ 1 at the end of this stage. The onset of this stage is indicated

by a vertical dashed-dotted line in Fig. 6.2, and iii) the growth and Ostwald

ripening part where starts when the concentration of the supercritical clusters

decreases while the mean size of supercritical clusters increases. This usually

takes place after the nucleation stage and when r ≈ 1. The latter stage was not
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studied for water droplet nucleation but thoroughly investigated in the next

chapter for a sonocrystallisation process.

The system is closed and therefore the total mass is constant. As a result,

the condensation depletes the monomer supersaturation and terminates the

nucleation and monomer-driven growth stages around τ = 109 for the classical

cluster case. At this moment, the concentration of monomers drops drasti-

cally (r ≈ 1). In contrast, the new model 1 with λ = 0.37 predicts a longer

Figure 6.2: Logarithmic concentration (logarithm in base 10 in all figures) of su-
percritical clusters at two different λ values over time. Vertical lines
labelled τn,0 and τn,1 indicate the beginning of the nucleation stage in
models with λ = 0 and λ = 0.37, respectively. The unlabelled vertical
line indicates the end of nucleation and monomer-driven growth of su-
percritical clusters in the case of λ = 0 while nucleation is still ongoing
in the case of λ = 0.37. This is due to a faster nucleation rate for
λ = 0 which leads to quicker depletion of the imposed supersaturation
of monomers.

r

Figure 6.3: Supersaturation ratio at two different λ values over time. See the
caption of Fig. 6.2 for details.
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nucleation stage. This implies that this model estimates a lower nucleation

rate than CNT. The sharp fall marked by the vertical line at the right hand

side is due to the way we define ζ(τ), see above, and does not hold physically.

Since the supersaturation ratio drops to almost unity, the critical cluster size

mathematically tends to infinity and therefore all the previously made clusters

become subcritical which brings about this abrupt drop of ζ(τ).
Repeating these calculations for all experimental supersaturation ratios,

we determine the stationary nucleation rates for all these conditions. These

results together with the experimental nucleation rate and values obtained

using the BD model are plotted in Fig. 6.4. The procedure mentioned in

the beginning of this section was repeated to obtain the value of λ at each

supersaturation ratio. They are λ = 0.29,0.32,0.35 at r = 3.39,3.52,3.61,

respectively.

The main difference between our model and BD is the non-EDS defini-

tion of clusters used in our model which results in a more accurate estimate

r

Figure 6.4: Logarithm of the nucleation rate versus the supersaturation ratio at
T = 300 K. The nucleation rate calculated by our new model using λ

values determined from statistical mechanical calculation of Lau et al.
(Lau et al., 2015b) at the data points of Brus 2008 and 2009 (solid
line with ◆ and dashed line with ▶, respectively). The experimental
results of Brus et al. 2008 and 2009 (Brus et al., 2008, 2009) are also
shown (solid line with ● and dashed line with ∎, respectively). The
nucleation rate determined by the BD model at the data points of Brus
2008 and 2009 (▲ and ▼, respectively).
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of the excess energy. This also leads to a different critical cluster size and

consequently a different nucleation rate. Additionally, the hybrid model de-

termines the kinetics of nucleation for a stationary as well as a time variable

non-stationary system. This is important because in practice the supersatu-

ration imposed on the system is always time variable.

The agreement between the predicted nucleation rate and experimental

values are very good. Although the dividing surface we used to define clus-

ters has the property of size-independent surface tension, the effective surface

tension of this surface is size, temperature and supersaturation dependent, see

Eq. (2.63). This is attributed to the fact that in our model, a cluster of size n

can take on different combinations of nn and nσ due to the arbitrary placement

of the DS contrary to a cluster defined by the EDS or the surface of tension.

Therefore we are able to reproduce γeff by choosing the location of the dividing

surface appropriately, see Fig. 6.1.

It seems that this important characteristic addresses some of the short-

comings of CNT, at least for water at T = 300 K. Since this model does not

account for non-idealities in the gas phase and the compressibility of the liquid

phase, the close agreement between our numerical results and experimental va-

Figure 6.5: λ calculated from the experimental nucleation rate (Wölk and Strey,
2001) for water nucleation at different temperatures. The error bars
show the range in λ at a specific temperature as a function of the
supersaturation ratio. The lower and upper limits correspond to the
smallest and largest experimental supersaturation ratios at a specific
temperature, respectively.
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lues should be considered carefully.

The lack of molecular simulation results at other temperatures does not

allow us at this stage to extend these calculations to lower temperatures. Ne-

vertheless, we deduced the values of λ from experimental data obtained by

Wölk et al.,(Wölk and Strey, 2001) shown in Fig. 6.5. We can see the gradual

descent of λ with temperature rise. A similar trend was also observed and

reported for the Tolman length (Talanquer and Oxtoby, 1995; Holten et al.,

2005).

6.3 Summary

In this section, we demonstrated that using a specific non-EDS dividing sur-

face together with the Gibbs droplet model in a generic format can better

predict the properties of clusters and the kinetics of nucleation compared to

CNT. These results validate the new nucleation model, i.e. the new model 1 ,

developed and presented in Chapter 2. This also supports our intention to

study the effect of pressure fluctuations on the nucleation process by means of

a more generic model than CNT. These results are elaborated in Chapter 7.



Chapter 7

Simulation of thermodynamics

and kinetics of cluster formation

in an acoustic field

We have established the required equations to determine the kinetics of nu-

cleation while accounting for the effect of fluctuations in the thermodynamic

state of the old phase. In Chapter 6 we examined the new cluster and nu-

cleation models by applying them to the test case of water droplet nucleation

from vapour. Having validated the model and its numerical implementation,

we will evaluate the effect of acoustic waves on crystallisation in an aqueous

solution in this chapter.

Acoustic waves can be generated from different sources. Therefore, diffe-

rent pressure fields may be produced in the bath. The equations developed in

this work are not restricted to a specific pressure field and are generic in this

sense. When the system is mass conserved, we just need to know the thermo-

dynamic state of the system temporally. However, in a non-mass conserved

system, the fluid dynamics must be calculated to determine mass transporta-

tion in the system. The system’s characteristics influence the fluid dynamics,

hence a similar acoustic source tends to produce different effects on a phase

transition in different systems.

The majority of experimental works do not define all the necessary para-
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meters of both the acoustic field and crystallisation. Thus, a direct comparison

with sonocrystallisation data seems impractical. In addition, acoustic cavita-

tion usually takes place prior to or concurrently with crystallisation, which

is often not characterised in experiments. Therefore, our objective in this

chapter is to evaluate our new model in a simple acoustic field and conduct a

qualitative comparison against experimental observations. Simulations will be

conducted in both mass conserved and non-mass conserved systems. We will

consider various scenarios of pressure oscillation in each system.

Furthermore, we will study the effect of the position of the DS (the para-

meter λ) on the kinetics of nucleation under isothermal pressure perturbations

in Section 7.4.

In all the simulations, the reference state is considered to be at room tem-

perature and atmospheric pressure, T0 = 293 K and p0 = 0.1 MPa respectively.

The isothermal simulations are also conducted at T0. The physicochemical

properties of the solution, the new phase, and water at the reference state are

listed in Tables A.1 to A.3 in Appendix A.

7.1 Acoustic wave propagation

The equations derived in this work are not limited to a specific source type and

are generic in this sense. For the sake of simplicity, we consider finite amplitude

plane acoustic waves emitted from an infinite plate oscillating harmonically in

the direction normal to the plate. The radiated waves propagate through a

semi-infinite dissipative and nonlinear medium. We will consider up to the

second order approximation in the equation of state for density terms. Due

to the nonlinearity of the medium, the wave can distort and form a shock

wave. The simplest second order wave equation which describes the combined

effects of dissipation and nonlinearity on the propagation of plane waves is the

Burgers’ equation (Hamilton and Blackstock, 1998). The Burgers’ equation

can be formulated in the following format (Mitome, 1989)
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∂v

∂t
+ v

∂v

∂ξ
=
δ0

2

∂2v

∂ξ2
, (7.1a)

v = u + c − c0, (7.1b)

ξ = x − c0t, (7.1c)

δ0 =
η

ρ1

(4
3
+
ηB

η
+
(γs − 1)κ

ηCp

) , (7.1d)

where u is the particle velocity, c is the local wave speed, c0 is the wave speed

in the initial undisturbed condition, x is the distance from the source, ξ is

the retarded distance (spatial propagation delay), δ0 is the sound diffusivity,

η is the dynamic (shear) viscosity, ηB is the bulk viscosity, γs is the specific

heat ratio, κ is the thermal conductivity and Cp is the specific heat at con-

stant pressure. With respect to the dilute solution assumption, we postulate

that the hydrodynamic properties of the wave medium are similar to those of

the solvent. This is a legitimate assumption within the range of the driving

frequencies which will be used in this work, i.e. f ≤ 2 MHz.

The Burgers’ equation is widely used to calculate the progressive plane

wave field in a lossy and nonlinear medium within the limitation of the weak

shock theory. The condition for the weak shock is met if Ma ≪ 1 where

Ma = u0/c0 is the acoustic Mach number. We will solve the Burgers’ equation

in the next section and check this condition for the range of parameters used

in this work.

7.1.1 Numerical implementation

Several methods have been developed to solve the Burgers’ equation analy-

tically and numerically in either the frequency domain or the time domain.

Here, we will use Mitome’s exact solution (Mitome, 1989) which allows deter-

mining pressure in the pre- and post-shock regions in the time domain. The

final expression for the numerical computation of the wave field reads (Mitome,

1989)
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p(τw, x) = pm

2

Γ

∂

∂τw
log∫ ∞

−∞
exp [−Γ

2
((τw − τ ′

w
)2

2x
+ cos(τ ′

w
) + 1)]dτ ′

w
,

(7.2a)

τw = − ω
ξ

c0
= ω (t − x

c0
) , (7.2b)

x =
x

xs
, xs =

c0

βωMa

=
c2
0

βωum

, (7.2c)

Γ =
2βpm

δ0ρ1ω
. (7.2d)

Here, τw is the retarded time (temporal propagation delay), xs is the lossless

shock distance, β is the coefficient of nonlinearity and Γ is the Goldberg number

which indicates the importance of the nonlinearity relative to the dissipation.

Furthermore, as mentioned above, the source is considered to be an oscillating

plate with an angular frequency of ω = 2πf and a velocity magnitude of um.

This results in the boundary condition of p(t,0) = pm sin(ωt) where pm/um =

ρ1c0. The latter depicts the linear acoustic impedance relationship, which holds

in the case of plane waves emitted by an unbounded piston (oscillator). The

derivation of Eq. (7.2) is omitted here for the sake of brevity,and the reader is

referred to the cited paper for more details.

The difficulties involved in the numerical implementation of Eq. (7.2) are

twofold. First, the infinite bounds of the integral are difficult to handle by

numerical schemes. Second, the absolute value of the argument of the expo-

nential term can become very large resulting in an ill-conditioned situation.

For instance, for a sound source oscillating at f = 1 MHz with pm = 50 MPa

and emitting acoustic waves in water at T = 293 K, the Goldberg number is

roughly 15000 which produces a factor of exp(−15000) ≃ 3.9E − 6515. The

fact that the integrand is small except near τw can be used to cope with the

first difficulty. We set the integral bounds to the range in which the exponen-

tial has a value larger than a sufficiently small value. Therefore, the upper

and lower limits are set to τw + ψ and τw − ψ, respectively. Mitome (Mitome,
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Figure 7.1: Plane wave field across space up to 1.5xs at τw = 2π with f = 1 MHz
and pm = 10 MPa.

1989) suggested a ψ equal to
√
−

4x logυ

Γ
where υ is an infinitesimal number.

Depending on the Goldberg number an appropriate υ is required. Our analy-

sis showed that for the range of Goldberg number encountered in the context

of this thesis, a constant ψ = 10 specifies a broad enough range to include

the variation of the exponential term. To deal with the second problem, the

mpmath library was used (Johansson, 2013). This library provides high preci-

sion floating-point arithmetic. We used a multi-interval quadrature integration

scheme which splits the integration range [τw − ψ, τw + ψ] to 40 intervals and

the precision is set to 100 floating points.

As we demonstrated in Chapter 3, a relatively strong pressure field is

required to considerably influence the thermodynamics of phase transition.

Thus, we calculate the pressure field created by a source with pm = 10 MPa

and pm = 50 MPa. Figures 7.1 and 7.2 show the wave propagating across space

at the end of an excitation period for the driving condition f = 1 MHz, pm =

10 MPa and f = 1 MHz, pm = 50 MPa, respectively. We can see (more visible in

Fig. 7.2) in the pre-shock region, the wave field can be safely approximated by

a harmonic travelling wave as the distortion is negligible. However, around the

shock formation distance (henceforth, shock distance) the waveform distorts

and gradually develops into an N -shaped waveform (henceforth, N -wave )

in the far field. The shock distance is inversely proportional to the pressure

magnitude, see Eq. (7.2c). Hence, as shown in Fig. 7.2, the waveform distorts
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Figure 7.2: Plane wave field across space up to 1.5xs at τw = 2π with f = 1 MHz
and pm = 50 MPa.
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Figure 7.3: Plane waveform across space up to 1.5xs over one period with f =
1 MHz and pm = 50 MPa.

and turns into an N -wave over a shorter distance when pm = 50 MPa and the

driving frequency is unchanged. Increasing the pressure magnitude by a factor

of five reduces the ratio of the shock distance to the wavelength by a fifth,

from 10 to 2. Nevertheless, as long as x ≪ xs, the harmonic travelling wave

equation is sufficient to accurately represent the acoustic field, see Fig. 7.3. The

acoustic Mach numbers for waves shown in Fig. 7.1 and 7.2 are Ma = 0.004

and Ma = 0.02, respectively, which satisfy the weak shock condition.
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Figure 7.4: (a) Relative intensity across space, (b) temperature variation across
space for pm = 50 MPa and f − 1 MHz.

The temperature in the fluid while only accounting for the absorption of

a plane wave energy is given by (Hamilton and Blackstock, 1998)

dT

dt
= −

1

ρ1Ch

dI

dx
=

2αfI

ρ1Ch

, (7.3)

where I is the intensity of acoustic waves at the desired location, αf is the

frequency dependent absorption coefficient and Ch is the heat capacity of the

fluid. αf is obtained by the binomial expansion of the characteristic wave

number (Hamilton and Blackstock, 1998)

αf =
δ0

2c3
0

ω2, (7.4)

Intensity is the time average of the energy flux pu which for a plane wave

simplifies to I = ⟨p2⟩/ρ1c0. The relative intensity with respect to I0 = p2m/ρ1c0
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is almost unity in the pre-shock zone but drops for x > 1, see Fig. 7.4. This

results in negligible temperature variation in the pre-shock region. Therefore,

the isothermal assumption made in Section 3.3 is verified if i) the system is

located in the pre-shock zone, or ii) the acoustic irradiation is short or pulsed

for systems in x > xs. Simulation parameters will be chosen such that the

isothermal condition holds for the results presented in this chapter.

7.2 Mass conserved system

We derived and non-dimensionalised the governing equations for the kinetics

of cluster formation in a mass conserved system in Section 4.4. In this section,

we will solve these equations numerically and present the results. Different

scenarios are considered to investigate the effects of the pressure magnitude,

frequency and waveform on the kinetics of clustering in a closed system. Em-

ploying these equations under isothermal condition, we can study nucleation,

the early stage of growth and also the Ostwald ripening regime in a system

undergoing pressure variation.

7.2.1 Numerical implementation

We consider a single closed system in the bath with a time varying supersatura-

tion ratio. Also, it is postulated that only monomers are present in the system

and bath initially. The presence of n-size clusters, 2 ≤ n ≤ 4, at the initial

condition may change the nucleation rate by less than one order of magnitude

(Koźısek and Demo, 2005). Consequently, the considered initial condition is

adequate for our work.

With regards to the numerical computation, Eq. (4.47) is taken and the

following procedure is applied

(i) the FPE in the hybrid model is discretised exploiting the CC70 algorithm

developed by Chang and Cooper (Chang and Cooper, 1970). This algo-

rithm is specifically designed for solving the FPE. The CC70 algorithm

converts the FPE from a PDE to a set of ODEs using a special weighted

finite difference scheme. This algorithm ensures that the conservation
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of the total number of particles in the system and the non-negativity of

Z(n) hold.

(ii) this set of ODEs obtained from the discretisation of the FPE together

with the ODEs of the Szilard equations are combined and solved using the

VODE solver (Brown et al., 1989). VODE is an adaptive variable ODE

solver developed to deal with stiff ODEs with time-dependent coefficients

(Brown et al., 1989).

The boundary conditions are defined as follows: i) equal concentration

and flux condition at the boundary between discrete and continuous sections

of the model, i.e. at Nd, and ii) zero flux condition at the end of the size axis,

i.e. N . To present these boundary conditions mathematically, we will need the

discretised form of the FPE. For ease of the reader, the dimensionless FPE is

reproduced here

∂Z(n)
∂τ

= −
∂

∂n

⎛⎜⎝v(n) Z(n) −
1

2

∂ [d(n) Z(n)]
∂n

⎞⎟⎠ =
∂J(n)
∂n

, (7.5)

where J(n) is the flux in the continuous size domain and is equal to the negative

of the terms in the bracket. Exploiting the central finite difference method, we

can write

dZm

dτ
=
Jm+1/2 − Jm−1/2

∆nm−1,m+1
, (7.6)

where

∆nm−1,m+1 =
nm+1 − nm−1

2
. (7.7)

Therefore, the boundary condition at the matching point, where m = Nd, reads
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ZNd
= Z(Nd),

JNd
=

JNd−1/2
∆nNd−1,Nd+1

Ô⇒ fNd
ZNd

− gNd+1ZNd+1 =
JNd−1/2

∆nNd−1,Nd+1
.

(7.8)

And the boundary condition at the final point on the cluster size axis reads

JN+1/2
∆nN−1,N+1

= 0, (7.9)

thus, evaluating Eq. (7.6) at m = N simplifies to

dZN

dτ
= −

JN−1/2
∆nN−1,N+1

, (7.10)

The expansion and computation of Jm∓1/2 based on the CC70 algorithm is skip-

ped here and the reader is referred to (Chang and Cooper, 1970) for detailed

information. Finally, the mesh grid on the cluster size axis must be generated.

Since a gradual and smooth increase from a relatively small Nd to a large N

with a minimum number of nodes is desired, a power law expression suggested

in other works (Vetter et al., 2013; Rempel, 2008) will be taken here

nm+1 = nm + (1 + a)m. (7.11)

where a controls the mesh refinement. Depending on the value of Nd and

the total number of molecules N , the number of nodes and subsequently the

simulation time vary. For simulations reported here, we set a = 0.001 and N

changes from 500 to 8000 based on the expected size of crystals which may

appear during the simulation time interval and Nd is usually set to 500. This

produces a relatively fine mesh with a large set of ODEs which is usually

required when pressure fluctuates considerably. Otherwise, for simulations

where the numerical computation was stable with a coarser mesh, e.g. at lower

pressure magnitudes, we used the combination of a = 0.01, N = 2500 to reduce
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the simulation time. The numerical scheme was coded in Python and the

implementation was validated against the published results of Vetter et al.

and Rempel et al. (Vetter et al., 2013; Rempel, 2008) with the identical set of

parameters.

7.2.2 Simulation results

Here, we report simulations performed using different sets of parameters. We

will start with varying the magnitude of pressure statically. This will be follo-

wed by a harmonic pressure excitation modelled using the Burgers’ equation,

described in Section 7.1. Whilst Burgers’ equation is a one-dimensional mo-

del, we will demonstrate that simulation results can explain some experimental

trends reported in the literature. The driving acoustic pressure magnitude and

frequency were varied from 1 MPa to 50 MPa and 20 kHz to 2 MHz, respecti-

vely. This range of acoustic parameters pertains to the experimental amplitude

and frequency of ultrasonic waves generated by different types of transducers,

e.g. planar and high intensity focused, used in sonocrystallisation experiments.

The non-dimensionalisation constants are fc = gc = t−1c
= 2.9 × 105 s−1 and

zc = Ce = 1023 m−3 s−1. Unless otherwise stated, all the following simulations

were conducted with λ = 0.35 which is an average value of λ formerly obtained

for water droplet formation at T = 300 K. This choice is improvised assuming

the surface energy of clusters in a dilute aqueous solution shows a similar size

dependence as water droplets at the same temperature. Nevertheless, we will

investigate the effect of different values of λ in Section 7.4.

7.2.2.1 Static pressure

The effect of the pressure magnitude on the nucleation barrier at different

supersaturation ratios was discussed in Chapter 3. Here, we will investigate

the effect of the magnitude of the static pressure on the kinetics of crystallisa-

tion. Initially we will determine the stationary nucleation rate at the ambient

pressure with different supersaturation ratios, see Fig. 7.5. Setting the nucle-

ation rate threshold at 106 m−3s−1,(Kashchiev and Van Rosmalen, 2003) gives
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a minimum of r0 = 24 for nucleation to take place practically. Following the

discussion in Chapter 4, we set the initial supersaturation ratio r0 = 30 for all

the simulations presented in this chapter. This tentatively allows observing the

effect of pressure fluctuations on crystallisation with relatively modest pressure

magnitudes obtainable experimentally.

Figure 7.6 shows the concentration of supercritical clusters over time at

different pressure magnitudes of 1, 10, 50 and 100 MPa. Vertical dashed lines

illustrate the nucleation time lag at different pressure magnitudes. Similar to

the water droplet formation, the nucleation time lag is defined as the time

required for the first ten supercritical clusters to appear. We can see that in
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Figure 7.5: Stationary nucleation rate at different supersaturation ratios determi-
ned by the BD model.

Figure 7.6: Concentration of supercritical clusters at different pressure magnitudes
over time with λ = 0.35. Vertical lines labelled τn,100 to τn,1 indicate
the beginning of the nucleation stage for different static pressures of
old phase. Static pressure decreases from the black curve (100 MPa)
at the top to the red curve at the bottom (1 MPa).
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the case of positive kρ, τn has an inverse relationship with the pressure magni-

tude. For example, the nucleation time lag reduces by more than six orders of

magnitude as the pressure magnitude increases only by one order from 10 MPa

to 100 MPa (τn,100 ≈ 10−8 which gives tn,100 ≈ 30 fs). A similar trend between

the pressure magnitude and the experimental lifetime of superheated xenon,

oxygen and argon liquids was reported in the literature too (Baidakov et al.,

1981; Baidakov and Kaverin, 2009). They reported an inverse relationship

between the driving voltage, i.e. proportional to the pressure magnitude pm,

and the lifetime for these superheated liquids. The lifetime of the superheated

liquid is conceptually equivalent to the nucleation time τn determined in this

work (Kashchiev, 2000; Baidakov, 2007). Thus, the simulation results quali-

tatively agree with the reported experimental observations. However, in that

case, the new phase is gaseous and less dense, thus ∆nexc is negative and a

negative ∆p is required to lower the nucleation barrier and reduce the lifetime,

see Eq. (3.19).

The supersaturation ratio over time is depicted in Fig. 7.7. An increase in

the pressure magnitude amplifies the depletion rate of monomers in a closed

system. This fast nucleation rate leads to supercritical clusters with smaller

sizes. Analysing Fig. 7.8, we can see that the Ostwald ripening regime at the

highest pressure (100 MPa) starts at roughly log(τ) = −0.7 when the concen-

tration of supercritical clusters reaches its maximum and declines afterward.

The average size of supercritical clusters, however, increases after this instance

which is due to the absorption of depleted monomers from smaller clusters by

larger clusters. The Ostwald ripening, however, could not be observed when

the pressure magnitude is equal to 1 MPa, see Fig. 7.9. In this case, the con-

centration and the average size of supercritical clusters increase and sharply

drop together. In Figs. 7.8 and 7.9, the concentration of supercritical clus-

ters are not smooth because of the discretised nature of the numerical method

employed for solving the kinetics of cluster formation.

The contour plots in Figs. 7.10-7.12 show the size-weighted cluster size
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Figure 7.7: Supersaturation ratio at different pressure magnitudes over time with
λ = 0.35.

Figure 7.8: Concentration of supercritical clusters (solid line) and mean size of su-
percritical clusters (dashed line) at the static pressure of 100 MPa and
with λ = 0.35. Around log(τ) = −0.7 the concentration of supercritical
clusters becomes a maximum and starts to decline whereas the mean
size of supercritical clusters increases and plateaus shortly after.

Figure 7.9: Concentration of supercritical clusters (solid line) and mean size of
supercritical clusters (dashed line) at the static pressure of 1 MPa
and with λ = 0.35. Around log(τ) = 8.8 the supersaturation ratio
approaches unity, the concentration of supercritical clusters becomes a
maximum and starts to decline. The mean size of supercritical clusters
drops too but a ripening process could not be identified.



7.2. Mass conserved system 175

Figure 7.10: Logarithmic CSD, i.e. the contour plot of logarithmic size-weighted
cluster size distribution (log(nZ)), over time at the static pressure
1 MPa with λ = 0.35. The black dashed line shows the time-
dependent size of the critical cluster.

Figure 7.11: The same as Fig. 7.10 but at the static pressure of 50 MPa.

distribution at three different static pressures. The time-dependent size of the

critical cluster is overlaid on each plot. We can obviously see that the size

of critical clusters follows the same trend as the supersaturation ratio over

time. The initial critical cluster sizes are 40,16 and 4 at pressure magnitu-

des of 1 MPa, 50 MPa and 100 MPa, respectively. Furthermore, these plots

illustrate that the size of critical clusters and the mean size of supercritical

clusters inversely correlate with the pressure magnitude (when kρ > 0). Re-

ading the concentration of clusters at the end of the nucleation period, from



7.2. Mass conserved system 176

Figure 7.12: The same as Fig. 7.10 but at the static pressure of 100 MPa.

Figure 7.13: CSD at the end of the nucleation stage (r ≈ 1) at two static pressures
of 100 MPa, the left vertical axis, and 50 MPa, the right vertical axis.
Refer to the text for details.

this contour, we obtain the CSD under these conditions, depicted in Fig. 7.13.

This figure shows that the mean of the CSD becomes smaller as the pressure

magnitude increases. This is attributed to a short nucleation period due to a

fast nucleation rate which causes a significant reduction in the time difference

between the birth time of different stable supercritical clusters. Furthermore,

the distribution becomes broader at the higher pressure magnitudes which is

due to the enhancement of the ripening process with the pressure rises (when

kρ > 0).

Using the preceding discussion of the CSD plots, a more detailed analysis

of the results presented in Fig. 7.7 can be carried out. Following the analysis

presented in Section 6.1, the curves of the supersaturation ratio corresponding
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to pressure magnitudes of 1 MPa − 50 MPa in Fig. 7.7 can be divided into

three parts: i) the relaxation part where subcritical clusters and the first ten

supercritical clusters are created, ii) the part corresponds to nucleation and

growth stage where the supersaturation ratio plateaus and sharply drops to

unity, i.e. r ≈ 1, at the end of this stage. The onset of this part is indicated

by a vertical dashed-dotted line in Fig. 7.6. Nucleation is dominated during

the plateau segment whereas growth becomes significant when the plateau

turns into an abrupt drop of the supersaturation ratio. This is identified by

the significant increase in the mean size of supercritical clusters observable

in CSD plots shown in Figs. 7.10 and 7.11. iii) the growth and the Ostwald

ripening part where starts when the concentration of the supercritical clusters

decreases while the mean size of supercritical clusters increases. The Ostwald

ripening usually takes place after the nucleation stage when large supercritical

clusters are formed (during which r ≈ 1).

At the pressure of 100 MPa (the black curve in Fig. 7.7), the boundaries

between the nucleation and growth and the Ostwald ripening zones are unclear.

Analysing Fig. 7.12 at the time interval of −4 < log(τ) < −0.7, we can observe

the concomitant occurrence of nucleation and growth. It can be seen in Fig. 7.7

that at the time instant log(τ) = −0.7 (when the Ostwald ripening begins), the

supersaturation ratio is well above unity and therefore nucleation, growth and

the Ostwald ripening are taking place simultaneously.

This analysis implies that very high pressure magnitude can lead to fast

nucleation rate and a smaller mean size of the supercritical clusters but with

a broader distribution as the Ostwald ripening starts at an early stage. The

mean of the CSD determined at the end of nucleation and shown in Fig. 7.13

confirms this deduction.

7.2.2.2 Harmonic excitation

As shown in Section 7.1, we can approximate the pressure oscillation by a

harmonic mono-frequency wave where x ≪ xs. Now, we consider a situation

in which this condition is fulfilled. Hence, the local pressure is modelled by
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Figure 7.14: Supersaturation ratio over time at different excitation frequencies and
pressure magnitude of pm = 50 MPa with λ = 0.35.

Figure 7.15: Nucleation work over time at different excitation frequencies and
pressure magnitude of pm = 50 MPa with λ = 0.35. The legend is
the same as that of Figure 7.14.

p = pa + p0 where p0 is the ambient pressure at the reference state and pa =

pm cos(2πft) is the acoustic pressure in the system with magnitude pm and

frequency f . In the next section, we will also consider a case where x > xs.

Furthermore, we will only account for the direct acoustic field and exclude the

emitted pressure from the potential acoustic cavitation which may occur at a

setting of the acoustic field.

Given the results of the static pressure condition, the thermodynamics

and kinetics of phase transition are influenced more considerably at high pres-

sure magnitudes. Therefore, in this section, we set pm = 50 MPa and conduct

simulations of nucleation in the same aqueous solution exposed to an acoustic

wave with frequencies of 0.02, 0.1, 1 and 2 MHz. The quasi-stationary condi-
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(a)

(b)

Figure 7.16: (a) Concentration of supercritical clusters over time where the old
phase is exposed to pressure fluctuation with pm = 50 MPa at different
frequencies. The legend is the same as that of Figure 7.14. (b)
magnified towards the end of simulation with f = 0 MHz (when r ≊ 1).
We can see that at f = 0, 20, 100 kHz, Zs reaches its maximum value
at log(τ) = 0.9, 1.4, 1.5, respectively. The Ostwald ripening process
follows. In contrast, at higher frequencies the nucleation stage is still
ongoing at this time.

tion does not hold for these excitation settings, see Fig. 4.10, hence Eq. (4.14)

is used to determine the nucleation rate.

Compared with the static pressure condition, the pressure oscillation leads

to a smaller effective pressure magnitude which lowers the effective nucleation

rate. This point is observed in Fig. 7.14 where the nucleation stage ends at

log(τ) = 0.8,1.4,1.8 at driving frequencies of 0,0.02 and 0.1 MHz, respecti-

vely, whereas it is still ongoing for higher frequency oscillations. The main

reason for this behaviour is the variation in the nucleation work due to pres-

sure oscillations, see Fig. 7.15, and subsequently the detachment frequency.
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Figure 7.17: Logarithmic CSD over time where the solution is exposed to an acou-
stic wave with excitation parameters of f = 100 kHz and pm = 50 MPa
with λ = 0.35.

Figure 7.18: The same as Fig. 7.17 but with excitation parameters of f = 2 MHz
and pm = 50 MPa.

Equation (3.16) shows that in an isothermal process, pressure can impede or

facilitate nucleation depending on the sign of ∆nexc∆p. When ∆nexc is posi-

tive (i.e. the formation of a condensed phase), an isothermal increase in the

reference pressure reduces the nucleation work and consequently the depletion

rate, Eq. (4.40), which gives a higher nucleation rate and vice versa. This also

influences the concentration of supercritical clusters, shown in Fig. 7.16, such

that Zs reduces as the frequency increases.

CSD contour plots for two frequencies are shown in Fig. 7.17 and 7.18.
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Comparing them with the CSD at the static pressure of pm = 50 MPa, we

observe that: i) supercritical clusters are larger in size, i.e. the concentration

is non-zero for log(n) > 4.8, and ii) the concentration of supercritical clusters

is reduced due to pressure oscillations. In other words, acoustic waves cause a

reduction in the magnitude of the CSD at the end of nucleation and shift the

mean of the CSD to a larger value as the frequency increases. The latter trend

was reported in the precipitation of manganese carbonate in an acoustic field

(Jordens et al., 2015). We should be very cautious in using this experimental

data as cavitation is likely to occur in their experiments. However, cavitation

was not monitored and quantified in their work. If we only consider the trends

reported at the lowest driving power, i.e. 4 W L−1, as the driving frequency in-

creases from 94 kHz to 1.1 MHz, the mean value of the crystal size grows from

roughly 4 µm to 13 µm. The likelihood of cavitation reduces at higher fre-

quencies especially at lower driving power. Hence, the qualitative comparison

becomes justifiable as cavitation was not accounted for in our simulations.

7.3 Non-mass conserved system

Here, we will study mass transportation created by acoustic waves and its

impact on crystallisation in the system. In the first part of this section, we

will investigate mass transportation alone, without a phase transformation,

for different excitations by solving Eq. (5.30). We will then solve the coupled

problem of sonocrystallisation in a non-mass conserved system for the situation

where mass transportation is more considerable.

7.3.1 Numerical implementation

The first line of the hybrid model in a non-mass conserved system is a PDE

with derivatives with respect to the space parameter. The central finite dif-

ference method is exploited to discretise the mass transportation terms along

the spatial axis x in this equation. Therefore, a set of ODEs must be solved to

achieve the spatial distribution of monomers. At each spatial node, the coupled

hybrid model Eq. (5.25) must be solved to compute the cluster dynamics. We
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use the same numerical approach outlined in Section 7.2.1 for discretisation

of the FPE along the cluster size axis. Likewise, similar boundary conditions

are applied for solving the FPE. Here, cluster dynamics is both spatial- and

time-dependent.

Equation (5.30) in a one dimensional acoustic field simplifies to

∂

∂τ
Z1 = − u

∂Z1

∂xd

+
1

Pe

∂2Z1

∂xd
2
+

β

Pe

∂Z1

∂xd

∂p

∂xd

+
β

Pe
Z1

∂2p

∂xd
2
. (7.12)

Here xd refers to the dimensionless location using the non-dimensionalisation

coefficient stated in Section 5.4 instead of the shock distance used to solve

Burgers’ equation.

Writing the central finite difference for derivatives reads

∂Z1

∂xd

∣
m

=
Z1∣m+1/2 − Z1∣m−1/2

∆xdm−1,m+1
=
Z1∣m+1 − Z1∣m−1
2∆xdm−1,m+1

, (7.13a)

∂p

∂xd

∣
m

=
p∣

m+1/2 − p∣
m−1/2

∆xdm−1,m+1
=
p∣

m+1 − p∣
m−1

2∆xdm−1,m+1
, (7.13b)

∂2Z1

∂xd
2
∣
m

=
(Z1∣m+1 − Z1∣m)∆xdm−1,m − (Z1∣m − Z1∣m−1)∆xdm,m+1

∆xdm−1,m∆xdm−1,m+1∆xdm,m+1
,

(7.13c)

∂2p

∂xd
2
∣
m

=
(p∣

m+1 − p∣
m
)∆xdm−1,m − (p∣m − p∣

m−1)∆xdm,m+1
∆xdm−1,m∆xdm−1,m+1∆xdm,m+1

, (7.13d)

where

∆xdi,j =
xdj − xdi

j − i
. (7.14)

Substituting these relations into Eq. (7.12) converts this PDE to a set

of ODEs across the spatial mesh grid. We employed the same VODE solver

as before for integrating over time and solving ODEs. The spatial axis is

discretised using a uniform grid with 500 nodes which results in ∆xdm−1,m+1 =

∆xdm,m+1 =∆xdm−1,m =∆xd. Finally, discretising Eq. (7.12) by a central finite
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difference method and using a uniform spatial grid result in

dZ1

dτ
∣
m

= AZ1∣m−1 + BZ1∣m + CZ1∣m+1, (7.15a)

A = u∣
m

2∆xd

+
1

Pe∆xd
2
−

β

4Pe∆xd
2
(p∣

m+1 − p∣
m−1) , (7.15b)

B = β

Pe∆xd
2
(p∣

m+1 − 2p∣m + p∣
m−1) − 2

Pe∆xd
2
, (7.15c)

C = − u∣
m

2∆xd

+
1

Pe∆xd
2
+

β

4Pe∆xd
2
(p∣

m+1 − p∣
m−1) . (7.15d)

Regarding boundary conditions, different scenarios can be considered.

Here we are interested in a generic situation to investigate mass transportation

due to one-dimensional plane wave propagation in the bulk of the solution, so

we will choose a simple von Neumann type boundary condition of ∂Z1

∂xd
∣
0

= 0.

This implies a situation where no ordinary diffusive flux takes place in the

boundary. From the acoustical point of view, we assume that the boundary

and the surrounding medium have identical characteristic acoustic impedances

resulting in a transmission coefficient of unity.

Casting a similar relationship for the boundary condition atm = end point

will make the mass transfer model solvable. For simplicity, the length of the

bath in which crystallisation occurs, is set to be equal to one wavelength,

e.g. it is about 1500 µm at f = 1 MHz. Nonetheless, we will present the results

obtained in a bath with the length of multiple wavelength.

7.3.2 Simulation results

We will initially present the simulation results of the transportation of mono-

mers in an acoustic field with different pressure amplitudes and frequencies.

We will then proceed to determine the kinetics of crystallisation over time and

across space for a case where mass transportation is more substantial. The

acoustic pressure amplitude is chosen to be 10 MPa and 50 MPa. Simulati-

ons with pm = 50 MPa were conducted in two different frequencies of 100 kHz
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Table 7.1: Non-dimensionalisation constants calculated using equations presented
in Section 5.4.

tc lc vc pc Pe β

[ns] [nm] [m s−1] [MPa] [DL] [DL]
pm = 10 MPa, f = 1 MHz 6.6 44.7 6.75 10 302 −0.12
pm = 50 MPa, f = 1 MHz 1.32 44.7 33.74 50 1509 −0.61
pm = 50 MPa, f = 100 kHz 4.18 141.4 33.74 50 4773 −0.61

and 1 MHz. This range of acoustic parameters is selected on the basis of the

discussion outlined in Section 7.2.

The non-dimensionalisation constants depend on the excitation parame-

ters and are shown in Table 7.1. The density of the solute species in an aqueous

solution typically falls in the range of 1000 < ρmass,2 < 2500 kg m−3. We choose

ρmass,2 = 2000 kg m−3 and employ the following equation to estimate the molar

mass for the solute species, i.e. M2 = 4/3πR3
0
NAρmass,2 = NAνnρmass,2.

Finally, for all results presented here we considered the von Neu-

mann boundary condition mentioned above and a spatially uniform initial

concentration.

As shown in Section 7.1, pressure oscillations can be approximated by a

harmonic lossless mono-frequency wave where x < xs. First, we consider a

situation which fulfills this condition and hence the local pressure is modelled

by p = pa + p0 where pa = pm sin(ωt − kwx) and kw is the wavenumber.

The variation in the supersaturation ratio in the acoustic field is determi-

ned by defining the quantity ∆Z1 as follows

∆Z1 =
Z1

r0
− 1, (7.16)

subsequently, we can write r(x, t) = Z1 = r0 (1 +∆Z1) where r(x, t) is the

spatially and temporally variable supersaturation ratio.

Figure 7.19 shows the contour plot of the variation in the concentration

of monomers across one wavelength in the pre-shock region over one period of

oscillation. Although the pressure magnitude is relatively large, it has a negli-

gible effect on the spatial distribution of monomers. This result is expected as
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Figure 7.19: Change in the concentration of monomers across a wavelength cen-
tered about 0.5xs over one period in a travelling wave field with
pm = 50 MPa, f = 1 MHz.
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Figure 7.20: Four snapshots of contours shown in Fig. 7.19.

the pressure diffusion is typically a slow process and may become noticeable

only over a large time scale or in the presence of a significant pressure gradient.

At τw = 0 the peak positive pressure is located at x = 0.48 which corresponds to

the concentration hot spot (the location where the concentration is maximum).

The heavier species moves towards the high pressure region and consequently

the hot spot smears as the acoustic wave travels. This can be seen in Fig. 7.20

that the peak in the concentration translates less than 0.2x ≈ 0.4λa during a

period of oscillation. For a harmonic wave, the gradient and Laplacian of the

pressure field is proportional to kw and k2w, respectively. This implies that

a stronger/weaker effect on the concentration is anticipated at higher/lower



7.3. Non-mass conserved system 186

0.3 0.4 0.5 0.6 0.7
x

0

1

2

3

4

5

6

τ w

-2
.2
e-
10

-2
.2
e-
10-1

.1
e-
1
0

-1
.1
e
-1
0

1.
3e
-1
1

1.3
e-1

0

2
.5
e-
1
0

-2.86e-10
-2.15e-10
-1.43e-10
-7.21e-11
-7.93e-13
7.05e-11
1.42e-10
2.13e-10
2.84e-10
3.56e-10

∆
Z
1

Figure 7.21: Change in the concentration of monomers across a wavelength cen-
tered about 0.5xs over one period in a travelling wave field with
pm = 50 MPa, f = 100 kHz.
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Figure 7.22: Four snapshots of contours shown in Fig. 7.21.

excitation frequencies. Figures 7.21 and 7.22 illustrate that ∆Z1 drops by one

order of magnitude if the driving frequency reduces to 100 kHz. However, the

pressure source terms in the convection-diffusion mass transportation equa-

tion are linearly proportional to the pressure magnitude. Consequently, ∆Z1

is linearly proportional to the pressure magnitude. As such, ∆Z1 reduces by

almost a factor of 0.2 when the excitation magnitude decreases to pm = 10 MPa,

exhibited in Figs. 7.23 and 7.24.
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Figure 7.23: Change in the concentration of monomers across a wavelength cen-
tered about 0.5xs over one period in a travelling wave field with
pm = 10 MPa, f = 1 MHz.
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Figure 7.24: Four snapshots of contours shown in Fig. 7.23.
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Figure 7.25: The same as Fig. 7.23 but for a standing wave field with pm = 50 MPa,
f = 1 MHz.
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Figure 7.26: Four snapshots of contours shown in Fig. 7.25.
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Figure 7.27: Change in the concentration of monomers across a wavelength cen-
tered about 2xs over one period in a travelling wave field with
pm = 50 MPa, f = 1 MHz. (b) magnified around 2xs.
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Thus far, we have investigated mass transportation by travelling acoustic

waves in the pre-shock region. Now, we consider the situation where a standing

wave field is constructed in the bath. Figures 7.25 and 7.26 depict the variation

in the concentration in a lossless standing wave field in the pre-shock region

modelled by pa = 2pm sin(ωt) sin(kwx) (Kinsler et al., 1999) with pm = 50 MPa

and f = 1 MHz. Compared to the travelling wave condition, we can see that

the solute species moves towards pressure antinodes and occupies a smaller

area. The concentration of monomers is almost two times more than the

concentration in the counterpart travelling wave situation. This corresponds to

the stronger pressure amplitude in the standing wave field, i.e. 2pm, compared

with the travelling wave situation.

Now, a case of travelling waves in the post-shock region will be studied.

The source is driven by a tone of pm = 50 MPa and f = 1 MHz. We will

consider a shock in x = 2xs at τw = 0. In this region, a full N -wave is present

and a sharp pressure gradient takes place in the shock location at each time

instant. This creates a narrow high concentration zone right after the shock

with a peak of about two orders of magnitude larger than the same wave in

the pre-shock zone, see Fig. 7.27. This increase is followed immediately by a

reduction in ∆Z1. As time progresses and the shock translates to the adjacent

point in space, the concentration rises but it is about two orders of magnitude

smaller than the peak and hence less identifiable in the plot. This can be better

observed in Fig. 7.28 which illustrates ∆Z1 in the few initial time steps. In

particular, we can see in Fig. 7.28(b) that ∆Z1 settles about 4×10−9 which is of

the same order of magnitude of its peak in the pre-shock region, see Fig. 7.21.

To elaborate on this observation, the mass flux due to the concentration

gradient j2,Z and pressure field j2,p are calculated in the first three time steps

and plotted in Fig. 7.29. j2,Z and j2,p are the first and second terms in the total

mass flux equation (Eq. (5.12)), respectively. The non-dimensionalised form

of Eq. (5.12) reads
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j2 =
∂Z1

∂xd

+ β Z1

∂p

∂xd

. (7.17)

The forced mass transportation in this acoustic field is substantially lar-

ger (by seven orders of magnitude) than mass transportation by the ordinary

diffusion. Thus, the effect of the ordinary diffusion is negligible and the con-

centration of the solute species is mainly proportional to the gradient of j2,p

shown in Fig. 7.29(c). This can also be deduced from high Pe = 1509 for this

driving condition.

The positive segment of the gradient of j2,p leads to an increase in the

concentration whereas the negative part reduces the concentration. In the next

time step, the positive segment reaches to the point which has just undergone

rarefaction and therefore cannot reach the peak produced at the initial shock

location. A similar narrow variation in the density of medium was also reported

for the propagation of weak and strong shock waves in a gaseous medium (Yano

and Inoue, 1996; Yano, 1996). They showed if the sonication carries on for a

long time, these narrow high concentration points will disperse. A similar

trend is observed here when we run the simulation over a longer time. This is

presented in Fig. 7.30 which shows ∆Z1 across a space of about four wavelength

long and over ten cycles, i.e. 20π, with pm = 50 MPa and f = 1 MHz. This

figure clearly shows that the effect of an acoustic field on transportation of

a typical solute species in a typical aqueous solution (with properties listed

in Table A.1) tends to be negligible. Nevertheless, this effect may become

noticeable only in the post-shock region and over a large time scale.
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Figure 7.28: (a) Snapshots of the contour plot shown in Fig. 7.27 in initial few
time steps. (b) Zoomed in around 2xs.
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Figure 7.29: Snapshots of (a) dimensionless mass flux due to the pressure gradient,
(b) dimensionless mass flux due to the concentration gradient, and (c)
dimensionless pressure diffusion term, around 2xs at the first three
time instances.
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If the solute species is made of heavier molecules, a more significant ∆Z1

is expected for a given driving pressure (Vrentas and Vrentas, 2016; Bird et al.,

1960; Louisnard et al., 2007). Invoking Eq. (7.12), we can see that the pres-

sure gradient is weighted by β

Pe which depends on the solute density and the

molecular weight. The latter can take larger values than the former and its

influence on the weight coefficient is perhaps more severe. To evaluate this ef-

fect, we will keep the density constant, i.e. ρmass,2 = 2000 kg m−3, and choose

a relatively large molecular radius of R0 = 10 nm (this is nearly 44 and 80000

times larger in the molecular radius and volume than the ones taken so far).

This results in νn = 4000 nm3, M2 = NAνnρmass,2 = 5045 kg mol−1, and

D = 2 × 10−11 m2 s−1 1. For the acoustic excitation with pm = 50 MPa and

f = 1 MHz, we will arrive at β = − 51801 and Pe = 10316. Consulting the

data listed in Table 7.1 for the same driving condition, we can see that β and

Péclet number are increased by 5 and roughly 1 orders of magnitude, respecti-

vely, producing a rise in β

Pe by almost 5 orders of magnitude. Figures 7.31

and 7.32 depict ∆Z1 computed for the solute made of this large molecule in

the pre- and post-shock regions. We can observe an enhancement in ∆Z1 of

the order of nearly 3 in both locations. As before, very high Péclet number

confirms that the ordinary diffusion can be overlooked in comparison with the

acoustically induced mass transportation.

Now, we need to estimate the effect of variation in the concentration and

hence the supersaturation ratio on the thermodynamics of the phase transi-

tion. Following our discussion in Section 2.6 and employing Eq. (7.16), the

contribution of the variable supersaturation ratio to the dimensionless work of

the formation of the EDS cluster, i.e. ∆Ω/kBT , reads

∆µ

kBT
= ln(r) = ln(r0(1 + ∆Z1)) = ln(r0) + ln(1 + ∆Z1), (7.18)

As shown above, ∆Z1 oscillates around zero and is a relatively small number.

1calculated from the Stokes-Einestein equation: D = kBT
6πηR0
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Figure 7.30: Change in the concentration of monomers across four wavelengths
and over ten excitations in a travelling wave field with pm = 50 MPa,
f = 1 MHz.
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Figure 7.31: Change in the concentration of monomers in a pre-shock zone for a
solute species with relatively large molecules, R0 = 10 nm. Simulation
is performed across a wavelength centered about 0.5xs and over one
period in a travelling wave field with pm = 50 MPa, f = 1 MHz.
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Figure 7.32: Change in the concentration of monomers in the post-shock distance
for a solute species with relatively large molecules, R0 = 10 nm. Simu-
lation is performed across a wavelength centered about 2xs and over
one period in a travelling wave field with pm = 50 MPa, f = 1 MHz
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Thus, the Taylor series expansion of the second term around zero gives the

following first order approximation

∆µ

kBT
≈ ln(r0) + ∆Z1 + O(∆Z1

2). (7.19)

For example, around the shock region, setting r0 = 30 which was used in the

previous simulations gives ∆µ/kBT = 3.40 ± 10−7. In the same situation,

the contribution of pressure to the dimensionless work of cluster formation for

the same cluster is about ∆ν∆p/kBT = 5 × 10−21/4 × 10−21 ≈ 1.24. Considering

the acoustic field and the bath used in the simulations, the effect of mass

transportation on ∆µ and consequently the work of cluster formation is of

O(10−7) and is therefore tentatively negligible, especially in comparison with

the pressure effect which is of O(1).
On the kinetics of cluster formation, the attachment and detachment fre-

quencies are proportional to r and rnσ
′(nn), respectively, see Eq. (4.45). Gi-

ven that variation in r is little, we anticipate an infinitesimal contribution to

transition frequencies. For the EDS cluster nσ
′(nn) = 0 and the detachment

frequency is predicted to be independent of the supersaturation ratio.

To thoroughly investigate this matter, we will solve the complete hybrid

model in a non-mass conserved system for the driving condition in which mass

transportation is more noticeable. Preceding results showed that this happens

at the post-shock region around x = 1.99. Since at this location absorption

is the highest, a long excitation tends to violate the isothermal assumption.

Thus, we will solve the cluster dynamics over a shorter time interval than

before, i.e. one wave period. This time is too short for very large clusters to

be nucleated, so we can set the largest cluster size to a smaller value to reduce

the number of ODEs and facilitate the numerical calculations. Here N = 1000

with Nd = 250 and a = 0.01 are chosen which gives the largest cluster size of

almost 9000 molecules.

The time-dependent supersaturation ratio in a non-mass conserved system

in the post-shock region is shown as a contour plot in Fig. 7.33, and in some
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Figure 7.33: Concentration of monomers (equivalent to the supersaturation ratio)
across a wave length over time.
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Figure 7.34: Concentration of monomers over time at some locations, see Fig. 7.33.

spatial points in Fig. 7.34. The non-dimensionallisation coefficients shown in

Section 5.4 are used for numerical calculations, however, results are presented

on the same time axis used in Section 7.2 (i.e. τ is the time scaled by the coef-

ficient of the attachment frequency). This allows comparison of these results

with those presented in Section 7.2.

At locations where initially the pressure amplitude is positive, i.e. points

in the rear of the initial location of the shock x < 2.1, nucleation is enhanced

which results in a greater reduction of the supersaturation ratio than those

locations beyond the shock location. As time progresses, the shock travels

in the positive direction of x axis and therefore pressure behind the shock

drops. Consequently, the effect of pressure on nucleation in those locations is

initially constructive which gradually weakens and becomes repressive when
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the rarefaction cycle begins.

In the same locations, the concentration of supercritical clusters over time

is computed and depicted in Fig. 7.35. The nucleation time lags (τn) are

calculated and shown by the vertical dashed lines. One can see that across a

wavelength, they vary by about two orders of magnitude. Given that the time

constant is tc = f−1
c
= 3.48 µs, τn changes in the range of nano to micro

seconds. This implies that nuclei are created over different time intervals across

the wave field and hence they will grow to different sizes over the same time.

The rate of nucleation is proportional to the inverse of the exponential of the

nucleation work which is the lowest just before the shock and the highest just

after the shock, see Fig. 7.36. This can also be observed in Fig. 7.35 that the

concentration of supercritical clusters is initially the highest just before the

shock (the blue dashed-dotted curve) and remains the highest at the end of

the sonication period, see Fig. 7.37.

Figures 7.38 and 7.39 show CSDs right before and after the initial loca-

tion of the shock. The vertical dashed lines display the time-dependent size

of the critical clusters (n∗). Since the simulation time is equal to only one

sonication period, these plots only depict the concentration of clusters just in

the beginning of nucleation hence the growth stage and the Ostwald ripening

regime are not simulated. Considering Eq. (3.30) for a non-EDS cluster and

Eq. (3.32) for the EDS cluster, together with Eq. (7.19), the dependence of n∗

on mass transportation and the pressure amplitude are given by ∆Z1 (of first

order accuracy) and
kρν∆p

kBT
, respectively. Taking the distribution of ∆Z1 into

account and given that the smallest size of n∗ in both spots are equal, we may

deduce that the effect of mass transportation on the size of nuclei is negligible

compared to the pressure effect (the former is of O(10−7) whereas the latter is
of O(1) with the value of 1.24). Consequently, we may extend this conclusion

and correlate the spatial variation of the CSD to mainly the pressure field.
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Figure 7.35: Concentration of supercritical clusters over time at different locations.
Vertical dashed lines indicate the beginning of the nucleation stage
at different locations. A similar colour code as the curves is used for
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Figure 7.36: Nucleation work over time at different locations.
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Figure 7.37: Concentration of supercritical clusters across space at the end of the
first cycle of sonication.
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Figure 7.38: CSD in x = 1.99. Vertical dashed line shows the size of the critical
cluster.

Figure 7.39: CSD in x = 2.02. Vertical dashed line shows the size of the critical
cluster.

7.4 Simulations at different λ

In Chapter 6 we demonstrated by choosing a suitable λ value, we could cor-

rectly predict the water droplet nucleation rate. To study the effect of an

acoustic wave on crystal nucleation, we employed the new surface with size-

independent λ = 0.35. Here, we perform a sensitivity analysis of the parameter

λ including the case of λ = 0 (representing the EDS cluster) on the kinetics

of clustering. The clustering work and thermodynamics at different λ values

were presented and discussed in Chapters 2 and 3.

Figures 7.40 and 7.41 show variation in the supersaturation ratio over

time at two different pressure magnitudes and different λ values. Given kρ > 0,

a negative λ basically implies that the dividing surface is placed beyond the
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EDS.

The supersaturation ratio over time at different λ and pressure magnitudes

is depicted in Figs. 7.40 and 7.41. At a small static pressure magnitude, the

r

Figure 7.40: Supersaturation ratio over time at different values of λ and the static
pressure of pm = 1 MPa.

r

Figure 7.41: Supersaturation ratio over time at different values of λ and the static
pressure of pm = 100 MPa.The legend is the same as that of Figure
7.40.

Figure 7.42: CSD at the end of the nucleation stage (log(τ) = 2) at a static pressure
of 50 MPa and at different λ values.
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effect of pressure on the thermodynamics and kinetics of nucleation is negligible

and λ influences the kinetics through nσ
′ and n′n in the first two terms of

Eq. (4.40). We observe that at low pressure magnitudes, the nucleation rate

increases as λ drops, whereas at a high magnitude static pressure, the inverse

trend is identified (this is because of the last term in Eq. (4.40)). This change

in the nucleation rate influences the CSD at different λ values. For instance,

at pm = 50 MPa and at the end of the nucleation stage, we see that the mean

of the CSD is shifted towards a smaller n (Fig. 7.42). This difference becomes

more noticeable at higher pressure magnitudes.

In the case of pressure fluctuations with non-zero frequency, the effect of

the location of dividing surface on nucleation is more clear. Equation (4.40)

shows that a non-EDS cluster can affect the kinetics of nucleation through the

values of nn, nσ
′ and n′n. For the EDS cluster, nσ

′ and n′n are constant and size-

independent (equal to 0 and 1, respectively). However, for a non-EDS cluster

these quantities are variable and size-dependent, see Fig. 7.43. This influences

the pressure effect on the depletion rate and nucleation rate consequently. This

can be seen in Fig. 7.44 showing the detachment frequencies of two different

supercritical clusters for the simulation condition of pm = 50 MPa, f = 2 MHz

and r0 = 30 at a pre-shock location.

For the same driving condition, Fig. 7.45 displays a variable supersatu-

ration ratio over time for both non-EDS cases, whereas it is roughly non-

oscillatory for the EDS cluster. This is particular to this combination of the

supersaturation ratio and pressure magnitude as we observed a fluctuating su-

persaturation ratio for the case of EDS clusters either at a lower initial super-

saturation ratio or a higher pressure magnitude. This is explained as follows:

i) the new model 1 predicts a size-dependent pressure effect in the effective

supersaturation ratio, in contrast to the EDS-based model, see Chapter 3.3,

and ii) the inverse relationship between pressure and the supersaturation ratio

such that the pressure effect becomes more significant at lower supersaturation

ratios, see Chapter 3.
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n
′ n

Figure 7.43: n′n at different λ values for a range of cluster sizes.

(a)

(b)

Figure 7.44: (a) Detachment frequency, Eq. (4.40), for a supercritical cluster of
size n = 70 over time. Parameters of acoustic wave are f = 2 MHz
and pm = 50 MPa at a pre-shock location. (b) As in (a) but evaluated
for a supercritical cluster of size n = 104.5.

.
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Figure 7.45: (a) Supersaturation ratio over time when the old phase is exposed to
an acoustic wave, the same acoustic wave parameters as in Fig. 7.44,
with different λ values. (b) magnified about log(τ) = 0.25.

We introduced the effective supersaturation ratio in Section 3.3. More-

over, contributions of pressure and the supersaturation ratio on the excess

free energy are discussed and represented by Eq. (3.25). As it was discussed

there, these contributions and the effective supersaturation ratio will become

size-dependent if the non-EDS cluster is used. Figures 7.46 and 7.47 show reff

calculated using the non-mass conserved simulation results for two different

clusters, i.e. n = 1 and n = 1000 respectively, at two different locations for

the excitation parameters of pm = 50 MPa and f = 1 MHz and with r0 = 30.

The black solid curve shows the time-dependent reff in the location just behind

the shock and the dashed blue curve displays the same quantity just after the

shock. We can see that reff(n = 1) is of an order of magnitude greater than

reff(n = 1000). This was expected as lim
n→∞ reff(n) = r0 exp(kρν∆p

kBT
). If we zoom

in around log(τ) = −0.530, we can see that the peak values of reff(n = 1) are
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Figure 7.46: Effective supersaturation ratio calculated for a monomer over time at
two locations; just before the shock x = 1.99 (the black solid curve)
and just after the shock x = 2.01 (the blue dashed curve).
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Figure 7.47: Likewise Fig. 7.46 but for a cluster of size n = 1000.

different by almost ten units while this difference for n = 1000 is very little. For

a mass-conserved system, we expect the identical reff(n = 1) in both locations.

Thus, we may deduce that this difference is originated from mass transpor-

tation. This change is less than 0.01% of the peak value of reff(n = 1) which
confirms the negligible effect of mass transportation. Furthermore, for a larger

cluster of n = 1000 this difference is even smaller. This means that the effect

of mass transportation becomes more noticeable if the non-EDS cluster model

is utilised.

Finally, the excess free energy of two clusters of size n = 10 and n = 1000

are calculated and depicted in Figs. 7.48 to 7.50. One can deduce the following
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points from these figures: i) the excess free energy fluctuates out of phase

with pressure, ii) the effect of mass transportation on Fσ,1 is negligible as we

could not identify any noticeable difference in the extremum values at different

locations, iii) Fσ,1 becomes a minimum behind the shock and a maximum right

after the shock. Given that reff varies inversely, nucleation is highly promoted

behind the shock.

In the case of the conventional form of CNT, the excess free energy reads

F e
σ,1 = a0γ∞n

2/3 and only varies with the size and is independent of the su-

persaturation ratio and pressure magnitude. The curves labeled in the legend

of Fig. 7.51 display the ratio of the excess free energy of non-EDS clusters

identified with λ = 0.35 calculated by Eq. (3.25) to the excess free energy of

the EDS clusters (Fσ,cl) of the identical size. They are calculated based on the

simulation results in location x = 1.99 and include the effects of the pressure

magnitude and mass transportation. This is the dynamic form of Fσ,r which

was given in Eq. (2.61) and shown here by the cyan solid curve with r0 = 30. To

only display the contribution of the surface tension term, the magenta dotted

curve is overlaid manifesting a0γ∞n
2/3
n /Fσ,cl. As given by Eq. (2.63), we can

estimate dynamic γeff = γ∞Fσ,r(p) by scaling these curves by γ∞. Comparing

the cyan and magenta curves with others, we can see that the contribution of

mass transportation and the pressure magnitude are less important than the

supersaturation ratio, but both considerably change Fσ,cl, especially for small

clusters.
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Figure 7.48: Excess free energy of a cluster of size n = 10 over time at two locations;
just before the shock x = 1.99 (the black solid curve) and just after
the shock x = 2.01 (the blue dashed curve). Fσ,1 is calculated by
Eq. (3.25).
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Figure 7.49: Likewise Fig. 7.48 but for a cluster of size n = 1000
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Figure 7.50: Excess free energy of a cluster of size n = 10 across space at different
time instants.
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Figure 7.51: The ratio of the excess free energy for the non-EDS cluster with
λ = 0.35 to the excess free energy of the EDS cluster of the same size
(Fσ,cl), calculated at x = 1.99. Curves present readings at different
time instants shown in the legend. The dotted curve in magenta
colour is the ratio of the contribution of the surface tension term
and the cyan solid curve is Fσ,r given by Eq. (2.61) with a constant
supersaturation ratio, see the text for details.

7.5 Summary

We used a one-dimensional nonlinear Burgers’ equation to model the acoustic

field in both pre- and post-shock regions. Furthermore, a simple heat equation

is solved to compute the temperature rise in the acoustic field due to ab-

sorption. The simulation results are incorporated into the full hybrid model to

calculate the kinetics of crystallisation in an aqueous solution while accounting

for the effect of fluctuations in the thermodynamic state of the old phase. The

thermodynamic state of the old phase changes because of pressure oscillations

and mass transportation. The results are summarised in the following

• the assumption of the isothermal cluster formation is justified for a sy-

stem placed in the pre-shock region. This is also valid in the post-shock

region if the sonication is short or pulsed.

• our new cluster model predicts a size-dependent pressure effect on the

kinetics of cluster formation for the non-EDS clusters. Furthermore, the

excess free energy and effective surface tension are functions of the pres-

sure fluctuation and supersaturation ratio in addition to the cluster size.
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These characteristics are in contrast to the predictions of the conventio-

nal form of CNT which is based on the EDS clusters.

• in a mass conserved system, the nucleation rate is strongly related to the

pressure magnitude but not the driving frequency. However, the driving

frequency influences the CSD by varying the net time in which clusters

experience a high amplitude pressure field.

• in a non-mass conserved system, the driving parameters and the spatial

location of the system are important and can influence the thermodyn-

amics and kinetics of cluster formation.

• a relatively large driving pressure is required to observe the significant nu-

cleation rate usually reported in the sonocrystallisation literature. The

effect of this strong pressure field is more significant on the thermo-

dynamics of phase transition than on mass transportation. Therefore,

acoustic waves influence nucleation and growth through thermodynamic

effects associated with pressure fluctuations rather than hydrodynamic

effects. However, this conclusion should be tempered as mass transpor-

tation may largely vary when the boundary conditions change or the

acoustic streaming is accounted for in the mass transportation equation,

e.g. in the nearfield of an oscillating bubble (Louisnard et al., 2007).

This highlights the importance of the profound and accurate characte-

risation of the system in experiments which is usually overlooked in the

sonocrystallisation literature.

• the higher the molecular weight of the solute species, the more signifi-

cant is the effect of mass transportation. Nevertheless, this results in

a lower mobility of monomers which reduces the attachment frequency

and consequently may weaken the effect of mass transportation on the

kinetics of nucleation.

Although we used a simple acoustic field for numerical simulations, the

model is generic and can be used to determine the thermodynamics and ki-
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netics of cluster formation for the EDS or non-EDS clusters in an arbitrary

acoustic field. Nonetheless, our simulations are in qualitative agreement with

experimental results presented in the literature.



Chapter 8

Conclusions

The motivation throughout this thesis was to model the interaction between

an acoustic field and the crystallisation process using models in the realm of

continuum mechanics and thermodynamics. The thesis was divided into two

parts; part one where we focused on the thermodynamics of phase transitions,

and part two where we studied the kinetics of phase transitions in an acoustic

field. We made original contributions in each part in line with research aims

and objectives defined in Section 1.5 and these are reviewed in the following

section.

8.1 Contributions to the field

We began in Chapter 1 by presenting an overview of the sonocrystallisation

process, and the review of the experimental and theoretical achievements in

this field. It was established that: i) sonocrystallisation is a non-stationary

complex process with time varying thermodynamic states. This process has

been little studied theoretically and it is required to develop fundamental stu-

dies, ii) in order to describe the thermodynamics of phase transition in acoustic

fields, the model is required to be valid in the limit of small clusters, iii) the

kinetics of phase transition in acoustic fields is in general unsteady. Therefore,

time-dependent transition frequencies must be derived. Furthermore, the ki-

netic model is required to account for the effect of mass transportation created

by acoustic waves.
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In Chapter 2, we derived the model that can describe the thermodyna-

mics of phase transition for small clusters based on the generic form of the

Gibbs droplet model. We showed that the Gibbs droplet model can overcome

some of the difficulties associated with the thermodynamics of small clusters

if a non-EDS is utilised to define a cluster. For a given cluster size, moving

a dividing surface modifies the size of the core new phase and its thermody-

namics. Furthermore, the specification of the dividing surface influences the

excess Helmholtz free energy of the interface phase, given by Fσ,1 = nσ∆µ+Ωσ,

and consequently the effective surface tension: see Eq. (2.63). The dividing

surface is the unphysical element of the model and its corresponding surface

tension is defined to make the free energy of the interface phase independent of

the location of the dividing surface (Ford, 1996). Derivations are valid for any

dividing surface, including the EDS and surface of tension, and their associated

size-dependent surface tension γ(n).
Computation of the excess free energy of the surface Fσ,1 requires the

knowledge of the size of the interface phase nσ and the surface tension. Rela-

tionships represented in Eq. (2.27) are developed to calculate the size of the

core new phase and the interface phase for any location of a dividing surface

relative to the conventional EDS.

Calculating γ(n) requires a suitable model of the size-dependent surface

tension but many available models often break down in the limit of small clus-

ters. This issue becomes more significant in the case of the sonocrystallisation

process: the critical cluster size (for a condensed new phase) decreases as the

pressure magnitude increases. Therefore, we defined the new surface which is

identified as follows: i) this surface is characterised by the size-independent

surface tension γ∞, and ii) is positioned such that we obtain a reference excess

free surface energy for the clusters. This was achieved by equating γeff (obtai-

ned from Eq. (2.63) when setting γ(n) = γ∞) to the effective surface tension

obtained from statistical mechanical simulations and solving for the parameter

λ.
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In Chapter 3 we studied the effect of variation in the thermodynamics of

the old phase, i.e. pressure and temperature variation, on the thermodynamics

of phase transition determined by the new non-EDS model described in the

preceding chapter. We obtained Eqs. (3.7) and (3.13) to calculate the work of

formation of non-critical and critical clusters under this circumstance. For an

isothermal condition, this model predicts that the nucleation barrier is reduced

or raised with pressure rise if the new phase is more or less dense than the old

phase, respectively.

The nucleation work contour plots as a function of both the pressure

magnitude and supersaturation ratio were obtained showing that an identical

nucleation barrier could be surmounted with different combinations of the pres-

sure magnitude and supersaturation ratio. This is manifested in the effective

supersaturation ratio, Eq. (3.23), which accounts for both the supersaturation

ratio and pressure terms. We showed that using the non-EDS cluster model

predicts a size-dependent pressure effect which is stronger for smaller clusters.

Moreover, in case of an acoustic wave, the nucleation work and the size of

nuclei increase over half a period of the acoustic wave and decrease over the

next half period.

We also derived a generic equation to estimate the non-EDS nucleus size,

Eq. (3.14), which simplifies to Eqs. (3.30) and (3.32) for the non-EDS cluster

identified by the new surface and the EDS cluster, respectively.

Contributions presented in these two chapters satisfy the first two research

objectives defined in Section 1.5. We then incorporated this new thermodyn-

amic model into a hybrid kinetic model constructed by combining the Szilard

(or BD) equation and the FPE to determine the kinetics of phase transition

in an acoustic field.

In Chapter 4 we considered the mass-conserved system and obtained tran-

sition frequencies. We showed that for a closed system and an incompressible

old phase, variation in pressure and temperature of the old phase more substan-

tially influence the detachment frequency of monomers than the attachment
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frequency. We derived Eqs. (4.37) and (4.38) accounting for these effects on

monomer detachment rate from a generic cluster and a cluster identified by

the new surface and new model 1 , respectively. Subsequently, we evaluated

the condition for quasi-stationary phase transformation in a system exposed to

acoustic waves, see Eq. (4.26) for a generic system and Eqs. (4.27) and (4.30)

for a closed system. It was demonstrated that this condition is satisfied only at

relatively low pressure magnitudes and excitation frequencies, especially at a

low supersaturation ratio. Furthermore, we showed that the Zeldovich factor

is fairly pressure independent and can be approximated by its value at the

reference state.

We extended the calculation of the phase transformation kinetics in Chap-

ter 5 to account for the effect of mass transportation in an acoustic field (pres-

sure diffusion). We formulated the evolution of cluster concentration over time

in a non-mass conserved system by including mass transport in our hybrid kine-

tic model, see Eqs. (??), (5.7) and (5.10). In the limit of a dilute solution where

we can reasonably assume that only monomers transport through the system,

the hybrid model simplifies to Eq. (5.19) which transforms into Eqs. (5.20)

and (5.21) for incompressible solutions with and without the Ostwald ripening

process, respectively.

Contributions presented in Chapters 4 and 5 satisfy objectives (iii) and

(iv) defined in Section 1.5. They allowed us to model the effects of acoustic

waves on the aggregative and non-aggregative mechanisms of the kinetics of so-

nocrystallisation. The last remaining objective is the validation of the derived

model.

In Chapter 6 we showed that the new model 1 with even a size-independent

λ can reasonably well reproduce the excess free energy of different cluster sizes

obtained from statistical mechanical simulations and successfully predict the

kinetics of water droplet formation. The predicted nucleation rates of water

droplets are in great agreement with experimental data.

Considering the available experimental sonocrystallisation data, we could
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only evaluate our new model qualitatively. Simulations presented in Chapter 7

demonstrated that the effect of pressure field on cluster dynamics is cluster size-

dependent, in contrast to the EDS clusters used in CNT. Additionally, the size

of a condensed critical cluster inversely correlates to the pressure magnitude.

This together with the size-dependence of n′n may explain some sonocrystalli-

sation experimental observations revealing the improvement in the nucleation

rate for a scenario with ρ ≈ ρn (Harzali et al., 2011) while the conventional form

of CNT which uses the EDS clusters is incapable of doing so. Moreover, we

showed that in contrast to the binary effect of variation in the static pressure

on nucleation kinetics, either enhancement or attenuation, the acoustic wave

produces both effects over a cycle. This agrees with experimental observations

of nucleation of solid from liquid helium subjected to a focused ultrasound

field (Chavanne et al., 2001). Finally, we calculated the contribution of non-

aggregative mechanism to the kinetics of sonocrystallisation, see Eq. (7.19),

in different plane wave fields including travelling, standing and a weak shock.

Simulations showed that this contribution depends on the magnitude and wa-

velength of acoustic waves, and generally tends to be negligible unless shock

waves are present or a special boundary condition is imposed.

8.2 Further work

The preceding section outlined the original contributions made in this work.

These contributions create extensive opportunities for future work which can

be broadly classified as follows: i) model validation, ii) model extension, and

iii) model simulation. They are explained in this section.

(i) Model validation: we validated the new model 1 against experimental

data for water droplet formation. It would be beneficial to evaluate the

model with other experimental data available for other fluids. Regar-

ding the sonocrystallisation process, there is a need for well characteri-

sed (both acoustic field and crystallisation process) experiments in the

absence of cavitation or around a single oscillating bubble where its dy-
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namics is measured accurately. Derivations presented in this thesis are

generic and can be used with any acoustic source and waveform (either

direct field or the field around an oscillating bubble). Therefore, they

can be used to explain such experimental data, when made available.

(ii) Model extension: there are possibilities for improving the model or ex-

tending the application of the model to other phase transition problems.

In Chapter 5 we accounted for the effect of pressure diffusion on the

kinetics of crystallisation assuming the solution is incompressible. This

assumption should be amended for situations that entail compressibility,

e.g. strong shock condition. In case of the strong shock, the temperature

changes and the process is usually considered to be adiabatic (Duvall

and Graham, 1977) instead of isothermal. Therefore the conservation

of energy should be solved together with other constitutive equations

too, which would lead to a more sophisticated sonocrystallisation model.

This would extend the application of our model to other temperature va-

riable processes, examples include ultrasound mediated phase transition

in melts.

We developed equations to determine nn and nσ and to model variati-

ons in the thermodynamics of phase transformation using the non-EDS

cluster model with the new surface. Derivations were simplified and im-

plemented for the case of an incompressible new phase. An avenue for

further theoretical development is to apply the notion of the non-EDS

cluster model with the new surface to the case of bubble formation in an

acoustic field by taking an appropriate equation of state for a gaseous

new phase. This would allow application of the non-EDS cluster model

to simulate bubble nucleation in an acoustic field (acoustic cavitation).

(iii) Model simulation: we presented sonocrystallisation simulations in a

one-dimensional nonlinear plane wave field. An obvious step to ex-

tend these simulations is to consider more complex wave fields in two
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or three dimensions and different boundary conditions. Different boun-

dary conditions could tentatively influence mass transportation due to

acoustic streaming (Kolb and Nyborg, 1956; Nyborg, 1958), hence the

non-aggregative mechanism.

In addition, an interesting and important avenue opened by this thesis

is to simulate sonocrystallisation around stable and inertially cavitating

bubbles. Bubble dynamics is well developed, and there are accurate

and validated mathematical models available (Leighton, 1997) which can

be incorporated into our model and solve the kinetics of crystallisation

spatially. These simulations would give insightful information about the

interaction between cavitation and crystallisation.



Appendix A

Material properties

The physiochemical properties of a generic aqueous solution at room tempe-

rature (T = 293 K) and atmospheric pressure was used in the simulations of

crystal nucleation. These properties are taken from Table 6.1 of (Kashchiev,

2000). Following this reference, we consider the new phase to be denser than

the old phase with a typical value of ∆ν = 10−28 m3. This gives kρ = 0.66. All

these parameters are summarised in Table A.1.

Additionally, following (Louisnard et al., 2007) we choose the average

value of ρmass,2 = 2000 kg m−3 for the mass density of the solute species and

calculate M2 by M2 = NAνnρmass,2 = 0.06 kg mol−1.

For simulations including pressure variations, the reference state is consi-

dered to be at room temperature and atmospheric pressure, T0 = 293 K and

p0 = 0.1 MPa respectively. Therefore, the values reported in this Table refer to

the physicochemical properties at the reference state.

Table A.1: Solution properties at T = 293 K

Parameter Value
νn [nm3] 0.05
ν [nm3] 0.15
ρn [nm−3] 20.0
ρ [nm−3] 6.67
kρ [DL] 0.66
R0 [nm] 0.23
Ce [m−3] 1023

γ [mJ m−2] 100
D [m2 s−1] 10−9
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The Burgers’ and mass transportation equations are solved under isother-

mal condition at T = 293 K. The properties of water are given in Tables A.2

and A.3. The values and equation in Table A.2 are used to calculate the water

droplet nucleation at different temperatures.

Table A.2: Water properties I

Parameter Value
Tc [K]] 647.14 †

M(H2O) [kg mol−1] 0.018015 †

γ(H2O) [mJ m−2] 93.6635 + 0.009133T − 0.000275T 2 †

ρ(H2O) [g cm−3] 0.08 tanh (T − 225)/46.2)
+ 0.741((Tc − T )/Tc)0.33 + 0.32

††

pve [Pa] exp(77.34491 − 7235.42465/T − 8.2 lnT + 0.0057113T ) ††

†Taken from Table 1 Brus et al. (Brus et al., 2009).
††Taken from Table 1 Wölk et al. (Wölk and Strey, 2001).

Table A.3: Water properties II (at T = 293 K)

Parameter Value
β [DL] 3.5 †

ηB [Pa s] 2.4 × 10−3 ††

η [Pa s] 1.0020 × 10−3 ∗

c0 [m s−1] 1482.2 ∗

Cp [J K−1] 75.377 ∗

κ [W m−1 K−1] 0.598 ∗

†From (Hamilton and Blackstock, 1998).
††From (He et al., 2012).
∗From (Lemmon et al., 2016).
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Second-order derivative of the

grand potential of the system

In Chapter 2, we determined the increment in the grand potential of the system

arising from an infinitesimal variation in the system variables, see Eq. (2.42).

This equation is reproduced in the following

dΩΣ = − pdV − V dp − dµ (nn + nσ) − µ (dnn + dnσ) − pndVn

− Vndpn + µndnn + nndµn + µσdnσ + nσdµσ + Aσdγ

+ γdAσ. (B.1)

Using the Gibbs-Duhem relation of nσdµσ = −Aσdγ and nndµn = Vndpn

and only keeping the terms which are dependent on Vn, we arrive at

dΩΣ

dVn
∣
T,µ

= − p
dV

dVn
− µ

d

dVn
(nn + nσ) − pn

+ µn

dnn

dVn
+ µσ

dnσ

dVn
+ γ

dAσ

dVn
, (B.2)

Given that dVΣ = dV + dVn = 0, we obtain dV
dVn
= −1. Differentiating this

equation with respect to Vn gives
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d2ΩΣ

dV 2
n

∣
T,µ

= − µ
d2

dV 2
n

(nn + nσ) + µn

d2nn

dV 2
n

+ µσ

d2nσ

dVn

+ γ
d2Aσ

dV 2
n

, (B.3)

and imposing the equilibrium condition 2.46 simplifies this equation to

d2ΩΣ

dV 2
n

∣
T,µ

= γ
d2Aσ

dV 2
n

. (B.4)
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Fokker-Planck equation with

mass transportation

Equation (5.17) shows the Szilard equation in a non-mass conserved system.

This equation is reproduced in the following

∂

∂t
Zn = fn−1(t)Zn−1 − gn(t)Zn − fn(t)Zn + gn+1(t)Zn+1

−Zn ∇ ⋅ u − u ⋅ ∇Zn −
NA
M2 n

∇ ⋅ j[n]. (C.1)

Following Kashchiev (Kashchiev, 2000), we can derive the continuous format of

this equation by writing the truncated Taylor series expansion of fn−1(t)Zn−1
and gn+1(t)Zn+1 terms about point n

f(n − 1, t)Z(n − 1, t) = f(n, t)Z(n, t) + ∂

∂n
[f(n, t)Z(n, t)] (n − 1 − n)

+
1

2

∂2

∂n2
[f(n, t)Z(n, t)] (n − 1 − n)2 , (C.2)

and
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g(n + 1, t)Z(n + 1, t) = g(n, t)Z(n, t) + ∂

∂n
[g(n, t)Z(n, t)] (n + 1 − n)

+
1

2

∂2

∂n2
[g(n, t)Z(n, t)] (n + 1 − n)2 . (C.3)

Replacing these two equations into Eq. (C.1) yields

∂

∂t
Z(n) = −

∂

∂n
((f(n, t) − g(n, t))Z(n) − 1

2

∂ [(f(n, t) + g(n, t))Z(n)]
∂n

)
− Z(n) ∇ ⋅ u − u ⋅ ∇Z(n) − NA

M2 n
(∇ ⋅ j[n]) , (C.4)

which employing the definitions of the dispersion and growth rates, Eq. (4.11),

simplifies this equation to the following format

∂

∂t
Z(n) = −

∂

∂n
(v(n)Z(n) − 1

2

∂ [d(n, t)Z(n)]
∂n

)
− Z(n) ∇ ⋅ u − u ⋅ ∇Z(n) − NA

M2 n
(∇ ⋅ j[n]) . (C.5)

This is the non-mass conserved form of the FPE.
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Number of excess molecules

We need to determine the derivatives of nn and nσ with respect to n as they

are required in Eq. (3.14). Using Eq. (2.27), we can write

n′σ(nn) = dnσ

dn
=
dnσ

dnn

dnn

dn
=

[kρ3λ
Sf

(2
3
n
−1/3
n +

1

3

λ

Sf

n
−2/3
n )] dnn

dn
, (D.1)

furthermore

dn

dnn

= 1 + kρ
3λ

Sf

(2
3
n
−1/3
n +

1

3

λ

Sf

n
−2/3
n ) , (D.2)

which gives

n′n(nn) = dnn

dn
=

1

1 + kρ
3λ

Sf

(2
3
n
−1/3
n +

1

3

λ

Sf

n
−2/3
n )

, (D.3)

eventually plugging Eq. (D.3) into Eq. (D.1) gives

n′σ(nn) = dnσ

dn
=

kρ
3λ

Sf

(2
3
n
−1/3
n +

1

3

λ

Sf

n
−2/3
n )

1 + kρ
3λ

Sf

(2
3
n
−1/3
n +

1

3

λ

Sf

n
−2/3
n )

. (D.4)

In the limits of very small clusters, using these equations we will have
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lim
nn→0

n′σ = 1 , lim
nn→0

n′n = 0, (D.5)

and in the limits of very large clusters, we will arrive at

lim
nn→∞n

′
σ = 0 , lim

nn→∞n
′
n = 1. (D.6)

In order to calculate the Zeldovich factor, we need to determine the second

derivative of nn with respect to n which is given in the following

n
′′

n =
d2nn

dn2
=

d

dn
(dnn

dn
) = d

dn
(n′n) = dn′n

dnn

dnn

dn
=
dn′n
dnn

n′n, (D.7)

and by employing Eq. (D.3) simplifies to

n
′′

n =
kρ

3λ

Sf

n−1n (29n−1/3n +
2

9

λ

Sf

n
−2/3
n )

(1 + kρ
3λ

Sf

(2
3
n
−1/3
n +

1

3

λ

Sf

n
−2/3
n ))2

n′n

=
kρ

3λ

Sf

n−1n (29n−1/3n +
2

9

λ

Sf

n
−2/3
n )

(1 + kρ
3λ

Sf

(2
3
n
−1/3
n +

1

3

λ

Sf

n
−2/3
n ))3

= kρ
2λ

3Sf

n−1n (n−1/3n +
λ

Sf

n
−2/3
n )n′n3. (D.8)



Appendix E

Discrete form of monomer

detachment frequency

In the discrete representation of the cluster formation work, Eq. (4.35)

is used to determine detachment frequency. So, ∆Ωn( ) − ∆Ωn−1( ) =
∫ (d∆Ωn( ) − d∆Ωn−1( )) should be determined where ( ) denotes the de-

pendency of work on all other parameters, e.g. pressure, temperature and

composition, which is omitted here to avoid long relations. The two terms

of the integrand are obtained with the aid of Eq. (3.5). The integrand then

becomes

d∆Ωn( ) − d∆Ωn−1( ) = −[−s + sn(nn,n − nn,n−1) +
sσ(nσ,n − nσ,n−1)]dT − [ν − νn(nn,n − nn,n−1)]dp.

(E.1)

In order to simplify this equation, we need to determine nn,n − nn,n−1 and

nσ,n − nσ,n−1. Employing Eq. (2.27) gives
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n = nn,n + nσ,n = nn,n + kρG(nn,n)
n − 1 = nn,n−1 + nσ,n−1 = nn,n−1 + kρG(nn,n−1),

(E.2)

which follows

1 = nn,n − nn,n−1 + nσ,n − nσ,n−1 =

nn,n − nn,n−1 + kρ3λ (n2/3
n,n − n

2/3
n,n−1 + λ(n1/3

n,n − n
1/3
n,n−1)) .

(E.3)

Defining the new variable X = nn,n − nn,n−1, the above equation reads

1 =X + nσ,n − nσ,n−1 =

X + kρ3λ (n2/3
n,n − (nn,n −X)2/3 + λ(n1/3

n,n − (nn,n −X)1/3)) .
(E.4)

Approximating the term (nn,n −X)β by its second order truncated binomial

expansion gives

(nn,n −X)β ≈ nβ
n,n − βn

β−1
n,nX. (E.5)

Given β < 1 this approximation introduces negligible error. Substituting this

approximation in Eq. (E.4) yields

1 =X + kρ3λX (2
3
n
−1/3
n,n +

λ

3
n
−2/3
n,n ) , (E.6)
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from which follows

X =
1

1 + kρ3λ (23n−1/3n,n +
λ
3
n
−2/3
n,n ) . (E.7)

This is the same as n
′

n(nn) in Eqs. (D.3) and (3.14). Plugging X into Eq. (E.4)

we calculate nσ,n − nσ,n−1 which reads the same as n′σ(nn) in Eqs. (D.4) and

(3.14). Performing the integration gives exactly the same results already achie-

ved for the case of variation in work as a function of continuous n shown in

Eq. (3.14). Considering the second order binomial truncation is applied, then

all the equations derived previously to calculate detachment frequency are va-

lid and can be used for the discrete representation of n, too.
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