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ABSTRACT 15 

Lightning accompanied by inconsequential rainfall (i.e. ‘dry’ lightning) is the primary 16 

natural ignition source for wildfires globally. This paper presents a machine-learning and 17 

statistical-classification analysis of ‘dry’ and ‘wet’ thunderstorm days in relation to 18 

associated atmospheric conditions. The study is based on daily lightning flash count and 19 

precipitation data from ground-based sensors and gauges, and a comprehensive set of 20 

atmospheric variables based on the ERA-Interim reanalysis for the period from 2004 to 2013 21 

at six locations in Australia. These locations represent a wide range of climatic zones 22 

(temperate, subtropical to tropical). Quadratic surface representations and low-dimensional 23 

summary statistics were used to characterize the main features of the atmospheric fields. Four 24 

prediction skill scores were considered and ten-fold cross validation used to evaluate the  25 
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performance of each classifier. The results were compared with those obtained by adopting 26 

the approach used in an earlier study for the Pacific Northwest, United States. It was found 27 

that: both approaches have prediction skill when tested against independent data, mean 28 

atmospheric field quantities proved to be the most influential variables in determining dry 29 

lightning activity and no single classifier or set of atmospheric variables proved to be 30 

consistently superior to their counterparts for the six sites examined here.  31 

 32 

1. Introduction  33 

Although human-caused wildfire ignitions are common in many regions of the world, 34 

particularly in densely populated areas, fires ignited by lightning typically burn a larger area 35 

than fires ignited by other sources. This is attributable to lightning occurrence in remote 36 

locations and in large spatial and temporal clusters which hamper the response efforts of fire 37 

management authorities (USDA Forest Service 1992; McRae 1992; Vazquez and Moreno 38 

1998; Wotton et al. 2005; Wotton and Martell 2005; Kasischke et al. 2006; Dowdy and Mills 39 

2012a). Lightning that occurs with relatively little precipitation (i.e., ‘dry’ lightning) has a 40 

higher chance of igniting a fire than lightning accompanied by heavier precipitation (‘wet’ 41 

lightning) (Rothermel, 1972; Wotton and Martell 2005; Dowdy and Mills 2012a). Therefore, 42 

an improved understanding of dry lightning activity and the atmospheric conditions that 43 

influence its occurrence is of importance for better preparedness and enhancing the ability to 44 

respond to the impacts associated with wildfires ignited by lightning. 45 

There are many physical factors that can influence lightning occurrence as demonstrated 46 

in numerous previous climatological, dynamical modeling and seasonal prediction studies 47 

including Weisman and Klemp (1982), Goodman et al. (2000), Burrows et al. (2005), 48 

Williams et al. (2005), Deierling et al. (2008), Romero et al. (2007), Chronis et al. (2008), 49 

Dai et al. (2009), Barthe et al. (2010), Romps et al. (2014), Magi (2015), Dowdy (2016), 50 
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Muñoz et al. (2016) and references therein. Although aspects of the microphysical processes 51 

associated with lightning generation are not well understood in some cases, the role of ice in 52 

facilitating charge separation within the cloud appears to be a critical factor in determining 53 

whether or not lightning is produced (e.g., as indicated by laboratory experiments (Takahashi 54 

and Miyawaki 2002) as well as observations (Lang et al. 2014)). Microphysical processes 55 

such as ice formation are not well represented at the spatial and temporal scales of currently 56 

available climate models and reanalyses, leading to the use of parameterization schemes for a 57 

range of variables associated with convection. For example, the ERA-Interim reanalysis (Dee 58 

et al. 2011) uses a convective parameterization based on a bulk mass flux scheme (as 59 

originally described by Tiedtke 1989), with parameterizations also used to represent the 60 

fallout of precipitation (e.g., Kuo and Raymond 1980) and factors such as virga (streaks of 61 

water or ice particles that vaporize before reaching the ground) considered. 62 

In addition to convective parameterization schemes, several studies have demonstrated 63 

that statistical indicators of lightning activity can be found at relatively coarse spatial and 64 

temporal scales (e.g., similar to the resolution of general circulation models (GCMs) and 65 

reanalyses). For example, Romps et al. (2014) combined precipitation and Convective 66 

Available Potential Energy (CAPE) based on GCM output for use as an indicator of 67 

environments conducive to lightning activity, applying this indicator to examine the influence 68 

of global warming on lightning strikes in the United States. A recent study based on 69 

reanalyses demonstrated that even at spatial resolutions of 7.5° in latitude and longitude, 70 

atmospheric conditions such as lower-tropospheric moisture content, temperature lapse rate 71 

and CAPE can be strongly related to lightning activity (Dowdy 2016).  72 

In contrast to the number of studies that have examined atmospheric conditions associated 73 

with lightning activity in general, relatively few studies have focused specifically on dry 74 

lightning. Notable early studies include Rorig and Ferguson (1999, hereafter designated as 75 
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RF99) and Rorig et al. (2007), demonstrating that a linear discriminant rule could separate 76 

dry and wet lightning classes. The rule was composed of dewpoint depression at 850 hPa 77 

(DD850) and temperature lapse from 850 to 500 hPa (TL850500), with dry lightning defined 78 

as lightning accompanied by precipitation of less than one tenth of an inch (about 2.5 mm). 79 

Dowdy and Mills (2012b) demonstrated that these two variables were also applicable in 80 

southeast Australia, and that the average chance of a sustained fire ignition resulting from the 81 

occurrence of lightning in that region is higher than average if the precipitation 82 

accompanying the lightning is less than about 2 to 3 mm. Recent studies have examined a 83 

somewhat wider range of variables in relation to the occurrence of dry lightning, including 84 

studies in North America (Wallmann et al. 2010; Nauslar et al. 2013; Abatzoglou et al. 2016) 85 

and Australia (Dowdy 2015), finding that some useful skill can be obtained for predicting the 86 

occurrence of dry lightning based on several different methods. However, as dry lightning 87 

activity remains relatively unstudied when compared with other aspects of thunderstorm 88 

activity and associated convective processes, to date there have been no climatological 89 

studies of the spatial and temporal variability of dry lightning activity, or the influence of 90 

large-scale atmospheric drivers of dry lightning variability. 91 

The approach presented in this paper (hereafter designated as BDC) represents a more 92 

general approach to the two-category classification problem of dry and wet lightning days 93 

than that of RF99. The paper has four objectives with a view to building on previous studies 94 

of dry lightning occurrence. The first is to consider a wider range of atmospheric conditions 95 

associated with dry lightning activity and precipitation occurrence than has been the case to 96 

date. The second is to build on the suggestion put forward by Blouin et al. (2016) that a 97 

comparison of classification methods (classifiers) may provide useful guidance for future 98 

research. The third is to consider lightning, precipitation and atmospheric data from a wide 99 

range of climatic zones. The fourth objective is to identify a subset of influential atmospheric 100 
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variables across climatic zones and different classifiers. The method of RF99 is used as a 101 

benchmark for assessments of prediction accuracy and the applicability of the new approach 102 

proposed in this paper. In this way, the paper provides a useful addition to the toolkit for 103 

addressing questions related to lightning activity. The paper is divided into five sections. 104 

Section 2 provides a description of the study sites, data and classifiers used. Results are 105 

presented in Section 3. A summary and conclusions are given in Section 4. The quadratic 106 

surface representations and low-dimensional summary statistics (LDSS) used to characterize 107 

the main features of the atmospheric fields considered in this study are described in the 108 

Appendix. 109 

 110 

2. Data and methods  111 

a. Description of study sites and data 112 

The description of the daily lightning flash count datasets used herein parallels that of 113 

Bates et al. (2015), and the text in the next two paragraphs is derived from there with minor 114 

modifications. The data were collected from ground-based CIGRE 500 (Comité 115 

Internationale des Grands Réseaux Electriques, 500 Hz peak transmission filter circuit) 116 

sensors located at six weather stations operated by the Australian Bureau of Meteorology 117 

(Figure 1 and Table 1). The sensors were selected because of their record length and quality, 118 

and their locations in a variety of climatic settings including temperate, subtropical and 119 

tropical sites. The records cover the period from January 2004 to at least December 2010 120 

(Townsville) and at most February 2013 (Melbourne).  121 

 122 

< Insert Figure 1 and Table 1 about here >  123 

 124 
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Although the CIGRE 500 sensor was designed specifically to detect cloud-to-ground 125 

flashes, it also responded to cloud-to-cloud flashes, with about 68% of the lightning flash 126 

counts recorded being due to cloud-to-ground flashes. We considered the total number of 127 

lightning flash counts since the CIGRE 500 sensor did not distinguish between intracloud and 128 

cloud-to ground flash counts; and the ratio of intracloud to cloud-to-ground flashes can vary 129 

significantly depending on thunderstorm type and intensity, region of occurrence and season 130 

(Rakov and Uman, 2003). Estimates of the effective horizontal ranges of the sensor are 30 131 

km for cloud-to-ground flashes and 15 km for cloud-to-cloud flashes (Kuleshov and 132 

Jayaratne, 2004). As with other studies of this nature, these effective ranges should be taken 133 

into consideration when interpreting results for specific purposes such as fire ignition from 134 

cloud-to-ground lightning flashes. The electromechanical counters attached to the CIGRE 135 

500 sensors were read manually each day between 0800 and 0900 h local time. Further 136 

details can be found in Jayaratne and Kuleshov (2006), Kuleshov et al. (2009) and Bates et al. 137 

(2015).  138 

For a given weather station, thunderstorms were deemed to have occurred during a 24-h 139 

period if at least one lightning flash count was registered by the CIGRE 500 sensor. They 140 

were categorized as either ‘dry’ or ‘wet’ according to the concurrent daily precipitation 141 

reading recorded by the storage gauge at the station. A thunderstorm was classified as dry if 142 

the precipitation reading was less than 2.5 mm or wet otherwise. In Australia, daily 143 

precipitation is nominally measured each day at 0900 h local time. Station data were obtained 144 

from the SILO patch-point data set (Australian Bureau of Meteorology). There is a large 145 

disparity in spatial scales between the detection range of the sensor and the diameter of a 146 

precipitation gauge (15-30 km versus 203 mm). Thus it is possible for precipitation amounts 147 

greater than 2.5 mm to occur within the sensor’s detection limit but away from the station 148 

gauge. However, the use of gridded station data has its own set of limitations in that the 149 
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interpolation involved is a form of smoothing that reduces precipitation variability. Thus, the 150 

process of gridding can considerably increase (decrease) the frequency of low (high) 151 

precipitation amounts (Ensor and Robeson, 2008), and this might have implications for the 152 

classification of dry thunderstorms. The reduction in variability is dependent on the distance 153 

from a grid point to the nearest gauge. A further concern is the relatively low density of 154 

precipitation gauge networks in Australia. For example, the numbers of gauges within a 30 155 

km radius of the Darwin, Townsville, Coffs Harbour and Port Hedland sites are 12, 8, 18 and 156 

3, respectively. This low network density is likely to lead to excessive smoothing in some 157 

instances and affect the distribution of daily precipitation amounts. Given the above, days 158 

with station precipitation values flagged as interpolated were discarded.  159 

With future applications in mind, the study was designed to be conducted at spatial and 160 

temporal resolutions similar to that of current general circulation models and reanalyses. 161 

Atmospheric information was obtained from the ERA-Interim reanalysis archive (Dee et al. 162 

2011). The spatial and temporal resolution of the dataset used is 0.75 degrees (in both latitude 163 

and longitude) and 6 hours, respectively. For each CIGRE 500 site, atmospheric data were 164 

extracted for the 49 reanalysis grid points closest to the sensor’s location. The aim of the grid 165 

was to capture the presence of a thunderstorm over or in the proximity of a sensor. The 166 

lightning and precipitation series were synchronized with the ERA-Interim series for 0600 167 

UTC (1600 h Eastern Australia Time) within the 24-hour period represented by the lightning 168 

and precipitation data. This is because the diurnal variation in temperature lapse rate over 169 

land, due to solar radiation, produces conditions that are more favorable for lightning activity 170 

to occur during the late-afternoon period in general than at other times of the day or night 171 

(Christian et al. 2003; Dowdy and Mills 2009; Allen et al. 2011). Thus, the synchronization 172 

ensures that the atmospheric variables for each daily lightning flash count correspond to the 173 

time at which the lightning is most likely to have occurred. Since the use of a single time 174 
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point can be viewed as reductive, the possibility that atmospheric variables at other times of 175 

day may also be relevant was considered. However, the additional information was found to 176 

be largely redundant because correlations within a 24-hour period are invariably high (e.g. 177 

correlations between individual variables at 0600 UTC and 1200 UTC, spanning the time 178 

period during which most deep convective processes occur in Australia, are typically greater 179 

than 0.95 and greater than 0.85 in every case examined). The atmospheric variables 180 

considered herein are listed in Table 2.  181 

 182 

< Insert Table 2 about here > 183 

 184 

The set of atmospheric variables examined here represents a wider range than has typically 185 

been examined in previous studies, particularly those studies focused on climate-scale 186 

analyses rather than finer-resolution numerical weather prediction or radar observational 187 

studies. This is because there have been very few studies that have specifically examined dry 188 

lightning activity and the atmospheric conditions that influence its occurrence. Consequently, 189 

the literature on dry and general lightning activity was combed and physical understanding 190 

used to reduce the number of variables as far as possible. The variables listed in Table 2 191 

represent a broad variety of physical processes that can be associated with deep convection, 192 

including both dynamical and thermodynamical processes. The variables comprise various 193 

measures of temperature lapse, moisture content, vertical motion and water phase state, 194 

including at a range of different pressure levels (to allow potential variations in height 195 

between dry and wet thunderstorm characteristics to be distinguished).  196 

b. Variable selection  197 

To identify the dominant large-scale controls on lightning activity from among the 198 

variables listed in Table 2 is a challenging statistical problem: there are dependencies among 199 
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the variables leading to collinearity and, moreover, the processes controlling lightning 200 

activity are complex so that the variables must be considered concurrently rather than in 201 

isolation. Regression-based approaches, notably those based on generalized linear models, 202 

are ideally suited to this kind of problem (e.g. Yan et al. 2002, Chandler 2005). However, an 203 

additional complication in the present application is that the explanatory variables are spatial 204 

fields over a 77 grid, rather than individual values. In principle, this can be handled using 205 

modern statistical techniques such as functional regression (e.g. Morris, 2015). However, in 206 

their current state of development such methods are most effective when the number of 207 

candidate variables is relatively small. The current state of knowledge is insufficient to 208 

identify a small number of candidate variables from the list in Table 2 with high confidence. 209 

The strategy adopted here is therefore to use a combination of approaches that are designed to 210 

isolate the most influential variables from many candidates.  211 

To handle the spatial nature of the atmospheric variables listed in Table 2, the daily fields 212 

for each variable were reduced to a set of five LDSS designed to capture the main synoptic 213 

features. This was done by fitting quadratic surfaces to each daily field (see Appendix) and 214 

using the fitted surfaces to derive physically-interpretable daily summaries (overall means, 215 

vertical and horizontal gradients, and curvature). Note that the intention is not to provide 216 

highly accurate descriptions of the fields, but rather to provide indices that broadly describe 217 

the synoptic structure. The use of LDSS reduces the dimensionality of the problem from 49 218 

grid point values per atmospheric variable per day to 5. Other dimension reduction techniques 219 

are available, notably principal component (empirical orthogonal) analysis which was 220 

explored as an alternative to the LDSS considered here. It was found that five or more 221 

components were necessary to explain 70 to 80% of the variance for each data set. Only the 222 

first component had any predictive power in terms of discriminating between dry and wet 223 

lightning. Although the loadings for this component would often indicate a contrast between 224 
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two sets of variables, a defensible interpretation of the contrast proved elusive. Moreover, its 225 

predictive skill was lower than that obtained with LDSS. 226 

At this point, a LDSS of an atmospheric variable will be referred to as a potential 227 

candidate variable. As an initial screening procedure, for each potential candidate variable, 228 

comparative boxplots of each LDSS were used to contrast its values for dry and wet lightning 229 

cases. Two variable selection criteria were considered. First, potential candidate variables 230 

where the 75th (25th) percentile for one lightning type was below (above) the 25th (75th) 231 

percentile for the other were deemed informative in terms of discriminating between dry and 232 

wet lightning days. These variables were reserved for further analysis. Second, depending on 233 

the number of such candidate variables found, they were supplemented by including 234 

additional candidate variables where the median in one lightning type was above the 75th 235 

percentile or below the 25th percentile of the other (see, e.g., Figure 2). The resulting 236 

candidate variables formed the columns of an atmospheric data matrix. This approach could 237 

be criticized as ad hoc: it is natural to ask whether alternative techniques, such as automatic 238 

variable selection procedures, would be preferable. The main reason for the approach taken 239 

here is that manual inspection of boxplots can provide checks on the data, as well as 240 

preliminary insights that may aid subsequent interpretation and that cannot be obtained from 241 

an automated analysis. In any case, the aim is merely to carry out a very preliminary 242 

screening of the data so as to focus subsequently on quantities that may have some predictive 243 

power in discriminating between dry and wet lightning.  244 

 245 

< Insert Figure 2 about here >  246 

 247 

Many of the candidate variables are measured on very different scales and thus are not 248 

commensurable in terms of magnitude or variability. This means that some variables could 249 
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dominate or influence the results of the classification analysis because of their measurement 250 

units alone (Everitt and Hothorn, 2011). Thus, the columns of the data matrix were 251 

standardized to zero mean and unit variance prior to further analysis. This process places 252 

candidate variables on the same relative scale without disturbing the shape of the distribution 253 

of the data. It facilitates interpretation of the results of a discriminant or regression analysis, 254 

and helps to concentrate precisely on the conditions that are present during thunderstorms 255 

because it focuses on the relative variations of each variable within its own physical limits.  256 

The colldiag function from the perturb package in the R computing environment (Hendrickx 257 

2012; R Core Team 2015) was used to detect the presence of collinearity in the data matrix. 258 

Colldiag is an implementation of the regression collinearity diagnostic procedures found in 259 

Belsley et al. (1980). It computes the condition indices of the data matrix and provides the 260 

variance decomposition proportions associated with each condition index. As a rule of thumb, 261 

variables with proportions greater than 0.99 were considered sources of severe collinearity. 262 

Thus the corresponding columns were removed to form a reduced data matrix. A second 263 

proportion threshold of 0.8 was used to assess the degree of the sensitivity to threshold 264 

selection. It was found that the results obtained from the procedures described below showed 265 

only a slight sensitivity. Therefore, the results obtained using the proportion threshold of 0.8 266 

will not be reported here.  267 

c. Multivariate statistical analysis  268 

Two machine-learning and three statistical methods were used for classification: 269 

classification and regression trees (CART); random forests (RF); linear discriminant analysis 270 

(LDA), quadratic discriminant analysis (QDA) and logistic regression (LR). Detailed 271 

descriptions of CART, RF and LR can be found in Faraway (2016), and LDA and QDA in 272 

Everitt and Dunn (2001). The R packages used in this work were: DiscriMiner (Sanchez 273 

2013); MASS (Venables and Ripley, 2002); randomForest (Liaw and Wiener 2002); and tree 274 
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(Ripley, 2014). CART uses binary recursive partitioning to divide the data space, splitting it 275 

along the coordinate axes of the candidate variables to give increasingly homogenous subsets 276 

and hence the maximal separation of the classes until it is infeasible to continue. The measure 277 

of node heterogeneity is the deviance (a quality-of-fit statistic). The partitioning leads to a set 278 

of decision rules in the form of a binary tree. The tree is ‘pruned’ to identify a parsimonious 279 

tree with acceptable misclassification rates. Cross validation can be used to determine an 280 

appropriate tree size. RF is an ensemble learning algorithm which generates a large number 281 

of CART from bootstrap samples of the original data. An estimate of the misclassification 282 

rate can be obtained by using each tree to predict the data not in the bootstrap sample and 283 

averaging the predictions over all trees. The randomForest package can be used to produce 284 

variable importance plots which reveal how important each variable is in classifying the data 285 

and contributing to the homogeneity of the nodes. LDA is derived from an underlying model 286 

in which the distributions of the variables on dry and wet lightning days are both multivariate 287 

normal, with possibly different means and a common covariance matrix. LDA is somewhat 288 

robust with respect to minor violations of these assumptions. Although serious violations will 289 

often result in unreliable estimates of the coefficients, the procedure can still be a good 290 

heuristic. The discriminant function is a linear combination of the candidate variables, the 291 

coefficients of which are estimated by ordinary least squares so that the ratio of the between-292 

classes variance and the within-classes variance is maximized. This function takes the value 293 

zero at the decision boundary. If the value of the discriminant function is negative the 294 

variable vector is assigned to one class, if positive it is assigned to the other class. Given that 295 

the variables are standardized, the coefficients indicate the relative importance of each 296 

variable in predicting class assignment. QDA is a generalization of LDA in which the two 297 

classes need not have the same covariance matrix, but the assumption of multivariate 298 

normality still applies. The interpretation of the coefficients in terms of the relative 299 
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importance of each variable is more difficult to assess than for LDA as the discriminant 300 

function contains quadratic as well as linear and constant terms. The LR model can be written 301 

as  302 

 303 

 
0

1

logit( ) ln[ (1 )]
p

i i i j j

j

X    


     (1) 304 

 305 

where i  is the probability of occurrence of class i ( 1, 2)i  , (1 )i i   is the odds ratio for 306 

class i, p is the number of columns in the data matrix and 0 , , p   are the regression 307 

coefficients which are determined via maximum likelihood estimation. (Obviously, with only 308 

two categories it is only necessary to estimate the coefficients for one of the categories since 309 

𝜋2 = 1 − 𝜋1.) Classification on the basis of the variables is then done by setting a threshold τ 310 

say, and allocating a day to category 1 if 𝜋1 > 𝜏. For each site, a receiver operating 311 

characteristic (ROC) curve was used to select the threshold  by minimizing the distance 312 

from the curve to the point representing perfect classification accuracy: this was done to 313 

account for the fact that the sample sizes for dry and wet lightning days were noticeably 314 

unequal for several sites (Table 1). Experiments using Youden’s (1950) Index indicated that 315 

threshold estimates were not sensitive to the selection technique used. With LR, by contrast 316 

with LDA and QDA, there is no formal requirement for multivariate normality of the 317 

explanatory variables within each category of the response variable, and the use of binary or 318 

categorical variables is acceptable. A combination of stepwise selection and analysis of 319 

deviance was used to determine the significance of variables in the LR models. Further 320 

details on the above classifiers can be found in Breiman (2001), Venables and Ripley (2002) 321 

and Hilbe (2009).  322 
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Although the approach of RF99 used only LDA to discriminate between dry and wet 323 

lightning, the four other classifiers considered herein (CART, RF, QDA and LR) were 324 

applied to the means of the DD850 and TL850500 fields (designated mu.DD850 and 325 

mu.TL850500, see Appendix) to ascertain whether a higher classification performance could 326 

be achieved. This extended approach is hereafter designated as E-RF99. The analysis was 327 

conducted in parallel with an identical study of a much larger set of variables to determine the 328 

extent to which it is possible to improve on the RF99 variable pair. Four measures of 329 

prediction skill were considered: the hit rate for dry lightning (HR), the false alarm ratio for 330 

dry lightning (FAR), the Brier (1950) score (BS) and for LR the area under the ROC (AUC). 331 

HRs, FARs, BSs, ROC curves and AUCs were determined using the verification package in 332 

R (NCAR 2015). For a perfect classification, HR=1, FAR=0, BS=0 and AUC=1. HR values 333 

near 0, FAR and BS values near 1, and AUC values near 0.5 indicate poor classification 334 

performance. For the convenience of the reader, in what follows, a list of the acronyms and 335 

abbreviations used in this paper and their meaning is given in Table 3.  336 

 337 

< Insert Table 3 about here >  338 

 339 

d. Cross validation experiments  340 

Initial assessments of the prediction skill of the five classifiers (CART, RF, LDA, QDA 341 

and LR) were based on the data matrices for the six CIGRE 500 sites. As this can lead to 342 

optimistic bias in the estimated skill scores, ten-fold cross validation experiments were used 343 

to assess how well the results generalized to an independent dataset. Here the lightning, 344 

precipitation and candidate variable data were partitioned into ten subsamples of equal size. 345 

From these subsamples, a single subsample was retained for testing the model, and the 346 

remaining nine subsamples used for training (model fitting). The process is then repeated ten 347 
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times with each of the subsamples used exactly once for validation. The R packages used in 348 

the cross validation experiments were cvTools (Alfons 2012) and verification (NCAR 2015).  349 

 350 

3. Results  351 

a. Preliminary analyses    352 

Lightning activity at the six sites occurs primarily during the warmer months of the year 353 

(November to April). However, the most severe fire weather conditions in Australia occur at 354 

different times of the year, generally ranging from summer in the south to winter (i.e., the dry 355 

season) in the north. There are some regional variations to this, particularly along the eastern 356 

seaboard (including Coffs Harbour) where the peak fire weather conditions occur somewhat 357 

earlier (around October) than at other similar latitudes in Australia (Luke and McArthur, 358 

1978). Further details on the lightning climatology of Australia may be found in Kuleshov et 359 

al. (2009), Dowdy and Kuleshov (2014), Bates et al. (2015) and references therein, and will 360 

not be repeated here. 361 

The proportions of dry and wet lightning days for the six CIGRE 500 sites are reported in 362 

Table 1 and illustrated in Figure 1. Darwin is one of the most lightning prone areas in 363 

Australia. The number of lightning days for Darwin is markedly higher than those for the 364 

remaining sites, even for the case of Townsville which is in the same climatic zone. Perth has 365 

the lowest number of lightning days by a wide margin. Port Hedland has the highest 366 

proportion of dry lightning days, reflecting its desert environment. For the tropical and 367 

subtropical sites, the proportion of dry lightning days exceeds that of wet lightning days. This 368 

is somewhat surprising, and may in part be explained by the use of a single precipitation 369 

gauge to characterize rainfall over the detection range of the CIGRE 500 sensor (Section 2). 370 

To a lesser extent, it might reflect the effects of the precipitation threshold of 2.5 mm on 371 
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lightning day classification. For example, the proportions of dry and wet lightning days at 372 

Darwin are essentially equal if the precipitation threshold is reset to 2.0 mm.   373 

Median adjusted R2 values for the fitted quadratic surfaces varied from variable to variable 374 

with 5.2 to 16% below 0.5 across the six CIGRE 500 sites and 47 to 68% above 0.75. The 375 

highest values were obtained for GPH500 and GPH700 (> 0.97), and the lowest for W and 376 

MING, (0.09 to 0.43). This pattern was consistent across all sites. Thus, overall, the quadratic 377 

surfaces described in the Appendix gave a reasonable representation of the main features of 378 

the atmospheric fields considered herein.  379 

b. Classification analyses  380 

Scatterplots of the skill scores obtained from the five classifiers are shown in Figure 3. 381 

The HR and FAR are for dry lightning and the radii of the circles represent the magnitude of 382 

the BS. For each CIGRE 500 site, the convex hull of the five data points obtained using only 383 

mu.DD850 and mu.TL850500 as candidate variables is displayed to facilitate their 384 

delineation. (The convex hull of a set of points is the smallest convex set enclosing the 385 

points.) The plots reveal six key features. First, for any site, approach (E-RF99 or BDC) and 386 

classifier, the HR exceeds the FAR (note the differences in the axis scales). Thus, both 387 

approaches and all five classifiers have some skill in discriminating dry lightning from wet 388 

lightning. Apart from Port Hedland, it is also evident that the RF99 approach (denoted by 389 

filled squares enclosed by green circles) provides lower HRs. Second, for Darwin and 390 

Townsville the approach of BDC often provides higher HRs than those for E-RF99 but at 391 

expense of higher FARs for some classifiers. Third, for Coffs Harbour, Melbourne and Perth, 392 

the approach of BDC produced simultaneously higher hit rates and lower FARs than those for 393 

E-RF99. Fourth, in the case of Port Hedland, the HRs and FARs obtained for a given 394 

classifier and the two approaches considered herein (E-RF99 and BDC) are similar despite 395 

the differences in candidate variable sets: the BDC candidate variable set included terms such 396 
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as mu.TOTP, mu.CONVP and mu.TCW (see Appendix for details regarding their derivation). 397 

Fifth, except for Darwin, the application of LR to the BDC candidate variable set produced 398 

low FARs. Sixth, the approach of BDC produces similar or lower BSs than those for E-RF99.  399 

 400 

< Insert Figure 3 about here > 401 

 402 

c. Influential variables 403 

The relative frequency histogram of influential variables across the six CIGRE 500 sites 404 

and four classifiers with easily interpreted decision rules or boundaries (CART, RF, LDA and 405 

LR) is shown in Figure 4. Overall, 16 out the 28 variables are means, nine are magnitudes of 406 

gradient vectors, two are vertical gradients and one is SEASON (Table 2). The seven most 407 

frequent variables are associated with atmospheric water content (mu.TOTP, mu.CONVP, 408 

gd.TOTP and mu.TCWV) and instability and lifting potential (mu.CBH, mu.DD700 and 409 

vg.T). Thus, five of the seven most frequent variables are means. In terms of the raw 410 

atmospheric variables listed in Table 2, not one of the variables used by RF99 (DD850 and 411 

TL850500) is present in this subset. Additionally, DD850 does not appear to be as influential 412 

as DD700, with DD700 and DD850 having relative frequencies of 0.0879 and 0.0220. As 413 

shown in Fig. 2c, high values of DD700 are typically associated with dry lightning rather 414 

than wet lightning, with a physical interpretation of this being that relatively dry air results in 415 

an increased likelihood of precipitation evaporating before reaching the ground (i.e., virga). 416 

The absence of CAPE and the near absence of W in Figure 4 suggest that these variables are 417 

not informative in terms of discriminating between dry and wet lightning conditions. This is 418 

unlikely to be the case for lightning activity studies involving discrimination between 419 

lightning and non-lightning days.  420 
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The dominance of the mean terms in the set of influential variables could be related to 421 

temporal variations in the timing of thunderstorms with respect to a given location, noting 422 

that although our analyses is based on afternoon values of the atmospheric variables (as this 423 

is when lightning most frequently occurs in these regions), lightning can also occur at other 424 

times of the day and night. The apparent influence of mu.TOTP and mu.CONVP must give 425 

rise to concern that information about precipitation has been used twice: once as daily 426 

precipitation readings at ground-based storage gauges were used to classify lightning days as 427 

either dry or wet; and twice as mu.TOTP and mu.CONVP values at 0600 UTC were derived 428 

from modeled precipitation and used as explanatory variables. However, scatter plots and 429 

quantile-quantile plots of mu.TOTP and mu.CONVP against the precipitation readings (not 430 

shown) revealed little evidence of relationships for all six CIGRE 500 sites. Except for 431 

Melbourne, robust estimates of the correlation coefficients ranged from 0.1 to 0.3. For 432 

Melbourne, the estimates were about 0.4. This lack of a simple relationship, and the positions 433 

of mu.TOTP and mu.CONVP in the histogram depicted in Figure 4, suggest that the 434 

construction of these variables captures useful additional information about atmospheric 435 

conditions that cannot be obtained from the other potential candidate variables considered. 436 

Some evidence for this conjecture is provided in Davies et al. (2013). For one of the tropical 437 

sites considered herein (Darwin), they created two concurrent long-term data sets that 438 

described the large-scale atmosphere and the characteristics of small-scale convection. They 439 

found that estimates of convective precipitation have a strong relationship with dynamical 440 

variables such as moisture convergence and vertical velocity at mid-levels. Wind rather than 441 

moisture convergence was used in the current study (Table 2), and vertical velocities in 442 

reanalyses can suffer from large inaccuracies (Abalos et al., 2015). The latter may have also 443 

contributed to the position of mu.W and gd.W in Figure 4.  444 

 445 
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< Insert Figure 4 about here > 446 

 447 

Figure 5 displays the relative frequency histograms of the most-frequent atmospheric 448 

variables on a site-by-site basis. Here the maximum frequency for any variable is limited to 449 

four (the number of classifiers with interpretable decision rules or boundaries). Furthermore, 450 

the minimum count for any variable can be zero as not every one of the variables was found 451 

to be influential for every site. Colored bars indicate the seven most-frequent variables 452 

depicted in Figure 4. For the sake of clarity, white bars indicate additional variables that have 453 

a frequency of at least two. The variables depicted in Figure 5 are primarily associated with 454 

atmospheric water content and instability and lifting potential. Comparison of Figures 5a-d 455 

and 5e-f indicates a marked difference in the shapes of the histograms for sites located in 456 

western Australia (Perth and Port Hedland) and those in central and eastern Australia 457 

(Darwin, Townsville, Coffs Harbour and Melbourne). In the case of Perth (Figure 5e), five of 458 

the seven most-influential variables across all sites and classifiers depicted in Figure 4 have 459 

zero frequencies and the frequencies of the remaining two (mu.CBH and gd.TOTP) are low. 460 

It is the only site not to include both mu.TOTP and mu.CONVP amongst its set of influential 461 

variables. The most common variables across the four classifiers for Perth are indicated by 462 

white bars. Three of these four variables (mu.TGM7001000, gd.GPH500 and gd.GPH700) 463 

are not included in the variable sets for the other sites (cf. Figure 4). These variables are 464 

potential indicators of convective systems associated with fronts. The fourth variable 465 

(mu.TL850500) is selected for Coffs Harbour by LR only. For Port Hedland (Figure 5f), 466 

three of the seven most frequent variables in Figure 4 have zero frequencies. It is the only site 467 

to not include mu.CBM amongst its set of influential variables. The remaining four variables 468 

(mu.TOTP, mu.CONVP, gd.TOTP and m.TCWV) characterize atmospheric water content. 469 

There are four additional variables (gd.TOTP, gd.CONVP, mu.MING and mu.T2) that are 470 
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not depicted in Figure 5f since they have a frequency of one. Port Hedland is also different to 471 

the other sites in that it has a notably higher HRs and lower FARs (Figure 3). This is because 472 

the ratio of dry to wet lightning proportions for Port Hedland is 4.3 which is much higher 473 

than that for the other sites where it is between 1.1 and 1.8 (Table 1). With the exceptions of 474 

Townsville and Coffs Harbour, the frequencies of vg.T are zero for the four remaining sites. 475 

Sharp temperature gradients are a potential indicator of troughs, and convergence along 476 

troughs can lead to showers and thunderstorms. The so-called inland (or easterly) trough is 477 

located on the inland side of the Great Dividing Range in Australia, forming a boundary 478 

between the moist air near the coast and dry air inland. It typically extends through central 479 

Queensland and into central New South Wales and is active during the months from 480 

September to May. Furthermore, the frequency of mu.ICE is greater than zero for Melbourne 481 

alone. Ice water content and lightning activity are highly correlated (Xu et al., 2010 and 482 

references therein), and this variable may provide information about the low (high) lightning 483 

flash rates associated with dry (wet) lightning. These results, and those illustrated in Figure 4, 484 

suggest that the optimal variable sets for lightning classification problems may vary between 485 

different climatic zones.  486 

 487 

< Insert Figure 5 about here > 488 

 489 

d. Cross validation experiments 490 

Scatterplots of the mean skill scores obtained from the cross validation experiments are 491 

shown in Figure 6. Again, the HR and FAR are for dry lightning and the radii of the circles 492 

represent the magnitude of the BS. The radii of the circles have been placed on the same scale 493 

as those shown in Figure 3. The plots in Figure 6 reveal five key features. First, in all cases 494 

the mean HR exceeds the mean FAR. This indicates that both approaches (E-RF99 and BDC) 495 
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and the classifiers considered herein have prediction skill when tested with independent data. 496 

While this is also true for the approach of RF99, the mean HRs are relatively low compared 497 

to those of either the E-RF99 or BDC approach. Second, the plots confirm the earlier finding 498 

that the approach of BDC generally provides either higher hit rates, or simultaneously higher 499 

hit rates and lower FARs, than that of E-RF99. Third, the mean FARs obtained using QDA 500 

are not always robust. This is particularly evident for Townsville, Melbourne, Perth and Port 501 

Hedland. This reflects the method’s sensitivity to outliers. Fourth, when tested with 502 

independent data, applying LR to the BDC variable set often produced the lowest or 503 

competitive mean FARs. Fifth, the approach of BDC often produces competitive or lower 504 

BSs when tested with independent data than that of E-RF99.  505 

 506 

< Insert Figure 6 about here > 507 

 508 

A scatterplot of AUC values obtained from cross-validation of the LR models is shown in 509 

Figure 7. For all sites and both approaches (E-RF99 and BDC), the AUC values are greater 510 

than 0.5 indicating that prediction skill is better than climatology. However, the AUCs for the 511 

BDC approach are greater than those for E-RF99. The lowest AUC values were obtained for 512 

Darwin and the highest for Port Hedland (E-RF99 approach) and Perth (BDC approach).  513 

 514 

< Insert Figure 7 about here > 515 

 516 

4. Summary and conclusions  517 

Daily lightning flash count and precipitation data from ground-based sensors and gauges, 518 

atmospheric information from the ERA-Interim reanalysis and five classification techniques 519 

(classifiers) were used to distinguish between ‘dry’ and ‘wet’ thunderstorm days for the 520 
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period from 2004 to 2013 at six locations in Australia. The locations of the lightning flash 521 

(CIGRE 500) sensors represent a range of climatic settings (including temperate, subtropical 522 

and tropical regions). The earlier approach of Rorig and Ferguson (1999, RF99), which used 523 

two atmospheric variables and one classifier (linear discriminant analysis) for one region in 524 

the United States (the Pacific Northwest), was used as a benchmark to test whether the 525 

inclusion of additional atmospheric information and a wider range of classifiers resulted in a 526 

notable improvement in prediction accuracy for the climatic settings considered herein.  527 

With future applications in mind, the study was designed to be conducted at the spatial 528 

resolution of current GCMs and reanalyses. Quadratic surfaces and determination of low-529 

dimensional summary statistics (LDSS) were used to capture the main features of the 530 

atmospheric fields. Five classifiers were considered: classification and regression trees 531 

(CART); random forests (RF); linear discriminant analysis (LDA), quadratic discriminant 532 

analysis (QDA) and logistic regression (LR). Four prediction skill scores were considered, 533 

with a focus on dry lightning since it is the primary cause of wildfire ignition. Ten-fold cross 534 

validation was used to estimate the prediction accuracy of the classifiers. The study findings 535 

can be summarized as follows:  536 

1) The use of LDSS captured useful and interpretable information in terms of the large-scale 537 

spatial structure of thunderstorms. While it can be argued that the LDSS are somewhat 538 

crude, our results suggest that there is value in their application to the problem of 539 

thunderstorm classification. 540 

2) The approach outlined in this paper (BDC) and an extended version of that of Rorig and 541 

Ferguson (1999, herein designated as E-RF99) have prediction skill when tested against 542 

independent data for a wide range of climatic zones.  543 

3) Overall, while five LDSS were used to better capture the main features of the atmospheric 544 

fields used, the mean field proved to be the most useful. The seven most-frequent 545 
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variables across the six sites and five classifiers considered are associated with 546 

atmospheric water content (mu.TOTP, mu.CONVP, gd.TOTP and mu.TCWV) and 547 

instability and lifting potential (mu.CBH, mu.DD700, and vg.T). The preceding lists of 548 

variables contain five spatial means, two gradient terms and variables derived from 549 

convective parameterizations. The results presented herein suggest that the latter may 550 

provide unique information that is not contained in ground-based precipitation data.  551 

4) Despite the finding above, the set of influential atmospheric variables varied from site-to-552 

site and between classifiers. This result needs to be tested using data from dense 553 

monitoring networks in different countries and a wide variety of climatic zones. The 554 

question of whether it is legitimate to use the same atmospheric variables and statistical 555 

classification techniques at different locations within the same climatic zone will be the 556 

subject of future research.  557 

5) No single classifier proved to be consistently superior to its counterparts across the six 558 

sites considered. However, LR often produced lower FARs while the predictive accuracy 559 

of QDA was compromised by the presence of outliers in the variables.  560 

6) Although the BDC variable selection approach requires more effort than that of E-RF99, 561 

with the exception of the Port Hedland site it produced either higher hit rates or 562 

simultaneously higher hit rates and lower false alarm ratios for dry lightning than that of 563 

E-RF99. It also tended to produce lower Brier (1950) scores and higher AUCs for LR 564 

models.  565 

Although a number of previous studies have examined lightning and thunderstorm activity 566 

at the spatial and temporal scales of current reanalyses and GCMs, very few of these studies 567 

have considered ‘dry’ and ‘wet’ systems separately. The results presented here are intended 568 

to lead to an improved ability to classify deep convective systems in terms of their likelihood 569 

of being ‘dry’ or ‘wet’, as well as enhanced capability to understand the observed 570 
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climatological characteristics of these systems. It is envisaged that the approach of this study 571 

will find application in future studies involving finer-scale reanalyses and GCM runs as they 572 

become available. Such work might lead to classification decision rules and boundaries that 573 

are less dependent on model parameterizations.  Given the importance of dry thunderstorms 574 

for the ignition of wildfires by lightning, as well as wet thunderstorms in relation to a range 575 

of associated hazards (including extreme rainfall), a greater understanding of dry and wet 576 

thunderstorms could have significant benefits for improved resilience to the impacts of 577 

lightning and thunderstorms throughout the world.  578 
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 588 

APPENDIX  589 

Representation of atmospheric variables 590 

Most of the daily atmospheric variable information is available at single pressure level or 591 

is defined as a mean or difference for fixed pressure levels and hence can be considered as a 592 

function of two spatial dimensions: ( , )z f x y . An exception is convective mass flux (CMF) 593 

which, by definition, has a constant value across all 49 grid points for a given day and UTC 594 

time. Other variables such as air temperature, minimum geostrophic vorticity, vertical 595 
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velocity, specific humidity, and zonal and meridional wind are defined for specific 596 

atmospheric pressure levels (p) at each grid point (Table 2). These variables can be 597 

considered as a function of three spatial dimensions:   ,  ,  z f x y p . For each day, quadratic 598 

surfaces were fitted to the atmospheric fields for 0600 UTC using ordinary least squares. A 599 

quadratic surface in two spatial dimensions is defined by  600 

 601 

 
2 2

1 2 3 4 5 6( , )z f x y c c x c x c y c xy c y         (A.1) 602 

 603 

and the corresponding surface in three spatial dimensions by  604 

 605 

 
2 2

1 2 3 4 5 6 7, ,  ( )  z f x y p c c x c x c y c xy c y c p           606 

 
2

8 9 10c xp c yp c p    (A.2) 607 

 608 

Instead of fitting (A.1) and (A.2) directly, the linear and quadratic terms were replaced by 609 

orthogonal polynomials in order to ensure that: the intercept and linear and quadratic 610 

regression coefficients are independent of each other (i.e. they do not change when higher-611 

order terms are added); the estimates of the intercept and regression coefficients are placed on 612 

the same scale; and it allows the decomposition of relationships into general components of 613 

magnitude as well as into linear and nonlinear rates of change. The estimates were calculated 614 

in a coordinate system centered on the CIGRE 500 sensor (i.e., a 7  7 grid described in 615 

Section 2a). The adjusted R2 was used as a goodness-of-fit measure for the quadratic surfaces.  616 

Let 1 10, ,   denote the orthogonal polynomial regression coefficients. Five low-617 

dimensional summary statistics (LDSS) for the above surfaces were used to facilitate physical 618 

interpretation: the intercept which is equivalent to the mean across the domain 1(mu ) ; the 619 
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magnitude of the gradient vector (gd) and its direction (dr) in the x y  plane; Gaussian 620 

curvature (gc); and vertical gradient 7(vg )c . The magnitude of the gradient vector and its 621 

direction in terms of linear rate of change are defined by 2 2

2 4gd    and  1

4 2dr tan  622 

. Given the use of orthogonal polynomial regression, the values of gd and dr are the same as 623 

those that would have been obtained had a linear surface been fitted to the data. Gaussian 624 

curvature is an intrinsic geometric property of a surface which is independent of the 625 

coordinate system used to describe it. It is defined by  626 

 627 

 1 2gc det ( )   H  (A.3) 628 

 629 

where det (•) denotes the determinant, H is the Hessian matrix given by 630 

 631 

 

2 2

2

3 5

2 2
5 6

2

2

2

z z

x x y

z z

y x y

 

 

  
 
            

 
   

H  (A.4) 632 

 633 

and 1  and 2  are the eigenvalues of H (also the maximum and minimum principal 634 

curvatures).  635 
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 880 

TABLE 1. Site and data details for CIGRE 500 lightning flash counters. Daily lightning flash count records cover the period from January 2004 881 

to at least December 2010 (Townsville) and at most February 2013 (Melbourne).  882 

Site  Altitude  No. of lightning  Proportion dry Proportion wet 

No. Location (m) Köppen classification days lightning days lightning days 

1 Darwin 30 Tropical savanna climate (Aw) 1350 0.53 0.47 

2 Townsville 4 Tropical savanna climate (Aw) 286 0.53 0.47 

3 Coffs Harbour 5 Humid subtropical climate (Cfa) 501 0.58 0.42 

4 Melbourne 113 Marine west coast (Cfb)  570 0.64 0.36 

5 Perth  15 Mediterranean (Csa)  148 0.55 0.45 

6 Port Hedland  6 Subtropical desert (BWh)  401 0.81 0.19 
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 884 

 885 
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 886 

TABLE 2. Abbreviations, full names, units of measure and specifications for atmospheric variables. 887 

Abbreviation Full name Specification 

Instability and lifting potential 

CAPE  Convective available potential energy (J kg-1)  As provided in ERA-Interim reanalysis (maximum 

CAPE based on lifting parcels within a near-surface 

layer) 

CBH Cloud base height (m)  Based on temperature and dewpoint at a height of 2 m 

with lifting to condensation level using an idealized 

constant lapse rate  

CMF Convective mass flux (Pa2 s-1 K-1)  500 hPa: calculated as the product of air density, 

fraction of grid points covered by updrafts within the 

7x7 gridded region, and the vertical velocity averaged 

across all updrafts. 
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CONV1000850 Mean low-level horizontal wind convergence (s-1) Mean value at 850 and 1000 hPa pressure levels 

DD  Dewpoint depression (°C)  500, 700 and 850 hPa  

DDIV  Density-weighted mean upper-level divergence minus 

density-weighted mean low-level divergence (s-1) 

{300, 400} – {850, 1000} hPa  

EPTL  Mean low-level equivalent potential temperature minus 

mean mid-level equivalent potential temperature (°C)  

Mean value at 1000 and 850 hPa – mean value at 700 

and 500 hPa  

TD850T500  Cross totals index (°C)  850 and 500 hPa  

TGD Direction of thickness gradient (rad)  {500, 700}, {500, 1000} and {700, 1000} hPa 

TGM Magnitude of thickness gradient (m2 s-2)  {500, 700}, {500, 1000} and {700, 1000} hPa 

THETA_W1000  Wet-bulb potential temperature (°C)  1000 hPa  

THETA_W850500 Wet-bulb potential temperature difference (°C)   850 – 500 hPa 

THK7001000 Geopotential thickness (m2 s-2)  700 – 1000 hPa geopotential heights 

TL850500 Temperature lapse (°C)  850 – 500 hPa 
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TL850700 Temperature lapse (°C) 850 – 700 hPa  

TTI Total totals index (°C)  850 and 500 hPa 

W Vertical velocity (Pa s-1)  200, 300, 500, 700, 850 and 1000 hPa  

Atmospheric water content 

CONVP Convective precipitation (m)  As provided in ERA-Interim reanalysis 

ICE Total column ice water (kg m-2)  As provided in ERA-Interim reanalysis 

SH Specific humidity (kg kg-1)  500, 700 and 850 hPa  

TCWV Total column water vapor (kg m-2)  As provided in ERA-Interim reanalysis 

TOTP Total precipitation (m)  As provided in ERA-Interim reanalysis 

Wind speed 

MVWS Maximum vertical wind shear (m s-1)  300 to 850 hPa  

S06 Vertical wind shear between 0 and 6 km (m s-1) 1000 and 500 hPa 

U Zonal wind velocity (m s-1) 300, 500, 700, 850 and 1000 hPa   
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V Meridional wind velocity (m s-1) 300, 500, 700, 850 and 1000 hPa   

General atmospheric state and variability  

SEASON Season-of-year   DJF, MAM, JJA and SON 

T Air temperature (°C)  2 meters, 500, 700 and 850 hPa  

MSLP Mean sea level pressure (Pa)  As provided in ERA-Interim reanalysis 

GPH Geopotential height (m2 s-2)  500 and 700 hPa  

MING Minimum geostrophic vorticity (s-2)  Laplacian of geopotential at 500, 700 and 850 hPa  

 889 

 890 
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TABLE 3. Frequently used acronyms and abbreviations 891 

Acronym or   

abbreviation Full name  

AUC  Area under receiver operating characteristic curve 

BDC Approach of Bates, Dowdy and Chandler (this paper)  

BS Brier (1950) score 

CART Classification and regression trees  

E-RF99 Extended approach of Rorig and Ferguson (1999)  

FAR False alarm ratio for dry lightning  

GCM  General circulation model   

HR  Hit rate for dry lightning  

LDA  Linear discriminant analysis  

LDSS  Low-dimensional summary statistics   

LR Logistic regression   

QDA  Quadratic discriminant analysis  

RF Random forests  

RF99 Approach of Rorig and Ferguson (1999) 

ROC Receiver operating characteristic  

  892 
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LIST OF FIGURES  893 

FIG. 1. Locations of CIGRE 500 lightning flash counters (filled circles) and relative 894 

proportions of dry lightning and wet lightning days in daily lightning flash count series. Key 895 

to numerals is given in Table 1. Widths of gray rectangles indicate proportions of dry 896 

lightning days and heights proportions of wet lightning days.  897 

FIG. 2. Examples of comparative boxplots of potential candidate variables for the Coffs 898 

Harbour CIGRE 500 site: (a) mu.CBH, (b) mu.CONVP, (c) mu.DD700, (d) mu.DD850, (e) 899 

mu.ICE, and (f) mu.TOTP.  900 

FIG. 3. Skill scores obtained using the methods of E-RF99 (filled squares) and BDC 901 

(filled triangles) for five classifiers and six CIGRE 500 sites. Radii of the circles are 902 

proportional to the Brier score. Dashed lines represent the convex hull of the false alarm ratio 903 

(FAR) and hit rate (HR) values for dry lightning obtained using the methods of E-RF99.  904 

FIG. 4. Relative frequency histogram of selected variables across six CIGRE 500 sites and 905 

four classifiers: classification and regression trees (CART), random forests (RF), linear 906 

discriminant analysis (LDA) and logistic (LR).  907 

FIG. 5. Relative frequency histograms of influential variables for discriminating dry 908 

lightning from wet lightning days for each CIGRE 500 site across four classifiers: 909 

classification and regression trees (CART), random forests (RF), linear discriminant analysis 910 

(LDA) and logistic (LR).  911 

FIG. 6. Mean skill scores obtained from cross validation experiments using the methods of 912 

E-RF99 (filled squares) and BDC (filled triangles) for five classifiers and six CIGRE 500 913 

sites. Radii of the circles are proportional to the Brier score. Dashed lines represent the 914 

convex hull of the mean false alarm ratio (FAR) and hit rate (HR) values for dry lightning 915 

obtained using the methods of E-RF99.  916 
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FIG. 7. Scatter plot of mean area under receiver operating characteristic curve (AUC) 917 

values obtained from cross-validation of logistic regression (LR) models. Key to numerals is 918 

given in Table 1.  919 
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given in Table 1. Widths of gray rectangles indicate proportions of dry lightning days and 925 
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FIG. 2. Examples of comparative boxplots of potential candidate variables for the Coffs 930 

Harbour CIGRE 500 site: (a) mu.CBH, (b) mu.CONVP, (c) mu.DD700, (d) mu.DD850, (e) 931 

mu.ICE, and (f) mu.TOTP. 932 
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FIG. 3. Skill scores obtained using the methods of E-RF99 (filled squares) and BDC 936 

(filled triangles) for five classifiers and six CIGRE 500 sites. Radii of the circles are 937 

proportional to the Brier score. Dashed lines represent the convex hull of the false alarm ratio 938 

(FAR) and hit rate (HR) values for dry lightning obtained using the methods of E-RF99. 939 
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FIG. 4. Relative frequency histogram of selected variables across six CIGRE 500 sites and 943 

four classifiers: classification and regression trees (CART), random forests (RF), linear 944 

discriminant analysis (LDA) and logistic (LR). 945 
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 948 

FIG. 5. Relative frequency histograms of influential variables for discriminating dry 949 

lightning from wet lightning days for each CIGRE 500 site across four classifiers: 950 

classification and regression trees (CART), random forests (RF), linear discriminant analysis 951 

(LDA) and logistic (LR). 952 
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 955 

FIG. 6. Mean skill scores obtained from cross validation experiments using the methods of 956 

E-RF99 (filled squares) and BDC (filled triangles) for five classifiers and six CIGRE 500 957 

sites. Radii of the circles are proportional to the Brier score. Dashed lines represent the 958 

convex hull of the mean false alarm ratio (FAR) and hit rate (HR) values for dry lightning 959 

obtained using the methods of E-RF99. 960 
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FIG. 7. Scatter plot of mean area under receiver operating characteristic curve (AUC) 964 

values obtained from cross-validation of logistic regression (LR) models. Key to numerals is 965 

given in Table 1.  966 
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