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Abstract—The abundance of data produced daily from large
variety of sources has boosted the need of novel approaches on
causal inference analysis from observational data. Observational
data often contain noisy or missing entries. Moreover, causal
inference studies may require unobserved high-level information
which needs to be inferred from other observed attributes. In
such cases, inaccuracies of the applied inference methods will
result in noisy outputs. In this study, we propose a novel approach
for causal inference when one or more key variables are noisy.
Our method utilizes the knowledge about the uncertainty of the
real values of key variables in order to reduce the bias induced
by noisy measurements. We evaluate our approach in comparison
with existing methods both on simulated and real scenarios and
we demonstrate that our method reduces the bias and avoids
false causal inference conclusions in most cases.

I. INTRODUCTION

Nowadays, there is an increasing data availability. Smart-
phones and wearables sensors, social media, web browsing
information and sales recordings are only few of the newly
available information sources. Discovering dependencies and
patterns within such datasets could provide useful insights to
businesses or social scientists studying human behavior.

An important part of such studies involves the discovery of
correlation or causation links among factors of interest. For
example, several studies examine the impact of sentiment and
opinions expressed through social media to traded assets prices
[1], [2], [3]. Others study the impact of location, activity and
communication patters on people mood [4], stress level [5] or
eating and sleeping disorders [5] by processing smartphones
sensor data. In such studies, the variables of interest are usually
not directly measured. Instead, they are inferred from raw data.
For example, in [1], [3] a sentiment index is inferred from
Twitter data by applying text processing and classification
techniques. However, such procedures result in inaccurate es-
timation of the variables of interest. Moreover, several studies
have shown that social media data in some countries have
undergone censorship [6]. In such cases, sentiment or opinion
tracking could be biased. Also, in [5], location context (e.g.
home, work, entertainment place etc.) is used to understand
the causal link between location and stress level. However, the
real location context is not known; instead it is inferred from
smartphone sensors and consequently it could be inaccurate.

Causal discovery when key variables are unobserved or
inaccurately measured is a particularly challenging task. Latent
variable models have been used to handle such cases [7],
[8]. Such models include one or more unobserved or latent
variables. Scientists usually attempt to estimate the values of
a latent variable from other observed variables by fitting the
data in a structural equation model [7]. However, the selection
of a proper model is a complex task which may result in
misspecification and overfitting.

Matching design [9] is an alternative causal inference ap-
proach which does not require fitting data to a structural
equation model. The main idea is that the average impact of a
treatment variable (or predictor) to an outcome or effect vari-
able can be approximated by comparing the outcome variable
values of units with similar characteristics and different treat-
ment values. In order to minimize any bias due to differences
on units characteristics (confounding bias), matching methods
attempt to find optimal pairs of units. When the values of these
characteristics are inaccurately measured or inferred from
other variables, matching may fail to sufficiently eliminate any
confounding bias which may result in misleading conclusions
about the causal relationship of the examined variables.

In this work, we propose probabilistic matching, a matching
method that takes into account the uncertainty about the real
values of a noisy variable and attempts to find optimal pairs
of units in order to maximize the probability that the matched
units have similar characteristics. Our method is based on the
assumption that a probability distribution describing the real
values of each unobserved variable is known or can be approx-
imated. Although this assumption may restrict the applicability
of the proposed method, it is realistic in many scenarios. For
example, when an inference procedure is applied in order
to learn the values of an unobserved variable L from some
observed attributes C, a probability distribution Pr(L|C) can
be approximated, as we discuss later in Section IV.

We evaluate the proposed matching framework on two
different simulation studies in comparison with a conventional
matching method. We demonstrate that probabilistic match-
ing reduces significantly the confounding bias and results
in more accurate causal conclusions. We also evaluate our
method on a real dataset. In particular, we use the social
media dataset described in [10] in order to test whether
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text messages containing URLs tend to be reposted more
often. This dataset includes a rich variety of features extracted
from Weibo microblogging service for 111 users along with
a manually assigned binary label for each user indicating
whether he/she has been characterized as spammer or not.
In our scenario, we assume that the spammer label is an
unobserved confounding variable and we apply a spammer
detection method [11] in order to infer a label for each
user from other observed attributes. We map the classification
outputs to probability distributions describing the probability
of a user to be a spammer and we use these probability
distributions to our matching framework. We demonstrate that
the number of URLs in text messages indeed influences the
number of reposts. We repeat our causality study by applying a
conventional matching method in two scenarios: 1) the ground
truth binary spammer identifier is known and 2) only the noisy
spammer identifier inferred from the data is known. The results
of the first scenario serve as the ground-truth. We demonstrate
that our results come in agreement with the conclusions of
the first scenario, while the examined conventional matching
method fails to detect the causal link.

II. BACKGROUND

In this section we provide some background knowledge on
causal inference based on the matching design framework. For
more clarity, we summarize the notation used in the paper
in Table I. According to Rubin’s framework [12], the causal
impact of a binary treatment on a unit u can be assessed by
comparing the outcome Y1(u), if the unit has received the
treatment, with the outcome Y0(u), if the unit has not received
the treatment. The fundamental problem of causal inference is
that it is not possible to observe both Y1(u) and Y0(u) for the
same unit u. If treatment is randomly assigned, the average
treatment effect (ATE) can be estimated as E{Y1} − E{Y0},
where E{Y1} and E{Y0} are expectations w.r.t. uniform
distribution over treated and untreated units, respectively.
However, if the treatment assignment is conditional on certain
characteristics of the units, the causal inference could be
biased. The characteristics of units are called confounding
variables. Matching methods attempt to eliminate this bias by
comparing the outcome values of units with similar observed
characteristics. In particular, if U is a set of treated units and V
is a set of control units (i.e. units which have not received the
treatment), matching methods match each treated unit u ∈ U
with the ”most similar” control unit v ∈ V . If G is the
set of matched pairs of units, the average treatment effect is
estimated as E(u,v)∈G{Y1(u)−Y0(v)}, where the expectation
is with respect to uniform probability distribution over G. The
(dis)similarity between units is measured as a distance between
their confounding variable values (for some metric).

A. Matching Methods

Several methods for creating pairs of units (u, v) ∈ G have
been proposed. The matching methods involve two steps: 1)
the matching and 2) the balance check. In the matching step, a
method that creates pairs of treated and control units (u, v) ∈

Symbol Description
N Number of units
P Number of confounding variables
Y Outcome variable, described with a 1×N vector
yu The outcome value of unit u
X Treatment variable, described with a 1×N vector
xu The treatment value of unit u
Z P ×N matrix of confounding variables

zu the uth column of Z, denoting a P × 1 vector of
values of unit u for the P confounders

zp the pth line of Z, denoting a 1×N vector of
values of the N units for the pth confounder

zpu
element in column u and line p of Z, denoting
the value of unit u for the p confounder

G Set of matched treated and control units
GU Set of matched treated units
GV Set of matched control units

L̃
Variable with measurement errors, described
with a 1×N vector

Lu Random variable with Pr(Lu|L̃ = l̃u)

Xu stochastic variable describing the treatment of u

X 1×N vector of stochastic variables describing the
treatments of the N units

Z P ×N matrix of stochastic confounders

Zu
uth column of Z, denoting a P × 1 vector of
random variables for unit u

Zp pth line of Z, denoting a 1×N vector of
random variables for the p confounder

Zp
u

element in column u and line p of Z, denoting a
random variable for the pth confounder of unit u

D(zu, zv) Distance between vectors zu, zv
D(Zp

u, Z
p
v ) Distance between random variables Zp

u, Zp
v

D(Zu, Zv) Distance between random variables vectors Zu, Zv

DZu,Zv

P × 1 vector of distances between the P
random variables Zp

u, Zp
v

∆(u, v) Distance between units u, v

TABLE I: Notation.

G based on closeness of their confounding variables is applied
using some notion of a distance between confounding variable
values. Afterwards, in the balance check step, the remaining
confounding bias due to imperfectly matched units needs to be
estimated. If the resulted groups of matched treated and control
units are not adequately balanced, the matching method needs
to be revised. The balance can be examined by checking the
standardized mean difference between the treated and control
units, by applying a t-test or a Kolmogorov-Smirnov test, or by
examining the quantiles of the matched units. This checking
has to be done for each confounding variable.

The simplest matching method is the Nearest Neighbor
Matching which matches each treated unit to the control
unit with the lowest distance between the corresponding con-
founding variable values. Another popular matching method
is genetic matching [13]. Let us denote by N the number of
units in the study, P the number of confounding variables
and Z a P ×N matrix of confounding variables with zu the
uth column of Z, i.e. P × 1 column vector of values of unit
u for the P confounders. Genetic matching uses as distance



metric between confounder vectors the following weighted
Mahalanobis distance:

du,v,W =
√

(zu − zv)T ·W · (zu − zv) (1)

where W = (S−
1
2 )T ·W ·S− 1

2 , with W a P×P diagonal posi-
tive definite weight matrix and S−

1
2 is the Cholesky decompo-

sition of the sample covariance matrix of Z = [z1, ..., zN ]. The
diagonal elements of W are selected by applying an evolution-
ary search algorithm that attempts to find the optimal weights
to minimize a loss function. Several loss functions can be used.
A commonly used loss is the minimum p-value of a t-test or a
Kolmogorov-Smirnov distributional test on the matched pairs
of treated and control units resulting from applying a given W
in the distance calculations between confounders. The loss is
calculated for each confounding variable. Thus, if pp is the p-
value of the pth confounding variable, the objective is to find
a matrix W that minimizes the minppp. Other loss functions
are based on comparisons of the quantiles of confounding
variables for the matched treated and control units. In detail,
denote by GU and GV the sets of matched treated and
control units, respectively, i.e. for each pair (u, v) ∈ G,
u ∈ GU and v ∈ GV . For pth confounding variable, we
think of the corresponding values for matched treated units
{zpu : u ∈ GU} as realizations of a random variable Ap.
Analogously, the values {zpv : v ∈ GV } of matched control
units will be considered realizations of a random variable
Bp. Given a set of K quantiles ap(k) and bp(k) of Ap and
Bp, respectively, we calculate a set of quantile differences
∆p = {|ap(k) − bp(k)|}Kk=1. Then, one of the following loss
functions can be applied: 1) meanpmean∆p, 2) maxp∆p,
3) medianp∆p, 4) meanpmax∆p, 5) maxpmax∆p, 6)
medianpmax∆p, 7) meanpmedian∆p, 8) maxpmedian∆p

and 9) medianpmedian∆p.

B. Matching with Continuous Treatments

Although matching frameworks have been proposed mainly
for bivariate treatment variables, some recent studies also
consider continuous treatments [14], [15]. In such cases units
cannot be split into treatment and control groups. Instead, each
unit can be matched to any other unit. The goal of matching is
to create pairs of units with similar values on their confounding
variables but different treatment values. In [14] the distance
between units u, v is estimated as follows:

∆(u, v) =
D(zu, zv) + ε

(xu − xv)2
(2)

where D(zu, zv) is the distance between the vectors of con-
founding variables values of units u and v (this can be the
euclidean distance, the Mahalanobis distance or any other
distance metric), ε > 0 a small constant and xu, xv are the
treatment values of u and v, respectively. With respect to unit
v, unit u will be considered as treated if xu > xv . The average
treatment effect is estimated as follows:

E(u,v)∈G

{ yu − yv
xu − xv

}
(3)

C. Genetic Matching with Continuous Treatments

To the best of our knowledge, Genetic Matching, so far
has been used only for binary treatments. However, it can be
extended to continuous treatments by modifying Eq. (2) as
follows:

∆(u, v) =
du,v,W + ε

|xu − xv|
(4)

The loss function also needs to be modified in order to
penalize any matrix W which results in matched units with
similar treatments. We think of the absolute differences on the
pth confounding variable values of the matched treated and
control units {|zpu − zpv | : (u, v) ∈ G} as realizations of a
random variable Ap. Then, we define a set of K quantiles
∆p = {qp(k)}Kk=1. The loss function can be selected based
on this quantiles set as described in Section II-A.

III. PROBABILISTIC MATCHING

We further extend the framework for matching with con-
tinuous treatments to cases where treatment and/or one or
more confounding variables may have noisy or censored
measurements. We assume that for each unobserved variable
L there is an observed noisy version L̃. For example, L̃
could be a location label inferred from smartphone sensor
data (and consequently subject to inaccuracies) and L the
real unknown location label. We also assume that for each
observation l̃u of L̃ the corresponding random variable Lu

has known probability distribution Pr(Lu|L̃ = l̃u). In the
following, we will consider the general case where all the key
variables are noisy with the understanding that in the case of
no noise the corresponding distribution reduces to the delta
function:

Pr(Lu|L̃ = l̃u) =

{
1 , Lu = l̃u

0 , Lu 6= l̃u
(5)

Denote by Xu the random variable describing the treatment
of unit u and with X a 1 × N random vector of treatment
variables of all units. We also denote by Zp

u the random
variable describing the pth confounding variable of unit u and
with Z a P × N matrix of random variables Zp

u. As before,
Zp will denote the pth row of Z and Zu its uth column. Our
objective is to find pairs of units with minimum distance ∆
as given in Eq. (2). However, if the treatment and/or any of
the confounding variables are noisy, the real distance cannot
be calculated. Consequently, the applied matching method may
result in poor matches. We attempt to improve the matching by
including our knowledge about the uncertainty of the variables
into the matching process. Suppose we have a notion of a
distance D(Xu, Xv) between random variables Xu, Xv and a
distance D(Zu, Zv) between random vectors Zu and Zv . We
need to find pairs of units u, v that minimize

∆(u, v) =
D(Zu, Zv)

D(Xu, Xv)
(6)



We need to define a suitable distance metric D for our
random variables. Commonly used distance metrics for dis-
tributions such as f-divergence metrics (e.g. Kullback-Leibler
divergence) are not suitable in our case, since our objective
is to estimate the probability that the values of two random
variables Xu, Xv are close (i.e. Pr(|Xu −Xv| < ε), where ε
a small positive constant). Since our distance metric needs to
measure also the proximity between the values of two random
variables, we suggest a metric that is based on comparison
of the quantiles of the examined variables. Let us denote by
qXu

(k) the kth quantile of variable Xu, k = 1, 2, ...,K. Then,
we define D(Xu, Xv) as follows:

D(Xu, Xv) =
1

K
·
√∑

k

(qXu
(k)− qXv

(k))2 (7)

If X is not noisy, the quantile values will be the same and
D(Xu, Xv) reduces to the Euclidean distance of xu and xv .

A. Probabilistic Genetic Matching

Although several distance metrics can be used as the dis-
tance between random vectors D(Zu, Zv), in this work, we
propose Probabilistic Genetic Matching (ProbGenMatch), a
modified version of the Genetic Matching distance metric. De-
note by DZu,Zv = [D(Z1

u, Z
1
v ), D(Z2

u, Z
2
v ), ..., D(ZP

u , Z
P
v )]T

the P × 1 vector of distances D(Zp
u, Z

p
v ) between the P

random variables Zp
u, Zp

v , p = 1, 2, ..., P (see Eq. (7)). Then,
we calculate D(Zu, Zv) by modifying the Genetic Matching
distance of Eq. (1) as follows:

D(Zu, Zv) =
√

DT
Zu,Zv

· (S− 1
2 )T ·W · S− 1

2 · DZu,Zv
(8)

The loss function used to select the optimal weight matrix
W also needs to be modified. We use the quantiles-based loss
functions described in Section II-A. In particular, for each pair
of units (u, v) ∈ G we define a random variable:

Ap
u,v =

|Zp
u − Zp

u|
|Xu −Xv|

(9)

We denote by apu,v(k) the kth quantile of Ap
u,v . We also

define the average k-th quantile for the pth confounding
variable, āp(k) = 1

|G| ·
∑

(u,v)∈G a
p
u,v(k). Finally, we collect

the average quantiles in the set ∆p = {āp(k)}Kk=1 to be used
in a quantile-based loss functions described in Section II-A.

B. Implementation

ProbGenMatch has been implemented as an R package
and it is based on the Matching R package, an open source
software which implements several matching methods. Prob-
GenMatch takes as input the probability distributions for all
the confounding variables and treatment variable for all the
units of the study (along with other optional parameters) and
returns the matched pairs according to the previously described
framework. If all the variables of the study are observed
without any measurement errors, then ProbGenMatch is equiv-
alent to the continuous Genetic Matching approach that we

presented in Section II-B. If also the treatment variable is
binary, ProbGenMatch is equivalent to the Genetic Matching
framework [13].

Caliper Distance. Matching with caliper distance has been
previously proposed as a way to impose restrictions on the
maximum allowed dissimilarity between the matched units
[16]. A caliper distance is simply a threshold that defines the
maximum allowed difference of two units on their confound-
ing variable values. In our implementation we also support
matching with caliper distance as an optional parameter. For
stochastic confounding variables, a probability threshold Tprob
should be provided along with the caliper distance. This
probability threshold allows the matching of two units only
if the probability to have a larger difference than the caliper
distance on their confounding variable values is smaller than
Tprob. Our implementation also allows users to specify a
threshold on the minimum difference between the treatment
values of two matched units. For stochastic treatment vari-
ables, a probability threshold should be provided along with
the minimum treatment difference threshold.

IV. EVALUATION

We evaluate the proposed probabilistic matching framework
on two synthetic and one real dataset. All the examined scenar-
ios include one unobserved variable L along with an observed
noisy version L̃. We use as baselines for our evaluation:

1) the traditional Genetic Matching (GenMatch) approach
which treats L̃ as the true variable.

2) the optimal Genetic Matching (OptGenMatch), where
we assume that L is observed without any noise. The
performance of Genetic Matching under this optimal
scenario serves as an upper bound to the performance of
our method. The results obtained by OptGenMatch will
be considered as ground-truth.

We use the synthetic datasets to evaluate the performance
of the proposed framework on different noise levels. We also
examine the sensitivity of our approach to the selected caliper
distance. Finally, we apply our method on the social media
dataset described in [10] in order to test whether text messages
containing URLs tend to be reposted more often.

Evaluation Criteria. The objective of a matching method
is to match units with small dissimilarity on their confounding
variables values and large difference on their treatment values.
We evaluate the performance of ProbGenMatch on these
metrics in comparison with GenMatch and OptGenMatch.
Additionally, we investigate whether the amount of the re-
maining bias due to purely matched pairs is sufficiently large to
influence the validity of the causal inference by comparing our
conclusions with the corresponding results of OptGenMatch.

A. Synthetic Dataset

We consider a binary variable L describing the class of
objects represented by M-dimensional vectors of real numbers.
We consider two types of vectors. The first type corresponds
to positive examples (i.e. vectors that belong to class L = 1).
The data in each of the M dimensions of the first vector type
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Fig. 1: Average treatment difference between the matched
units.

are generated by a Gaussian process with mean value 1 and
standard deviation σ1. The second type of vectors corresponds
to negative examples (i.e. L = 0) and their values in each
dimension are generated by a random Gaussian process with
mean −1 and standard deviation σ2. We train a Support Vector
Machine classifier on this synthetic dataset and afterwords we
use the classifier on unseen synthetic data (generated with the
same procedure) in order to learn a label L̃ for each vector.
Afterwards, we map the SVM outputs into probabilities by
applying the process described in [17]. For each vector v, the
probability distribution of random variable Lv corresponds to
the output of this mapping procedure.

In our test case, we consider two-dimensional vectors (i.e.
M = 2) and we set σ1 = 1. We test the performance of
our matching framework with different noise levels on the
observed variable L̃ by increasing σ2 from 1 to 2 with step
0.2. By increasing the variance of the second vector type, we
make our vectors less separable and consequently, the resulted
classes L̃ are less accurate.

1) Unobserved Treatment Variable: In the first case, we
consider L as the treatment variable. We generate two con-
founding variables Z1 = α1 · L + e1 and Z2 = α2 · L + e2,
where e1 and e2 random Gaussian noise with mean 0 and
variance 1 and 2 respectively for Z1 and Z2 and α1, α2 are
model coefficients. In the following results, we do not use
a caliper distance for the confounding variables. We set the
minimum allowed distance between the treatments of matched
units equal to 0.1 and the maximum allowed probability that
the matched units have a treatment difference larger than 0.1
equal to 0.25. We repeat our study for 10 randomly selected
sets of model coefficients (αs). All model coefficients are
randomly generated from a uniform distribution on [0, 1]. For
each one of the 10 sets of model coefficients we repeat each
study for 100 different noise realizations. In Fig. 1 we present
the average treatment difference between the matched units
for the three examined matching algorithms along with the
95% confidence intervals. The OptGenMatch method always
avoids matching units with the same treatment value. Thus,
given that in this scenario we consider binary treatments, the
average treatment difference is always equal to 1. Accord-
ing to our results, the performance of both GenMatch and
ProbGenMatch declines for higher noise levels (i.e. larger σ2).
However, ProbGenMatch significantly outperforms GenMatch
by avoiding matching units with the same treatment for more
than 88% of the matched pairs for all examined noise levels.

When the resulted group of matched units contains pairs
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Fig. 2: Percentage of true positive causality conclusions.

with the same treatment level, the impact of the examined
treatment on the outcome variable cannot be reliably assessed
by comparing the matched units on their outcome values. We
demonstrate this by generating the following outcome variable:

Y = β0 · L+ β1 · Z1 + β2 · Z2 + nu + en (10)

where β0, β1, β2 are model coefficients, nu is a uniform
random variable on [0, 4] and en is gaussian noise with mean 0
and variance 1. All β coefficients are randomly generated from
a uniform distribution on (0, 1]. For non-zero β0, the treatment
variable L has a causal impact on Y . We apply a Wilcoxon
non-parametric test in order to examine whether the average
treatment effect, (Eq. (3)) is significantly different than zero.
When the performance of OptGenMatch is examined, we use
as treatment (i.e. the variable X of Eq. (3)) the binary variable
L, while for GenMatch and ProbGenMatch we use the noisy
variable L̃. We repeat our study for 10 different sets of model
coefficients and 100 realizations of nu, en, for all the groups
of matched units resulted after applying the three examined
methods, as it was previously described. In Fig. 2 we depict
the average percentage of times that the null hypothesis of the
Wilcoxon test (i.e. that the average treatment effect is equal to
zero) was rejected with p-value equal to 0.05. OptGenMatch
successfully detects the causal impact of L on Y in most cases,
while ProbGenMatch significantly outperforms GenMatch.

2) Latent Confounding Variable: In the second case, L
corresponds to a binary confounding variable. In detail, we
consider a continuous treatment variable X which follows a
uniform distribution on [0, 1]. Our binary confounding variable
L follows a binomial distribution with success probabilities
given by the vector of probabilities PS = 1/(1 + e−t), where
t = α0 +α1 ·X . We also create a confounding variable Z1 =
α1 ·X+e1. We evaluate the performance of the three examined
matching approaches by generating different realizations of
the model coefficients and noise e1, as it was previously
described in Section IV-A1. We assess the remaining bias due
to imperfect matches by calculating the standardized difference
in means for each confounding variable [18]. In detail, for
the binary confounding variable L, we consider the values
{ lu
xu−xv

: (u, v) ∈ G} as realizations of a random variable
CU and the values { lv

xu−xv
: (u, v) ∈ G} as realizations of

a random variable CV . Then the standardized difference in
means for the confounding variable L is estimated as:

|C̄U − C̄V |√
(σ2

U + σ2
V

)/2
(11)
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Fig. 3: Remaining bias for the two confounding variables.

where C̄U , C̄V the mean values of CU , CV respectively and
σ2
U , σ2

V their variances. The same process is followed for the
estimation of the standardized difference in means for Z1.

In Fig. 3 we present the standardized difference in means
for the two confounding variables (i.e. the binary variable L on
the top and the continuous Z1 on the bottom). OptGenMatch
always matches units with the same value on L and there-
fore, there is zero bias. The proposed ProbGenMatch method
achieves also low bias, smaller than 0.1 for all the noise levels
and significantly outperforms GenMatch. Finally, all methods
achieve similar performance on the continuous confounding
variable Z1, which is considered to be observed without any
noise, although the performance of ProbGenMatch is slightly
worse for large noise levels.

Failing to sufficiently eliminate the bias induced by con-
founding variables may result in false positive causality
conclusions. We demonstrate this by considering again the
outcome variable of Eq. (10). This time we set β1 = 0, thus,
there is no causal impact of Z1 on Y . In Fig. 4 we present the
rate of the false positive causality conclusions (i.e. the average
percentage of times that the null hypothesis of the Wilcoxon
test was not rejected) along with the 95% confidence interval.
ProbGenMatch achieves up to 8% lower false positive rate
than GenMatch.

B. Location-based Synthetic Dataset

In this scenario, our latent variable L represents the daily
time that the participants of a study spend in entertainment
venues such as pubs, restaurants, bars etc. We assume a study
based on stmartphones sensor data, where participants do not
report their location; instead location, along with the underly-
ing context (i.e. work, home, restaurant etc.) is inferred from
other raw sensor data. Several methods for automatic location
label inference have been proposed [19], [20]. However, the
real location context cannot be inferred accurately. Location
context could be very important for studies examining the
impact of social behavior or daily activities (e.g. exercising
socializing etc.) on well-being indicators such as stress level
[5] or eating disorders [21].

We synthetically generate a location dataset based on the
description of the real dataset presented in [19]. In [19],
authors gather several sensor data along with ground truth
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Fig. 4: Percentage of false positive causality conclusions.

labels for the locations of 36 participants and they apply
a method for automatic location label inference. In order
to generate our dataset, we define a variable P denoting a
location label. As described in [19], we consider 7 location
labels: home, work, college, entertainment, food, shops and
other. Pu(t) denotes the location of a participant at day u
and time t and it is sampled on an hourly basis. We use the
mobility patterns and location statistics described in [19] in
order to randomly generate the variable Pu(t). We also define
a variable Eu(t) as follows:

Eu(t) =

{
1 , Pu(t) =entertainment
0 , otherwise

(12)

Finally, we create a variable L, with values lu =
∑
Eu(t)

for each day u. However, in a real study, where participants
would probably be unwilling to continuously provide labels
for their location data, L would be a latent variable. We
generate the discrete variable P̃ (t) denoting the inferred
location label based on the method described in [19] by
utilizing the confusion matrix (Table 3 of [19]) which presents
the performance of the proposed location inference method.
According to this matrix, only 41% of the places with resulted
label entertainment are correctly labeled while the rest 59%
of the places actually correspond to college (4%), work (4%),
shops (4%), food (33%) and others (9%). We create a noisy
variable P̃ (t) by randomly inserting bias on P (t) based on
these results. Then we define Ẽu(t) as:

Ẽu(t) =

{
1 , P̃u(t) =entertainment
0 , otherwise

(13)

We also create L̃u with values l̃u =
∑
Ẽu(t) for each day u.

Finally, based on the performance of the location inference
method, we create a random variable Lu with probability
distribution Pr(Lu|P̃u(1), P̃u(2), ...P̃u(24)). We normalize L,
L̃ to [0, 1].

We use L as the unobserved treatment variable and we
generate the confounding variables Z1, Z2 as it is described in
Section IV-A1. In this scenario, we examine the impact of the
allowed minimum treatment difference on the three examined
matching methods. In detail, let us denote with Tmin the
minimum allowed treatment distance. We vary Tmin from 0.05
to 0.4 with 0.05 step. For ProbGenMatch we set the maximum
allowed probability that the treatment difference is smaller
than Tmin equal to 0.25. In Fig. 5 we present the average
treatment difference between the matched treated and control
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Fig. 5: Average Treatment Difference between the matched
units.

groups achieved by the three examined matching algorithms.
According to our results, there is not significant impact of
the treatment difference threshold on the average treatment
difference when the OptGenMatch method is applied. There
is an improvement on the performance of GenMatch for
the threshold values 0.2 to 0.3, however its performance is
decreased for larger than 0.3 thresholds. Since the threshold is
applied on the observed noisy variable L̃ and not on L, large
threshold values may prevent the matching of units which
are actually good matches. ProbGenMatch is not strongly
influenced by the treatment difference threshold, however, its
performance is also decreasing for large threshold values.

Finally, we generate again an outcome variable as described
in Eq. (10) in order to examine the influence that the resulted
matching may have on a causality study. We examine the rate
of true positive causality conclusions for the three examined
methods by repeating the process described in Section IV-A1
and we present our results in Fig. 6. ProbGenMatch achieves
a higher rate of true positive conclusions compared to Gen-
Match, however their difference is less significant compared
to the binary treatments case examined in Section IV-A1.
This is reasonable considering that for binary noisy treatments
matching will result more often on pairs with the same
treatment value; thus, the treatment effect will be weaker.

C. Social Media Dataset

In this section, we evaluate our method on a real dataset.
We use the microblogPCU dataset, which is available in the
UCI Machine Learning repository [10], in order to examine
whether the number of URLs included in microblog messages
influences the number of times that these messages are re-
posted. MicroblogPCU dataset has been collected from the
sina Weibo microblog and contains information about the
profiles of 782 users, their social network and their microblog
activity. It also contains ground-truth binary labels indicating
whether a user is a spammer or not for 111 users.

We use the ratio of messages with URLs as the treatment
variable of our study and the number of re-posts as the
outcome variable. Spammers tend to use more URLs in their
messages and spammers messages are re-posted less often.
Thus the spammer binary indicator should be used as a
confounding variable. We also use as confounding variables
other indicators that correlate both with the treatment and the
outcome variables. In detail, we found that the number of
posts, the class level of the user account (this is an indicator
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Fig. 6: Percentage of True Positive Causality Conclusions.

assigned by Weibo) and the number of followers correlate both
with our treatment and outcome variables.

We assume that the binary spammer indicator is unknown
and it needs to be inferred from the data. We apply the method
described in [11] in order to classify the users to spammers and
non-spammers. We extract attributes from the text content and
users profiles as described in [11]. We use all the attributes
of [11] apart from the number of times a user replied to a
message or received a reply and whether a message is a reply
message, since this information is not provided in this dataset.
Also, instead of the user account age, we use the user account
class. The interested reader should refer to [11] for a complete
list of all the extracted features. Afterwards, we apply the chi-
squared feature selection method in order to find the most
important attributes. Six attributes were selected, namely: 1)
the fraction of tweets with URLs, 2) the user account class, 3)
the average number of URLs per message, 4) the number of
followees, 5) the average number of hashtags per message and
6) the average number of re-posts. Following the procedure
of [11], we use weka [22] to train a support vector machine
classifier. We used only the data for the 111 users for which
a ground-truth label is available. We used 50% of the dataset
for training and the rest for testing. 76% of the spammers
and 82% of the non-spammers are correctly classified. Our
classifier is more successful on recognizing the spammers and
less on recognizing the non-spammers compared to [11]. This
difference can be attributed to the differences between the
dataset characteristics of the two studies.

We define as L the ground-truth binary label indicating
whether a user is spammer and L̃ the inferred label based
on the above-mentioned process. We also create a random
variable Lu for each user u and we obtain a probability
distribution for each Lu by mapping the SVM outputs into
probabilities. We match the users based on their confounding
variables values by applying the three examined approaches.
The results obtained by OptGenMatch serve as the ground-
truth. Finally, we use the Wilcoxon test to examine whether
the mean value of the outcome variable for the treated units
significantly differs from the mean outcome value of the
control units. In Table II we present the mean difference (see
eq. (11)) achieved for the binary confounding variable L with
the 3 examined methods. We also present the p-values of the
Wilcoxon test under the null hypothesis that the treatment
variable has no effect. Both OptGenMatch and ProbGenMatch
reject the null hypothesis with p-value smaller than 0.05.
However, when the treatment and control pairs are created



Balance on L Wilcoxon test p-value
OptGenMatch 0.014 0.005

GenMatch 0.36 0.15
ProbGenMatch 0.15 0.041

TABLE II: Causality Study Results

by applying the GenMatch method, the remaining bias on the
binary indicator L is large and results in the false conclusion
that there is no significant impact of the number of URL’s
included in text messages to the number of re-posts.

V. RELATED WORK

Causal inference when important variables are missing is
mainly based on structural equation models (SEMs) with
latent variables [7], [8]. SEMs include two components:
the structural model part describing the causal relationships
between the predictors and the outcome variables and the
measurement model describing the relationships of the latent
variables with other observed variables. Model selection is
based on theoretical assumptions about data structure. After
the model is specified it should be assessed whether the data fit
on it by using statistical tests or fit indexes. Graphical causal
models with latent variables have also been used [23]. Our
approach examines the problem of unobserved variables on a
different causality framework (i.e. the matching framework),
thus it should be considered complementary rather than com-
petitive to the existing methods. SEMs are usually based on
assumptions about the model-class of the data, while matching
methods require fewer assumptions. Moreover, assessing the
model bias with matching-based methods is straightforward
by using balance diagnostics tests while, goodness-of-fit tests
used with structural equation models cannot assess whether
systematic differences between units have been eliminated
[15]. Thus, causal inference based on matching could be
preferable in some cases. To the best of our knowledge, our
method is the first that considers the problem of unobserved
factors on matching methods.

VI. CONCLUSIONS

We propose probabilistic matching, a novel approach for
causal inference when one or more key variables are un-
observed or noisy. Our method is based on the assumption
that probability distributions describing the values of the
unobserved variables are known or can be approximated. We
define a distance metric, based on Genetic Matching distance,
that measures the dissimilarity between units by examining
the difference on the quantiles of the stochastic variables
of the study. We evaluate our method both on simulated
and real datasets. We demonstrate that when the treatment
variable is noisy, traditional matching methods may result in
matching pairs with the same or similar treatment values.
This weakens the observed effect of the treatment on the
outcome variable and consequently, may result in missing true
causal links. Similarly, when there is noise on the confounding
variables, existing matching methods fail to sufficiently reduce

the confounding bias, which often results in false causality
conclusions. We show that our approach is able to find better
matches and, consequently, achieves more accurate causal
conclusions.
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