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1 Assumptions and Definitions from the Main Text

Here we reproduce the assumptions from the main text for convenience because several

results in subsequent sections refer to them.

Assumption 1. For k = A,B, σ2
k > 0, V arP0((ln fk(X; θ∗k))

2) > 0, and V arP0(∇θk ln fk(X; θ∗k))

is nonsingular.

Assumption 2. Θ ⊂ Rdθ is compact and ln fk(x; ·), k = A,B, are twice continuously

differentiable.

Assumption 3. (i) X1, . . . , Xn is an i.i.d. sequence of random variables with common

distribution P0 ∈ P.

(ii) There is a unique θ∗ ∈ int(Θ) so that EP0g(X; θ∗) = 0.
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(iii) EP0 [∇2
θk

ln fk(X; θ∗k)], k = A,B, are invertible.

Assumption 4. (i) EP0 [‖∇θk ln fk(X, θ
∗
k)‖2+δ] < ∞ and EP0 [| ln fk(X, θ∗k)|4+δ] < ∞ for

k = A,B and some δ > 0.

(ii) There exists a function F̄1(x) such that EP0F̄1(X) < ∞ and, for j, k = A,B, for all

θ = (θ′A, θ
′
B)′ ∈ Θ, for all x ∈ X , and for h(x; θ) being any of the functions ln fk(x; θk),

vec(∇2
θk

ln fk(x; θk)) and ln fk(x; θk)∇θj ln fj(x; θj), we have ‖h(x; θ)‖ ≤ F̄1(x).

(iii) There exists a function F̄2(x) such that EP0 [|F̄2(X)|2+δ] <∞ and ‖∇θk ln fk(x; θk)‖ ≤

F̄2(x) for all x ∈ X and k = A,B.

Assumption 5. ε̂n is a sequence of real-valued, measurable functions of X1, . . . , Xn such

that there exists a sequence {εn} ∈ E with |ε̂n − εn| = OP0(n
−1/2).

Assumption 6. Let ε̂n be a sequence of real-valued, measurable functions of X1, . . . , Xn

such that, for every sequence {Pn} in P, there exists a sequence {εn} ∈ E with |ε̂n − εn| =

OPn(n−1/2).

Definition 1. For some fixed δ, κ > 0, 0 < M ≤ M < ∞, and an increasing, continuous

function ε : (0,∞) → (0,∞) with ε(0) = 0, let P be the set of distributions P on X that

satisfy the following conditions for X ∼ P : (i) There exists a unique θ∗(P ) ∈ Θ such that

EPg(X; θ∗(P )) = 0, for all µ > 0, infθ:‖θ−θ∗(P )‖≥µ ‖EPg(X; θ)‖ > ε(µ), and Bκ(θ
∗(P )) ⊆ Θ,

where Bκ(θ) denotes a ball in Rdθ with radius κ around θ. (ii) There exists a function D(x)

such that EP [|D(X)|2+δ] ≤M and, for all x ∈ X ,

|ln fA(x; θ∗A(P ))− ln fB(x; θ∗B(P ))|

≤ D(x)
(
EP
[
|ln fA(X; θ∗A(P ))− ln fB(X; θ∗B(P ))|2

])1/2
, (1)
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where θ∗(P ) := (θ∗A(P )′, θ∗B(P )′)′. Further, we have EP [| ln fk(X; θ∗k(P ))|4+δ] ≤ M and,

similarly, EP [‖∇θk ln fk(X; θ∗k(P ))‖2+δ] ≤ M for k = A,B. (iii) There exists a function

F̄ (x) such that EP F̄ (X) ≤M and, for j, k = A,B, for all θ = (θ′A, θ
′
B)′ ∈ Θ, for all x ∈ X ,

and for h(x; θ) being any of the functions ln fk(X; θk), ∇θk ln fk(X; θk), vec(∇2
θk

ln fk(x; θk))

and ln fk(x; θk)∇θj ln fj(x; θj), we have ‖h(x; θ)‖ ≤ F̄ (x). (iv) For k = A,B, we have

M ≤ λmin(Hk(P )) and λmax(Hk(P )) ≤ M , where λmin(A) and λmax(A), respectively,

denote the smallest and largest eigenvalue of a matrix A. Furthermore, for h(x; θ) being any

of the functions log fk(x; θk), (log fk(x; θk))
2, and ∇θk log fk(x; θk), k = A,B, θ := (θ′A, θ

′
B)′,

we have M ≤ λmin(V ar(h(X; θ∗(P ))) ≤ λmax(V ar(h(X; θ∗(P ))) ≤M .

Theorem 1. If Assumptions 1–5 hold, then, under H0, t̃n →d N(0, 1) and, under HA∪HB,

|t̃n| →p ∞.

Theorem 2. Suppose Assumptions 2 and 6 hold. Let P0 be the subset of distributions in

P that satisfy the null hypothesis d∗(P ) = 0. Then the regularized t-test of nominal level α

is uniformly asymptotically of level α, viz.

lim
n→∞

sup
P∈P0

P
(
|t̃n| > z1−α/2

)
= α.

Theorem 3. Suppose Assumptions 2 and 6 hold. Let {Pn} ∈ Pδ for some localization

parameter δ ∈ R. Denote by {εn} ∈ E a sequence such that |ε̂n − εn| = OPn(n−1/2) and

ε := plimn→∞ε̂n under Pn. Then, under Pn,

t̃n →d N(λ̃, 1)

with mean

λ̃ := lim
n→∞

√
nd∗(Pn)(1 + εn/2)√

(1 + εn)σ2(Pn) + ε2
n(σ2

A(Pn) + σ2
B(Pn))/2

,

and σ2(P ) = σ2
A(P )− 2σAB(P ) + σ2

B(P ).
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2 Data-driven Choice of the Regularization Parame-

ter

In this section, we provide a data-driven choice of ε̂n that minimizes higher-order distortions

to size and power of our test. Specifically, we balance the worse-case size distortion if the

models were overlapping with the worst-case power loss if the models were not overlapping.

The rationale for proceeding in this way is that, in our approach, size distortion only occurs

for overlapping models while power loss only occurs when the models are not overlapping.

Furthermore, in a finite sample, it may be difficult to accurately test whether the models

are overlapping or not (this is the fundamental pre-testing problem we wish to avoid) and

hence it is natural to consider both possibilities simultaneously. Such an approach also

considerably simplifies the implementation of the method.

Fix α ∈ (0, 1/2). Let zβ denote the β-quantile of the standard normal distribution, φ(·)

and Φ(·) the standard normal density and cumulative distribution functions, respectively.

Assumption 7. For any n ∈ N, the Xni for i = 1, . . . , n are iid random variables taking

value in X and drawn from the probability measure Pn converging weakly to some measure

P0 and each Pn(x) admits a Radon-Nikodym derivative pn(x) with respect to P0(x).

Definition 2. We say that g : X × Θ 7→ Rdg for dg ∈ N and Θ is compact (under some

metric dθ(·, ·)) satisfies a triangular array dominance condition if

1. g(x, θ) is continuous in θ at each (x, θ) ∈ X ×Θ;

2. There exists G(x) such that EP0 [G(X0i)] <∞ (for X0i drawn from P0) and such that,

for all θ ∈ Θ and n ∈ N, ‖g(x, θ)‖pn(x) ≤ G(x) for all x ∈ X and for pn(x) as in

Assumption 7;
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3. There exists Ḡ < ∞ such that EPn [‖g(Xni, θ)‖4] ≤ Ḡ for all i = 1, . . . , n, all n ∈ N

and all θ ∈ Θ.

Assumption 8. ln fA(x, θA) and ln fB(x, θB) satisfy a triangular array dominance condi-

tion.

Assumption 9. ∇2
θA

ln fA(x, θA) and ∇2
θB

ln fB(x, θB) satisfy a triangular array dominance

condition.

Assumption 10. ln fk(x, θk)∇θl ln fl(x, θl) for k = A,B and l = A,B satisfy a triangular

array dominance condition.

Assumption 11. EP0 [∇2
θk

ln fk(X, θ
∗
k(P0))] and EP0 [∇θk ln fk(X0i, θ

∗
k(P0))∇′θk ln fk(X0i, θ

∗
k(P0))]

for k = A,B are invertible.

Assumption 12. For some δ > 0, we have supn∈NEPn [‖∇θA ln fA(Xni, θ
∗
A(Pn))‖4+δ] <∞

and, similarly, supn∈NEPn [‖∇θB ln fB(Xni, θ
∗
B(Pn))‖4+δ] <∞.

Assumption 13. For some δ > 0, we have supn∈NEPn [‖ ln fA(Xni, θ
∗
A(Pn))‖8+δ] <∞ and,

similarly, supn∈NEPn [‖ ln fB(Xni, θ
∗
B(Pn))‖8+δ] <∞.

Assumption 14. For some δ > 0, we have supn∈NEPn [‖∇2
θA

ln fA(Xni, θ
∗
A(Pn))‖4+δ] <∞

and, similarly, supn∈NEPn [‖∇2
θB

ln fB(Xni, θ
∗
B(Pn))‖4+δ] <∞.

Assumption 15. ∇3
θA

ln fA(x, θA) and ∇3
θB

ln fA(x, θB) satisfy a triangular array domi-

nance condition.

Assumption 16. supn∈NEPn [‖∇θk ln fk(Xni, θ
∗
k(Pn))∇θl ln fl(Xni, θ

∗
l (Pn))‖4+δ] < ∞ for

k = A,B and l = A,B for some δ > 0.

Assumption 17. ∇2
k ln fk(x, θk)∇θl ln fl(x, θl) for k = A,B and l = A,B satisfy a trian-

gular array dominance condition.
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Under these moment conditions, the following theorem establishes expansions of our

test’s power, Pn
(
|t̃n| > z1−α/2

)
, around its asymptotic local power, Φ(zα/2 +δ/σ)+Φ(zα/2−

δ/σ), when the models are distinct, and of our test’s size, P0(|t̃n| > z1−α/2), around its

nominal size α, when the models are equivalent.

Theorem 4. Fix α ∈ (0, 1/2) and suppose ε̂n := εn is a deterministic sequence in E. Under

Assumptions 2 and 7–17, for any distribution P0 such that d∗(P0) = 0 and σ2(P0) = 0,

P0(|t̃n| > z1−α/2) ≤ α + CSDε
−1
n n−1/2 ln lnn+O(n−1/2) + o(n−1/2ε−1

n ln lnn), (2)

where

CSD := 2φ(zα/2)
max{|tr(H−1

A VA)|, |tr(H−1
B VB)|}√

(σ2
A + σ2

B)/2
.

For sequences of local alternatives {Pn} satisfying d∗(Pn) = δn−1/2 for any given δ ∈ R\{0}

and σ2 := limn→∞ σ
2(Pn) > 0,

Pn
(
|t̃n| > z1−α/2

)
= Φ

(
zα/2 +

δ

σ

)
+ Φ

(
zα/2 −

δ

σ

)
− CPL(δ)ε2

n

+O
(
ε3
n

)
+O

(
n−1/2

√
lnn
)
, (3)

where

CPL(δ) :=

(
φ

(
zα/2 −

δ

σ

)
− φ

(
zα/2 +

δ

σ

))
δ(σ2 − 2(σ2

A + σ2
B))

8σ3
.

The expansions of size and power in Theorem 4 are useful for the optimal choice of ε̂n

that jointly minimizes size distortion for equivalent models,

SDn := P0(|t̃n| > z1−α/2)− α

= CSDε
−1
n n−1/2 ln lnn+ remainder
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and power loss for distinct models at alternative δ,

PLn(δ) := Φ

(
zα/2 +

δ

σ

)
+ Φ

(
zα/2 −

δ

σ

)
− Pn

(
|t̃n| > z1−α/2

)
= CPL(δ)ε2

n + remainder

The theorem shows that size for equivalent models is decreasing in εn and power for dis-

tinct models is increasing in εn. Therefore, SDn and PLn(δ) converge to zero at the fastest

possible rate if their respective leading terms, ε−1
n n−1/2 ln lnn and ε2

n, are of the same order.

This is the case when εn is of the order n−1/6(ln lnn)1/3. In fact, we can also choose the

constant in front of the optimal rate n−1/6(ln lnn)1/3 by balancing the constants in the

leading terms of SDn and PLn(δ). In principle, we could set CSDε
−1
n n−1/2 ln lnn equal

to CPL(δ)ε2
n and solve for the balancing εn given any particular alternative δ. Alterna-

tively, we can define a loss function over alternatives δ, e.g. weighted average power loss

WAPLn := ε2
n

∫
CPL(δ)ω(δ)dδ for some weighting function ω(δ) or the worst-case power

loss WCPLn := ε2
n supδ∈R\{0}CPL(δ), then set it equal to the leading term of SDn and

solve for the balancing εn. Weighted average power WAPLn is easy to compute for cer-

tain weight functions such as the normal density, leading to closed form solutions of the

resulting optimal tuning parameter. The worst-case power WCPLn is attractive because

it does not require the choice of a weighting function, but the optimization over δ typically

does not lead to a closed-form solution for the resulting optimal tuning parameter. We

therefore propose a simple upper bound on the worst-case power loss that does possess a

closed-form solution and worked well in our simulations, viz. C∗PLε
2
n where

C∗PL := φ

(
zα/2 −

δ∗

σ

)
δ∗(σ2 − 2(σ2

A + σ2
B))

4σ3

with

δ∗ :=
σ

2

(
zα/2 −

√
4 + z2

α/2

)
.
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Solving CSDε
−1
n n−1/2 ln lnn = C∗PLε

2
n then yields

εn =

(
CSD
C∗PL

)1/3

n−1/6(ln lnn)1/3.

This tuning parameter choice balances our upper bound on power loss with the size dis-

tortion and can be implemented in practice by computing

ε̂n =

(
ĈSD

Ĉ∗PL

)1/3

n−1/6(ln lnn)1/3 (4)

with

Ĉ∗PL := φ

(
zα/2 −

δ̂∗

σ̂

)
δ̂∗(σ̂2 − 2(σ̂2

A + σ̂2
B))

4σ̂3

ĈSD := 2φ(zα/2)
max{|tr(Ĥ−1

A V̂A)|, |tr(Ĥ−1
B V̂B)|}√

(σ̂2
A + σ̂2

B)/2

δ̂∗ :=
σ̂

2

(
zα/2 −

√
4 + z2

α/2

)
and where Ĥk and V̂k, k = A,B, are estimates of Hk := Hk(P0) and Vk := Vk(P0) with

Vk(P ) := EP [∇θk ln fk (Xi, θ
∗
k(P )) (∇θk ln fk (Xi, θ

∗
k(P )))′], obtained by replacing expecta-

tions by sample averages.

The proposed value of ε̂n in (4) can easily be computed from the data as it requires

only estimates of the matrices Hk and Vk, which have to be computed for the “sandwich”

variance estimator for potentially misspecified models anyway, and the sample variances σ̂,

σ̂2
A and σ̂2

B.

The following corollary formalizes the above discussion.

Corollary 1. Suppose the conditions of Theorem 4 hold and ε̂n is defined as in (4). Then,

for any distribution P0 satisfying the null hypothesis, i.e. d∗(P0) = 0 and σ2(P0) = 0,

SDn ≤
(
C2
SD

C∗PL

)1/3

n−1/3(ln lnn)2/3 + o(n−1/3(ln lnn)2/3)
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For sequences of local alternatives {Pn} satisfying d∗(Pn) = δn−1/2 for any δ ∈ R \ {0} and

σ2 := limn→∞ σ
2(Pn) > 0,

PLn(δ) ≤
(
C2
SD

C∗PL

)1/3

n−1/3(ln lnn)2/3 + o
(
n−1/3(ln lnn)2/3

)
.

Moreover, ε̂n satisfies Assumption 5, and Assumption 6 with P replaced by the set of

distributions satisfying the assumptions of Theorem 4.

Remark 1. Theorem 4 verifies that the optimal epsilon (4) satisfies Assumptions 5 and

6, implying that all theorems in the previous sections hold with ε̂n replaced by the optimal

expression in (4).

3 Invariance of Our Test Statistic Under Permuta-

tions

Let Ieven,n and Iodd,n denote the even and odd numbers in {1, . . . , n}, respectively. Our

statistic can then be written as

ˆ̃d = d̂+ ε̂n

 1

n

∑
i∈Iodd,n

ln fA(Xi; θ̂A)− 1

n

∑
i∈Ieven,n

ln fB(Xi; θ̂B)

 .

Consider the “permuted” statistic

ˆ̃̃
d := d̂+ ε̂n

 1

n

∑
i∈I1,n

ln fA(Xi; θ̂A)− 1

n

∑
i∈I2,n

ln fB(Xi; θ̂B)


where I1,n and I2,n form some partition of {1, . . . , n}, each containing n/2 elements. Let

t̃n :=
√
n ˆ̃d/ˆ̃σ and ˜̃tn :=

√
n

ˆ̃̃
d/ˆ̃σ be the two corresponding t-statistics, and denote by #A

the number of elements in a set A.
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Lemma 1. Suppose Assumptions 2, 3, and 1–5 hold. If #(Iodd,n \ I1,n) = o(n), then∣∣∣t̃n − ˜̃tn

∣∣∣ = oP0(1).

Lemma 1 shows that not only does every partition of the sample into two groups lead

to the same asymptotic distribution, but also the random difference between two test

statistics based on different assignment rules is negligible in large samples. This result

requires that one partition into two groups can be constructed from the other partition by

o(n) re-assignments of observations across groups.

Remark 2. It is easy to see that both statistics, t̃n and ˜̃tn, are asymptotically N(0, 1).

However, if the difference Iodd,n \ I1,n is unrestricted, then they are not asymptotically

equivalent in the sense that |t̃n − ˜̃tn| = oP0(1). Suppose this were true, then we would have

1

2

(
t̃n + ˜̃tn

)
=

1

2

(
2t̃n +

[
˜̃tn − t̃n

])
= t̃n + oP0(1)→d N(0, 1).

Picking I1,n := Ieven,n and I2,n := Iodd,n, however, yields

1

2

(
t̃n + ˜̃tn

)
=

√
n
(
1 + εn

2

)
d̂

ˆ̃σ

which is not asymptotically N(0, 1) when the models are equivalent. Therefore, a restriction

of how Iodd,n\I1,n depends on n is important. In particular, the assumption #(Iodd,n\I1,n) =

o(n) requires Iodd,n to contain less than a fixed fraction of the sample that is not in I1,n.

4 Additional Simulations

In this section, we provide additional simulations to demonstrate that our test also per-

forms well for selecting among two misspecified, two correctly specified and nested models.

Typically, one can easily establish whether models are nested or not by inspection of the

11



two parametric families. When they are in fact nested, the standard likelihood ratio test

with a chi-square critical value is the most powerful test under well-known conditions.

Example 1 (Misspecified Normals). Let the true distribution of the random variables Xi,

i = 1, . . . , n, be N(µ, 5). The two parametric families to be compared are

PA := {N(µA, 1) : µA ∈ ΘA}

PB := {N(0, σ2
B) : σB ∈ ΘB}

The null and alternative models are generated by varying the true mean according to µ =
√
e2d+4 − 5 with d ∈ [−1, 1]. Both models are misspecified under the null (µ∗A =

√
e4 − 5

and σ∗B = e2) and the alternatives. With ΘA not containing the origin, the two models are

non-overlapping.

Example 2 (Correctly Specified Normals). Let the true distribution of the random vari-

ables Xi, i = 1, . . . , n, be N(µ, σ2) and the two parametric families to be compared as in

the previous example. The null and alternative models are generated by varying (µ, σ2)

according to µ =
√
e2d−1+σ2 − σ2 with σ2 ∈ [1, 5] and d ∈ [−1, 1]. The two models are

correctly specified under the null (µA = µ = 0, σB = σ = 1), illustrating the case in which

the two models overlap at the truth and thus are observationally equivalent under the null.

Under the alternatives, they are both misspecified.

Example 3 (Nested Regressions with one Additional Regressor). Let the random vector

(Yi,Wi, Zi), i = 1, . . . , n, satisfy the regression equation

Yi = Wi + τWiZi + εi, εi ∼ N(0, 1)

with Wi ∼ N(3, 1), Zi ∼ N(0, 1) and εi ∼ N(0, 1) all i.i.d. and mutually independent

random variables. Consider model A,

Yi = α1 + α2Wi + εi, εi ∼ N(0, σ2
A),
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and model B,

Yi = β1 + β2Wi + β3Zi + εi, εi ∼ N(0, σ2
B).

Null and alternative models are generated by varying τ over [0, 1.6]. Under the null (τ = 0),

both models are correctly specified and model B nests model A while, under the alternatives,

both are misspecified.

Example 4 (Nested Regressions with two Additional Regressors). This example is similar

to the previous one, except that model B has one more regressor, viz.

Yi = β1 + β2Wi + β3Zi + β4Z
2
i + εi, εi ∼ N(0, σ2

B),

and the alternatives are generated from within model B:

Yi = Wi + τZi + εi, εi ∼ N(0, 1).

Therefore, the two models are nested, correctly specified under the null and the larger model

is correctly specified even under the alternatives. This is the standard testing situation in

which the second step of Vuong’s procedure is equivalent to a Neyman Pearson (“NP”) test

of the hypothesis H0 : β3 = β4 = 0.

Figure 1 shows the power plots for the four examples. The lower two panels of Table 7

report the empirical rejection probabilities under the null. In both examples, compared to

Vuong’s and Shi’s test, our test is more powerful for alternatives close to the null whereas

the other two dominate for alternatives further away from the null. All three tests control

size reasonably well, with Vuong’s and Shi’s test almost not rejecting under the null at all.

All tests perform well in the examples of misspecified and the correctly specified normals.

In those examples, they control size and all possess similar power curves.

Finally, we also report size-corrected versions of the power curves in the main text;

see Figure 2. To produce these graphs we first simulated Example 1 and searched for the
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nominal level of the tests that make the finite sample rejection probability (under the null)

equal to the desired level 0.05. For example, in panel (c), the levels required by Shi’s and

Vuong’s test to reach a finite sample rejection rate of 0.05 are 0.27 and 0.17, respectively.

Such large necessary levels reflect the conservative nature of the two tests under the null.

Notice that in practice achieving these improved power curves is infeasible so this is really

a theoretical exercise.

5 Extensions

To simplify the presentation of our basic model selection procedure we restrict attention to

a simple and stylized framework: we compare two fully specified parametric models based

on the KL criterion, i.i.d. data and a t-statistic. In this section, we argue that our proce-

dure applies much more generally and discuss some important, but mostly straightforward,

extensions.

Our model selection test measures distance between the candidate models by KL dis-

tance. One could, however, consider other goodness-of-fit criteria such as in-sample or

out-of-sample fit rather than KL-distance. Rivers and Vuong (2002) propose such exten-

sions of the Vuong test which would be completely analogous in our setting. An important

example would be comparing the accuracy of competing forecasts. Consider two forecasts

{y(1)t}Tt=1 and {y(2)t}Tt=1 of {yt}Tt=1 and let {e(k)t}Tt=1, k = 1, 2, be the corresponding forecast

errors. In an influential paper, Diebold and Mariano (1995) discuss procedures for testing

the hypothesis that the two forecasts are equally accurate, viz.

H0 : Eg(e(1)t) = Eg(e(2)t)

versus the alternative that the expectations are not equal, where g is some given loss

function. Diebold and Mariano (1995) consider a test statistic d̄ := T−1/2
∑T

t=1[g(e(1)t) −
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g(e(2)t)] which is asymptotically N(0, σ2) under standard assumptions. Therefore, we can

test H0 by simply comparing d̄ to a normal critical value. In this setting, we can apply our

sample splitting scheme to obtain a test that is asymptotically uniformly of correct level,

i.e. consider the modified statistic

˜̄d :=
T−1/2

∑T
t=1

[
ωt(ε̂T )g(e(1)t)− ωt+1(ε̂T )g(e(2)t)

]√
(1 + ε̂T )σ̂2 + ε̂2

T (σ̂2
1 + σ̂2

2)/2
,

where σ̂2, σ̂2
1, and σ̂2

2 are estimators of σ2, and the asymptotic variances of T−1/2
∑T

t=1 g(e(1)t)

and T−1/2
∑T

t=1 g(e(2)t), respectively.

A useful extension of theorems relaxes the i.i.d. assumption on the data generating

process. In the case of comparing parametric likelihoods, our theory allows for conditional

densities, so that time series dependence over a finite number of lags (e.g. AR(p)) can be

accommodated simply by conditioning on the lagged variables. More generally, the limiting

distribution of our test statistic ultimately only depends on the asymptotic normality of

certain sample averages and it is clear that our results can easily be secured under a much

wider range of conditions, including general stationary time series data.

Our testing procedure is based on estimating parameters from moment conditions. For

simplicity of exposition we considered a Z-estimator which is simply the root of the empir-

ical estimating equations. Clearly one could use any estimation procedure that estimates

solutions to moment conditions. Our procedure requires only asymptotic normality of the

resulting estimator which is readily established for a wide range of estimators (e.g. gen-

eralized method of moments (GMM), generalized empirical likelihood (GEL), minimum

distance) using standard conditions available in the literature (see, for example, Hansen

(1982), Newey and McFadden (1994), Newey and Smith (2004) and van der Vaart (1998)).

Also, test statistics for testing H0 : d∗ = 0 other than the t-statistic can be used, e.g. a

Wald, Lagrange Multiplier or distance metric statistic. These are first-order asymptotically
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equivalent to our statistic under standard conditions.

In the present context, M-estimators are also attractive because terms can be added

to the criterion function in order to penalize certain types of models. For example, one

may want to avoid the selection of models with too many parameters and add a correction

term that is increasing in the number of parameters in a model. See, for instance, Vuong

(1989, p. 318), Sin and White (1996) and references therein for correction terms that can

be interpreted through information criteria such as AIC and BIC.

Interestingly, our method can also be extended to compare models defined by moment

conditions rather than parametric likelihoods. In that case, one would replace the para-

metric scores EP0 [∇θA ln fA(X; θ∗A)] = 0 and EP0 [∇θB ln fB(X; θ∗B)] = 0 by the first-order

derivatives of an empirical likelihood objective function and the KL-difference between the

parametric densities by the difference in the respective objective functions. Other GEL ob-

jective functions could be used as well with the small difference being that they minimize

divergence measures other than KL and so one may want to adjust our third moment con-

dition accordingly. Notice, however, that comparisons based on GMM objective functions

depend on the chosen weighting matrix and can, therefore, be very misleading (Hall and

Pelletier (2011)).

We propose a regularization scheme which, in the observationally equivalent case, splits

consecutive observations into two subsamples. The sample could, of course, be split in

other ways as well. For example, one could consider the following reweighting scheme:

ˆ̃d :=
1

n

n∑
i=1

(
(1 + εi,n) ln fA(Xi; θ̂A)− (1− εi,n) ln fB(Xi; θ̂B)

)
where εi,n is an i.i.d. random variable independent of the sample and with a variance that

shrinks to zero with the sample size n. This type of regularization does not assign special

status to any observation, but on the other hand introduces more randomness, thereby
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reducing the power of the test. One could also deviate from our proposed even/odd splitting

scheme and our procedure would work in the exact same way as discussed above. However,

splitting into two halves is optimal in the sense that it minimizes the sum of the variances

arising from the two half-samples. Furthermore, one can imagine splitting up the sample

in many different ways and averaging over the resulting test statistics, but this procedure

would lead to a complicated limiting distribution due to the nontrivial correlations among

the individual statistics.

6 Proofs

For θ = (θ′A, θ
′
B)′, let di(x; θ, ε) := ωi(ε) ln fA(x; θA) − ωi+1(ε) ln fB(x; θB) and abbreviate

di(θ, ε) := di(Xi,n; θ, ε). Define Ĝ(θ) := ∇θĝ(θ) and G(θ) := EP0 [∇θg(X; θ)].

Lemma 2. Suppose {εn} ∈ E. Then, under any sequence Pn in P,

1.
1√
n

n∑
i=1

di(θ
∗(Pn), εn)− (1 + εn/2)d∗(Pn)

σ̃(Pn, εn)
→d N(0, 1).

2.
1

n

n∑
i=1

(
(ln fk(Xi,n; θ∗k(Pn)))2 − EPn [(ln fk(Xi,n; θ∗k(Pn)))2]

)
= OPn(n−1/2).

3. ĝ(θ∗(Pn)) = OPn(n−1/2).

Proof. For the first part, we start by showing that the following Lyapounov condition holds:

for some δ > 0 as n→∞,

n/2∑
i=1

EPn

[∣∣∣∣Λ2i−1(Pn) + Λ2i(Pn) + εnΛ2i,2i−1(Pn)− (2 + εn)d∗(Pn)√
nσ̃(Pn, εn)

∣∣∣∣2+δ
]
→ 0, (5)
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where Λi,j(P ) := ln fA(Xi; θ
∗(P )) − ln fB(Xj; θ

∗(P )) and Λi(P ) := Λi,i(P ). By the cr-

inequality,

n/2∑
i=1

EPn

[∣∣∣∣Λ2i−1(Pn) + Λ2i(Pn) + εnΛ2i,2i−1(Pn)− (2 + εn)d∗(Pn)√
nσ̃(Pn, εn)

∣∣∣∣2+δ
]

≤ 22+2δ

nδ/2

n/2∑
i=1

EPn

[
|Z2i−1,n|2+δ + |Z2i,n|2+δ + |Zi,n,split|2+δ +

∣∣∣∣(2 + εn)d∗(Pn)

σ̃(Pn, εn)

∣∣∣∣2+δ
]

(6)

with Zi,n := Λi(Pn)/σ̃(Pn, εn) and Zi,n,split := εnΛ2i,2i−1(Pn)/σ̃(Pn, εn). Consider the first

of the four terms. If σ(Pn) ≥ c for some c > 0, then

EPn

[
|Zi,n|2+δ

]
= EPn

[∣∣∣∣ ln fA(X; θ∗A(Pn))− ln fB(X; θ∗B(Pn))

σ̃(Pn, εn)

∣∣∣∣2+δ
]

≤ EPn

[
|ln fA(X; θ∗A(Pn))− ln fB(X; θ∗B(Pn))|2+δ

(1 + εn)1+δ/2σ2+δ(Pn)

]

≤
EPn

[
|D(X)|2+δ

]
σ2+δ(Pn)

(1 + εn)1+δ/2σ2+δ(Pn)

= (1 + εn)−1−δ/2EPn
[
|D(X)|2+δ

]
≤M

where the first inequality follows from the fact that σ̃2(P, ε) = (1 + ε)σ2(P ) + ε2(σ2
A(P ) +

σ2
B(P ))/2 is larger than either (1+ε)σ2(P ) or ε2(σA(P )+σ2

B(P ))/2 (as ε ≥ 0). The second

inequality is implied by the dominance condition (1). Since M is independent of Pn, we

have supn≥1EPn [|Z2i−1,n|2+δ] ≤ M , even if σ(Pn) → 0 as n → ∞. Therefore, the first and

second expectation in (6) are finite uniformly over n.
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Next, consider the third expectation in (6):

EPn

[
|Zi,n,split|2+δ

]
= EPn

[∣∣∣∣εn (ln fA(X2i; θ
∗
A(Pn))− ln fB(X2i−1; θ∗B(Pn)))

σ̃(Pn, εn)

∣∣∣∣2+δ
]

≤ EPn

∣∣∣∣∣εn (ln fA(X2i; θ
∗
A(Pn))− ln fB(X2i−1; θ∗B(Pn)))

εn
√

(σ2
A(Pn) + σ2

B(Pn))/2

∣∣∣∣∣
2+δ


= EPn

∣∣∣∣∣ ln fA(X2i; θ
∗
A(Pn))− ln fB(X2i−1; θ∗B(Pn))√
(σ2

A(Pn) + σ2
B(Pn))/2

∣∣∣∣∣
2+δ


≤M−1/221+δ
{
EPn

[
|ln fA(X2i; θ

∗
A(Pn))|2+δ

]
+ EPn

[
|ln fB(X2i−1; θ∗B(Pn))|2+δ

]}
≤M−1/222+δM

This bound is again valid uniformly over n.

Finally, by Lyapounov’s Inequality, we have (1 + εn/2)d∗(Pn) ≤ σ̃(Pn, εn), uniformly in

n, so that the fourth expectation in (6) is also finite, uniformly in n. In conclusion, we have

established (5). Lyapounov’s Central Limit Theorem (e.g. Theorem 23.11 in Davidson

(1994)) then implies that, under any sequence Pn in P ,

1√
n

n∑
i=1

di(θ
∗(Pn), εn)− (1 + εn/2)d∗(Pn)

σ̃(Pn, εn)

=
1√
n

n/2∑
i=1

Λ2i−1(Pn) + Λ2i(Pn) + εnΛ2i,2i−1(Pn)− (2 + εn)d∗(Pn)

σ̃(Pn, εn)
→d N(0, 1).

For the second part of the lemma, notice that

EP

[∣∣∣∣(ln fk(X; θ∗k(P )))2 − EP [(ln fk(X; θ∗k(P )))2]

V arP ((ln fk(X; θ∗k(P )))2)1/2

∣∣∣∣2+δ
]
≤MM−1, k = A,B, (7)

for all P ∈ P because V arP ((ln fk(X; θ∗k(P )))2) is bounded away from zero by the definition

of P and because the numerator is bounded from above by M . Therefore, we can apply
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the Lyapounov Central Limit Theorem as in the first part of the proof and the result

follows. The third part of the lemma can be proved in exactly the same fashion as the

second. Q.E.D.

Lemma 3. Let Xn,1, . . . , Xn,n be an i.i.d. sample from Pn and Assumption 2 hold. Suppose

there exists a unique θ∗(Pn) ∈ Θ such that limn→∞ θ
∗(Pn) ∈ int(Θ), EPng(X; θ∗(Pn)) = 0

and, for all κ > 0, there is an ε(κ) > 0 such that

inf
θ:‖θ−θ∗(Pn)‖≥κ

‖EPn [g(Xn,i; θ)]‖ > ε(κ).

Further, assume the following conditions hold:

(i) ε̂n is a sequence of measurable functions of Xn,1, . . . , Xn,n and there is a sequence

{εn} in E such that |ε̂n − εn| = oPn(1).

(ii) For h(x; θ) being any of the functions ln fk(x; θk) and ∇ ln fk(x; θk), k = A,B, θ =

(θ′A, θ
′
B)′, we have

sup
θ∈Θ

∥∥∥∥∥ 1

n

n∑
i=1

h(Xi; θ)− EPnh(Xi; θ)

∥∥∥∥∥ = oPn(1).

Then, ‖θ̂ − θ∗(Pn)‖ = oPn(1) and |d̂− (1 + εn/2)d∗(Pn)| = oPn(1).

Proof. Let Ψn(θ) := EPn [g(Xn,i; θ)]. By assumption, for any κ > 0,

inf
θ:‖θ−θ∗(Pn)‖≥κ

‖Ψn(θ)‖ > ε(κ) > 0.

The proof of ‖θ̂− θ∗(Pn)‖ = oPn(1) therefore follows that of Theorem 5.9 in van der Vaart

(1998). The second conclusion can be established as follows. A Taylor expansion around

(θ∗(Pn), εn) yields

ˆ̃d =
1

n

n∑
i=1

di(θ̂, ε̂n) =
1

n

n∑
i=1

di(θ
∗(Pn), εn) +

1

n

n∑
i=1

∇(ε,θ)di(θ̄n, ε̄n)

 ε̂n − εn
θ̂ − θ∗(Pn)

 = 0 (8)
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where (θ̄n, ε̄n) lies on the line segment joining (θ̂, ε̂n) and (θ∗(Pn), εn). By (ii), the triangle

inequality and ε̄n = OPn(1), we have n−1
∑n

i=1∇(ε,θ)di(θ̄n, ε̄n) = OPn(1), so that∣∣∣∣∣d̂− 1

n

n∑
i=1

di(θ
∗(Pn), εn)

∣∣∣∣∣ = oPn(1) (9)

follows from ‖θ̂−θ∗(Pn)‖ = oPn(1) and |ε̂n−εn| = oPn(1). By (ii) and the triangle inequality,

we also have∣∣∣∣∣ 1n
n∑
i=1

di(θ
∗(Pn), εn)−

(
1 +

εn
2

)
d∗(Pn)

∣∣∣∣∣ =

∣∣∣∣∣ 1n
n∑
i=1

di(θ
∗(Pn), εn)− EPndi(θ∗(Pn), εn)

∣∣∣∣∣ = oPn(1).

(10)

Together, (9) and (10) imply the second result. Q.E.D.

Lemma 4. Let Xn,1, . . . , Xn,n be an i.i.d. sample from Pn and that the following conditions

hold:

(i) ε̂n is a sequence of measurable functions of Xn,1, . . . , Xn,n such that there is a sequence

{εn} in E satisfying |ε̂n − εn| = OPn(n−1/2).

(ii) For h(x; θ) being any of the functions ln fk(X; θk), ln fk(x; θk)∇ ln fj(x; θj), and ∇ ln fk(X; θk),

j, k = A,B, θ = (θ′A, θ
′
B)′, we have

sup
θ∈Θ

∥∥∥∥∥ 1

n

n∑
i=1

h(Xi; θ)− EPnh(Xi; θ)

∥∥∥∥∥ = oPn(1),

and

1

n

n∑
i=1

(
(ln fk(Xi,n; θ∗k(Pn)))2 − EPn [(ln fk(Xi,n; θ∗k(Pn)))2]

)
= OPn(n−1/2).

(iii) ‖θ̂ − θ∗(Pn)‖ = OPn(n−1/2),
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(iv) There are constants 0 < M ≤ M < ∞ such that M ≤ σk(Pn) ≤ M for all n and

k = A,B.

Then, for ˆ̃σ2 = ˆ̃σ2(θ̂, ε̂n), ∣∣∣∣ σ̃2(Pn, εn)

ˆ̃σ2
− 1

∣∣∣∣→Pn 0.

Proof. First, we establish

∣∣σ̂2 − σ2(Pn)
∣∣ = OPn(n−1/2) and

∣∣σ̂2
k − σ2

k(Pn)
∣∣ = OPn(n−1/2), k = A,B. (11)

Notice that by a Taylor expansion around θ∗(Pn), under Pn, we have

∣∣σ̂2 − σ̂2(θ∗(Pn))
∣∣ ≤ ∣∣∣∇θσ̂

2(θ̄n)
(
θ̂ − θ∗(Pn)

)∣∣∣ = OPn(n−1/2)

where θ̄n lies on the line segment joining θ̂ and θ∗(Pn). Uniform convergence of ln fk(X; θk),

∇ ln fk(X; θk) and ln fk(x; θk)∇ ln fj(x; θj), j, k = A,B, in (ii) together with the Cauchy-

Schwartz inequality imply ‖∇θσ̂
2(θ̄n)‖ = OPn(1) so that the equality above follows from

the consistency requirement in (iii). Similarly, |σ̂2
k− σ̂2

k(θ
∗
k(Pn))| = OPn(n−1/2) for k = A,B.

By the second part of (ii) and the Hölder inequality, |σ̂2
k(θ
∗(Pn)) − σ2

k(Pn)| = OPn(n−1/2)

for k = A,B, and the desired result (11) follows.

The remainder of the proof separately treats the two cases σ2(Pn) → σ2
∞ > 0 and

σ2(Pn) → 0. First, consider σ2(Pn) → σ2
∞ > 0. In this case, by (iv) and the definition of

E , σ̃2(Pn, εn) also converges to a finite, nonzero constant. Thus, (11) and (i) directly yield

|ˆ̃σ2 − σ̃2(Pn, εn)| = OPn(n−1/2) so that∣∣∣∣ σ̃2(Pn, εn)

ˆ̃σ2
− 1

∣∣∣∣ =

∣∣∣∣ σ̃2(Pn, εn)

σ̃2(Pn, εn) +OPn(n−1/2)
− 1

∣∣∣∣ = oPn(1).

Now, consider σ2(Pn)→ 0. We further split this case into three subcases: (a) σ2(Pn)/ε2
n →

0 which means that either σ2(Pn) and ε2
n both vanish, but σ2(Pn) at a faster rate, or
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that σ2(Pn) converges to zero at an arbitrary rate while ε2
n stays bounded away from

zero; (b) σ2(Pn)/ε2
n → ∞, i.e. σ2(Pn) and ε2

n both vanish, but ε2
n at a faster rate; (c)

σ2(Pn)/ε2
n → c 6= 0, i.e. both vanish at the same rate.

Consider subcase (a). By Assumption (i), we have

ε̂n
εn

= 1 +
ε̂n − εn
εn

= 1 +OPn(n−1/2ε−1
n ) = 1 + oPn(1).

Similarly, by (11),

σ̂2

ε2
n

=
σ2(Pn)

ε2
n

+
σ̂2 − σ2(Pn)

ε2
n

= o(1) +OPn(n−1/2ε−2
n ) = oPn(1).

Therefore,

σ̃2(Pn, εn)

ˆ̃σ2
=

(1 + εn)σ2(Pn) + ε2n
2

(σ2
A(Pn) + σ2

B(Pn))

(1 + ε̂n)σ̂2 + ε̂2n
2

(σ̂2
A + σ̂2

B)
=

1
2
(σ2

A(Pn) + σ2
B(Pn)) +O(σ

2(Pn)
ε2n

)

ε̂2n
ε2n2

(σ̂2
A + σ̂2

B) +OPn( σ̂
2

ε2n
)

=
1
2
(σ2

A(Pn) + σ2
B(Pn)) + o(1)

1
2
(σ2

A(Pn) + σ2
B(Pn) + oPn(1)) + oPn(1)

= 1 + oPn(1)

In subcase (b), we use a similar reasoning as above to show that ε̂2
n/σ

2(Pn) = oPn(1) and

σ̂2/σ2(Pn) = 1 + oPn(1). Therefore,

σ̃2(Pn, εn)

ˆ̃σ2
=

(1 + εn)σ2(Pn) + ε2n
2

(σ2
A(Pn) + σ2

B(Pn))

(1 + ε̂n)σ̂2 + ε̂2n
2

(σ̂2
A + σ̂2

B)
=

(1 + εn) +O(ε2
n/σ

2(Pn))

(1 + ε̂n) σ̂2

σ2(Pn)
+OPn(ε̂2

n/σ
2(Pn))

=
1 + o(1)

1 + oPn(1)
= 1 + oPn(1)

In subcase (c), we also have σ̂2/σ2(Pn) = 1 + oPn(1) and ε̂2
n/σ

2(Pn) = ε2
n/σ

2(Pn) + oPn(1)
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so that

σ̃2(Pn, εn)

ˆ̃σ2
=

(1 + εn)σ2(Pn) + ε2n
2

(σ2
A(Pn) + σ2

B(Pn))

(1 + ε̂n)σ̂2 + ε̂2n
2

(σ̂2
A + σ̂2

B)

=
σ2(Pn) + ε2n

2
(σ2

A(Pn) + σ2
B(Pn)) + o(ε2

n)

σ̂2 + ε̂2n
2

(σ̂2
A + σ̂2

B) +OPn(ε̂nσ̂2)

=
1 + ε2n

2σ2(Pn)
(σ2

A(Pn) + σ2
B(Pn)) + o(ε2

n/σ
2(Pn))

σ̂2

σ2(Pn)
+ ε̂2n

2σ2(Pn)
(σ2

A(Pn) + σ2
B(Pn)) + oPn(ε2

n/σ
2(Pn))

= 1 + oPn(1)

which uses the fact that OPn(ε̂nσ̂
2) = OPn(εn(σ2(Pn) + n−1/2)) = oPn(ε2

n). Q.E.D.

Lemma 5. Suppose Assumption 2 holds. Let ε̂n be a sequence of real-valued, measurable

functions of the triangular array Xn,1, . . . , Xn,n, an i.i.d. sample from Pn, and Q be some

subset of P. Assume that, for every sequence {Pn} in Q, there is a sequence {εn} ∈ E with

|ε̂n−εn| = OPn(n−1/2). Let δ̄ ∈ [−∞,+∞] be such that
√
n d∗(Pn)(1+εn/2)/σ̃(Pn, εn)→ δ̄.

Then, under any sequence {Pn} in Q, if |δ̄| <∞,

√
n ˆ̃d

ˆ̃σ
→d N(δ̄, 1).

If |δ̄| =∞, then |
√
n ˆ̃d/ˆ̃σ| →Pn ∞.

Proof. Suppose |δ̄| < ∞. First, we establish two auxiliary results, viz. the orders of

σ̃(Pn, εn)−1 and θ̂ − θ∗(Pn). To that end, consider two cases: (a) Pn approaches the obser-

vationally equivalent case, i.e. σ(Pn)→ 0; (b) Pn satisfies σ(Pn)→ c 6= 0. In the first case,

since by part (iv) of Definition 1, σ2
k(Pn) is bounded away from zero and n1/4εn →∞,

nσ̃2(Pn, εn) = n(1 + εn)σ2(Pn) + nε2
n(σ2

A(Pn) + σ2
B(Pn))/2→∞
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so that σ̃(Pn, εn)−1 = o(n1/2). In the second case, σ̃(Pn, εn)→ c 6= 0 so that σ̃(Pn, εn)−1 =

O(1) = o(n1/2). In conclusion,

σ̃(Pn, εn)−1 = o(n1/2). (12)

Next, consider the order of θ̂ − θ∗(Pn). A Taylor expansion with θ̄ on the line segment

joining θ̂ and θ∗(Pn) yields θ̂ − θ∗(Pn) = −Ĝ(θ̄)−1ĝ(θ∗(Pn)). By Assumption 2, parts (i)

and (iii) of Definition 1, and Lemma 2.4 of Newey and McFadden (1994), Ĝ(θ) converges

in probability, under Pn, uniformly over Θ. Part (i) and (iii) of Definition 1 together with

Assumption 2 imply Assumption (ii) of Lemma 3, so that we can use it to obtain consistency

of θ̂ and θ̄ under Pn. Therefore, letting GP (θ) := EP [∇θg(X; θ)] and Gn := GPn(θ∗(Pn)),

we have ∥∥∥Ĝ(θ̄)−Gn

∥∥∥ ≤ ∥∥∥Ĝ(θ̄)−GPn(θ̄)
∥∥∥+

∥∥GPn(θ̄)−Gn

∥∥
≤ sup

θ∈Θ

∥∥∥Ĝ(θ)−GPn(θ)
∥∥∥+ oPn(1) = oPn(1).

Furthermore, by (iv) of Definition 1, Ĝ(θ̄) is invertible with probability approaching one,

under Pn. By part 3. of Lemma 2, ĝ(θ∗(Pn)) = OPn(n−1/2), so that, in conclusion,

θ̂ − θ∗(Pn) = −Ĝ(θ̄)−1ĝ(θ∗(Pn)) = OPn(n−1/2). (13)

With the auxilliary results established, we now consider the following decomposition:

√
n ˆ̃d

σ̃(Pn, εn)
=

√
nd∗(Pn)(1 + ε̂n

2
)

σ̃(Pn, εn)
+

1√
n

∑n
i=1

(
di(θ̂, ε̂n)− d∗(Pn)(1 + ε̂n

2
)
)

σ̃(Pn, εn)
.

The assumption |ε̂n−εn| = OPn(n−1/2) and a Taylor expansion of di(θ̂, ε̂n)−d∗(Pn)(1+ε̂n/2)
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around (θ∗(Pn), εn) yield

√
n ˆ̃d

σ̃(Pn, εn)
= δ̄ + oPn(1) +

1√
n

∑n
i=1

(
di(θ

∗(Pn), εn)− d∗(Pn)(1 + εn
2

)
)

σ̃(Pn, εn)

+

1√
n

∑n
i=1∇θdi(θ

∗(Pn), εn)(θ̂ − θ∗(Pn))

σ̃(Pn, εn)

+

1√
n

∑n
i=1

(
∇εdi(θ

∗(Pn), εn)− 1
2
d∗(Pn)

)
(ε̂n − εn)

σ̃(Pn, εn)
+Rn (14)

where, for some (θ̄n, ε̄n) on the line segment joining (θ̂, ε̂n) and (θ∗(Pn), εn),

|Rn| ≤
√
nσ̃(Pn, εn)−1

∥∥∥∥∥ 1

n

n∑
i=1

∇2
θdi(θ̄n, ε̄n)

∥∥∥∥∥ ∥∥∥θ̂ − θ∗(Pn)
∥∥∥2

+
√
nσ̃(Pn, εn)−1

∣∣∣∣∣ 1n
n∑
i=1

∇2
εdi(θ̄n, ε̄n)

∣∣∣∣∣ ‖ε̂n − εn‖2

=
√
no(n1/2)OPn(1)OPn(n−1) + 0 = oPn(1).

The first equality holds for the following reason. By Assumption 2, parts (i) and (iii) of Def-

inition 1, and Lemma 2.4 of Newey and McFadden (1994), ‖n−1
∑n

i=1∇2
θ ln fk(Xn,i; θ)‖, k =

A,B, converges in probability, under Pn, uniformly over Θ. By the triangle inequality and

the fact that ε̂n = OPn(1), and thus ε̄n = OPn(1), we also have ‖n−1
∑n

i=1∇2
θdi(θ̄n, ε̄n)‖ =

OPn(1). (12), (13), and the assumption |ε̂n − εn| = OPn(n−1/2) then imply the equality.

We now separately consider each of the remaining three terms in (14). By part 1. of

Lemma 2, the first term is asymptotically N(0, 1) under Pn. For the second term, notice

that n−1
∑n

i=1∇θdi(θ
∗(Pn), εn) is a linear transformation of ĝ(θ∗(Pn)) and, thus by part 3.

of Lemma 2 and εn = O(1), OPn(n−1/2). Therefore, (12) and (13) imply

1√
n

∑n
i=1∇θdi(θ

∗(Pn), εn)(θ̂ − θ∗(Pn))

σ̃(Pn, εn)
= OPn(1)OPn(n−1/2)o(n1/2) = oPn(1).
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In the third term,

1

n

n∑
i=1

(
∇εdi(θ

∗(Pn), εn)− d∗(Pn)

2

)
=

1

n

n∑
i=1

(
ln fA(Xn,2i−1; θ∗A(Pn))− ln fB(Xn,2i; θ

∗
B(Pn))− d∗(Pn)

2

)
= OPn(n−1/2)

by a similar argument as in part 1. of Lemma 2, so that

1√
n

∑n
i=1

(
∇εdi(θ

∗(Pn), εn)− 1
2
d∗(Pn)

)
(ε̂n − εn)

σ̃(Pn, εn)
= OPn(1)OPn(n−1/2)o(n1/2) = oPn(1).

In conclusion,
√
n ˆ̃d/σ̃(Pn, εn) →d N(δ̄, 1) under Pn. The corresponding result with the

estimated standard deviation, ˆ̃σ, in the denominator rather than σ̃(Pn, εn) follows from

Lemma 4, using (13). The case |δ̄| =∞ follows from a similar argument. Q.E.D.

Proof of Theorem 1. We show the result by applying Lemma 5. Let Q = {P0} and δ̄ = 0.

Part (i) of Definition 1 holds by Assumption 3(ii). Part (iii) by Assumption 4(ii). Finally,

part (iv) of Definition 1 holds because of Assumptions 3(iii) and 1, and Assumption 5

implies Assumption 6. The uniform moment bounds in (ii) of Definition 1 hold because of

Assumption 4(i).

It remains to show that the dominance condition (1) in (ii) of Definition 1 holds.

This can be seen as follows. In the non-overlapping case, σ2 > 0, (1) is implied by

Assumption 4(i). In the overlapping case, the information matrix equality holds, so

that V arP0(∇θk ln fk(X; θ∗k)) = −EP0 [∇2
θk

ln fk(X; θ∗k)], k = A,B, is invertible by As-

sumption 3(iii). Let λmin be the minimum of the eigenvalues of both matrices and note

that it must be strictly larger than zero. Then it is easy to show that (1) holds for

D(x) :=
√

2F̄2(x)/λmin because of Assumption 4(iii). Q.E.D.
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Proof of Lemma 1. First, notice that

∣∣∣t̃n − ˜̃tn

∣∣∣ =
ε̂n√
nˆ̃σ

 ∑
i∈Iodd,n\I1,n

ln fA(Xi; θ̂A)−
∑

i∈Ieven,n\I2,n

ln fB(Xi; θ̂B)

+
∑

i∈I2,n\Ieven,n

ln fB(Xi; θ̂B)−
∑

i∈I1,n\Iodd,n

ln fA(Xi; θ̂A)


=

ε̂n√
nˆ̃σ

 ∑
i∈Iodd,n\I1,n

(
ln fA(Xi; θ̂A) + ln fB(Xi; θ̂B)

)

−
∑

i∈Ieven,n\I2,n

(
ln fA(Xi; θ̂A) + ln fB(Xi; θ̂B)

)
because Ieven,n \ I2,n = I1,n \ Iodd,n and Iodd,n \ I1,n = I2,n \ Ieven,n. In the overlapping case,

ε̂n
ˆ̃σ

=
1√

(1 + ε̂n) σ̂
ε̂2n

+ 1
2
(σ2

A + σ2
B + oP0(1))

=
1

1
2
(σ2

A + σ2
B)

+ oP0(1) = OP0(1)

because OP0(σ̂/ε̂
2
n) = OP0(n

−1/2/ε̂2
n) = oP0(1) by assumption. In the non-overlapping case,

ˆ̃σ →P0 σ̃ > 0 and |ε̂n| = O(1), so again we have ε̂n
ˆ̃σ

= OP0(1). Let a(n) := #(Iodd,n \ I1,n) =

#(Ieven,n \ I2,n). Then,

∣∣∣t̃n − ˜̃tn

∣∣∣ =
OP0(1)

√
a(n)√

n

 1√
a(n)

∑
i∈Iodd,n\I1,n

(
ln fA(Xi; θ̂A) + ln fB(Xi; θ̂B)

)

− 1√
a(n)

∑
i∈Ieven,n\I2,n

(
ln fA(Xi; θ̂A) + ln fB(Xi; θ̂B)

)
=

√
a(n)√
n

OP0(1) = oP0(1)

because a(n)/n → 0 and because the standardized sums are independent and asymptoti-

cally normal with finite, nonzero variances. Q.E.D.
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Proof of Theorem 2. Lemma 5, whose assumptions are satisfied by setting Q = P0 and

by Assumptions 2 and 6, implies that
√
n ˆ̃d/ˆ̃σ →d N(δ̄, 1) under any sequence {Pn} in

P0. Using this result, the theorem follows from analogous reasoning as in the proof of

Theorem 11.4.5 of Lehmann and Romano (2005). Q.E.D.

Proof of Theorem 3. The result follows directly from Lemma 5. Q.E.D.

Proof of Theorem 4. The proof proceeds by decomposing the statistic into an asymptoti-

cally normal component and non-normal remainder terms that are negligible in an almost

sure sense. We first obtain some generic asymptotic expansions that hold for triangular

arrays (as needed for local power calculation). These expansions, specialized to the case of

sequences, are also used for size calculations.

We first observe that, by Assumptions 7 and 8, Lemma 6 in Appendix 7 implies that

n−1
∑n

i=1 ln fA(Xni, θA) converges almost surely uniformly for all θA ∈ ΘA to EP0 [ln fA(X0i, θA)].

This in turn implies that θ̂A →as θ
∗
A := θ∗A(P0) by the usual argument for consistency of

MLE, adapted for almost sure convergence. We then expand the first order condition for

θ̂A as

0 =
1

n

n∑
i=1

∇θA ln fA

(
Xni, θ̂A

)
=

1

n

n∑
i=1

∇θA ln fA (Xni, θ
∗
A)+

1

n

n∑
i=1

∇2
θA

ln fA
(
Xni, θ̄A

) (
θ̂A − θ∗A

)
where θ̄A is a mean value on the line segment joining θ̂A and θ∗A. By Assumptions 7 and 9,

Lemma 6 implies that n−1
∑n

i=1∇2
θA

ln fA(Xni, θA) converges uniformly to EP0 [∇2
θA

ln fA(X0i, θA)]

for all θA ∈ ΘA. Since n−1
∑n

i=1∇2
θA

ln fA(Xni, θA) is continuous in θA at each n by As-

sumption 9 and the convergence is uniform, it follows that the limit EP0 [∇2
θA

ln fA(X0i, θA)]

is also continuous in θA. Since θ̂A →as θ
∗
A and thefore θ̄A →as θ

∗
A, we have

1

n

n∑
i=1

∇2
θA

ln fA(Xni, θ̄A) = EP0 [∇2
θA

ln fA(X0i, θ
∗
A)] + oas(1)
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and it follows, under Assumption 11, that

θ̂A − θ∗A = −
((
EP0

[
∇2
θA

ln fA (X0i, θ
∗
A)
])−1

+ oas (1)
) 1

n

n∑
i=1

∇θA ln fA (Xni, θ
∗
A) . (15)

Let ‖M‖F denote the largest eigenvalue of matrix M and θkj the j-th component of θk,

k = A,B. Observe that, by Assumption 16 and dominated convergence, VA(Pn) → VA

with ‖VA‖F <∞. Moreover VA is invertible by Assumption 11. We can then write

lim sup
n→∞

∣∣∣∣∣ 1n
n∑
i=1

∇θAj ln fA (Xni, θ
∗
A)

∣∣∣∣∣ = lim sup
n→∞

∣∣∣∣∣VA(Pn)1/2VA(Pn)−1/2 1

n

n∑
i=1

∇θAj ln fA (Xni, θ
∗
A)

∣∣∣∣∣
=
(

lim
n→∞

VA(Pn)1/2
)(

lim sup
n→∞

∣∣∣∣∣VA(Pn)−1/2 1

n

n∑
i=1

∇θAj ln fA (Xni, θ
∗
A)

∣∣∣∣∣
)

= V
1/2
A

(
lim sup
n→∞

∣∣∣∣∣VA(Pn)−1/2 1

n

n∑
i=1

∇θAj ln fA (Xni, θ
∗
A)

∣∣∣∣∣
)

≤ ‖VA‖1/2
F lim sup

n→∞

∣∣∣∣∣VA(Pn)−1/2 1

n

n∑
i=1

∇θAj ln fA (Xni, θ
∗
A)

∣∣∣∣∣
The summation term in (15) then has two possible behaviors: Either

lim sup
n→∞

∣∣∣∣∣ 1n
n∑
i=1

∇θAj ln fA (Xni, θ
∗
A)

∣∣∣∣∣ ≤ ‖VA‖1/2
F

√
2 lnn (16)

almost surely for the general triangular array case (by Lemma 8 under Assumption 12 and

the fact that EP0 [∇θAj ln fA(Xni, θ
∗
A)] = 0), or

lim sup
n→∞

∣∣∣∣∣ 1n
n∑
i=1

∇θAj ln fA (Xi, θ
∗
A)

∣∣∣∣∣ ≤ ‖VA‖1/2
F

√
2 ln lnn (17)

almost surely when Xni reduces to a sequence (Xni = Xi and VA(Pn) = VA), by the Law

of Iterated Logarithm (LIL) (Hartman and Wintner (1941)), since Assumption 12 implies
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existence of the variance. In either case, it follows that1

θ̂A − θ∗A = Oas

(
n−1/2

√
ln◦s n

)
(18)

with s = 1 (for arrays) or s = 2 (for sequences), where ln◦s represents s application(s) of

the ln function. A similar result holds for θ̂B.

We now consider each term in the statistic t̃n = (ε̂nL̂S + L̂J)/ˆ̃σ where

L̂S := n−1/2
∑
i even

ln fA

(
Xni, θ̂A

)
− n−1/2

∑
i odd

ln fB

(
Xni, θ̂B

)
,

L̂J := n−1/2

n∑
i=1

(
ln fA

(
Xni, θ̂A

)
− ln fB

(
Xni, θ̂B

))
.

We derive the power and size expansions for our test when ε̂n is defined by the random

sequence given in (4) and εn := (CSD/CPL(δ))1/3n−1/6(ln lnn)1/3 (this is the setup of Corol-

lary 1), but the special case when ε̂n = εn is some deterministic sequence in E follows

immediately.

Write ε̂nL̂S = εnLS + (ε̂n − εn)LS + ε̂n(RθA −RθB) with

LS := n−1/2
∑
i even

ln fA (Xni, θ
∗
A)− n−1/2

∑
i odd

ln fB (Xni, θ
∗
B)

RθA := n−1/2
∑
i even

ln fA

(
Xni, θ̂A

)
− n−1/2

∑
i even

ln fA (Xni, θ
∗
A)

RθB := n−1/2
∑
i odd

ln fB

(
Xni, θ̂B

)
− n−1/2

∑
i odd

ln fB (Xni, θ
∗
B)

1For some random sequence Rn and some deterministic sequence rn, we write Rn = Oas(rn) if and only

if there exists a finite C such that P (lim supn→∞ |Rn/rn| ≤ C) = 1.
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We can bound RθA (and similarly RθB) using an expansion to second order about θA = θ∗A:

RθA = n−1/2
∑
i even

ln fA

(
Xni, θ̂A

)
− n−1/2

∑
i even

ln fA (Xni, θ
∗
A)

= n−1/2
∑
i even

ln fA (Xni, θ
∗
A) +

(
θ̂A − θ∗A

)′
n−1/2

∑
i even

∇θA ln fA (Xni, θ
∗
A)

+
1

2

(
θ̂A − θ∗A

)′(
n−1/2

∑
i even

∇2
θA

ln fA
(
Xni, θ̄A

))(
θ̂A − θ∗A

)
− n−1/2

∑
i even

ln fA (Xni, θ
∗
A)

=
(
θ̂A − θ∗A

)′
n1/2n−1

∑
i even

∇θA ln fA (Xni, θ
∗
A)

+
n1/2

4

(
θ̂A − θ∗A

)′(
(n/2)−1

∑
i even

∇2
θA

ln fA
(
Xni, θ̄A

))(
θ̂A − θ∗A

)
where θ̄A is a mean value on the line segment joining θ̂A and θ∗A. Then, we use (18) and

Lemma 6 applied to n−1
∑

i even∇2
θA

ln fA
(
Xni, θ̄A

)
under Assumptions 7 and 9:

‖RθA‖ = Oas

(
n−1/2

√
ln◦s n

)
n1/2Oas

(
n−1/2

√
ln◦s n

)
+ n1/2Oas

(
n−1/2

√
ln◦s n

)
(O (1) + oas (1))Oas

(
n−1/2

√
ln◦s n

)
= Oas

(
n−1/2 ln◦s n

)
Next, L̂J = LJ + LJ2A − LJ2B where

LJ := n−1/2

n∑
i=1

(ln fA(Xni, θ
∗
A)− ln fB(Xni, θ

∗
B))

LJ2A := n−1/2

n∑
i=1

(
ln fA(Xni, θ̂A)− ln fA(Xni, θ

∗
A)
)

LJ2B := n−1/2

n∑
i=1

(
ln fA(Xni, θ̂B)− ln fB(Xni, θ

∗
B)
)
.
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The terms LJ2A and LJ2B can be bounded using the same techniques as for RθA and we

have:

|LJ2A| = Oas

(
n−1/2

√
ln◦s n

)
and similarly for LJ2B. Next, let σ2

S := 1
2
(σ2

A + σ2
B), σ2

k := σ2
k(P0), and σ̂2

S := 1
2
(σ̂2

A + σ̂2
B).

We have

σ̂2
A =

1

n

n∑
i=1

(
ln fA

(
Xni, θ̂A

))2

−

(
1

n

n∑
i=1

ln fA

(
Xni, θ̂A

))2

=
1

n

n∑
i=1

(ln fA (Xni, θ
∗
A))2 +

(
θ̂A − θ∗A

)′ 1

n

n∑
i=1

ln fA
(
Xni, θ̄A

)
∇θA ln fA

(
Xni, θ̄A

)
−

(
1

n

n∑
i=1

ln fA (Xni, θ
∗
A) +Oas

(
n−1ln◦sn

))2

= EP0

[
(ln fA (Xni, θ

∗
A))2]− EP0([ln fA (Xni, θ

∗
A)])2 +Oas

(
n−1/2

√
ln◦s n

)
+Oas

(
n−1/2

√
ln◦s n

)
(O (1) + oas (1))

= σ2
A +Oas

(
n−1/2

√
ln◦s n

)
where the rate of convergence of the first term follows from Lemma 8 (under Assumption 13)

while the one of the second term follows from (18) and Lemma 6 under Assumptions 7 and

10. Similarly, we have σ̂2
B = σ2

B+Oas(n
−1/2
√

ln◦s n) and, thus, σ̂2
S = σ2

S+Oas(n
−1/2
√

ln◦s n).

By a similar reasoning, by Assumptions 14–17, we have Ĥk = Hk + Oas(n
−1/2
√

ln◦s n)

and V̂k = Vk + Oas(n
−1/2
√

ln◦s n) for k = A,B. Below, we will use ln lnn = O(lnn) to

simplify some expressions. From the convergence of σ̂2
S, Ĥk and V̂k, it also follows that

|ĉα − cα| = Oas(n
−1/2
√

ln◦s n) and thus

ε̂n = εn +Oas

(
εnn

−1/2
√

ln◦s n
)
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Similarly:

ε̂2
n =

(
εn +Oas

(
εnn

−1/2
√

ln◦s n
))2

= ε2
n +Oas

(
ε2
nn
−1/2
√

ln◦s n
)

+O
(
ε2
nn
−1ln◦s n

)
= ε2

n +Oas

(
ε2
nn
−1/2
√

ln◦s n
)
.

Next, one can handle σ̂AB and, thus, σ̂2 by a similar reasoning, invoking Assumptions 7

and 10 and Lemma 6 to yield:

σ̂2 = σ2 +Oas

(
n−1/2

√
ln◦s n

)
.

Letting σ̃2(εn) := ε2
nσ

2
S + (1 + εn)σ2, we can also write

ˆ̃σ2 = ε2
nσ

2
S + (1 + εn)σ2 + ε2

n

(
σ̂2
S − σ2

S

)
+
(
ε̂2
n − ε2

n

)
σ̂2
S + (ε̂n − εn)σ2 + (1 + ε̂n)

(
σ̂2 − σ2

)
= σ̃2(εn) +Oas

(
ε2
nn
−1/2
√

ln◦s n
)

+Oas

(
ε2
nn
−1/2
√

ln◦s n
)
Oas (1)

+Oas

(
εnn

−1/2
√

ln◦s n
)
O (1) + (1 +Oas (εn))Oas

(
n−1/2

√
ln◦s n

)
= σ̃2(εn) +Oas

(
n−1/2

√
ln◦s n

)
Collecting all remainder terms for the triangular array case (s = 1), we have

t̃n =
ε̂nL̂S + L̂J

ˆ̃σ
=
εnLS + (ε̂n − εn)LS + ε̂n (RθA −RθB) + LJ + LJ2A − LJ2B

ˆ̃σ

=
εnLS +Oas

(
εnn

−1/2
√

lnn
)
Oas (1) +Oas (εn)Oas

(
n−1/2 lnn

)
σ̃(εn) +Oas

(
n−1/2

√
lnn
)

+
LJ +Oas

(
n−1/2

√
lnn
)

σ̃(εn) +Oas

(
n−1/2

√
lnn
)

=
εnLS + LJ +Oas

(
n−1/2

√
lnn
)

σ̃(εn) +Oas

(
n−1/2

√
lnn
) =

εnLS + LJ
σ̃(εn)

+Oas

(
n−1/2

√
lnn
)
,
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that is, t̃n = tn + ∆tn with

tn :=
εnLS + LJ
σ̃(εn)

|∆tn| ≤ ∆t̄n a.s.

for ∆t̄n := Bn−1/2
√

lnn for some constant B and where “a.s.” denotes “almost surely as

n→∞” , i.e., the event |∆tn| > ∆t̄n has probability zero for all n ≥ n0 with n0 sufficiently

large.

Power expansion. We now calculate an expansion of our test’s power in orders of εn

and n. Consider the following decomposition:

Pn
(
|t̃n| > z1−α/2

)
= 1− Pn

(
t̃n ≤ z1−α/2

)
+ Pn

(
t̃n < zα/2

)
= 1− Pn

(
t̃n ≤ z1−α/2

)
−
(

1− Φ

(
z1−α/2 −

δ(1 + εn/2)

σ̃(εn)

))
︸ ︷︷ ︸

=:I1

+ Pn
(
t̃n < zα/2

)
− Φ

(
zα/2 −

δ(1 + εn/2)

σ̃(εn)

)
︸ ︷︷ ︸

=:I2

+ 1− Φ

(
z1−α/2 −

δ(1 + εn/2)

σ̃(εn)

)
−
(

1− Φ

(
z1−α/2 −

δ

σ

))
︸ ︷︷ ︸

=:I3

+ Φ

(
zα/2 −

δ(1 + εn/2)

σ̃(εn)

)
− Φ

(
zα/2 −

δ

σ

)
︸ ︷︷ ︸

=:I4

+ 1− Φ

(
z1−α/2 −

δ

σ

)
+ Φ

(
zα/2 −

δ

σ

)
(19)

We bound each of the terms in turn. When the models are not overlapping, both LS and

LJ are asymptotically normal, since they are iid sample averages (evaluated at the true

parameter values) of bounded variance quantities. Moreover, by the Berry-Esseen bound
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(since Assumption 8 implies that the third moments of the log-likelihood function exist

and are uniformly bounded), we have that the deviations from normality of finite sample

distribution of the normalized statistic (εnLS+LJ)/σ̃(εn) are uniformly bounded by Cn−1/2

for some universal constant C (this remains true for triangular arrays, since the constant

is independent of the distribution among distributions sharing the same upper bound on

the third moments). Fix some β ∈ (0, 1) and δ ∈ R \ {0}, and let fβ(ε) := zβ − δ(1+ε/2)
σ̃(ε)

.

We then have for n ≥ n0,∣∣Pn (t̃n ≤ zβ
)
− Φ (fβ(εn))

∣∣ =
∣∣Pn (t̃n ≤ zβ

)
− Φ (fβ(εn))

∣∣
= |Pn (tn + ∆tn ≤ zβ)− Φ (fβ(εn))|

= |Pn (tn + ∆tn ≤ zβ | |∆tn| ≤ ∆t̄n)Pn (|∆tn| ≤ ∆t̄n) +

+ Pn (tn + ∆tn ≤ zβ | |∆tn| > ∆t̄n)Pn (|∆tn| > ∆t̄n)− Φ (fβ(εn))|

= |Pn (tn + ∆tn ≤ zβ | |∆tn| ≤ ∆t̄n) · 1

+Pn (tn + ∆tn ≤ zβ | |∆tn| > ∆t̄n) · 0− Φ (fβ(εn))|

= |Pn (tn + ∆tn ≤ zβ | |∆tn| ≤ ∆t̄n)− Φ (fβ(εn))|

≤ sup
|u|≤∆t̄n

|Pn (tn + u ≤ zβ)− Φ (fβ(εn))|

= sup
|u|≤∆t̄n

|Pn (tn ≤ zβ − u)− Φ (fβ(εn))|

≤ sup
|u|≤∆t̄n

|Φ (fβ(εn)− u)− Φ (fβ(εn))|+ Cn−1/2

= sup
|u|≤∆t̄n

φ (fβ(εn) + ū) |u|+ Cn−1/2

≤ sup
|ū|≤∆t̄n

φ (fβ(εn) + ū) ∆t̄n + Cn−1/2

= φ (fβ(εn)+o(1)) ∆t̄n + Cn−1/2 = O (∆t̄n) (20)

where ū is a mean value satisfying |ū| ≤ |u| ≤ ∆t̄n= o(1) and by continuity of φ(·), we
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have φ(z + o(1)) = φ(z) + o(1). Therefore,

I1 + I2 = O(∆t̄n) = O(n−1/2
√

lnn).

Consider I3 and I4. First, notice that

f ′β(0) =
−δε (σ2 − 2(σ2

A + σ2
B))

4σ̃(ε)3

∣∣∣∣
ε=0

= 0

so that

Φ (fβ(εn))− Φ (fβ(0)) = φ (fβ(ε)) f ′β(ε)
∣∣
ε=0

εn

+
1

2

[
φ′ (fβ(ε)) (f ′β(ε))2 + φ (fβ(ε)) f ′′β (ε)

]∣∣∣∣
ε=0

ε2
n +O

(
ε3
n

)
=

1

2
φ (fβ(ε)) f ′′β (ε)

∣∣∣∣
ε=0

ε2
n +O

(
ε3
n

)
= −1

2
φ

(
zβ −

δ

σ

)(
δ(σ2 − 2(σ2

A + σ2
B))

4σ3

)
ε2
n +O

(
ε3
n

)
Therefore, for all δ ∈ R \ {0}:

I3 + I4 = −
[
Φ
(
f1−α/2(εn)

)
− Φ

(
f1−α/2(0)

)]
+ Φ

(
fα/2(εn)

)
− Φ

(
fα/2(0)

)
= −

(
φ

(
zα/2 −

δ

σ

)
− φ

(
zα/2 +

δ

σ

))
δ(σ2 − 2(σ2

A + σ2
B))

8σ3︸ ︷︷ ︸
=CPL(δ)

ε2
n +O(ε3

n) (21)

Together, (19)–(21) yield the desired expansion of power in powers of εn and n:

Pn
(
|t̃n| > z1−α/2

)
= Φ

(
zα/2 +

δ

σ

)
+Φ

(
zα/2 −

δ

σ

)
−CPL(δ)ε2

n+O
(
ε3
n

)
+O

(
n−1/2

√
lnn
)
.

(22)

Size expansion. We now calculate the size distortion when the models are overlapping.

In the overlapping case, we need to provide a more precise bound on the remainder terms

of L̂J = LJ +LJ2A−LJ2B, because the leading term vanishes (LJ = 0) due to the overlap.
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Drifting sequences of models are not needed for the size calculation, so the triangular

array Xni can be replaced by a simple iid sequence Xi drawn from P0. Letting ĝA :=

1
n

∑n
i=1 (∇θA ln fA (Xi, θ

∗
A)), we have

LJ2A =
n1/2

2
ĝ′A
(
H−1
A + oas (1)

)
ĝA

=
n1/2

2
ĝ′AV

−1/2
A V

1/2
A

(
H−1
A + oas (1)

)
V

1/2
A V

−1/2
A ĝA

= −n
1/2

2
Z ′AV

1/2
A

(
−H−1

A + oas (1)
)
V

1/2
A ZA

where ZA := V
−1/2
A ĝA. The matrix V

1/2
A (−HA)−1 V

1/2
A is symmetric so it is diagonalizable,

with eigenvalues λj and orthogonal eigenvectors vj (normalized to ‖vj‖ = 1). Moreover,

the eigenvalues are all positive (because both −HA and VA are positive-definite) and we

can write V 1/2 (−H)−1 V 1/2 =
∑dim θA

j=1 vjλjv
′
j and thus:

|LJ2A| = −LJ2A =
n1/2

2
Z ′A

(
dim θA∑
j=1

vjλjv
′
j + oas (1)

)
ZA.

=
n1/2

2

dim θA∑
j=1

Z ′Avjλjv
′
jZA + oas (1)

n1/2

2
Z ′AZA

=
n1/2

2

dim θA∑
j=1

λj
(
v′jZA

)2
+ oas (1)

n1/2

2
Z ′AZA

By construction, the covariance matrix of the v′jZA is the identity matrix I. We can

then use the Law of the Iterated Logarithm (Hartman and Wintner (1941)) to conclude
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|v′jZ| ≤ n−1/2
√

2 ln lnn almost surely. We then have

|LJ2A| ≤
n1/2

2

dim θA∑
j=1

λj

(
n−1/2

√
2 ln lnn

)2

+ oas (1)
n1/2

2
(dim θA)

(
n−1/2

√
2 ln lnn

)2

=
(
n−1/2 ln lnn

) dim θA∑
j=1

λj + oas
(
n−1/2 ln lnn

)
=

(
n−1/2 ln lnn

)
tr
(
V

1/2
A (−HA)−1 V

1/2
A

)
+ oas

(
n−1/2 ln lnn

)
=

∣∣tr (H−1
A VA

)∣∣ (n−1/2 ln lnn
)

+ oas
(
n−1/2 ln lnn

)
A similar reasoning holds for |LJ2B| and since both LJ2A and LJ2B have the same sign and

LJ = 0, we have∣∣∣L̂J ∣∣∣ = |LJ + LJ2A − LJ2B| = |LJ2A − LJ2B|

≤ max {|LJ2A| , |LJ2B|} ≤ max
{∣∣tr (H−1

A VA
)∣∣ , ∣∣tr (H−1

B VB
)∣∣}n−1/2 ln lnn a.s.

= Λn−1/2 ln lnn,

where Λ := max{|tr(H−1
A VA)|, |tr(H−1

B VB)|}. In the overlapping case, σ̃2(ε) = ε2σ2
S + (1 +

ε)σ2
J = ε2σ2

S since σ2
J = 0. We can now compute the worst-case size distortion in t̃n.
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Collecting the order of all remainders, we have,

t̃n =
ε̂nL̂S + L̂J

ˆ̃σ
=
εnLS + (ε̂n − εn)LS + ε̂n (RθA −RθB) + LJ + LJ2A − LJ2B

σ̃ (εn) +Oas

(
n−1/2

√
ln lnn

)
=
εnLS +Oas

(
εnn

−1/2
√

ln lnn
)
Oas (1) +Oas (εn)Oas

(
n−1/2 ln lnn

)
εnσS +Oas

(
n−1/2

√
ln lnn

)
+

LJ2A − LJ2B

εnσS +Oas

(
n−1/2

√
ln lnn

)
=
εnLS + (LJ2A − LJ2B) +Oas

(
εnn

−1/2 ln lnn
)

εnσS +Oas

(
n−1/2

√
ln lnn

)
=
LS
σS

εn + (LJ2A − LJ2B) /LS +Oas

(
εnn

−1/2 ln lnn
)

εn +Oas

(
n−1/2

√
ln lnn

)
=
LS
σS

1 + (LJ2A − LJ2B) / (εnLS) +Oas

(
n−1/2 ln lnn

)
1 +Oas

(
n−1/2

(√
ln lnn

)
/εn

)
=

(
LS
σS

+
LJ2A − LJ2B

εnσS
+Oas

(
n−1/2 ln lnn

))
× 1(

1 +Oas

(
n−1/2

(√
ln lnn

)
/εn

))
=
LS
σS

+
LJ2A − LJ2B

εnσS
+Oas

(
n−1/2 ln lnn

)
=
LS
σS

+ ∆tn

where ∆tn := (LJ2A − LJ2B)/(εnσS) + Oas(n
−1/2 ln lnn). We can bound ∆tn as follows,

substituting in εn:

|∆tn| =
|LJ2A − LJ2B|

εnσS
+Oas

(
n−1/2 ln lnn

)
≤ Λn−1/2 ln lnn

εnσS
+Oas

(
n−1/2 ln lnn

)
a.s.
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Notice that the size of the test can be decomposed as

P0(|t̃n| > z1−α/2) = α + P0(t̃n > z1−α/2)− (1− Φ(z1−α/2)) + P0(t̃n < zα/2)− Φ(zα/2)

= α + Φ(z1−α/2)− P0(t̃n ≤ z1−α/2) + P0(t̃n < zα/2)− Φ(zα/2) (23)

By a derivation similar to that in (20), we have∣∣P0(t̃n ≤ zβ)− Φ(zβ)
∣∣ ≤ sup

|u|≤∆t̄n

|P0 (tn + u ≤ zβ)− Φ (zβ)|

≤ sup
|u|≤∆t̄n

|Φ (zβ − u)− Φ (zβ)|+ Cn−1/2

= sup
|u|≤∆t̄n

φ (zβ + ū) |u|+ Cn−1/2

≤ sup
|ū|≤∆t̄n

φ (zβ + ū) ∆t̄n + Cn−1/2

= φ (zβ+o(1)) ∆t̄n + Cn−1/2

= φ (zβ) ∆t̄n + Cn−1/2 + o(∆t̄n) (24)

Therefore, (23), (24), and the expression for ∆t̄n yield the expansion of size in terms of

orders of εn and n:

P0(|t̃n| > z1−α/2) ≤ α +
[
φ
(
z1−α/2

)
+ φ(zα/2)

]
∆t̄n + Cn−1/2 + o(∆t̄n)

≤ α + CSD
n−1/2 ln lnn

εn
+O(n−1/2) + o(n−1/2ε−1

n ln lnn) (25)

where CSD := 2φ(zα/2)Λ/σS. Q.E.D.

Proof of Corollary 1. The expansions in Theorem 4 were established under the more gen-

eral conditions of this corollary in which ε̂n is a random sequence defined by (4).

We first show 0 ≤ CPL(δ) ≤ C∗PL for all δ ∈ R. It is easy to see that CPL(δ) ≥ 0 for all

δ ∈ R with equality if and only if δ = 0. Solving g′1(δ) = 0 with

g1(δ) := φ

(
zα/2 −

δ

σ

)
δ(σ2 − 2(σ2

A + σ2
B))

8σ3
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for δ and computing the second derivative of g1, shows that there are two solutions, one

being the global maximizer of g1,β,

δ∗ :=
σ

2

(
zα/2 −

√
4 + z2

α/2

)
.

Similarly, one can show that

g2(δ) := −φ
(
zα/2 +

δ

σ

)
δ(σ2 − 2(σ2

A + σ2
B))

8σ3

has a global maximizer at −δ∗. Therefore, for all δ ∈ R,

0 ≤ CPL(δ) ≤ g1(δ∗) + g2(−δ∗) = 2φ

(
zα/2 −

δ∗

σ

)
δ∗(σ2 − 2(σ2

A + σ2
B))

8σ3
= C∗PL

Second, it is immediate to see that the first-order term of power loss and size distortion

are equal,

C∗PLε
2
n = CSD

n−1/2 ln lnn

εn
,

when

εn =

(
CSD
C∗PL

)1/3

n−1/6(ln lnn)1/3

which directly implies the expansions in the statement of the corollary.

Finally, we observe that εn is in E by construction and since we have shown in the

proof of Theorem 4 that ε̂n = εn + Oas(εnn
−1/2
√

ln◦s n), we automatically have ε̂n − εn =

Op(n
−1/2), for either sequences (s = 2) or triangular arrays (s = 1), and it follows that ε̂n

satisfies Assumptions 5 and 6. Q.E.D.

7 Auxiliary Lemmas

The following Lemma provides a uniform strong law of large numbers for triangular arrays.

It is stated for scalars, but can also be used, element by element, for vectors valued g(x, θ).
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Lemma 6. For n ∈ N, let Xni for i = 1, . . . , n be iid random variables taking value in

RdX and drawn from the probability measure Pn. Assume that the measures Pn converge

weakly to some measure P0 and that each Pn(x) admits a Radon-Nikodym derivative pn(x)

with respect to P0(x). For Θ compact (under some metric dθ(·, ·)), let g : RdX × Θ 7→

R be continuous in x at each θ ∈ Θ. Assume further that there exists G(x) such that

EP0 [G(X0i)] <∞ (for X0i drawn from P0) and such that, for all θ ∈ Θ and n ∈ N,

|g (x, θ)| pn (x) ≤ G (x)

and that there exists Ḡ <∞ such that EPn [|g(Xni, θ)|4] ≤ Ḡ for all i = 1, . . . , n, all n ∈ N

and all θ ∈ Θ. Then,

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

g (Xni, θ)− g (θ)

∣∣∣∣∣ as→ 0

for g(θ) := EP0 [g(X0i, θ)], where X0i is drawn from P0.

Proof. This proof parallels the one of Lemma 1 in Tauchen (1985), but adapted for trian-

gular arrays. Define

u (x, θ, d) = sup
θ̃:dθ(θ̃,θ)≤d

∣∣∣g (x, θ̃)− g (x, θ)
∣∣∣ .

By almost sure continuity of g(x, θ), limd→0 u(x, θ, d) = 0 almost surely, for a given θ. Also

observe that, by Pn converging weakly to P0, we must have that pn(x)→ 1 pointwise for all

x in a set of probability 1 under P0. To study the convergence of EPn [u(X, θ, d)] as d→ 0

and n→∞, we employ dominated convergence. We have

EPn [u (X, θ, d)] =

∫
u (x, θ, d) dPn (x) =

∫
u (x, θ, d) pn (x) dP0 (x)

where

|u (x, θ, d) pn (x)| ≤ sup
d∞(θ̃,θ)≤d

∣∣∣g (x, θ̃)∣∣∣ pn (x) + |g (x, θ)| pn (x) ≤ G (x) +G (x) = 2G (x) ,
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where
∫
G(x)dP0(x) < ∞. Thus, for a given ε > 0, there exists d̄(θ) and N̄(θ, ε) such

that EPn [u(Xni, θ, d)] ≤ ε whenever d ≤ d̄(θ) and n ≥ N̄(θ, ε). By a similar reasoning,

|g(θ̃) − g(θ)| ≤ ε whenever d(θ̃, θ) ≤ d̄(θ). Let B(θ) be the open ball of radius d̄(θ) about

θ. By compactness of Θ, there exists a finite covering Bk = B(θk), k = 1, . . . , K. Let

dk = d̄(θk) and µk = E[u(X, θk, dk)] and write, for θ ∈ Bk,∣∣∣∣∣ 1n
n∑
i=1

g (Xni, θ)− g (θ)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n∑
i=1

g (Xni, θ)− g (Xni, θk)

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

g (Xni, θk)− EP0 [g (X0i, θk)]

∣∣∣∣∣
+ |EP0 [g (X0i, θk)]− g (θ)|

≤

∣∣∣∣∣ 1n
n∑
i=1

u (Xni, θk, dk)− µk

∣∣∣∣∣+ µk +

∣∣∣∣∣ 1n
n∑
i=1

g (Xni, θk)− EP0 [g (X0i, θk)]

∣∣∣∣∣
+ |g (θk)− g (θ)|

:= R1 + µk +R2 + |g (θk)− g (θ)|

By construction, µk ≤ ε and |g(θk)− g(θ)| ≤ ε for all n ≥ N̄(θk, ε). To apply a strong law

of large number for triangular arrays (Lemma 7) for R1 and R2 above, we need to calculate

fourth moments of the summands. We have

E
[
|g (Xni, θk)− EP0 [g (X0i, θk)]|4

]
≤ 8

(
E
[
|g (Xni, θk)|4

]
+ |EP0 [g (X0i, θk)]|4

)
≤ 16E

[
|g (Xni, θ)|4

]
≤ 16Ḡ

by the Cr and Jensen’s inequalities and by the uniform boundedness of the fourth moment

assumption. Similarly,

E
[
|u (Xni, θk, dk)|4

]
= E

∣∣∣∣∣∣ sup
θ̃:dθ(θ̃,θk)≤dk

∣∣∣g (Xni, θ̃
)
− g (Xni, θ)

∣∣∣
∣∣∣∣∣∣
4 = E

[
|g (Xni, θ

∗)− g (Xni, θ)|4
]

for some θ∗, by compactness of (the closure of) B(θk). By the Cr inequality, we have

E[|g(x, θ∗)− g(x, θ)|4] ≤ 16Ḡ. Hence, we can apply Lemma 7 to conclude that there exists
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Nk(ε) such that R1 ≤ ε and R2 ≤ ε almost surely for all n ≥ Nk(ε). Thus,

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

g (Xni, θ)− g (θ)

∣∣∣∣∣ ≤ 4ε

for n ≥ maxk max{Nk(ε), N̄(θk, ε)} almost surely. Since ε was arbitrary, the conclusion

follows. Q.E.D.

The following lemma is a strong law of large number for triangular arrays.

Lemma 7. Let Yni be a triangular array (n ∈ N, i = 1, . . . , n) of random variables, iid

across i = 1, . . . , n. If, for all n ∈ N, i = 1, . . . , n, E [Yni] = 0 and E
[
|Yni|4

]
≤ Ȳ < ∞,

then n−1
∑n

i=1 Yni
as→ 0.

Proof. The principle of this proof is borrowed from Example 5.41 in Romano and Siegel

(1986). Note that

P

[∣∣∣∣∣ 1n
n∑
i=1

Yni

∣∣∣∣∣ ≥ ε

]
≤
E
[∣∣ 1
n

∑n
i=1 Yni

∣∣4]
ε4

where

E

( 1

n

n∑
i=1

Yni

)4
 = n−4

n∑
i1=1

n∑
i2=1

n∑
i3=1

n∑
i4=1

E [Yni1Yni2Yni3Yni4 ]

= n−4

n∑
i1=1

n∑
i2=1

E
[
|Yni1 |

2 |Yni2|2
]

+ n−4

n∑
i1=1

E
[
|Yni1 |

4]
= n−2E

[
|Yni|2

]
E
[
|Yni|2

]
+ n−3E

[
|Yni|4

]
≤ n−2E

[
|Yni|4

]1/2 (
E
[
|Yni|4

])1/2
+ n−3E

[
|Yni|4

]
≤ n−2Ȳ + n−3Ȳ .

Hence,
∞∑
n=1

P

[∣∣∣∣∣ 1n
n∑
i=1

Yni

∣∣∣∣∣ ≥ ε

]
≤ Ȳ

∞∑
n=1

n−2 + Ȳ

∞∑
n=1

n−3 <∞
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and, by the Borel-Cantelli Lemma, the event |n−1
∑n

i=1 Yni| ≥ ε occurs finitely often almost

surely for any ε > 0, i.e. n−1
∑n

i=1 Yni
as→ 0. Q.E.D.

The following provides a law of the “iterated” logarithm for triangular arrays.

Lemma 8. Let Yni be a triangular array (n ∈ N, i = 1, . . . , n) of random variables, iid

across i = 1, . . . , n. If, for all n ∈ N, i = 1, . . . , n, E [Yni] = 0, E [Y 2
ni] > 0 and

E
[
|Yni|4+δ

]
≤ Ȳ <∞, then

P

[
lim sup
n→∞

|
∑n

i=1 Yni|√
2E [Y 2

ni]n lnn
→ 1

]
= 1. (26)

Proof. We use Theorem 1 in Rubin and Sethuraman (1965), in the special case of iid

variables across the i dimension, noting that our assumptions imply their Assumptions (7),

(8), (9) and (11) for their N set to n and their constants q and c set to q = 4 + δ and

c2 = 2 + ε for any ε < δ. Their Theorem 1 then shows that

sn := P

[∣∣∣∣∣
n∑
i=1

Yni

∣∣∣∣∣ > c
√
E [Y 2

ni]n lnn

]
= (1 + o (1))

n−c
2/2

c
√

2π lnn
,

which can be used with the Borel-Cantelli Lemma. Indeed, the sn for c2 = 2 + ε are such

that
∑∞

n=2 sn <∞ for any ε > 0 since

∞∑
n=2

n−1n−ε/2(√
2 + ε

)√
2π lnn

≤ C
∞∑
n=2

n−1−ε/2 <∞

for some universal constant C and for any ε > 0. It follows that the event{
n−1

n∑
i=1

Yni >
√

2 + εE
[
Y 2
ni

]
n−1/2

√
lnn

}
occurs only finitely often for any ε > 0 arbitrarily close to 0. By a similar reasoning,∑∞

n=2 sn → ∞ for ε < 0 and that event occurs infinitely often for any ε < 0 arbitrarily
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close to 0 and the conclusion (26) follows. (See also Theorem 3 in Hu and Weber (1992) for

a similar use of this inequality, in a context where independence across n is also assumed,

although it is not needed for the application of Theorem 1 in Rubin and Sethuraman

(1965).) Q.E.D.
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our test

n no reg εn = 0.5 εn = 1 optimal Vuong Shi NP

bivariate normal location

100 0.000 0.041 0.045 0.037 0.000 0.000

200 0.000 0.046 0.045 0.039 0.000 0.000

500 0.000 0.039 0.037 0.038 0.000 0.000

misspecified normals

100 0.062† 0.073 0.076 0.070 0.062 0.048

200 0.062† 0.053 0.059 0.058 0.062 0.045

500 0.059† 0.062 0.062 0.063 0.059 0.043

correctly specified normals

100 0.003 0.035 0.039 0.026 0.003 0.000

200 0.000 0.043 0.045 0.038 0.000 0.000

500 0.000 0.036 0.034 0.035 0.000 0.000

nested regressions with one additional regressor

100 0.001 0.039 0.044 0.042 0.001 0.000

200 0.000 0.047 0.052 0.050 0.000 0.000

500 0.000 0.056 0.056 0.056 0.000 0.000

nested regressions with two additional regressors

100 0.008 0.049 0.050 0.048 0.006 0.000 0.063

200 0.003 0.049 0.049 0.048 0.002 0.001 0.054

500 0.002 0.059 0.058 0.059 0.002 0.000 0.045

Table 1: Null rejection probabilities (nominal size 0.05) of our, Vuong’s, Shi’s, and the

Neyman Pearson (‘NP’) test for the different examples and different sample sizes (‘n’). ‘no

reg’, ‘ε̂n = 0.5’, ‘ε̂n = 1’, and ‘optimal’ refer to our test using ε̂n = 0, ε̂n = 0.5, ε̂n = 1, and

the optimal epsilon defined in (4). “†” denotes the cases in which the unregularized “no

reg” t-statistic is asymptotically N(0,1).
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(a) Example 1, n=200, alpha=0.05
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(b) Example 2, n=200, alpha=0.05
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(c) Example 3, n=200, alpha=0.05
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(d) Example 4, n=200, alpha=0.05
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Figure 1: Rejection frequencies of Vuong’s, Shi’s, and our test. ‘NP’ refers to the Neyman-

Pearson likelihood ratio test, and ‘no reg’ and ‘optimal epsilon’ to our test using ε̂n = 0

and the optimal epsilon in (4), respectively. On all graphs, the nominal level is marked by

a black horizontal line.
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(a) Example 1, n=200, alpha=0.05, size−corrected
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(b) Example 1, n=100, alpha=0.01, size−corrected
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(c) Example 1, n=200, alpha=0.01, size−corrected
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Figure 2: Size-corrected comparison of the rejection frequencies of the different tests con-

sidered. For Example 1, panels (a)-(c) report power curves for different confidence levels α

and sample sizes n as function of the alternative model, indexed by d. On all graphs, the

nominal level is marked by a black horizontal line.
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