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SUMMARY

Fluorescence nanoscopy, or super-resolution micro-
scopy, has become an important tool in cell biolog-
ical research. However, because of its usually inferior
resolution in the depth direction (50–80 nm) and
rapidly deteriorating resolution in thick samples, its
practical biological application has been effectively
limited to two dimensions and thin samples. Here,
we present the development of whole-cell 4Pi sin-
gle-molecule switching nanoscopy (W-4PiSMSN),
an optical nanoscope that allows imaging of three-
dimensional (3D) structures at 10- to 20-nm resolu-
tion throughout entire mammalian cells. We demon-
strate the wide applicability of W-4PiSMSN across
diverse research fields by imaging complex molecu-
lar architectures ranging from bacteriophages to nu-
clear pores, cilia, and synaptonemal complexes in
large 3D cellular volumes.
INTRODUCTION

Major advances in cell biology are tightly linked to innovations in

microscopy. The development of fluorescence microscopy, for

example, enabled sub-cellular localization of specifically labeled

proteins of interest (Lichtman and Conchello, 2005). However,

the wave nature of light restricts the resolution of conventional

light microscopy to�200 nm,making details of subcellular struc-

tures and protein assemblies unresolvable (Hell, 2007). The

advent of super-resolution fluorescence microscopy, or nano-

scopy, techniques such as stimulated emission depletion

(STED) (Hell and Wichmann, 1994) and single-molecule switch-
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ing nanoscopy (SMSN) (Betzig et al., 2006; Hess et al., 2006;

Rust et al., 2006) has extended the application range of fluores-

cence microscopy beyond the diffraction limit, achieving up to

10-fold improvement in resolution (Gould et al., 2012a). These

methods are now maturing and offering the opportunity to

observe biological phenomena never before seen (Chojnacki

et al., 2012; Kanchanawong et al., 2010; Liu et al., 2011; Xu

et al., 2013). Nanoscopy techniques share a common principle:

they spatially separate unresolvable fluorescent molecules by

independently switching their emission ‘‘on’’ and ‘‘off’’ (Hell,

2007). In particular, SMSN methods such as photoactivated

localization microscopy (PALM), fluorescence photoactivation

localization microscopy (FPALM), and stochastic optical recon-

structionmicroscopy (STORM) use a stochastic approach where

only a small subset of fluorescent molecules is switched on at

any particular moment in time while the majority remains in a

non-fluorescent ‘‘dark’’ or ‘‘off’’ state (Gould et al., 2012a). Su-

per-resolved images are reconstructed from the positions of

thousands to millions of single molecules that have been re-

corded in thousands of camera frames.

This imaging strategy was initially applied to single-objective

microscopes in two dimensions (2D) (Betzig et al., 2006; Hess

et al., 2006; Rust et al., 2006) and later extended to three dimen-

sions (3D) (Huang et al., 2008; Juette et al., 2008; Pavani et al.,

2009). While these instruments achieve 20- to 40-nm resolution

in the focal plane (lateral, x-y), the resolution in the depth direc-

tion (axial, z) is typically limited to only 50–80 nm. The resolution

can, however, be further improved by using a dual-objective

‘‘4Pi’’ detection geometry (Bewersdorf et al., 2006).

Using two objectives doubles the detection efficiency (Xu

et al., 2012) and thus improves the localization precision

�1.4-fold in all three dimensions. Additionally, employing two

objectives in a 4Pi geometry allows the creation of a single-mole-

cule emission interference pattern at the detector leading to an
lished by Elsevier Inc.
commons.org/licenses/by/4.0/).
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�7-fold improvement in axial localization precision over single-

objective approaches as demonstrated using interferometric

PALM (iPALM) (Shtengel et al., 2009) and 4Pi single marker

switching nanoscopy (4Pi-SMSN) (Aquino et al., 2011). This

improved resolution enabled, for example, the generation of

anatomical maps of focal adhesions at �10-nm axial resolution

(Case et al., 2015; Kanchanawong et al., 2010). However, this

method was initially restricted to samples of �250 nm in thick-

ness (Shtengel et al., 2009) and more recently to 700–1,000 nm

(Aquino et al., 2011; Brown et al., 2011). As the typical thickness

of a mammalian cell is 5–10 mm, this has limited optical micro-

scopy at the �10-nm isotropic resolution scale to thin sub-vol-

umes of cells, thus precluding the ability to image organelles

that can extend over several microns throughout the whole cell.

Here, we present a new implementation of iPALM/4Pi-SMSN,

termed whole-cell 4Pi single-molecule switching nanoscopy

(W-4PiSMSN), which extends the imaging capabilities of this

technology to whole cells without compromising resolution.

W-4PiSMSN allows volumetric reconstruction with 10- to

20-nm isotropic resolution of �10-mm-thick samples, a 10- to

40-fold improvement in sample thickness over previous

iPALM/4Pi-SMSN implementations (Aquino et al., 2011; Brown

et al., 2011; Van Engelenburg et al., 2014; Shtengel et al.,

2009). Our approach permits ultra-high resolution 3D imaging

of virtually any subcellular structure. To demonstrate this, we

image the endoplasmic reticulum (ER), bacteriophages, mito-

chondria, nuclear pore complexes, primary cilia, Golgi-appa-

ratus-associated COPI vesicles, and mouse spermatocyte

synaptonemal complexes. By these examples, we show that

W-4PiSMSN opens the door to address cell biological questions

that were previously unanswerable.

RESULTS

Development of W-4PiSMSN
To realize a system that achieves 10- to 20-nm 3D resolution

across the thickness of entire mammalian cells, we expanded

on previous iPALM and 4Pi-SMSN developments (Aquino

et al., 2011; Shtengel et al., 2009). In these systems, fluores-

cence emission is collected by two opposing objective lenses

and combined to interfere (Aquino et al., 2011; von Middendorff

et al., 2008; Shtengel et al., 2009). Depending on the axial posi-

tion of a molecule, the light will interfere constructively or

destructively, as indicated by the brightness of the molecule’s

image on the detector. However, molecules at axial positions

that differ by multiples of half the wavelength of light lead to

the same interference pattern and cause ambiguity in deter-

mining their axial positions. This localization ambiguity leads to

scrambled images that contain axially shifted image artifacts,

known as ghost images, in samples thicker than �250 nm.

This can be avoided by using not only the brightness but also

the z-position-dependent shape of the single-molecule images

to determine a molecule’s axial position. To address this, a

higher-moment based analysis (Aquino et al., 2011) and analysis

of the point-spread function (PSF) eccentricity in a hyperbolic

mirrors-modified system (Brown et al., 2011) were developed,

which extended the image volume thickness to 700–1,000 nm.

However, these methods pose significant drawbacks such as
poor localization density because of the highly selective compu-

tational processes focusing on subtle features of PSFs. The

methods are also susceptible to sample-induced optical aberra-

tions, which change the PSF shape when imaging biological

structures deeper in the sample (Burke et al., 2015; von Die-

zmann et al., 2015). As a result, applications have been restricted

to thin structures close to the coverslip (Case et al., 2015; Van

Engelenburg et al., 2014; Kanchanawong et al., 2010).

To enable 4Pi-SMSN to probe deeper into the cell and extend

the application of this technology to larger cellular features, we

have developed W-4PiSMSN. First, expanding on the optical

design by Aquino et al. (2011), we included deformable mirrors

in both arms of the 4Pi-interferometric cavity (Figure 1A; Fig-

ure S1). We use these mirrors to correct for imperfections in

the instrument beam path and optimize the PSF quality for sam-

ples with various thicknesses (Supplemental Information; Fig-

ure S2). Deformable mirrors also allow us to compensate for

sample-induced aberration modes, such as spherical aberra-

tions (Burke et al., 2015; Gould et al., 2012b), which vary from

sample to sample andwith depth. Additionally, we can use these

mirrors to introduce astigmatism in both interference arms

without adding further complexity to the system (Supplemental

Information). Thus, the deformable mirrors enable compro-

mise-free, reproducible PSFs in a depth- and sample-indepen-

dent manner.

Second, building on an earlier approach by Brown et al. (2011),

we developed an analysis method that combines information

from (1) the 4Pi-PSF’s interference phase, which allows for pre-

cise axial localization but does not distinguish between different

interference peaks, and (2) the eccentricity of the astigmatic 4Pi-

PSF, which narrows axial localizations down to individual inter-

ference peaks but in itself does not offer the precision of 4Pi

interference. Our new analysis algorithm interprets the large

number of molecules imaged in each time and z-depth window

as an ensemble measurement of the concurrent state of the

W-4PiSMSN system (Supplemental Information; Figure S3A)

and determines the relationship between the eccentricity of the

astigmatic PSF and the interference phase of the 4Pi-PSF.

Then the axial positions of all corresponding molecules can be

assigned with high precision and unambiguously using a mono-

tonic metric designed to describe the overall shape of the PSF

and maintain its monotonicity in the presence of moderate

amounts of aberrations (Supplemental Information; Figure S3B).

Since this analysis is performed for well-defined temporal and

axial data subsets, we have generalized it to identify and correct

for drift (from both the system and the sample) over the course of

imaging. Our method is robust against aberrations and improves

the reliability and efficiency of axial position assignment as it

automatically adapts to changes in the shape and interference

pattern of the 4Pi-PSF.

Ultra-High Resolution Imaging with W-4PiSMSN
To demonstrate the resolution capabilities of our new system,

we first imaged the ER. ER membranes were stained using

anti-GFP antibodies to the overexpressed transmembrane pro-

tein, mEmerald-Sec61b, in COS-7 cells. We visualized the ER

as a connected network of hollow tubes with 60–100 nm diame-

ters (Figures 1B and 1C; Movie S1). Both horizontal and vertical
Cell 166, 1028–1040, August 11, 2016 1029



Figure 1. W-4PiSMSN Design and Resolu-

tion Demonstrations with ER, Microtubules,

and Bacteriophages

(A) Simplified optical diagram of W-4PiSMSN.

(B) Overview and cross-sections of the ER network

in an immunolabeled COS-7 cell. Cross-sections

of the W-4PiSMSN reconstruction show clearly

separated membranes of the tubular structures,

which cannot be resolved with conventional

astigmatism-based nanoscopy (light blue frame).

(C) x-y slice through the mid-section of the ER

network shown in (B) highlights the distinct mem-

brane contour of ER tubules (arrowheads).

(D) Overview of immunolabeled microtubules in a

COS-7 cell.

(E and F) 20-nm-thin x-y slices of the red (E) and

green (F) segments shown in (D) demonstrate that

microtubules can be easily resolved as hollow

cylinders in W-4PiSMSN.

(G) A look through a 120-nm-long segment of the

microtubule of (F).

(H) A histogram showing the number of localiza-

tions in a cross-section of the microtubule, white

dotted box in (G).

(I) A bacteriophage reconstructed from 115 aver-

aged viral particles rendered in 3D.

(J and K) 5-nm-thin vertical (J) and horizontal (K)

slices through the averaged dataset correspond-

ing to the planes shown in (I).

(L) The internal angle measurements of the hexa-

gon shape identified from the viral capsid shown

in (J).

OBJ, objective; QWP, quarter-wave plate; DM,

dichroic mirror; QBF, quad-band band-pass filter;

Def. Mirror, deformable mirror; Cam, camera;

50/50, beam splitter cube.
cross-sections reveal the 3D membrane contour that was previ-

ously resolvable only with electron tomography (Frey and Man-

nella, 2000). This high 3D resolution is quantitatively supported

by a Fourier Shell Correlation value of 22 nm (Figure S4) (Nieu-

wenhuizen et al., 2013). To test our approach on even smaller

structures, we imaged antibody-labeled microtubules in COS-7

cells, a gold standard in SMSN (Figures 1D–1H). Without any

detectable imaging artifacts, W-4PiSMSN resolves this 25-nm

microtubule filament, which appears in all orientations as a hol-

low core coated with antibodies (Figures 1E–1H). In addition,

the dataset features a high localization density of �5.5 localiza-

tion events per 103 10 nm2 of surface area. Displaying the local-

ization events by their radial distance from the tubule axis

shows a Gaussian peak with a full width at half maximum

(FWHM) of 16–24 nm (Figure S4). Considering that the use of pri-
1030 Cell 166, 1028–1040, August 11, 2016
mary and secondary antibodies adds un-

certainty to the actual position of the

imaged dye molecules, we conclude

that the 3D resolution of our instrument

is well below 20 nm (FWHM).

To demonstrate our approach on

another challenging target, we imaged T7

bacteriophages. They feature an icosahe-

dral-shaped capsid of �60-nm diameter,
which has only been visible by cryo-electron microscopy (cryo-

EM) techniques before (Hu et al., 2013). We non-specifically

labeled proteins on the surface of purified T7 phages using an

Alexa Fluor 647 NHS Ester, which reacts with primary amines,

and mounted the phages on a coverslip (Figure S5). Image slices

of a single phage in the x-y, y-z, and x-z directions show a hollow

center in all orientations. To further refine the details of the

detected phage structures, we adapted the tomogram-aver-

aging approach originally developed for cryo-EM (Briggs, 2013;

Broeken et al., 2015). By combining 115 T7 images, our averaged

reconstruction reveals the icosahedral shape of the T7 phages

(Figures 1I–1L; Figure S4). As presented in Figures 1J–1L, a slice

perpendicular to the major axis shows the expected pentagonal

shape while a slice parallel to the major axis reveals a hexagonal

shape. Our approach, however, has yet to clearly resolve the



Figure 2. Two-Color Reconstruction of Mitochondria and Microtubules

(A and B) W-4PiSMSN reconstruction of microtubules (A) and mitochondria (TOM20) (B) in a COS-7 cell immunolabeled with Alexa Fluor 647 and Cy3B,

respectively. An x-y overview and x-z and y-z slices (yellow and magenta lines, respectively) are shown.

(C) The combined two-color image reveals microtubules running adjacent to the mitochondria surface.
�23-nm tail and fiber structures of the T7 phage (Hu et al., 2013).

This is likely due to either incomplete labeling of the surface

proteins or the flexibility of these structures. Nonetheless, our

W-4PiSMSN system has enabled the visualization of the ultra-

structure of bacteriophages using light microscopy.

We tested the two-color imaging capability of W-4PiSMSN

by imaging microtubules and mitochondria in a COS-7 cell im-

munolabeled with Alexa Fluor 647 and Cy3B, respectively. Our

reconstructions show microtubules running in close proximity

�10–20 nm from themitochondria top and bottom surfaces (Fig-

ures 2A–2C; Movie S2; Figure S5). Our system decouples axial

localization from the PSF shape, the latter being susceptible to

depth-dependent distortions caused by sample-induced optical

aberrations (Liu et al., 2013; McGorty et al., 2014). While single-

objective systems rely on the PSF shape, the W-4PiSMSN

approach uses the relative interference amplitudes to determine

the axial location of individual molecules. However, multicolor

imaging is challenging because the spatial interference modula-

tion frequency is wavelength dependent and differs between

color channels. To address this, we derived the modulation fre-

quency using a pupil-function based approach (Supplemental

Information). Our simulation results were verified experimentally

by registering two color channels from an affine transformation

matrix, which was calibrated using two-color-labeled mitochon-

dria in fixed cells (Supplemental Information).

Whole-Cell 3D Imaging with W-4PiSMSN
Imaging volumes thicker than �1.2 mm requires axial sample

scanning, because molecules more than �600 nm out of focus

cannot be identified and localized efficiently (Huang et al.,

2008; Juette et al., 2008). Thus, optical sections must be re-

corded at different axial sample positions and subsequently

merged to obtain the complete cellular volume. Compared to

conventional 3D nanoscopes, the superior localization precision

of W-4PiSMSN puts high demands on the localization accuracy

in each volume section (i.e., avoiding volume distortions) and

the merging process. In the section-merging process, small

misalignments of neighboring optical sections caused by sam-
ple-induced aberrations or drift can lead to significant deteriora-

tion of the resolution and distortions of the super-resolved vol-

ume (Huang et al., 2008; Mlodzianoski et al., 2011).

We designed our system to minimize drift: our instrument

design takes advantage of a horizontal symmetry plane coin-

ciding with the common focal planes of the objectives and the

beam splitter cube of the interference cavity. This symmetric

design desensitizes the interferometric cavity of the microscope

to temperature changes leading to approximately equal thermal

expansion in both arms of the interference cavity. To compen-

sate for any remaining instrument and sample drift caused by

mechanical and thermal fluctuations, we developed a set of

hardware and software tools (Figure S6). The objectives are sta-

bilized in 3D relative to each other by focusing a near-infrared

laser beam by one objective and detecting the focus with the

other objective in a ‘‘biplane’’ configuration (Figure S6) (Juette

et al., 2008; Ram et al., 2008). This allows the detection of relative

objective movement in 3D, which can then be compensated for

via a feedback loop. Furthermore, we cross-correlate 3D volume

data segments of 1- to 2-min windows using a redundancy-

based drift correction method (Li et al., 2013; Wang et al.,

2014) in an extended correlation volume. Within each of these

short data segments, an independent relationship between

astigmatism and interference phase is established. Any discrep-

ancies between these relationships for different segments

are treated as drift (Supplemental Information). The above-

described methods enable us to fully compensate for sample

and instrument drift and changes in the optical path between

the two arms of the interferometric 4Pi cavity due to the axial

scanning nature of the measurements.

To demonstrate the whole-cell imaging capabilities of the

W-4PiSMSN system, we imaged mitochondria using antibodies

against the outer membrane protein TOM20 over the whole

thickness of a COS-7 cell. Figure 3 reveals the outer membrane

contour and the remarkably interconnected mitochondrial

network over a depth of 4.3 mm (Figures 3B–3D; Movie S3). We

were not able to detect any significant ghost images within the

volume (Figures 3A–3D).
Cell 166, 1028–1040, August 11, 2016 1031



Figure 3. W-4PiSMSN Reconstruction of

TOM20 on Mitochondria in COS-7 Cell

(A) Overview of the mitochondria network visual-

ized by immunolabeling TOM20 with Alexa Flour

647. The dataset is assembled from 11 optical

sections with 500-nm step sizes.

(B) x-z cross-section of the purple plane in (A)

showing the distribution of TOM20 on the outer

mitochondrial membrane. Ghost images are

completely negligible.

(C and D) Top (C) and side (D) views of the orange

box in (A) show the 3D arrangement of the

organelle.
To further demonstrate that image quality is maintained

throughout the thickness of whole cells, we imaged nuclear

pore complexes (NPCs) on the nuclear envelope. By immunolab-

eling with an antibody that recognizes a component of the cyto-

plasmic filaments (Nup358) of NPCs (von Appen et al., 2015), we

can reconstruct NPCs on the top, side, and bottom of the nu-

cleus (Figure 4; Movie S4). As with mitochondria, our approach

reveals the contours of almost the entire nuclear surface, where

both prominent invaginations and subtle undulations (typically

visualized only by electron microscopy [EM]) are apparent (Fig-

ures 4A and 4B).

Revealing Golgi-Apparatus-Associated COPI Vesicles
We next imaged COPI vesicles, which have traditionally been

resolved only by EM as they have �100-nm diameters and are

densely packed around the Golgi cisternae (Orci et al., 1997).
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Moreover, as the Golgi complex is located

close to the middle of the cell, recording

high-quality data in a central z-plane is a

challenging test of the instrument’s 3D

resolution capabilities. Figure 5 shows

the b0 COP, a protein in the outer COPI

complex, immunostained using Alexa

Fluor 647 in BSC-1 cells. Strikingly, we

visualized distinct hollow COPI-coated

spheres within cells (Figures 5B, 5C, 5E,

5F, and 5G–5N). Our 3D images resolve

individual COPI vesicles with �100-nm

diameter, consistent with previous mea-

surements (Pellett et al., 2013). Addition-

ally, a 300-nm-thick section shows that

COPI-coated structures are packed

around a 500- to 1,000-nm (x and y) by

500-nm (z) area devoid of COPI labeling,

presumably containing a Golgi stack (Fig-

ures 5D–5F).

Revealing Ciliary Membrane GPCR
Organization
Most high-resolution studies of the pri-

mary cilium, a solitary microtubule-based

organelle that protrudes from the cell sur-

face and acts as a cellular antenna, have

relied on EM (Wood and Rosenbaum,
2015). A transmission EM image typically shows only a small

subsection of a cilium as the sample is a random oblique �70-

to 100-nm-thick section through the structure, which can be

up to 10 mm long and �250 nm wide. Scanning EM images

can easily show an entire cilium with high resolution; however,

these images completely lack information about specific protein

localization. Previous nanoscopy studies on cilia relied on infer-

ring the 3D organization from 2D datasets (Yang et al., 2013,

2015). Here, we used W-4PiSMSN to image the G-protein-

coupled receptor Smoothened (SMO) on whole primary cilia in

hTERT-RPE1 cells with high 3D resolution (Figure 6; Movie S5).

SMO was tagged with a pH-sensitive GFP (pH-SMO), which

was used as an epitope for antibody labeling with Alexa Fluor

647 (Figure 6; Supplemental Information). We observe that over-

expressed pH-SMO localizes to the membranes of cilia, which

form hollow cylinders 3–10 mm long (Figure 6) and vary in



Figure 4. W-4PiSMSN Imaging of Nuclear

Pore Complexes over the Thickness of a

Cell Nucleus

Nup358 was Immunolabeled with Alexa Fluor 647

in hTERT-RPE1 cells.

(A) Overview of a region of the nucleus. The axial

location of the nuclear pores is color coded.

(B) Side view of (A).

(C) A subregion indicated by the dashed box in (A)

shows a zoomed in view of multiple nuclear pores.

(D) Overview of a 3D reconstruction of the nucleus

obtained by combining nine optical sections.

(E) A section of the reconstruction in (D) confirms

that the labeling is largely limited to the nuclear

envelope.

(F) Different view of the same section.

(G and H) Bottom (G) and top (H) half of the nucleus

shown in (D). The images reveal ring-like nuclear

pores on the top and the bottom nuclear envelope

as well as at the sides of the nucleus (arrowheads).
diameter from�160 to 280 nm (Figures 6A–6E). OurW-4PiSMSN

images of the ciliarymembrane allow us to preciselymeasure the

cilium’s diameter along its entire length. Interestingly, we find

that cilia diameters are not always constant. Rather, one

example cilium shows an abrupt contraction of �50 nm midway

along its length (Figures 6C–6E; Movie S5). We speculate this

change in diameter may correspond to the thinning of the 9+0

microtubule axoneme, which is known to transition from triplet

microtubules, to doublets, and eventually singlets. The ciliary

tip is not narrow but has a bulbous shape, consistent with struc-

tures observed in EM (He et al., 2014; Wang et al., 2013). The

high-resolution reconstruction of the ciliary membrane also al-

lowed us to ‘‘unwrap’’ themembrane tube into a flat surface (Fig-

ure 6H; Supplemental Information) permitting data quantification

such as cluster analysis and co-localization measurement in a

complex geometry. Next, we examined the local density of mol-

ecules along the ciliary membrane to identify regions with higher

concentrations of pH-SMO. Higher local density is present

around the base, on small bulbous protrusions, and on stripes

along the cilium length (Figures 6F–6H; Figure S7). These protru-
C

sions may be vesicles (diameter �150–

200 nm) budding from the cilium (Figures

6F–6H), as ectosomes have been re-

ported to bud from some cilia (Wood

and Rosenbaum, 2015).

Resolving Synaptonemal
Complexes in Whole-Mouse
Spermatocytes
As a final demonstration of the capacity of

our instrument to image deep into cells as

thick as 10 mm, we stained synaptonemal

complexes in mouse spermatocyte nuclei

in the pachytene phase of meiotic pro-

phase (Figure 7; Movies S6). While synap-

tonemal complexes have been imaged

using structured illumination (Carlton,

2008; Qiao et al., 2012) and 4Pi micro-

scopy at 100- to 200-nm resolution (Fritsche et al., 2012), higher

resolution optical images have been limited to chromosome

spreads of <1-mm thickness (Schücker et al., 2015). Here,

we examined spermatocytes harvested from testes of 17- to

18-day-old mice with W-4PiSMSN and imaged the twisting

band of the paired lateral elements of autosomal synaptonemal

complexes, highlighted by immunolabeling synaptonemal

complex protein 3 (SYCP3), a constituent component of the

lateral elements (Page and Hawley, 2004). Reconstructed from

a total of 126 optical sections (21 depth positions imaged in six

repetition cycles), the entire 3D image spanned nearly 9 mm in

depth and resolved SYCP3 substructure of the individual auto-

somal synaptonemal complexes with unprecedented clarity in-

dependent of their orientation or depth (Figures 7A–7E; Movie

S6). Furthermore, 19 synaptonemal complexes representing

pairs of individual autosomal homologs could be isolated using

a Euclidian metric-based clustering algorithm on the individual

single-molecule localizations (Supplemental Information). Thus,

our approach promises the capacity to visualize the nanoscale

spatial organization of chromosomal scaffolds in the context of
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Figure 5. W-4PiSMSN Resolves Individual COPI-Coated Vesicles

COPI complexes were immunolabeled with an antibody against b0 COP and imaged with Alexa Fluor 647 in BSC-1 cells.

(A) Overview of a region of the field of view, with axial location of molecules color coded.

(B and C) Top (B) and side (C) view of the blue-boxed subregion indicated in (A) showing that COPI often forms round and hollow sphere-like structures. Dark gray

and light gray arrowheads indicate the same COPI structures.

(D) x-y view of the area devoid of COPI as indicated by the yellow box in (A).

(E and F) x-z and y-z view of the orange (E) and magenta (F) boxed regions shown in (D) show that COPI surrounds an area presumably containing the Golgi

cisternae.

(G–N) COPI vesicle structures as indicated by the respective labels in (B)–(F) shown at the same enlarged scale reveal circular structures.
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Figure 6. GPCR Smoothened on a Primary

Cilium

(A and B) Top (A) and side (B) views of a primary

cilium on an hTERT-RPE1 cell expressing pH-

SMO, which was immunolabeled with Alexa Fluor

647.

(C and E) Views of sections close to the tip (C) and

the base (E) as indicated by the light green and

orange boxes in (A) show the localization of pH-

SMO to the cilium membrane.

(D) Radius of different sections of the cilium as a

function of their distance from the base.

(F) Overview of a cilium in another region of the

sample, showing vesicle-like buds on the ciliary

membrane surface (arrowheads). The inset shows

the local density of the boxed region, which sug-

gests a helical stripe organization of pH-SMO (ar-

rowheads in inset).

(G and H) A bud-like profile shown in (F) can be

unwrapped as depicted in (G), showing the height

of the vesicle above the cilium membrane and the

high molecular density of pH-SMO at the bud (H).
architectural elements of the nucleus, many of which are lost in

commonly used spread chromatin preparations.

DISCUSSION

Through a confluence of several technological innovations, we

have demonstrated that W-4PiSMSN provides unprecedented

access to the ultrastructure of cells with�10- to 20-nm isotropic

resolution throughout their entire volume. This resolution is

20–50 times higher than conventional microscopy with imaging
C

depth improved �10-fold over state-of-

the-art iPALM and 4Pi-SMSN. This devel-

opment extends the application range of

4Pi-based SMSN dramatically: imaging

is no longer limited to featureswithin small

sub-volumes of cells. Instead, we are

capable of imaging organelles that span

large volumes, exemplified by the mito-

chondrial network, the nuclear envelope,

and synaptonemal complexes, which

we capture in virtual entirety. Thus,

W-4PiSMSN is a versatile and powerful

tool that promises a new perspective on

how proteins distribute across entire

organelles throughout whole cells, a key

unmet challenge in cell biology.

Is there room to further increase the

spatial resolution of SMS nanoscopy?

First, SMS resolution depends on the

precision with which one can localize

blinking molecules. The precision is

approximately proportional to the sharp-

ness of the PSF and, for negligible back-

ground noise, is inversely proportional to

the square root of the number of de-

tected photons. Our approach has
focused mainly on creating the sharpest PSF and detecting

as much of the emitted fluorescence light as possible.

Recently, there have been promising developments that in-

crease the number of emitted photons per molecule (Klehs

et al., 2014; Ong et al., 2015; Vaughan et al., 2012), which we

have not exploited here. Unfortunately, these advances have

so far come at the expense of an increase in recording time.

We anticipate, however, that with new generations of fluoro-

phores or refined imaging buffers, these approaches can

further improve image quality.
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Figure 7. W-4PiSMSN of the Synaptonemal Complexes in a Whole-Mouse Spermatocyte

(A) Overview reconstructed from 21 optical sections. Lateral elements of the synaptonemal complex, spaced�200 nm apart, are resolved throughout the�9-mm

depth of the spermatocyte at uniform resolution.

(B and C) Different views from locations inside the spermatocyte centered on top (B) and bottom (C) regions of the dataset.

(D) x-z view of (A).

(E) The 19 synaptonemal complexes from an entire mouse spermatocyte haploid genome were computationally isolated using a Euclidian distance-based

clustering algorithm.

(F) A conventional image of the 19th synaptonemal complex in x-z view.

Scale bars in (E-19) and (F), 2 mm.
Second, image quality, or spatial resolution, of SMSN images

depends on the density of localized molecules (Patterson et al.,

2010; Shroff et al., 2008). The application examples we pre-

sented demonstrate that small features such as cylinder-shaped

immunolabeled microtubules (�40-nm diameter) or ER tubules

(�60-nm diameter) can now be easily resolved in 3D using light

microscopy. This image interpretation is aided by the fact that

the observer fills the gaps in the distribution of molecules along
1036 Cell 166, 1028–1040, August 11, 2016
a tubule by mentally extrapolating from the expected tubular

structure. We utilized several computational image processing

techniques, including particle averaging of the bacteriophage

data (Figure 1), clustering of the synaptonemal complexes

(Figure 7; Movie S6), and ‘‘unwrapping’’ of cilia (Figure 6), to

reconstruct complex structures. These approaches, which add

constraints to data interpretation (e.g., the fact that cilia are

tubular) and can be tailored to the cell biological question at



hand, allow us to extract structural details, which are more

subtle than the labeling density suggests. Ultimately, labeling

density is limited by the density of probe targets, usually pro-

teins. The development of new labeling approaches that allow

membrane targeting (Erdmann et al., 2014) overcome this re-

striction and additionally offer the possibility of revealing the

membrane boundaries of individual organelles. Complementary

approaches utilizing stochastic transient chemical binding

can further address the limited pool of fluorescent labels and

theoretically allow unlimited numbers of localized molecules

(Giannone et al., 2010; Jungmann et al., 2014; Lew et al., 2011;

Sharonov and Hochstrasser, 2006). However, even with the

use of conventional labeling techniques, W-4PiSMSN is capable

of visualizing otherwise inaccessible structures in a multitude of

settings as demonstrated by the large range of presented

applications.

In conclusion, we believe that the development of W-4PiSMSN

represents the culmination of more than a decade’s research on

high-resolution fluorescence imaging techniques and establishes

3D biological imaging with molecular specificity and resolution in

the 10-nm range as a general imaging technique.

EXPERIMENTAL PROCEDURES

Microscope Setup

A detailed description is provided as Supplemental Information. In brief, the

4Pi cavity of the system was set up vertically around two opposing high-NA

objective lenses (Movie S7). Excitation light from three laser lines at wave-

lengths of 642, 561, and 405 nm was coupled into the upper objective for

wide-field illumination. Following the concept by Aquino et al. (2011), fluores-

cence was collected by both objectives and passed through quarter wave

plates, which enforced equal fractions of s and p-polarized light independent

of the dipole emitter orientation. A custom Babinet-Soleil compensator

corrected for dispersion and allowed adjusting the phase delay between the

upper and lower interferometer arm independently for the two polarization

components before the light was combined at a 50/50 beam splitter cube.

We added deformable mirrors (Boston Micromachines, Multi-5.5) in planes

conjugate to the back pupils of the objectives, which allowed for aberration

correction, optimization of the PSF and introduction of astigmatism for arti-

fact-free 3D localization. s and p-polarized fluorescence exiting the beam

splitter cube at two sides was split with a polarizing beam splitter cube into

four images featuring different interference phases. The four images were re-

corded simultaneously by a scientific complementary metal-oxide semicon-

ductor (sCMOS) camera (Hamamatsu, ORCA-Flash 4.0v2). The entire system

was controlled by a custom-written program in LabVIEW.

Aberration Correction Using Deformable Mirrors

Two deformable mirrors were independently adjusted as follows. For each

interfering arm, starting from the flat voltage map (provided by the manufac-

turer), 28 theoretically generated membrane modes were applied sequentially

with ten different voltage amplitudes per mode. The detected peak signals (0th

moment Gaussian weighted sum) of a single fluorescent bead in focus were

extracted for all amplitudes of the applied modes. The optimal amplitude for

each mode was determined as the value that gave the maximum signal level

by fitting a quadratic function to themeasurements. These newly obtained am-

plitudes were added to the flat voltage map and serve as a starting point of

another iteration. We used five iterations to achieve optimal system aberration

correction. Details are provided the Supplemental Information.

Biological Sample Preparation

A complete description of cell culture, fluorescence labeling, coverslip, and

buffer preparation is included in sections 15 to 26 of the Supplemental

Information.
In short, 25-mm-diameter coverslips were cleaned by sonication in 1MKOH

for 15 min before use. Fluorescent 100-nm-diameter crimson beads were

attached to the coverslip surface using poly-L-lysine. Cultured mammalian

cells were grown on coverslips for 24–48 hr before fixation. COS-7 cells

were used for microtubule, ER, and mitochondria samples. RPE-hTERT cells

were used for nuclear pore complex and cilia samples. BSC1 cells were

used for COPI samples. For synaptonemal complex samples, spermatocytes

were isolated from the testes of mice and settled on coverslips before being

fixed. T7 bacteriophages were isolated from E. coli cultures and labeled with

Alexa Fluor 647 NHS Ester before being placed on coverslips.

Microtubule, mitochondria, and ER samples were fixedwith 3% paraformal-

dehyde (PFA) + 0.1% glutaraldehyde before antibody labeling. A saponin pre-

extraction step preceded fixation when only microtubules were labeled.

Nuclear Pore Complex samples were fixed in�20�Cmethanol. COPI and syn-

aptonemal samples were fixed in 4% PFA.

Antibodies against endogenous proteins were used to label microtubules

(anti-a-tubulin), mitochondria (anti-TOM20), nuclear pore complexes (anti-

Nup358), COPI (anti-b0 COP), and synaptonemal complexes (anti-SYCP3).

Overexpressed proteins were labeled with antibodies in ER samples (mEmer-

ald-Sec61b using anti-GFP) and Cilia samples (pHlourin-mSmoothened using

anti-GFP).

All one-color samples were labeled with Alexa Fluor 647, either using a com-

mercial secondary antibody or an NHS ester. Two-color microtubule andmito-

chondria samples were labeled with Alexa Flour 647 and Cy3B, respectively.

Cy3B-labeled secondary antibodies were made by conjugating reactive

Cy3B with unlabeled antibodies. After secondary antibody labeling, COS-7

and BSC1 cell samples were post-fixed with 3% PFA + 0.1% GA.

Labeled biological samples were placed in an aluminum sample frame and

covered with a second cleaned coverslip. A thin spacer and imaging buffer

was placed between the two coverslips. The coverslips were held in the sam-

ple frame using an addition-curing silicone. The imaging buffer was either con-

ventional or COT containing thiol buffer (Supplemental Information). Samples

were imaged immediately after the silicone solidified.

W-4PiSMSN Data Acquisition

Four phase images are arranged along the splitting line of the sCMOS cam-

era’s upper and lower readout region. 50,000 to 320,000 camera frames

were recorded at 50 or 100 fps, resulting in 10 min to 1.5 hr total acquisition

time per dataset. For sample volumes thinner than 1.2 mm, the sample stage

was not translated during data acquisition. For thicker samples, the stage

was moved axially in 500-nm steps every 1,000–3,000 frames until the whole

targeted imaging volume was covered, resulting in up to 21 z-steps and imag-

ing volume depths of up to 9 mm. This axial scan was automatically repeated

six to 19 times, and the data from the scans were combined. The laser intensity

was manually adjusted during each experiment to optimize the emitter density

per frame and to maximize detectable emissions starting at intensities as high

as 35 kW/cm2 to transfer emitters efficiently into dark states and decreasing to

typically 5 kW/cm2 near the end of the acquisition when the pool of blinking

molecules had declined (Lin et al., 2015). Additionally, the laser intensity of

the 405-nm laser was manually controlled over the course of imaging to opti-

mize the active emitter density.

Single-Molecule Interference Phase Estimation

Raw camera frames were first isolated into four different phase images. The

four phase images were then merged into a single image using a transforma-

tion matrix obtained from a combination of algorithms using log-polar and

affine transformations (Supplemental Information). Single-molecule candi-

dates from the merged frames were isolated and fitted with an elliptical

Gaussian model using a maximum likelihood estimator accounting for the

camera-specific noise associated with sCMOS cameras (Huang et al., 2013)

(Supplemental Information). Estimates of single-molecule positions, width, to-

tal number of detected photons, background, and log-likelihood ratio were ob-

tained. Intensities of the 0th moment Gaussian (Supplemental Information)

were calculated by a weighted least-square fitting of a Gaussian with the

amplitude being the only fitting parameter and weighted to take the sCMOS

noise into account (Huang et al., 2013). Subsequently, the reduced moments

of each polarization were extracted using a previously described approach
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(Aquino et al., 2011). For two-color imaging, phase shifts between s and p

polarization for the two color channels differ by 0.3 radians. These phase shift

differences were measured independently from images of fluorescent beads

recorded in two detection channels. With the obtained phase differences be-

tween the s and p polarization, the phase shifts between the four different

phase images are known. Subsequently, the interference phases of the de-

tected molecules were obtained by solving a set of equations describing the

0th moment intensities in s and p polarization channels as functions of an un-

known offset and their relative phase shifts as characterized above (Supple-

mental Information).

Axial Position Analysis with Ridge-Finding Algorithm

We developed a metric m: ðs3x=syÞ � ðs3y=sxÞ, where sx and sy are the esti-

mated SDs of the 2D Gaussian for a single-molecule emission pattern. The

metric preserves its monotonicity in the presence of aberrations, and we

used it to estimate an unambiguous (but still rough) position of each single

emitter, before the phase estimate was used to pinpoint the exact axial posi-

tion of a molecule.

For every 3,000–5,000 camera frames, we generated a 2D histogram image

from phase estimations and the metric m from all detected single molecules.

As m is monotonic and the single-molecule phase is periodic with a period

of 2p, the resulting 2D histogram looks like a pattern of tilted repeating stripes

(Figure S3). We developed a ridge-finding algorithm to determine a series of

connected vectors defining the correspondence between the determined

phase values and the values of m. This allowed us to unwrap the periodic

phase for unambiguous axial localization. A detailed description of the algo-

rithm is provided in the Supplemental Information.

Drift Correction

3D drift correction was performed by first calculating the distance pairs be-

tween image segments (3,000–5,000 frames), and subsequently forming three

sets of equations for x, y, and z, respectively (Li et al., 2013; Wang et al., 2014).

A least-square solution that minimizes the overall error of the set of equations

was obtained and back-substituted into all equations. Errors can be calculated

from each of these equations and a specific equation within the set is removed

from the stack if its error is larger than 7 nm. This process was repeated until no

error was larger than 7 nm or the matrix was no longer at its full rank. This al-

lowed us to correct system and sample induced drift in 3Dwith short segments

of data (Supplemental Information).

Optical Segment Alignment

To image thick samples, optical sections were recorded at different axial posi-

tions of the sample by axially translating the z-piezo holding the sample stage.

The localization data contain x, y, and z position estimates of different optical

sections and must be aligned/stitched seamlessly to support the high precision

obtained in W-4PiSMSN. Previous methods (Huang et al., 2008) that shifted

each optical section by a constant in the axial direction have been prone to intro-

ducemisalignment of the optical sections and subsequently deteriorate the res-

olution achievable in thick samples. Here, we developed an optical alignment

method based on 3D cross-correlation. In theW-4PiSMSN system, optical sec-

tions are�1.2 mm thick. Whole-cell samples were scanned in the axial direction

with 500-nm step sizes. This allowed for abundant overlapping regions between

adjacent optical sections and provided critical information for precise optical

section alignment using the developed 3D cross-correlation methods as

described in Supplemental Information.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, and seven movies and can be found with this article online at

http://dx.doi.org/10.1016/j.cell.2016.06.016.
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Supplemental Figures

Figure S1. W-4PiSMSN Setup and System Characterization, Related to Figure 1

(A) Simplified system diagram of W-4PiSMSN.

(B) Localization results of W-4PiSMSN of a fluorescent bead imaged with 50 nm steps over an axial range of 1.2 mm. Inserts show residual errors displayed for

each step and in a histogram.

(C) Instrumental drift along the axial direction over 1 hr.

L1-L5: Lenses, OBJ: Objective, QWP: Quarter-Wave Plate, DM: Dichroic Mirror, QBF: Quad-Band Bandpass Filter, Def. Mirror: Deformable Mirror, BS: Beam

Splitter Cube, PBS: Polarizing Beam Splitter Cube, RA: Rectangular Aperture.
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Figure S2. W-4PiSMSN Point Spread Function, Related to Figure 1

Central x-z and y-z sections of W-4PiSMSN point-spread functions in the four images recorded by the sCMOS camera demonstrating interference and astig-

matism introduced by the coherent detection cavity and deformable mirrors.
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Figure S3. Concept of Ridge-Finding Algorithm, Related to Figure 1

(A) Ridge-finding algorithm concept including demonstrations of vision field, jump range, and directions of the current step. Contour plot of the 2D histogram

generated from single-molecule interference phase values and normalized metric values.

(B) Identified monotonic ridge of metric versus phase curve before phase unwrapping (red stars).
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Figure S4. Line Profiles, Residue Plots, and Fourier Shell Correlation Resolution, Related to Figure 1

Top: four line profiles across x-y slices of microtubules shown in Figures 1D–1F. Middle: residual distances from single-molecule localizations to cylinder surface

fit to four segments of the microtubule data. Bottom: Fourier shell correlation (FSC) measurement of resolution in a sub-region of ER data (right) (Figures 1B and

1C) and the combined phage data (left) (Figures 1I–1L) based on custom-written software extended to 3D from previously demonstrated Fourier ring correlation

on SMSN datasets (Nieuwenhuizen et al., 2013).
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Figure S5. Overview of an Individual Phage and Examples of Line Profiles from Figure 2, Related to Figures 1 and 2

(A) Overview of Alexa Fluor 647 labeled phages imaged by W-4PiSMSN.

(B) x-z view of the entire sample showing coverslip surface and individual phages.

(C–E) Cross-sections and projection of an isolated phage (arrowhead in A).

(F and G) Examples of line profiles (integrated over a width of 200 nm) of the two-color image shown in Figure 2.

(H) Line profile positions in Figure 2C.
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Figure S6. Instrument CAD Renderings and Layout of the Excitation and Diagnostic Beam, Related to Figure 1

(A and B) CAD renderings of theW-4PiSMSN instrument and the piezo-objective stack. 50/50: 50/50 beam splitter cube, PBS: polarizing beam splitter cube, Def.

Mirror: deformable mirror. Please see Movie S7 for animation and more details.

(C) Excitation and diagnostic beam layout. The excitation light from a polarization-maintaining single-mode fiber (solid blue line) is first collimated by an aspheric

lens (f = 8 mm) and further expanded�6.6X to a size of�12 mm. This beam passes through a pair of square apertures of�5x5mm that cropped the center-most

uniform part of the beam. An f = 500 mm lens focuses the cropped beam to the back focal plane of the top objective, uniformly illuminating an�18x18 mm area in

the focal plane. For overview, a pair of flipmirrors route the beam through an alternative path (dashed blue line) that bypasses the apertures. The overview beam is

further expanded�4X before being focused by the f = 500 mm lens to the back focal plane of the objective and illuminates a�100-mm diameter area in the focal

plane. To lock the relative position of the two objectives, the laser light from a 940 nm diode laser (red solid line) is collimated by a lens to overfill the back focal

plane of the bottom objective, which focuses the light to a spot in the common focal plane. This focus is imaged by the top objective producing a collimated beam

propagating in the opposite direction of the excitation light. The f = 500 mm lens focuses the beam through a biplane geometry to a camera.
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Figure S7. Molecular Density of the Cilia Membrane Protein GPCR Smoothened, Related to Figure 6

(A) Overview of a cilium, color-coded bymolecular density. Density was calculated by counting the number of localizations surrounding each localization within a

100-nm radius.

(B–E) Zoomed and rotated views show increased molecular density at the base of the cilium (B), at positions with potential budding vesicles (C), and in bands

along the length of the cilium (D and E) which suggest potential functional arrangements of SMO.
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Supplemental Experimental Procedures 

1. Microscope Setup 

A summary of the used components is provided at the end of this section. The microscope was built 
around a vertical bread board and a piezo/linear stage assembly (the white box in Supplemental Figure 
S6A) mounted on an air damped optical table (1200 by 1800 by 300 mm, 784 Performance Series, 
Technical Manufacturing Corporation). The piezo/linear stage assembly forms the first module of the 
interference cavity and holds the sample and both objective lenses and allows the sample position, 
interference cavity path length, and objective alignment to be adjusted remotely via computer control 
independent of the detection beam path (Supplemental Figure S6, Supplemental Movie S7). The 
vertical breadboard holds the second module of the interference cavity, deformable mirrors, and detection 
optics on its front surface and the excitation beam path on the back. Three excitation laser lines at 
wavelengths of 642 nm (MPB Communications, 2W), initially 561 nm (Coherent Genesis MX 56, 500 
mW), later 560 nm (MPB communications, 2W) and 405 nm (Coherent OBIS 405 LX, 50 mW) reside on 
the optical table and are coupled into a polarization-maintaining single-mode fiber after passing through 
an acousto-optical tunable filter for wavelength selection and power modulation. The fiber delivers the 
excitation light to the back surface of the vertical breadboard where one of two optical paths may be 
selected via a pair of computer-controlled motorized mirrors (Supplemental Figure S6C). The first 
optical path illuminates an ~18 by 18 µm square area in the sample plane with nearly uniform 
illumination over the excitation field via an over-illuminated adjustable rectangular aperture. The fiber tip 
is conjugated to the objective back focal plane of the top objective lens and can be translated sideways for 
switching between epi-illumination and highly inclined and laminated optical sheet (HILO) imaging 
modalities. The second excitation path illuminates a ~100-µm diameter area for overview imaging and 
sample positioning. 

Imaging is performed with two opposing high-NA oil immersion objective lenses (Olympus UPLSAPO 
100XO PSF 1.4NA). The objective residing below the sample is mounted on a two-axis piezo stage 
(Supplemental Figure S6B, blue stage) (Physik Instrumente, P-612 2SL) which allows for lateral 
objective alignment with 5 nm resolution. The axial position of the upper objective is controlled with a 
nanopositioning stage (Supplemental Figure S6B, green stage) (Physik Instrumente, N-664.3A) with 
0.5-nm resolution over a 16-mm travel range. Thus, the upper objective may be axially translated away 
from the lower objective for sample loading and then returned to the co-focal position with nanometer-
accuracy. Additionally, a 940-nm diagnostic laser line is passed through the objective pair to facilitate 
real-time monitoring and correction of the axial and lateral objective alignment. 

The axial position of the sample is controlled by a piezo stage (Supplemental Figure S6B, magenta 
stage) (Physik Instrumente, P-541.Z) with 0.5-nm resolution for precise and repeatable imaging of optical 
sections at various depths. This stage is, in turn, supported by a piezo-driven XY translation stage 
(Supplemental Figure S6B, gray stage) (Physik Instrumente, M-686.D64) with 100-nm resolution for 
coarse lateral sample positioning. The axial and XY sample stages are resting on a custom plate supported 
at three points of contact by three DC-Mike linear actuators (Supplemental Figure S6B, gray columns) 
(Physik Instrumente, N-227.10) with 100-nm repeatability for coarse axial positioning and tip/tilt sample 
adjustment. Two linear stages (Supplemental Figure S6B, orange stages) (ASI, LS-50) translate the 
entire objective-sample stage stack described above along the optical axis with a resolution of 10 nm 
allowing the optical path lengths of the two interference arms to be adjusted and maintained via computer 
control without affecting alignment in other areas of the system. Supplemental Movie S7 shows an 
animation of the entire objective-sample stage stack assembly. 



The back pupil planes of the upper and lower objectives are imaged onto two respective deformable 
mirrors (Boston Micromachines, Multi-5.5). 0.94x telescopes reduce the size of the objective pupils to 
match the active areas of the deformable mirrors. The deformable mirrors allow independent aberration 
compensation through both detection arms and facilitate aberration-free W-4PiSMSN imaging by 
correcting system and sample-induced aberrations. 

A custom-made Babinet–Soleil compensator (UVisIR, custom BK7 and quartz blocks and wedges) 
allows system-level dispersion compensation and independent adjustment of the relative phase between 
the s- and p-polarizations in the two arms of the interference cavity (Aquino et al., 2011). The upper arm 
of the interference cavity includes a BK7 window bonded to a quartz wedge. A second quartz wedge is 
mounted adjacent to the first one on a motorized linear translation stage, allowing for relative phase 
adjustment between the two polarizations in the two cavity arms. The lower cavity arm includes a 
complementary quartz window bonded to a BK7 wedge. A matching BK7 wedge is also mounted on a 
motorized stage for dispersion compensation across the visible spectrum. Both cavity arms include 
electronically controlled shutters to allow recording PSFs through a single objective (either top or bottom) 
for independent aberration measurement and compensation. The final element in the interference cavity is 
a 50/50 beam splitter cube which is mounted on a motorized goniometer and rotation stage allowing the 
cube’s reflective surface to be tipped and tilted without translation. This is critical for achieving uniform 
interference across the entire field of view and allows the beam splitter (BS) cube to be adjusted without 
perturbing alignment in other areas. In an arrangement similar to Aquino et al. (2011), relay optics direct 
the fluorescence exiting the 50/50 beam splitter cube along two separate paths to a single camera, in our 
case an sCMOS camera (Hamamatsu, ORCA-Flash 4.0v2) capable of recording 800 frames per second at 
2048 x 256 pixels. This design allows us to project the four images (with ~π/2 phase delays between the 
images) along the center splitting line of the upper and lower sCMOS rolling readout regions and 
therefore allows uncompromised camera frame rates. A motorized filter wheel (84889, Edmund Optics) 
was mounted in front of the camera to allow sequential two-color imaging.  

In addition, a motorized flip mirror and an overview camera (PCO, pco.pixelfly usb) provide ~100 µm 
diameter field of view overview images of the sample, which help in finding and positioning areas of 
interest in the sample. Table below lists vendors and part numbers of the major components. 

Part Vendor Part number/names 

561 nm Laser MPB Communications 2RU-VFL-P-2000-560-B1R 

560 nm Laser Coherent Genesis MX 56 500 mW 

642 nm Laser MPB Communications 2RU-VFL-P-2000-642-B1R 

405 nm Laser Coherent OBIS 405nm LX 50mW Laser 

Deformable Mirrors Boston Micromachines Multi-5.5 

Quartz and BK7 window UVISIR Custom made (call #: W-4PiSMSN) 

AOTF AA OPTO-ELECTRONIC AOTFnC-400.650-TN 

Detection filters  Semrock FF01-607/70-25 
 

Detection filters Chroma ET700/75m 

Piezo stages PI M-686.D64 XY Stage 



Piezo stages PI P-541.ZCD Z Stage 

Piezo stages PI P-612.2SL XY Stage 

Piezo stages PI N-664.3A Linear Stage 

Linear Actuator PI M-227.10 

Vertical Translational Stage ASI LS-50 (FTP mode) 

Camera Hamamatsu ORCA-Flash4.0 V2 Digital CMOS 
Camera 22CU  

Quad bandpass filter Semrock FF01-446/523/600/677-25 

Dichroic mirrors Semrock 405/488/561/635 BrightLine Laser 
Dichroic 

Objectives Olympus UPLSAPO 100XO 

Analysis software MathWorks MATLAB 

GPU Nvidia GeForce GTX 580 

Visualization software  Multiple Vutara (Bruker), Avizo (FEI Software),  
Maya 2015 (Autodesk) 

 

2. Characterization of Deformable Mirrors 

Deformation of the reflective membrane on the BMC Multi-5.5 deformable mirror (DM) is induced by a 
set of 140 actuators positioned in a grid-patterned array beneath the membrane. Each actuator adds a 
degree of freedom to the shape of the deformable mirror. As previously shown (Wang and Booth, 2009), 
the possible mirror shapes can be decomposed into an orthogonal set of so-called mirror deformation 
eigenmodes (in short, mirror modes), resembling Zernike modes while accounting for the stiffness of the 
membrane and the spatial distribution of the actuators. One mirror mode is essentially a set of 
displacements applied to the actuator array. To establish the actual shape of the mirror when applying a 
given mirror mode, a DM characterization process was followed as detailed previously (Burke et al., 
2015). This process relies on a phase-retrieval scheme (Hanser et al., 2004) (using the Gerchberg-Saxton 
algorithm) and takes as input a set of images of a point emitter at known axial positions near the objective 
focal plane. We used a sub-diffraction sized fluorescent bead (100 nm crimson, Life Technologies) and 
imaged it at five known axial positions: z = -1 μm, -0.5 μm, 0 μm, 0.5 μm and 1 μm, where z = 0 μm 
corresponds to the objective focal plane. Given one such three-dimensional image set, the phase retrieval 
scheme (Hanser et al., 2004) provides an estimate of the pupil function, i.e. the wave-front shape at the 
objective pupil plane.  

For each mirror mode, we retrieved pupil functions for five different mirror mode amplitudes. 
Subsequently, the pupil functions were each decomposed into a set of Zernike modes. By fitting a first-
order polynomial through the Zernike mode coefficients as a function of mirror mode amplitudes, we 
determined the first 55 Zernike mode coefficients for each of the applied 28 mirror modes. The resulting 
coefficients were used to form an underdetermined system of 28 linear equations each describing the 
Zernike mode constituents of a single mirror mode. By solving this system of linear equations in the least 
square sense, each Zernike mode can be expressed as a linear combination (weighted sum) of mirror 
modes. This calibration process was carried out separately for the top and bottom interference arms. 



3. System Aberration Correction 

System aberrations for the upper and lower beam paths were corrected separately. The corresponding 
deformable mirrors were independently adjusted as follows. For each interference arm, starting from the 
flat voltage map (provided by the manufacturer) of the deformable mirror, 28 mirror modes (Wang and 
Booth, 2009) were applied sequentially. For each mirror mode, 10 different amplitudes were applied 
while recording the corresponding fluorescence signal from a 100-nm crimson bead sample. To extract 
the fluorescence signal from individual beads, the symmetry center of each imaged bead was obtained 
using the radial symmetry method (Parthasarathy, 2012). Subsequently, a symmetric 2D Gaussian was 
generated at the symmetry center and was multiplied by the isolated emission pattern from the fluorescent 
bead, generating a Gaussian-masked image, and then the total intensity of the masked image was 
calculated to extract the center peak signal of the beads in focus. For each mirror mode, images of the 
bead were acquired at ten different mirror mode amplitudes and the corresponding center peak signals of 
the bead were extracted as described above. The optimal amplitude (i.e. the amplitude providing the 
highest center peak signal from the beads) was determined from a quadratic fit of these ten signal 
measurements vs. mirror mode amplitudes. After identifying optimal amplitudes for each of the 28 modes, 
these amplitudes were added to the flat voltage map (provided by the manufacturer), serving as a starting 
point for another iteration. This iterative process was repeated five times to achieve optimal system 
aberration correction. 

4. Channel Registration 

Each sCMOS camera frame contains four images (arranged next to each other) that represent the same 
field of view of the sample at different interference phase delays (Aquino et al., 2011). In the following, 
we refer to these images as phase images. One of the phase images was taken as the reference, and all the 
other three phase images were merged (added) into the reference image using three affine transformations 
(one for each phase image) where the transformations were obtained from a calibration bead data set 
taken prior or after the imaging session (200 frames of approximately 10-15 beads in focus imaged with a 
single objective). To ensure accurate merging of the four phase images, our estimation of each 
transformation matrix (including magnification, translation and rotation) followed the following steps: 
first, a Fourier-Mellin transform (implemented as “fmmatch” using the MATLAB dipimage toolbox, 
www.diplib.org) was used to obtain an initial estimation of the transform. Second, the affine transform 
was then obtained using the previous result from Fourier-Mellin transform as an initial guess 
(implemented as “find_affine_trans” using the dipimage toolbox). These two sequential steps took 
advantage of the fact that the log-polar transformation is invariant with translation in the image and the 
least-square approach to find affine transformations works well when the relative shifts between two 
images are small. 

5. Lateral Position Localization 

To estimate the sCMOS camera characteristics (including readout noise, offset and gain for each pixel) in 
the combined frame described in the section above, noise statistics maps from all four phase images were 
merged in the same way as the phase images and subsequently used as the noise map in the subsequent 
fitting process (Huang et al., 2013).  

As described previously (Huang et al., 2013), a series of uniform and maximum filters were used to find 
isolated single molecules and sub-regions were cropped around these fitting candidates. The isolated sub-
regions were then fit using the Maximum Likelihood Estimator (MLE) with the sCMOS noise model 
(Huang et al., 2013) to an elliptical 2D Gaussian (Huang et al., 2008) and estimates of single-molecule 
positions (x, y), standard deviations (σx, σy), total number of detected photons, background photon counts 
and log-likelihood ratio values were obtained. The threshold of the log-likelihood ratio metric (Huang et 



al., 2011) (used as the goodness of fit test) was set to a relatively large value with the intention to filter 
out sub-regions containing multiple emitters. 

6. Extraction of Single-molecule Phase  

To estimate the phase of the single-molecule interference (a prerequisite to determine the z-position of the 
molecule), the estimated lateral single-molecule positions (x, y) were inverse-transformed (affine) back to 
the four separate phase images. Each of these positions pinpoints the center location of the single 
molecule in the four phase images in W-4PiSMSN. Using these center locations of single molecules in 
the four phase images, the 0th moment intensities (Aquino et al., 2011) were calculated by a weighted 
least-square fit of a Gaussian. As the center location of the molecule is already known, the weighted least-
square fit was used to estimate the amplitude. Due to the pixel-dependent readout noise of sCMOS 

cameras, the weight for each pixel i is assigned as ܦ௜ ൅
ఙ೔
మ

௚೔
మ, where ܦ௜ is the pixel count, and ߪ௜

ଶ and ݃௜ are 

the pixel-dependent readout noise variance and gain of the sCMOS sensor, respectively. In this way, we 
take the sCMOS-specific pixel-dependent noise into account (Huang et al., 2013).  

The phase shift between s and p-polarization (Aquino et al., 2011) was adjusted such that it is close to π/2 
for both detection channels. However, due to dispersion, this phase shift differed by ~0.3 radians in our 
system for our two imaging channels (607 nm and 700 nm center wavelengths). We calibrated the phase 
shifts for the two color channels independently using a bead sample which could be observed in both 
color channels (100 nm crimson beads).  

To extract the interference phase of each single molecule, similar to the method previously described by 
Aquino et al., 2011, we extracted the 0th moment amplitudes of each single molecule from the four phase 
images and subsequently the reduced moments (Aquino et al., 2011), ܴܯ௦ and ܴܯ௣, were calculated. 
Using the previously calibrated phase shifts, we obtained the phase of the single-molecule interference 
PSF by solving the set of equations (1). 

ቊ
଴ܣ cosሺ߮଴ሻ െ ௦ܯܴ ൌ 0

଴ܣ cos൫߮଴ ൅ ߮௦௛௜௙௧_௖௛൯ െ ௣ܯܴ ൌ 0
     Eq. 1 

 .଴ and ߮଴ are the unknowns representing the amplitude and single molecule phase, respectivelyܣ
߮௦௛௜௙௧_௖௛ was previously obtained through the calibration using the bead sample for a specific channel 
and ܴܯ௦ and ܴܯ௣ are the reduced moments of 0th order (Aquino et al., 2011). For two-color imaging, the 
values of ߮௦௛௜௙௧_௖௛ were different for the two different wavelength channels and were obtained for each 
color channel through the calibration. 

7. Axial Localization Based on Monotonic Metric and Local Ridge Detection  

Accurate and precise axial position estimation can be challenging when based only on astigmatism 
because even a small amount of sample-induced aberrations creates image distortions and artifacts which 
cause the PSF to deviate from the calibration curve (Liu et al., 2013; McGorty et al., 2014). This effect is 
increasingly problematic when imaging deep into a sample. Single-molecule interference, however, only 
relies on the path-length differences between the two interference arms and thus provides the opportunity 
for accurate large volume super-resolution imaging. Due to these concerns, we did not use the astigmatic 
shape information for our axial localization, but solely to unwrap the single-molecule phase and thus 
avoid distortions and artifacts as described below.  

We started with a segment of W-4PiSMSN data (usually 3,000-5,000 frames, 10-200 segments per 
dataset) containing single-molecule emissions events. For each single-molecule emission, the localization 
methods described above allowed us to extract the interference phase ߮଴ and standard deviations of the 



2D Gaussian ߪ௫ and ߪ௬. Thus, we obtained a list of these values for all single-molecule detection events 

in the data segment. Next, we introduced a metric, ݉ ൌ
ఙೣయ

ఙ೤
െ

ఙ೤య

ఙೣ
, which describes the overall shape of 

the emission events and preserves its monotonicity in the presence of a small amount of aberrations. For 
numerical convenience, we normalized ࢓ by 2π/40. From this list of {݉} and {߮଴} values for all single-
molecule detection events in the data segment, we generated a 2D histogram image. Supplemental 
Figure S3 A shows a contour plot of such a histogram. As ݉ is monotonic against the axial position and 
߮଴ is periodic with a period of 2π, the resulting 2D histogram resembles tilting stripes which are repeated 
over the range of the (normalized) metric ݉ (Supplemental Figure S3 A).  

Using the histogram, the problem is now reduced to a phase unwrapping problem. We seek to find a 
continuous phase variation, ߮଴, with respect to ݉ in an ensemble collection of single-molecule detection 
events. To do this, we developed a ridge finding algorithm that incrementally follows the peak of these 
stripes with the following three properties: first, it self-adapts to the shape and curvature of the stripes 
(Supplemental Figure S3 B). These shapes and curvatures are sample and depth-dependent and also vary 
between data segments within a single dataset. Second, the algorithm finds a continuous ridge through the 
histogram without jumping to the adjacent ridge (Supplemental Figure S3 B). This is important because 
errors in this aspect cause errors in the unwrapping step that lead to localization artifacts and ghost images 
in the final image (see paragraph below). Third, the algorithm is monotonic in the sense that no two 
points on the growing path share the same value of ݉ to ensure unambiguous position assignment of 
single molecules.  

To find the ridge along the wrapping histogram stripes, we started with an initial peak-finding process: 
the maximum peak spot was first identified ( ଴ܲ) and the second peak ( ଵܲ) was then identified by 
searching within a radius range defined by rmin and rmax (Supplemental Figure S3A) from ଴ܲ. The search 
range restriction was used to allow the generation of an initial vector ( ଴ܲ ଵܲሬሬሬሬሬሬሬሬԦ) that points along the direction 
of the running ridge (Supplemental Figure S3A). Next, we searched for the next peak starting from ଵܲ. 
We assigned the search radius range as rmin and rmax centering around ଵܲ and also assigned the direction 
(or vision) of the search (Supplemental Figure S3A) in the direction of ଴ܲ ଵܲሬሬሬሬሬሬሬሬԦ with ~0.2 rad angle width 
(adjustable parameter) forming a cone shaped “search vision”. The next peak, ଶܲ, was identified by 
finding the pixel with maximum value on the 2D histogram within the search range and search vision 
centered around ଵܲ. Subsequently, ଶܲ served as the starting point for the next search, and so on. In this 
way, the path grew up to ௡ܲ where the value of the 2D histogram at the next peak ௡ܲାଵ was less than a 
threshold. Therefore, the path ଴ܲ ଵܲ … ௡ܲ identified half of the ridge of the histogram. Next, we used the 
same approach to find the path in the opposite direction (starting with ଴ܲ with a initial direction of ( ଵܲ ଴ܲሬሬሬሬሬሬሬሬԦ)) 
and generated the other half of the path ଵܲ ଴ܲ … ܲି ௞. The two paths (forward and backward) were 
subsequently combined (ܲି ௞ … ଴ܲ ଵܲ … ௡ܲሻ providing a piece-wise monotonic, self-adapting and 
unambiguous curve through the phase-metric plot.  

With the piece-wise monotonic path, we can now un-wrap it (Judge and Bryanston-Cross, 1994) into a 
monotonic path (implemented using “unwrap” in MATLAB). For each single-molecule detection event, 
with a corresponding ݉ and ߮଴ pair, we determined the point ௣ܲ௔௧௛ on the piece-wise monotonic path 
that gives the minimum distance to point (݉, ߮଴). Subsequently, we unwrapped the (݉, ߮଴) together with 
௣ܲ௔௧௛ by adding the same integer multiplication of 2π to (݉, ߮଴) as it was added during the unwrapping 

process for ௣ܲ௔௧௛. Therefore, with the help of our shape metric ݉, this process unwrapped {߮଴ሽ and 
resolved the ambiguity due to its periodicity. To allow accurate translation of phase-unwrapped values 
{߮଴ሽ  to axial position estimates ሼݖ௘௦௧ሽ, we simulated W-4PiSMSN PSFs using a pupil function-based 
approach (Hanser et al., 2004). W-4PiSMSN PSFs were simulated for both detection channels (607 nm 
and 700 nm). Modulation frequencies (unit: radians (߮଴,	phase) per nm (ݖ௘௦௧,	axial position)) were 



identified in these PSFs and were used to translate the phase into axial positions in both single-color and 
two-color measurements.  

8. 3D Drift Correction with Redundancy 

Based on the idea of the previously published redundancy-based drift correction method in 2D (Li et al., 
2013; Wang et al., 2014), we developed a 3D drift correction. First, similar to other drift correction 
algorithms (Mlodzianoski et al., 2011), the entire dataset was split into n segments (usually 3,000-5,000 
frames each, resulting in n = 10 to 200 segments per dataset). For each data segment, a volume image 
with (25 nm)3 voxel size was reconstructed as a 3D histogram where the count for each pixel in the 
histogram equals the number of localization estimates falling into the voxel. 3D cross-correlation was 
then used to calculate the shift distance between each pair of data segment volumes. To find the 
correlation peak from the 3D cross-correlation image, Fourier interpolation was used to identify the peak 
with an effective pixel size of 1.2 nm in the final interpolated image. This process pinpoints the shift 
distance (ݔ௦௛௜௙௧

௜→௝ , ௦௛௜௙௧ݕ
௜→௝ , ௦௛௜௙௧ݖ

௜→௝ ) between two data segment volumes (i and j). For a total of n data segments, 

there are  
ଵ

ଶ
݊ሺ݊ ൅ 1ሻ of such shift measurements (which are not independent) forming an overdetermined 

system to determine independent shifts between adjacent data segments, 
ሼ൫ݔ௦௛௜௙௧

଴→ଵ , ௦௛௜௙௧ݕ
଴→ଵ , ௦௛௜௙௧ݖ

଴→ଵ ൯,… , ሺݔ௦௛௜௙௧
௜→௜ାଵ, ௦௛௜௙௧ݕ

௜→௜ାଵ, ௦௛௜௙௧ݖ
௜→௜ାଵሻ, … , ሺݔ௦௛௜௙௧

௡ିଵ→௡, ௦௛௜௙௧ݕ
௡ିଵ→௡, ௦௛௜௙௧ݖ

௡ିଵ→௡ሻሽ, including a total of 
݊ െ 1 unknown independent shifts. For each coordinate (x, y and z), a system of linear equations was 
established as described in Li et al., 2013. Least-square solutions that minimize the overall error of the 
equation stacks were calculated and substituted back into all equations. Residual errors can be calculated 
for each of these equations and an equation is removed from the system of linear equations if its error is 
larger than 7 nm. This process was repeated until no single equation gave an error larger than 7 nm or the 
system of linear equations was no-longer at its full rank. 

9. Data Analysis for Multi-optical Section Data 

To image thick samples, optical sections were recorded at different axial positions of the sample by 
axially translating the z-piezo holding the sample stage. The localization data contains x, y, and z position 
estimates of different optical sections and must be aligned/stitched seamlessly to support the high 
precision obtained in W-4PiSMSN. Previous methods (Huang et al., 2008) that shift each optical section 
by a constant in the axial direction have been prone to introduce misalignment of the optical sections and 
subsequently deteriorate the resolution achievable in thick samples. Here, we developed an optical 
alignment method based on 3D cross-correlation. In the W-4PiSMSN system, optical sections are ~1.2 
µm thick. Whole-cell samples were scanned in the axial direction with 500-nm step sizes which allowed 
for abundant overlapping regions between adjacent optical sections. This overlapping information 
between optical sections is critical for precise optical section alignment using the cross-correlation 
methods described below.  

Similar to Supplemental Information 8, for each data segment (an optical section in this case), a volume 
image with (25 nm)3 voxel size was reconstructed as a 3D histogram where the count for each pixel in the 
histogram equals the number of localization estimates within the voxel. Given a 500-nm axial step size of 
the sample stage, we observed an effective shift of only ~400 nm between adjacent reconstructed optical 
sections. This inconsistency is explained by the index of refraction mismatch between the sample (~1.33-
1.37) and the immersion media (~1.51). Therefore, expecting a peak around 400 nm in our correlation 
volume (generated as described in Supplemental Information 8), we isolated a small 3D sub-volume 
around this expected center and determined the local peak within this sub-volume. In this way, we 
isolated the desired peak from the noise-induced peaks that are usually located in the center of the 
correlation volume. The noise induced center peak is especially strong and thus problematic when two 
images (in our case volumes) only partially overlap, which is here the case. As described above, to find 



the local correlation peak from the 3D cross-correlation sub volume, Fourier interpolation was used to 
identify the peak with an effective pixel size of 1.2 nm in the final interpolated image (Li et al., 2013). 
The resulting peak identifies shifts between the two adjacent optical sections. 

10. Multi-color Data Alignment 

Two-color imaging was performed sequentially, first in the Alexa Fluor 647 (AL647) channel and then 
the Cy3B channel. Specifically for two-color imaging, we shifted all the AL647 data segment volumes in 
the drift correction step (Supplemental Information 8) to align with the last data volume at the end of 
the AL647 imaging session. For the Cy3B channel, we aligned all Cy3B data segment volumes with the 
first data segment volume in the beginning of the Cy3B imaging session. There was a 2-4 s pause 
between the recording of the two color channels and we assumed system drift and sample drift during this 
interval to be negligible.  

To align 3D volumes after drift correction from one color channel to another, we obtained a 3D affine 
transformation from a training dataset using double-stained (AL647 and Cy3B) mitochondria 
(implemented as “imregtform” in MATLAB) from 3D histogram image as described in Supplemental 
Information 8 and 9 with a voxel size of (25 nm)3. The obtained registration matrix (affine) was then 
applied to all single-molecule position estimates from one channel to allow 3D color registration of two 
color volumes. 

11. Cilia Membrane Flattening  

First, a manually selected region of interest (ROI) is fit (least square) with a cylinder model. Then the 
region was aligned such that the cylinder axis became the z-axis and the ROI was centered at the origin of 
the coordinate system. Based on the new coordinate system, each single-molecule localization was 
transformed into a modified version of cylindrical coordinates (ρ, φ, z). Surface plots were obtained by 
generating a 2D histogram of the cylindrical coordinates of single molecules as ρ - r and φ, where r is the 
radius of the fitted cylinder model.  

12. Template-Free Point Cloud Registration for T7 Phage Data 

A total of 115 T7 phages, each represented by a point cloud, were automatically identified from 14 W-
4PiSMSN datasets. The orientation and the structural center were obtained by fitting the point cloud to a 
straight line and sphere, respectively. All phages were then centered at the origin of a Cartesian 
coordinate system and rotated such that their orientation (icosahedron capsid) aligned with the z-axis. 
These pre-aligned phages were then aligned to each other using Gaussian kernel correlation registration 
(Tsin and Kanade, 2004), with a simplified version of the pyramid scheme described previously (Broeken 
et al., 2015), by allowing it to rotate around the z-axis. This second alignment step created an initial guess 
for the final phage averaged structure. The final averaged structure was obtained by aligning all original 
phage results to the initial guess. To improve performance of the registration algorithm, a fast Gauss 
transform (Jian and Vemuri, 2011) was implemented. 

13. Point Cloud Clustering Algorithm to Isolate Synaptonemal Complexes 

Paired strands of synaptonemal complexes (Figure 7) were isolated using a clustering algorithm (Klasing 
et al., 2008) where single-molecule localization estimates located within a 500-nm distance from each 
other were assigned to the same cluster. The algorithm terminated when all points were processed and 
assigned to clusters. To avoid over-counting caused by unspecific labeling, final clusters with fewer than 
750 points were discarded. 



14. Noise Reduction 

To allow robust and precise feature detection and alignment in point cloud data, the point clouds were 
first processed through a noise filter where all points whose number of neighbor points within a given 
distance was below a user-defined threshold were discarded. While this noise filter was only used to 
improve feature detection and model construction, the raw single-molecule localization results (without 
de-noising) were used after the alignment process to provide quantifiable final results. This method was 
applied to help feature extraction in phage, cilia and synaptonemal complex datasets and to generate the 
shown phage averaged reconstruction (Figure 1I-L) and images of isolated strands of synaptonemal 
complex (Figure 7 E and F). 

15. Coverslip Preparation and Cell Culture 

25 mm diameter round precision glass cover slips (Bioscience Tools, San Diego, CA) were immersed in 
1M KOH and sonicated for 15 min in an ultrasonic cleaner (2510 Branson, Richmond, VA).  The glass 
was then generously rinsed with Milli-Q water (EMD Millipore, Billerica, MA) and sterilized with 70% 
ethanol. The glass was dried and poly-L-lysine coated before 100-nm Crimson beads (Life Technologies, 
Grand Island, NY) were attached to the top surface. Before cells were plated on the beads, the surface was 
rinsed three times with Phosphate-buffered saline (PBS). Cells were grown on coverslips for 2-24 hours 
before fixation. 

COS-7 cells (ATCC, CRL-1651) were grown in DMEM (Gibco, 21063-045) with 10% Fetal Bovine 
Serum (FBS) and 1% Penicillin-Streptomycin (Gibco, 15140-122) at 37 °C with 5% CO2. BSC1 cells 
(ATCC, CCL-26) were grown in DMEM (Gibco, 21063-045) with 10% FBS at 37 °C and 5% CO2. RPE-
hTERT cells were grown in DMEM/F12 (Gibco 11330-032) with 10% FBS and 1% Antibiotic-
Antimycotic (Gibco, 15240-062) at 37 °C and 5% CO2. 

16. Secondary Antibody Labeling 

Except where noted otherwise, primary antibodies were labeled with Alexa Fluor 647-conjugated goat 
anti-mouse or goat anti-rabbit secondary antibodies (Thermo Fisher Scientific, A21236, A21245, 
Waltham, MA). Secondary antibodies labeled with Cy3B were made by reacting Cy3B NHS Esters (GE 
Healthcare, Malborough, MA) with unlabeled secondary antibodies (Jackson ImmunoResearch 
Laboratories, Inc., West Grove, PA) according to the manufacturer’s protocol. Free dye was separated 
from labeled antibody by gel filtration using an illustra NAP-5 column (GE Healthcare). Samples were 
labeled with secondary antibodies at a dilution between 1:1000 and 1:200 for 30 to 60 min at room 
temperature. Where noted, a post-fixation step of 3% paraformaldehyde (PFA, Electron Microscopy 
Sciences, 15710, Hatfield, PA) + 0.1% glutaraldehyde (GA, Electron Microscopy Sciences, 16019, 
Hatfield, PA) was performed after secondary antibody labeling. Samples were rinsed three times with 
PBS and stored in PBS until they were imaged. 

17. Endoplasmic Reticulum Samples 

COS-7 cells were grown on prepared coverslips and then transfected with mEmerald-Sec61-C-18, a gift 
from Michael Davidson (Addgene plasmid # 54249), using Lipofectamine2000 (Thermo Fisher 
Scientific). 12-24 h later, cells were fixed using 3% PFA + 0.1% GA in PBS for 15 min. Cells were 
permeabilized for 3 min at room temperature with 0.3% IGEPAL-630 (Sigma-Aldrich) + 0.05% Triton 
X-100 (Sigma-Aldrich) + 0.1% BSA in PBS. Samples were blocked with blocking buffer (5% normal 
Goat serum, 0.05% IGEPAL-630, 0.05% Triton X-100 in PBS). Rabbit anti-GFP (Thermo Fisher 
Scientific, A-11122) was used at 1:500 to label mEmerald-Sec61β overnight at 4 °C. Antibodies were 
diluted in blocking buffer. Samples were washed in wash buffer (WB, 0.2% BSA, 0.05% IGEPAL-630, 
0.05% Triton X-100 in PBS) for 5 min three times before labeling with secondary antibody for 1 h at 



room temperature. Samples were then washed again in WB for 5-min incubations three times before they 
were post-fixed with 3%PFA+0.1%GA.  

18. Microtubule Samples  

Microtubule samples were prepared similar to our previous report (Huang et al. 2013). COS-7 cells were 
grown on prepared coverslips. Cells were rinsed three times with 37 °C PBS before a 1-min pre-
extraction incubation in pre-warmed 0.2% saponin in cytoskeleton buffer (CBS, 10 mM MES pH 6.1, 
138 mM NaCl, 3 mM MgCl2, 2 mM EGTA, 320 mM sucrose) to remove tubulin monomers from the cell 
cytoplasm. Immediately following the pre-extraction step, the cells were fixed for 15 min at room 
temperature in 3% PFA and 0.1% GA diluted in CBS. After fixation, the cells were rinsed three times in 
PBS before being permeabilized and blocked in blocking buffer (3% bovine serum albumin (BSA, 
Jackson ImmunoResearch) and 0.2% Triton X-100 in PBS) for 30 min at room temperature. Mouse anti-
α-tubulin antibody (Sigma-Aldrich, T5168, St. Louis, MO) was used at 1:1000 dilution for a 4 °C 
overnight incubation. Antibodies were diluted in 1% BSA and 0.2% Triton X-100 in PBS. Cells were 
washed three times for 5 min each in wash buffer (WB, 0.05% Triton X-100 in PBS). Secondary 
antibodies were used to label cells for 1 h at room temperature. Cells were washed again in WB for 5-min 
incubations three times and then post-fixed with 3% PFA + 0.1% GA for 10 min. Samples were rinsed 
three times with PBS.  

19. T7 Bacteriophage Samples 

T7 bacteriophage lysate was prepared from 100 ml of E. coli MG1655 cultures grown in liquid broth (LB) 
at 30 °C. The phage lysate was subjected to PEG precipitation and cesium chloride-gradient 
centrifugation as described in Chan et al., 2005 with some modifications. Following the PEG precipitation 
step, ~300 µl of phage in borate buffer (50 mM borate, pH 8.5) was incubated with 100 µg of Alexa Fluor 
647 NHS Ester (4 µg/µl in DMSO; Thermo Fisher Scientific) for 30 min at room temperature. The 
labeled phage particles were first purified using a Bio-Spin P30 column (Bio-Rad Laboratories, Hercules, 
CA) to remove most of the free dye and then subjected to cesium chloride gradient centrifugation. Cesium 
chloride was removed using a Bio-Spin P30 column and phage particles were eluted in T7 storage buffer 
(10 mM Tris pH 7.5, 10 mM MgCl2).  

Coverslips were cleaned as described in (Lim et al., 2014). Briefly, the coverslips were cleaned by 
sonication in 1M KOH, double-distilled H2O, and 70% ethanol for 15 min each at room temperature. 0.1% 
poly-L-lysine was added to the cleaned coverslip, incubated for 30 min at room temperature, washed with 
T7 storage buffer, and then dried with pressured air. For imaging, 20 µl of the phage lysate was spotted 
onto cleaned coverslip, incubated for 1 min at room temperature, and then washed extensively with T7 
storage buffer. The coverslip was air-dried before imaging.   

20. Mitochondria Samples and Two-color Mitochondria & Microtubule Samples 

COS-7 cells were grown on prepared coverslips and fixed using 3% PFA + 0.1% GA in PBS for 15 min. 
Cells were permeabilized for 3 min at room temperature with 0.3% IGEPAL-630 + 0.05% Triton X-100 + 
0.1% BSA in PBS. Samples were blocked with blocking buffer (5% normal Goat serum, 0.05% IGEPAL-
630, 0.05% Triton X-100 in PBS). Rabbit anti-TOM20 (Santa Cruz Biotechnology sc-11415, Dallas, TX) 
was used at 1:500 and mouse anti-α-tubulin (Sigma-Aldrich, T5168) was used at 1:1000 and they were 
incubated with samples overnight at 4 °C. Antibodies were diluted in blocking buffer. Cells were washed 
in wash buffer (WB, 0.2% BSA, 0.05% IGEPAL-630, 0.05% Triton X-100 in PBS) for 5-min incubations 
three times. Cells were labeled with secondary antibodies for 1 h at room temperature. Then samples were 
washed again with WB for 5 min three times before they were post-fixed with 3% PFA + 0.1% GA. 



21. Nuclear Pore Complexes Samples 

hTERT-RPE1 cells were grown to 100 percent confluence on prepared coverslips. Cells were pre-
permeabilized with pre-warmed 0.1% Saponin in PBS for 1 min. Cells were then rinsed with pre-warmed 
PBS and fixed with methanol at -20 °C for 5 min. Samples were blocked with 5% BSA + 0.1% Triton X-
100 in PBS. After blocking, cells were labeled with goat anti-rabbit Nup358 for 1 h at room temperature. 
Antibodies were diluted in 1% BSA + 0.1% Triton X-100 in PBS. Cells were washed three times with 
PBS for 10 min each. Primary antibodies were labeled with secondary antibodies for 1 h at room 
temperature. Cells were washed three times in PBS for 10 min each. After washing, cells were post-fixed 
with 2% PFA in PBS for 2 minutes.  

22. COPI Samples 

BSC1 cells were grown on prepared coverslips and fixed with 4% paraformaldehyde in PBS for 15 min. 
Cells were permeabilized for 3 min at room temperature with 0.3% IGEPAL-630 + 0.05% Triton X-100 + 
0.1% BSA in PBS. Samples were blocked in blocking buffer (5% normal Goat serum, 0.05% IGEPAL-
630, 0.05% Triton X-100 in PBS). Mouse anti- ’ COP (Palmer et al., 1993) was used to label COPI at 
1:2000 dilution in blocking buffer overnight at 4 °C. Cells were washed in wash buffer (WB, 0.2% BSA, 
0.05% IGEPAL-630, 0.05% Triton X-100 in PBS) three times for 5 min each before labeling with 
secondary antibody for 1 h at room temperature. Samples were then washed with WB for 5 min three 
times before being post-fixed with 3% PFA + 0.1% GA. 

23. Cilia Samples  

hTERT-RPE1 cells that stably express pHlourin-Smoothened (pH-SMO) were grown on prepared 
coverslips. To induce ciliogenesis, the cells were incubated in DMEM/F12 media with 0.5% FBS and 
100 nm Cytochalasin D for 48 h. 

After ciliogenesis induction, cells were washed twice in PBS and fixed for 10 min with 4% PFA + 0.2% 
GA + 0.1% Triton X-100 in PBS. Fixed cells were then washed twice with PBS + 0.05% Tween20 
followed by a 30 min incubation in blocking buffer (5% BSA + 0.05% Tween20 in PBS). Cells were 
incubated with the primary rabbit anti-GFP antibody (Thermo Fisher Scientific, A11122) at 1:500 
dilution in blocking buffer for 1 h at room temperature. Then cells were washed with three 5 min 
incubations in wash buffer (0.05% Tween20 in PBS). Cells were labeled with secondary antibody diluted 
in blocking buffer for 30 min at room temperature. Samples were washed three times for 5 min each in 
wash buffer, and followed by two rinses in PBS. 

24. Synaptonemal Complex Samples 

Testes were removed from 17-18 day old euthanized mice. The protocols for the care and use of mice at 
suitable ages were approved by the Institutional Animal Care and Use Committee (IACUC) of The 
Jackson Laboratory. Each testis was disrupted in PBS supplemented with protease inhibitors using a razor 
blade. The cell pellet was collected after centrifugation at 9,000 rpm for 10 min. The cells were 
resuspended and allowed to settle on prepared coverslips. They were then fixed with 4% PFA for 15 min, 
rinsed with PBS three times, and permeabilized with 0.5% Triton X-100 in PBS for 10 min. Before 
incubating with primary antibody, spermatocytes were treated with Image-iT signal Enhancer (Thermo 
Fisher Scientific) and blocked with MAXblock (Active Motif). Cells were stained with anti-SYCP3 
(Abcam, ab15093, Cambridge, MA) overnight at 4 °C. Cells were then washed three times for 5-min 
incubations in wash buffer (WB, 0.1% Triton X-100 in PBS) before labeling with secondary antibodies 
for 3 h at 37 °C. Cells were washed again three times for 5 min each in WB. 



25. Imaging Buffers 

Two different imaging buffers were used.  

The conventional β-mercaptoethanol imaging buffer was prepared as previously reported (Huang et al 
2013). The imaging buffer was made immediately before use where catalase and glucose oxidase were 
diluted in base buffer (50 mM Tris pH 8.0, 50 mM NaCl, 10% glucose). 

The imaging buffer containing cyclooctatetraene (COT) was prepared according to a previously published 
report (Olivier et al., 2013). Mercaptoethylamine (MEA, Sigma-Aldrich, 30070) was dissolved in 
deionized water as 1M stock solution, and then adjusted to pH 8 by glacial acetic acid (Avantor 
Performance Materials). The stock solution was stored at 4 °C and used within a week. β-mercaptoethanol 
(BME, Sigma-Aldrich, 63689) was used without dilution as 14.3 M solution. Cyclooctatetraene (COT, 
Sigma-Aldrich, 138924) was diluted in DMSO as 200 mM stock solution and stored at 4 °C. 
Protocatechuic acid (PCA, Sigma-Aldrich, 37580) was dissolved in deionized water as 100 mM stock 
solution, then adjusted to pH 9 by KOH aq. The stock solution was stored at 4 °C and used within a 
month. Protocatechuate 3,4-dioxygenase from Pseudomonas sp. (PCD, Sigma-Aldrich, P8279) was 
dissolved in 100 mM Tris-HCl (pH 8) containing 50 mM KCl, 1 mM EDTA and 50% glycerol as 5 µM 
stock solution, and stored at −20 °C. The imaging buffer consists of base buffer (50 mM Tris pH 8.0, 50 
mM NaCl, 10% glucose) with the addition of 10 mM MEA, 50 mM BME, 2 mM COT, 2.5 mM PCA and 
50 nM PCD. The buffer was prepared immediately before use. 

26. Sample-mounting in W-4PiSMSN 

Prepared sample coverslips were drained and subsequently mounted on a custom-designed sample holder. 
A custom-made spacer ring (9513K111, McMaster-Carr, Princeton, NJ) was put on top of the sample 
coverslip and then 50 µL imaging buffer as described above, was added to the center of the coverslip. 
Another coverslip was put on top and excess imaging buffer was drained. The samples were then sealed 
with two-component silicone putty (Picodent Twinsil, Picodent, Wipperfürth, Germany). After 
solidification of the silicone, the samples were transferred to the W-4PiSMSN microscope for imaging.  
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