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Abstract

As part of its climate policy, the European Union (EU) aims to reduce greenhouse gas (GHG)

emissions levels by 20% by the year 2020 compared to 1990 levels. Although the EU is

projected to reach this goal, its achievement of objectives under its Emissions Trading System

(ETS) may be delayed by carbon leakage, which is defined as a situation in which the reduction

in emissions in the ETS region is partially offset by an increase in carbon emissions in the

non-ETS regions. We study the interaction between emissions and hydropower availability

in order to estimate the magnitude of carbon leakage in the South-East Europe Regional

Electricity Market (SEE-REM) via a bottom-up partial equilibrium framework. We find that

6.3% to 40.5% of the emissions reduction achieved in the ETS part of SEE-REM could be

leaked to the non-ETS part depending on the price of allowances. Somewhat surprisingly,

greater hydropower availability may increase emissions in the ETS part of SEE-REM. However,

carbon leakage might be limited by demand response to higher electricity prices in the non-

ETS area of SEE-REM. Such carbon leakage can affect both the competitiveness of producers

in ETS member countries on the periphery of the ETS and the achievement of EU targets for

CO2 emissions reduction. Meanwhile, higher non-ETS electricity prices imply that the current

policy can have undesirable outcomes for consumers in non-ETS countries, while non-ETS

producers would experience an increase in their profits due to higher power prices as well as
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exports. The presence of carbon leakage in SEE-REM suggests that current EU policy might

become more effective when it is expanded to cover more countries in the future.

Keywords: Carbon leakage, CO2 emissions, EU ETS, Energy Community

1. Introduction

Convincing evidence provided by the most recent IPCC report suggests that human

activity is causing climate change (Stocker et al., 2013). Regardless of whether the energy

sector is vertically integrated or deregulated, policymakers have implemented several measures

to facilitate the reduction of greenhouse gas (GHG) emissions using both market-based

mechanisms, e.g., taxes, subsidies, and emissions trading, and other policy instruments, e.g.,

voluntary agreements and regulatory protocols.1 An example of legally binding GHG emissions

controls is the 20-20-20 targets2 set by the European Union (EU). One of the EU 20-20-20

targets is the reduction in GHG emissions by 20% by the year 2020 compared to those in

1990 (EC, 2007). In order to facilitate this transition, the EU launched its Emissions Trading

System (ETS) as a market-based mechanism in 2005. The ETS is a cap-and-trade (C&T)

system that sets a cap on aggregated emissions, and companies receive or buy tradeable

emissions allowances within the cap. The cap is reduced over time in order to curb emissions.

Today, it is the most extensive international system for emissions trading covering 11,000

power stations, industrial plants, and airlines in 31 countries (EC, 2015).

The trading of CO2 allowances represents an increased cost for both electricity producers

and energy-intensive industries. If either such industries were to move their production to

1Whether deregulation of the power sector makes it easier for the government to reduce GHG emissions
remains debatable. On the one hand, the lock-in of sunk capital by incumbents under the regulated paradigm
has been viewed as a barrier to environmental policies so that deregulation is typically associated with the
adoption of new technology. For example, an empirical study by Hyman (2010) suggests that a significant
investment in gas-fired facilities in the U.K. was undertaken after restructuring. Indeed, recent expansion of
distributed energy resources seemingly suggests that deregulation is more likely to lead to emissions reduction
when mandated by the government via market-based instruments (von Hirschhausen, 2014). On the other
hand, Wilson (2002) argues that the traditional vertically integrated paradigm is more likely to enforce policy
due to its tighter regulation and a more involved role for the state.

2EU 20-20-20 refers to the EUs three climate targets to be reached by 2020. First, 20% reduction in GHGs
compared to 1990 levels. Second, 20% improvements in energy efficiency relative to 1990 levels. Third, 20%
of EU energy to be produced from renewables.
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countries with less-strict climate policies (EC, 2009; Chen, 2009) or the countries in the

regulated area were to increase their imports from non-regulated areas (Chen, 2009), then

so-called “carbon leakage” would result. Thus, perversely, a C&T system could lead to an

increase in CO2 emissions in the non-regulated areas (Chen, 2009). Electricity generation

in the EU ETS is for the most part covered without the possibility of leakage with the

exception of some borders with non-regulated areas like in South-East Europe. In particular,

the South-East Europe Regional Electricity Market (SEE-REM) comprises countries that are

part of the EU and may partly offset the emission reductions from domestic production with

imports from non-regulated neighbouring countries. The potential for such carbon leakage

to occur as a consequence of the EU ETS in the context of SEE-REM has received little

attention in the literature.

Carbon leakage might delay the achievement of environmental objectives such as EU

20-20-20 by reducing allowance prices so that producers have less than anticipated incentive

to switch to less-polluting sources of power generation or to implement carbon-reduction

technologies in conventional sources (Vǐsković et al., 2014) than they would otherwise. While

reducing domestic emissions, the EU ETS does not account for increased emissions in the

non-regulated area that result from increased exports from the non-ETS to the ETS area in

order to meet ETS electricity demand.

We use a stylised 22-node network to model the electricity sector and associated emissions

of SEE-REM comprising neighbouring countries with inconsistent CO2 emissions reduction

regulation (i.e., only some countries are covered by the EU ETS). The model estimates the

magnitude of leakage (in percentage terms) relative to the emissions from the ETS3 part of

SEE-REM in the short term before any adjustment in capacity can occur with consideration

of the impacts of hydropower availability on market outcomes. Under this framework, we

3The International Energy Agency (IEA) publishes one figure for both electricity and heat sectors. Thus,
it is not straightforward to obtain an estimate of electricity sector emissions only for the entire EU ETS.
However, according to the IEA, the emissions from electricity and heat generation of the countries modelled
in SEE-REM were approximately 23% of the electricity and heat generation emissions of the whole EU ETS
in 2013 (IEA, 2015).
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treat both availability of hydropower and allowance prices exogenously, thereby not allowing

for 1) possible impact of hydro availability on the allowance price or 2) changing dispatch of

hydropower in response to the allowance price. Parametric treatment of allowance prices is

equivalent to treating the allowance price as a carbon tax, determined by the larger ETS area

where the allowances are initially allocated through auction. Given that we have a fixed cap

under the C&T, our assumption implies that the increase of SEE-REM emissions covered by

ETS would be offset elsewhere in the wider ETS not covered in our model.

There are three central findings resulting from our study: (i) emissions leaked into the

non-ETS area could amount to 6.3% to 40.5% of the emissions reduction in the SEE-REM

ETS area;4 (ii) higher electricity prices in some non-ETS countries could mitigate leakage due

to non-ETS demand response that lowers consumption; and (iii) higher CO2 emissions could

occur in the ETS area of SEE-REM as a result of demand response to lower electricity prices

from higher availability of cheap hydropower throughout the entire SEE-REM. Moreover, the

results observed under (i) and (ii) suggest a need for a more careful assessment of what to

consider as CO2 emissions within the ETS, i.e., the regulator should also take into account

the imports into the ETS area as part of the CO2 emissions produced by the EU and decide

whether imports should be subject to the C&T regime. However, our findings highlight the

benefit of expanding the EU ETS to neighbouring countries within a regional electricity

market in order to maximise the effectiveness of the program. We believe that the EU ETS

paves a promising pathway to enhancing the coverage of the program.

The structure of this paper is as follows. Section 2 reviews the literature to put our work

into context. Section 3 formulates the equilibrium problem. Section 4 introduces the data

sources, calibrates the SEE-REM model, and presents the results of the case studies. Section

5 summarises the paper’s contributions and provides directions for future research.

4The level of leakage to the non-ETS part of SEE-REM is equivalent to approximately 0.5% of electricity
and heating emissions of the entire EU ETS. We obtain this figure by dividing our average estimated increase
in CO2 emissions in the non-ETS part of SEE-REM (6.5 Mt) as a result of a positive CO2 price by the total
EU ETS electricity and heating emissions (1256.2 Mt).
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2. Literature Review

Up until the 1970s, least-cost methods were adequate for supporting decisions in the

electric power system due to tight regulation of the electricity industry. Hobbs (1995) points

out that with deregulation and unbundling, there is a need for optimisation models that

account better for endogenous price formation and strategic interactions in electricity markets.

Starting from Hobbs (2001), complementarity models have evolved to analyse deregulated

electricity industries (Gabriel et al., 2012).

Concerns about environmental issues in the past decade have increased the need for

policy-enabling models. Such models have illustrated that mechanisms such as C&T and

renewable portfolio standards (RPS) do not always work as intended (Tanaka and Chen,

2013). For instance, Limpaitoon et al. (2011) study the impact of the C&T mechanism on

electricity markets in the presence of transmission congestion and strategic behaviour. They

find the possibility of less-polluting firms’ exercise of market power in electricity markets

by withholding supply or over-consuming permits, leading to higher electricity and permit

prices. Inflated permit prices translate into a higher abatement cost for more-polluting firms.

Those relatively dirty firms then decrease their generation and surrender their market share

to “cleaner” firms, which results in “cleaner” firms’ earning higher profits (Chen and Hobbs,

2005; Limpaitoon et al., 2014). The deployment of such strategies is supported by empirical

evidence. Kolstad and Wolak (2003) find that firms manipulated the nitrogen oxides (NOx)

pollutant market in the Los Angeles metropolitan area as a way of exercising market power

in the California electricity market. Specifically, the analysis suggests that some firms with a

number of their generation units located in the area covered by the NOx market deliberately

paid higher prices for the permits in the years 2000 and 2001 in order to be able to justify

higher offers into the California market for all electricity they produced. The result was higher

electricity prices in California over 2000 and 2001.

An emission tax could also interact with power transmission in a surprising way. For

instance, Downward (2010) reports that a carbon tax could cause changes in the merit order
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and reverse flow direction that could result in higher emissions in the regulated area. An

increase in emissions in the regulated area is possible under a carbon tax in very specific

circumstances because, unlike a C&T, a carbon tax does not impose a cap on emissions;

rather it aims to reduce emissions only through increasing abatement cost. Thus, unlike a

carbon tax, the cap in a C&T system should guarantee that an increase in domestic emissions

does not happen. However, in the presence of a C&T, increased emissions could occur outside

of the regulated area, thereby causing emission leakage.5

Carbon leakage also occurs in other C&T programs. In the context of the Regional

Greenhouse Gas Initiative (RGGI), Burtraw et al. (2006) find that carbon leakage could

lead to an increase in profits earned by generating facilities located outside of the regulated

region. A large part of these higher profits is due to the increased electricity prices paid by

consumers outside of the regulated area, suggesting that the incurred emission cost is more

than offset by increased profits earned from the non-regulated region. Further considering

RGGI, Palmer et al. (2006) find that although individually some firms could lose value, the

electricity sector in the North-East U.S., on aggregate, could gain value because the change in

revenues through a higher power price is greater than the change in emission costs. A large

portion of the aggregate gain in value results from assets located outside of the regulated

area, suggesting incidence of the C&T policy on consumers outside of the C&T region. In

addition, Chen (2009) quantifies the magnitude of carbon leakage in the short term under

RGGI. The paper finds that emissions in the non-regulated area might increase with a higher

allowance price; however, for the same allowance prices, relative leakage might decrease.

In the context of California C&T, as one of the possible solutions for mitigating leakage,

the California Air Resource Board (CARB) introduced the obligation to report emissions

5The EU adopts a narrower definition in which carbon leakage refers only to an increase in non-regulated
area emissions resulting from relocation of industry to the non-regulated area (EC, 2009). We adopt the
broader definition used by (Chen, 2009) in our analysis: carbon leakage is defined as a displacement of CO2

emissions from a regulated to a non-regulated area as a consequence of imposing a carbon-reduction policy in
the regulated area.
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associated with imports into California, the so-called “first deliverer” policy.6 Bushnell et al.

(2014) find that even with a default emissions rate for imported emissions, the “first deliverer”

policy could still lead to emissions leakage in the Western Electricity Coordinating Council

(WECC) context through contract reshuffling.

While the relevant authorities in the US are trying to tackle the problem of carbon leakage

by proposing solutions such as the “first deliverer” policy, to the best of our knowledge,

the possibility of carbon leakage in SEE-REM in relation to the EU ETS has not yet been

carefully examined. Although there are numerous studies examining the EU ETS, such as its

impact on electricity prices and emissions (Chen et al., 2008) and the interaction between the

deployment of renewable energy and the CO2 price (Weigt et al., 2013; Van den Bergh et al.,

2013), our contribution is to examine the extent of carbon leakage in electricity markets under

the EU ETS when considering the effect of hydropower availability.

3. Mathematical Formulation

3.1. Assumptions

We model the electricity industry via a bottom-up partial equilibrium approach in which

three players are considered: producers, consumers, and a grid owner. Such a model can

be implemented computationally both as a single optimisation problem and as a mixed

complementarity problem (MCP) in which each entity’s optimisation is addressed separately.

In this paper, we choose the latter approach based on Hobbs (2001).

Producers are modelled as being price takers. Each producer owns a number of generating

units located at different nodes, which are characterised by their marginal costs of production,

Ci,n, and a CO2 emissions rate based on different technologies,7 Ei,n. Moreover, each producer’s

objective is to maximise its profit subject to constraints related to maximum generation

6The “first deliverer” policy requires importers of electricity into California to report and pay for the
associated emissions. These emissions can be based either on actual plant-specific emissions or on a default
emissions factor established by the CARB.

7Note that we separate ownership based on technology, e.g., all lignite-fired units will be owned by the
same firm. Therefore, we use the same index i to distinguish between firms and technologies.
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capacity, energy balance, and non-negative quantities. Finally, each producer takes capacity,

XMAX
i,n , as fixed and decides how to operate generating units that it owns during each time

block.

Consumers are represented by the inverse demand function at each node, Dint
t,m−D

slp
t,m

∑
j st,j,m,

which could be viewed as the result of solving their utility-maximisation problems. Dint
t,m and

Dslp
t,m are the inverse demand intercept and slope, respectively, and

∑
j st,j,m is the electricity

sold by all firms at each node in each time period, which is equivalent to the demanded

quantity at each node in each time period. The grid owner’s profit is given by charging a

wheeling fee for power transmitted through the grid. In a sense, it optimally allocates scarce

transmission resources while being constrained by the maximum transmission capacity on

the lines and Kirchhoff’s laws. As is common in power system economics, flows on the lines

are modelled using the DC load-flow model. We have one market-clearing condition for the

electricity market, which equates the difference between sales and generation with net imports

at each node. Finally, the MCP is given by the set of equations representing producers’ and

the grid owner’s Karush-Kuhn-Tucker (KKT) conditions and the market-clearing condition

(Gabriel et al., 2012). The solution to this MCP exists, is unique, and represents the Nash

equilibrium (Hobbs, 2001). The rest of this section is dedicated to a detailed description of

each player’s optimisation problem. Appendix A provides the associated nomenclature.

3.2. Producer i’s Optimisation Problem and KKT conditions

Producer i’s optimisation problem is given by (1)-(4). Specifically, producer i maximises

its annual profit in (1) subject to maximum capacity (2), energy-balance (3), and sales and

generation non-negativity (4) constraints. Profit is given by the difference between revenue

from sales and generation cost. Revenue in every time block t derives from quantities sold at

each node, st,i,n, multiplied by the electricity price at node n,
(
Dint

t,m −D
slp
t,m

∑
j st,j,m

)
. The

generation cost in every time block t is given by quantities produced, xt,i,n, multiplied by the

marginal cost of generation, Ci,n, and wheeling fee, τt,n. The wheeling fee is a transmission–

based fee, and it is calculated on the basis of transmitting power from node n to node m
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through an arbitrary node that acts like a hub. Specifically, the grid owner pays the wheeling

fee τt,n to the producer to transmit power from node n to the hub and charges the producer

the wheeling fee τt,m to transmit power from the hub to node m (Hobbs, 2001). Thus, the

actual cost of transmission for the producer for transmitting of power from node n to node m

is given by τt,m− τt,n. Producers in the ETS area have an additional cost due to emissions and

are distinguished by the binary parameter, Tn. The emissions cost is given by the quantities

produced multiplied by emissions intensity rate, Ei,n, and the cost of CO2 emissions, R. In

order to calculate the annual profit, we multiply profit in every time block with the number

of hours, Nt, that belong to that time block and sum over all t.

max
st,i,m,xt,i,n

∑
t

Nt

(∑
m

[(
Dint

t,m −D
slp
t,m

∑
j

st,j,m

)
− τt,m

]
st,i,m

−
∑
n

(
Ci,n − τt,n

)
xt,i,n −

∑
n

Tnxt,i,nEi,nR

)
(1)

s.t. xt,i,n −XMAX
i,n ≤ 0 (λt,i,n) ∀t, n (2)∑

n

st,i,n −
∑
n

xt,i,n = 0 (θt,i) ∀t (3)

st,i,n ≥ 0, xt,i,n ≥ 0 ∀t, n (4)

The KKT conditions for producer i’s optimisation problem are given in Equations (5)-(8),

of which (5)-(7) are complementary slackness conditions. In particular, (5) states that if sales

are equal to zero, then the revenue from sales is less than the rent on generation. Equation

(6) states that if generation is equal to zero, then the rent on generation is less than the cost

of generation and the shadow price of generation capacity. Finally, in (7), if the shadow price

on maximum generation capacity is zero, then the maximum generation capacity constraint

is not binding.

0 ≤ st,i,m ⊥ Nt

(
Dint

t,m −D
slp
t,m

∑
j

st,j,m − τt,m

)
− θt,i ≤ 0 ∀t, i,m (5)
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0 ≤ xt,i,n ⊥ Nt (−Ci,n − TnEi,nR + τt,n)− λt,i,n + θt,i ≤ 0 ∀t, i, n (6)

0 ≤ λt,i,n ⊥ xt,i,n −XMAX
i,n ≤ 0 ∀t, i, n (7)∑

m

st,i,m −
∑
n

xt,i,n = 0 (θt,i free) ∀t, i (8)

3.3. The Grid Owner’s Optimisation Problem and KKT conditions

The grid owner maximises its annual profit (9) subject to constraints given by the physical

laws that apply to electricity flows (10)-(12). The grid owner’s profit in every time block t is

the product of the wheeling fee, exogenous to the grid owner, and the net import at each

node. The net import at every node is the difference between power flowing to and from

that node, and this difference is obtained from the product of the power flows on the lines

connected to that node and the incidence matrix, An,`. In order to obtain the annual profit,

we multiply the profit from every time block t by Nt and sum over all t. According to the

DC load-flow approximation, flows on AC lines, ft,`AC , `AC ∈ LAC , are defined in (10) and

are given by the product of the network transfer matrix, HnAC ,`AC , and voltage angles, dt,nAC

(Gabriel and Leuthold, 2010; Bjørndal et al., 2013). Flows on all lines are subject to lower

and upper thermal limits, K`, given in (11) and (12), respectively.

max
dt,n,ft,`

∑
t

Nt

(∑
n

τt,n

(
−
∑
`∈L

An,`ft,`

))
(9)

s.t. ft,`AC =
∑

nAC∈NAC

HnAC ,`ACdt,nAC (γt,`AC ), ∀t, `AC ∈ LAC (10)

− ft,` −K` ≤ 0 (µ−t,` ≥ 0), ∀t, ` (11)

ft,` −K` ≤ 0 (µ+
t,` ≥ 0), ∀t, ` (12)

The KKT conditions of the grid owner’s optimisation problem are given in (13a)-(17).

Equations (13a)–(13b) state that the revenue of the grid owner on line ` is equal to the shadow

prices on the transmission capacity of that line. Shadow prices on transmission capacity,

based on the direction of the flow, are dual variables of (16) and (17) where the constraint is
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not binding if the dual is zero.

−Nt

(∑
n

τt,nAn,`AC

)
− γt,`AC + µ−

t,`AC − µ+
t,`AC = 0 (ft,`AC free) ∀t, `AC ∈ LAC (13a)

−Nt

(∑
n

τt,nAn,`

)
+ µ−t,` − µ

+
t,` = 0 (ft,` free) ∀t, ` ∈ L \ LAC (13b)

∑
`AC∈LAC

H`AC ,nACγt,`AC = 0 (dt,nAC free) ∀t, nAC ∈ NAC (14)

ft,`AC −
∑

nAC∈NAC

HnAC ,`ACdt,nAC = 0
(
γt,`AC free

)
∀t, `AC ∈ LAC (15)

0 ≤ µ−t,` ⊥ −ft,` −K` ≤ 0 ∀t, ` (16)

0 ≤ µ+
t,` ⊥ ft,` −K` ≤ 0 ∀t, ` (17)

3.4. Market-Clearing Conditions

We impose a mass-balance condition in the electricity market by equating the difference

between sales and production with net imports at each node, where import is given by the

product of the network incidence matrix and power flows, −
∑

`An,`ft,` as in Equation (18).

The difference between shadow prices, τt,n, is precisely the wheeling fee earned by the grid

owner in (9) and paid by producers in (1).

Nt

(∑
i

st,i,n −
∑
i

xt,i,n

)
= Nt

(
−
∑
`

An,`ft,`

)
(τt,n free) ∀t, n (18)

3.5. MCP

The MCP is given by (5)-(8), (13a)-(17), and (18). It is a square system of ten blocks

of equations and ten blocks of variables {γt,`, θt,i, τt,n, dt,n, ft,`, λt,i,n, µ−t,`, µ
+
t,`, st,i,n, and

xt,i,n}. The “squareness” of the problem is necessary for finding a solution computationally

by using MCP solvers (Hobbs, 2001). The solution is a set of prices, quantities, flows, and

consumption resulting from satisfying each agent’s KKT conditions for profit maximisation

while clearing the electricity market. This solution represents the Nash equilibrium where
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none of the players has the incentive to change its decisions unilaterally (Hobbs, 2001).

4. Data Implementation, Calibration, and Results

4.1. Data and Assumptions

We assess the extent of carbon leakage in the thirteen SEE-REM countries by using a 22-

node network with a high-voltage (HV) grid. We model only thermal and nuclear power units

that are described by their marginal costs of production and CO2 emission intensities. Our

analysis focuses on one year with four representative time blocks per month. Next, we describe

the SEE-REM and provide a detailed description of how we obtained and implemented data

for our numerical example of SEE-REM.

4.1.1. South-East Europe Regional Electricity Market

Countries in SEE-REM are chosen based on their association with the Energy Community8

and are: Albania (AL–n19), Bosnia and Herzegovina (BH–n14), Bulgaria (BG–n21), Croatia

(HR–n13), Former Yugoslav Republic of Macedonia (MK–n17), Greece (GR–n18), Hungary

(HU–n20), Italy (IT–(n1 − n11)), United Nations Interim Administration Mission in Kosovo

(XK–n15), Montenegro (ME–n16), Republic of Serbia (RS–n15), Romania (RO–n22), and

Slovenia (SI–n12). As of 2013, seven of these countries are EU members and are, thus, subject

to the EU ETS, viz., Bulgaria, Croatia, Greece, Hungary, Italy, Romania, and Slovenia.

In our numerical example, we apply a similar approach used in Green (2007) to simplify

nodal representation of SEE-REM based on a 22-node network (see Figure 1). Each country is

modelled by only one node with the exception of Serbia, Kosovo, and Italy. Serbia and Kosovo

are jointly modelled as one node only because of lack of data in relation to the transmission

capacities with Kosovo. Italy is modelled by 11 nodes representing existing 11 pricing zones.9

8The Energy Community is an international organisation for energy policy that was established by nine
countries (“contracting parties”) from the South-East European and Black Sea regions with the objective
of integrating the contracting parties into the EU internal energy market. The Energy Community was
established in 2005 by signing the “Treaty Establishing Energy Community” (Energy Community, 2005),
when none of the contracting parties was part of the EU.

9Other countries use either uniform or tariff pricing (EBRD, 2010).
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Therefore, for the purpose of using the DC load flow to model flows, we calculate the nodal

network transfer matrix based on Schweppe et al. (1988).

Figure 1: SEE-REM nodal representation
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4.1.2. Line-Specific Data

In relation to the network, we have one line between every pair of nodes. Limits of power

flows on lines are given by the Net Transfer Capacities (NTCs), which are divided between

winter values and summer values and are published by the European Network of Transmission

System Operators for Electricity (ENTSO-E) in ENTSO-E (2011) and ENTSO-E (2012),

respectively. The limits of power flows on the lines within Italy are obtained from the Italian

TSO, Terna (Terna, 2013b). Note that NTCs are limits on commercial flows rather than

actual thermal limits of the lines; however, we use NTCs as an approximation due to lack of

actual data. Moreover, we distinguish between AC and DC lines and use the DC load-flow

approximation to model the flows. Further discussion on both NTCs and DC load flow can

be found in Appendix C.1.

4.1.3. Node-Specific Capacities

Thermal units are divided into six different technologies based on type of fuel and/or type

of turbine, viz., coal, lignite, natural gas-steam turbine, natural gas-combined cycle (CCGT),

fuel oil, and mixed fuels. With the exception of distinguishing between types of units fired

by natural gas, ENTSO-E uses the same categories and publishes generation capacities per

category per country on a yearly basis (ENTSO-E, 2013). In order to understand better the

mixed fuels category, we use more detailed production data (see Appendix C.2.)

The differences between technologies are reflected in their marginal costs of production

and CO2 emissions intensities (Table C-6), which are calculated from emissions factors (EU,

2012). We assume that mixed fuels are steam-turbine units that can be fired by both natural

gas and fuel oil, and, thus, their emissions are given by the combination of emissions of natural

gas and fuel oil. By contrast, for CCGT emissions, we assume that these are 20% lower than

natural gas-steam turbine emissions because of the increased efficiency of power production

of the CCGT (52%-60%) compared to the natural gas-steam turbine (35%-42%) (IEA, 2010).

14



4.1.4. Nodal Demand

In order to represent the linear inverse demand function for each node, we estimate the

coefficients of the function from reference demand, reference price, load curve, and reference

elasticity as described in Appendix B. Because we are modelling only nuclear and thermal

power units, to estimate reference demand, we start from consumption net of import/export,

renewables, and hydropower units’ production (Bushnell and Chen, 2012), which leaves us

with residual consumption. The load curve serves the purpose of adding some variation to the

average hourly demand. The process of obtaining residual demand from residual consumption

and calculating the load curve is explained in detail in Appendix C.3.

Reference prices are obtained by running a cost-minimisation linear program with fixed

demand where nodal electricity prices are given by dual variables on energy mass-balance

constraints. These prices are then fed into the MCP with the price-responsive inverse demand

function. The elasticity is assumed to be -0.25 for the whole system, which is consistent with

that used in the literature (Egerer et al., 2014; Dietrich et al., 2005; Weigt, 2006).

4.2. Scenario Description

For the purpose of analysing carbon leakage and market outcomes in SEE–REM under

the CO2 reduction targets (e.g., EU 20-20-20) and different levels of hydropower production,

we propose three sets of scenarios where each set has a baseline scenario. The three baseline

scenarios are defined by the level of hydropower production as listed in Table 1. In addition,

we vary the price of CO2 allowances (0, 10, 20, 30, 40, 50 in e/t, where “t” is an abbreviation

for metric tons) for each level of hydropower production. We have 18 scenarios in total, of

which three are baseline scenarios with CO2 prices of zero, and 15 scenarios with prices of

CO2 allowances from e10-50/MWh.
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Scenario Description

Baseline Used for calibration based on data from 2013

Base-dry Base year for hydropower production based on 2011 data

Base-wet Base year for hydropower production based on 2010 data

Table 1: Scenario and description

4.3. Calibration

We analyse the calibration of our baseline scenario considering three quantities: generation

per fuel type, emissions, and electricity prices. Generally, production per fuel type is

overestimated for cheaper fuels and underestimated for more expensive fuels; however, total

production in SEE-REM is overestimated by 9.55%. As a consequence of overestimation of

production, emissions in SEE-REM are also overestimated by 4.99%. Price patterns across

nodes are well captured; however, prices in the model are lower at nodes that in reality have

higher production from expensive fuels.

4.3.1. Generation Fuel Mix

We divide the analysis of production by type of fuel into ETS and non-ETS areas (Figures

2 and 3, respectively). In the ETS area, production from cheaper sources such as coal,

natural gas, nuclear, and lignite is overestimated by 22.10%, 12.46%, 11.02%, and 14.56%,

respectively. Production in the non-ETS area is mostly given by lignite-fired power plants,

and it is overestimated by 32.07%. Production from relatively more expensive fuels like mixed

fuels and fuel oil in both ETS and non-ETS is underestimated. Because of this, the overall

production in the ETS area is overestimated by 6.91% and in the non-ETS area by 29.66%.

Finally, the overall production in the SEE–REM area is overestimated by 9.55%, which is of

less concern for our study because we aim to capture the price variation among the nodes.

We believe that there are two explanations for the discrepancies found in generation from

more expensive fuels. First, the model chooses the optimal solution for generating from each
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Figure 3: Generation per type of fuel in the non-ETS area
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fuel based on given constraints; however, in reality, the choice of operating generating units

might not always be efficient (e.g., less-efficient units based on fuel oil, for example, might be

required to deal with short-term situations, like ensuring network security). Second, the model

does not include any dynamic power plant constraints (e.g., ramp-up constraints), the absence

of which might mean larger cost differences between generating technologies in the model than

in reality for certain time periods (e.g., ramping hours). Consequently, technologies using

more expensive fuels might not become viable options. Although estimation of production per

fuel type varies based on fuel type, overall SEE-REM production is overestimated by 9.55%,

which, considering that we do not take into account ramping constraints, we believe to be a

reasonable calibration.

4.3.2. Emissions

Emissions in the ETS and non-ETS areas (Figure 4) are underestimated by 0.24% and

overestimated by 29.95%, respectively, with the total SEE-REM emissions being overestimated

by 4.99%. The overestimation of emissions is related to the overestimation of production.

Although it is expected that emissions are overestimated given that generation is overestimated,

the emissions are calibrated more closely than generation. The reason for this discrepancy is

related to the fact that the actual generation mix contains more polluting fuels (such as fuel

oil) than the modelled one.

4.3.3. Electricity Prices

We compare average annual wholesale electricity prices for six pricing zones in Italy,

Slovenia, Greece, Hungary, and Romania. Actual and modelled prices are shown in Figure

5. Because we are modelling residual demand, the actual prices need to be adjusted for the

purpose of comparison such that point elasticity is preserved. A detailed explanation for

obtaining adjusted prices is provided in Appendix C.4. The model seems to capture well the

differences in prices between the nodes as the pattern is reproduced quite closely. There are a

few exceptions, viz., IT6 and GR, where more expensive fuels, including oil and mixed fuels,
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are used more frequently in reality. Because our model does not capture the generation from

these expensive fuels, it does not fully capture electricity prices at these nodes either.
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Figure 5: Electricity prices in Italy, Slovenia, Greece, Hungary, and Romania in 2013

4.4. Carbon Leakage Measures

In this paper, we define carbon leakage as the increase in emissions in the non-regulated

area as a result of imposing the cap on emissions in the regulated area. This definition
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is consistent with that in Chen (2009). In order to measure carbon leakage, Chen (2009)

considers two metrics, leakage and relative leakage (RL). The author defines leakage as the

change in emissions in the non-regulated area before and after the introduction of the cap,

and this is given by ∆CON
2 = ZN

A − ZN
B , where Z are the emissions with the subscript B (A)

indicating the state before (after) the cap and superscript N (ETS) indicates the non-ETS

(ETS) area of the regional market. Furthermore, the author defines RL as the percentage of

leakage in terms of the emissions reduction in the regulated area. Relative leakage is given in

Equation (19).

RL =

∣∣∣∣ ∆CON
2

∆COETS
2

∣∣∣∣× 100% (19)

RL measures the impact of carbon leakage relative to the reduction in the regulated area.

For example, if RL is equal to 50%, then it means that the emissions in the non-regulated

area increase by 50% of the reduction achieved in the regulated area. Because ∆COETS
2

(∆CON
2 ) is the product of the ∆outputETS (∆outputN) and the emissions rate, a one unit

increase in output with non-zero emissions rate in the non-regulated area means that RL will

be greater than zero. If ∆CON
2 > ∆COETS

2 , then RL will be greater than 100%. However, as

Chen (2009) points out, whether ∆CON
2 > ∆COETS

2 depends on the circumstances, e.g., the

generation mix for a certain load level, of the particular market under consideration.

Although RL is an intuitive measure of carbon leakage, it is sensitive to emissions reduction

in the regulated area. In the specific case of SEE-REM, this indicates a steady decrease in

relative leakage with a higher allowance price because the generating capacity in the non-ETS

area is relatively small compared to the whole SEE-REM generating capacity and demand.

This means that carbon leakage in SEE-REM is limited by the installed generating capacity

in the non-ETS area. However, this also suggests that the RL measure will not be able to

detect more subtle effects, such as demand response in the non-ETS area, that might occur

and are not related to reduction of emissions in the ETS area. For this purpose, we introduce

a more robust measure for carbon leakage called reduction reversal (RR).

RR measures the difference between total emissions after the cap and total emissions
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expected to be achieved under the no leakage assumption relative to the total emissions before

the cap. Under the assumption of “no leakage”, we expect the emissions of N to remain the

same while at the same time we expect a reduction in the ETS; therefore, the total expected

emissions are given by
(
ZETS

A + ZN
B

)
. The RR is given in Equation (20), and it can trivially

be reduced to Equation (21). As such, RR measures the reversal of emissions reduction

achieved in the ETS area under the cap.

RR =

((
ZETS

A + ZN
A

)
−
(
ZETS

A + ZN
B

)
ZTOT

B

)
× 100% (20)

RR =

(
∆CON

2

ZTOT
B

)
× 100% (21)

A drawback of RR lies in the total expected emissions assumption because the emissions

reduction that has been achieved in the ETS area under the cap is partly a result of the

ability to import from the non-ETS area. This means that the reduction of emissions in

the ETS examined in isolation of the non-ETS might not be achieved, ceteris paribus. As

such, RR is not as useful as RL for quantifying carbon leakage. However, because RR is not

sensitive to ETS reduction of emissions, it has the ability to pick up subtler effects, such as

the reduction of leakage due to demand response in the non-ETS area that might influence

carbon leakage. For the sake of completeness of examination of carbon leakage, we report and

comment on both RR and RL.

4.5. Results Analysis and Discussion

In this section, we analyse the results and divide our analysis of CO2 reduction into

demand response, fuel switching, and carbon leakage. Our analysis is divided as such because

we are focusing on the short-term impact of C&T, i.e., before any adjustments to capacity and

retrofitting can be made. Specifically, in our model, we assume that renewables are generating

at their maximum feasible levels for the considered period of time. However, in the longer

term, CO2 emissions can also be reduced through new renewable generation. Nevertheless,
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the effect of increases in renewables on the magnitude of emission leakage is ambiguous,10

but this is beyond the scope of our paper. We have three central findings: carbon leakage

may be limited by demand response to higher electricity prices in non-ETS countries, greater

hydropower availability may result in higher ETS emissions compared to the baseline, and,

depending on the price of allowances, 6.3% to 40.5% of the emissions reduction achieved in

the ETS part of SEE-REM could be displaced to the non-ETS part.

In Table 3, we present main results related to emissions and carbon leakage in different

scenarios. We have three types of water years, viz., wet, dry, and normal, with six levels of

CO2 allowance prices (e0-50/t). Each type of water year has a base scenario where the price

of allowances is equal to e0/MWh against which we compare emissions reduction/increase

and carbon leakage.

4.5.1. Demand Response

Introduction of allowance prices translates into a higher cost of production for the producers

in the ETS area, thereby leading to higher electricity prices. Higher electricity prices in

the ETS area suppress power quantity demanded and induce increased imports from the

non-ETS area. The latter is due to the fact that higher ETS-region electricity prices offer

economic incentives for non-ETS producers to increase their exports while, at the same time,

driving up non-ETS prices. The increase in domestic prices in the non-ETS area driven by

higher allowance prices might eventually curb non-ETS consumption (particularly evident in

the wet-year scenarios), which then offsets the emissions caused by higher exports from the

non-ETS area, thereby resulting in a decrease of leakage as measured by RR. In summary,

the decrease in carbon leakage is given by non-ETS consumers’ response to higher electricity

prices due to the price-responsive demand assumption. In fact, the decrease in carbon leakage

does not occur in the case of fixed demand (Table 4). With fixed demand, the only recourse

10On the one hand, if the cost of newly introduced renewables is lower than those units that ramp up their
outputs in non-ETS countries due to emissions trading, then leakage should be mitigated. On the other
hand, even if this is the case, then other ramping units might be needed due to intermittence of renewables
(Rintamäki et al., 2016), and, consequently, the impact of renewables on emissions leakage might be limited.
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to a higher CO2 price is fuel switching. Consequently, although modelled emissions are higher

in Table 4 compared to those in Table 3, carbon leakage as measured by RR monotonically

increases with the CO2 price.

4.5.2. Fuel Switching

As for the decomposition of CO2 reduction, the inclusion of allowance prices changes

the merit order of supply, thereby leading to fuel switching. In Table 2, we examine the

three most frequently used technologies and how their costs vary and compare with price

of allowances. Figure 6 indicates that the biggest incremental drops in emissions occur at

e10/t and e40/t. The former is expected because of the introduction of the allowance price,

and the latter occurs when the price of natural gas becomes the cheapest among the three

examined fuels. Although coal becomes cheaper than lignite at e20/t, the cost difference is

not sufficiently high to cause a major decrease in emissions.

Price of ETS allowances [e/t]

0 10 20 30 40 50

Lignite Lignite Coal Coal Nat. gas Nat. gas

Coal Coal Lignite Lignite Coal Coal

Nat. gas Nat. gas Nat. gas Nat. gas Lignite Lignite

Table 2: Relation of fuel costs with the cheapest fuel at the top and the most expensive one at the bottom
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Table 3: Main results related to emissions and carbon leakage
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Table 4: Main results related to emissions and carbon leakage in the fixed-demand case
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4.5.3. Emissions, Carbon Leakage, and Demand Response

In relation to the interaction between CO2 allowances prices and levels of hydropower

production, three observations are worth noting. First, ETS and non-ETS emissions are

higher in the dry year compared to the baseline. Higher emissions in the dry year are expected

because a larger proportion of demand is covered by conventional thermal generation due to

unavailability of hydropower capacity.

Second, emissions in the SEE-REM ETS area are higher in wet-year scenarios. This

is in contrast to our initial belief that high availability of non-polluting hydropower would

lead to lower emissions under wet-year scenarios compared to the baseline. This is mainly

because higher availability of cheap non-polluting hydropower lowers electricity prices, thereby

inflating consumption and emissions. Although the rebound effect is mostly defined in the

context of energy efficiency (Gillingham et al., 2016), the increase in electricity consumption

and emissions in the ETS area in the case of higher hydropower availability can be viewed

similarly.
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Figure 6: CO2 emissions in the ETS area

Third, higher CO2 allowance prices lead to consistently less leakage according to RL

(Figure 8), which is not the case if we look at the RR measure where leakage varies depending

on the price of allowances (Figure 9). According to RL, for an allowance price of e10/t,

approximately 40.5% of the reduction achieved under the ETS is displaced to the non-ETS

area. This decreases as allowance prices increase, reaching approximately 6.3% at a price of

e50/t. Indeed, by examining the non-ETS emissions across different allowance prices, we
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notice that the decline of leakage according to RL is given almost only by the increase in

reduction in the ETS area. Although RL provides a useful way of quantifying leakage, its

sensitivity to the reduction in the ETS area (along with relatively low installed capacity in

the non-ETS area) renders it difficult to discern effects on leakage other than the reduction in

the ETS area. In fact, if we examine the RR measure, which is not sensitive to the reduction

in the ETS area, then we can see that there might be other effects causing the decrease in

leakage such as the demand response in the non-ETS area (explained in detail in Section

4.5.1).

5. Conclusions

In the fight against climate change, a variety of policy instruments has been developed

with the aim of reducing the GHG emissions. One of the most utilised instruments is the

C&T scheme, e.g., EU ETS. In a C&T scheme, a cap on emissions in a certain area is

imposed through the allocation of emissions allowances to producers who can then trade these

allowances among themselves. Achieving objectives under such schemes might be delayed due

to their jurisdictional coverage. Specifically, a high price of emissions allowances implies a

high marginal abatement cost and a high power price when firms internalise emission cost

even if the allowances are grandfathered. The higher power prices in the regulated region

provide economic incentives for producers located in the neighbouring non-regulated areas to

export to the regulated area, thereby causing carbon leakage. Carbon leakage has previously

been examined in the context of the USA and New Zealand markets; however, to the best

of our knowledge, a study of carbon leakage in the context of the SEE-REM has not been

carried out yet.

We use SEE-REM, a simplified 22-node stylised network system, to study a hydro-abundant

regional power market with inconsistent CO2 policies. Our focus is on short-term estimates

of carbon leakage, i.e., not considering the possibility of changes in capacity. Due to the fact

that SEE-REM is relatively small compared to the entire EU ETS, the allowance prices, in
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addition to amount of hydropower, are treated exogenously to the model, thereby ignoring the

interactions between hydropower availability and allowance price. With those assumptions,

we implicitly assume that any increase in emissions in the ETS part of SEE-REM will be

offset elsewhere in the remaining EU ETS. Finally, we make an implicit assumption that the

allowances are allocated through auction with prices equal to the permit prices obtained by

the models,11 as it is the case in the EU ETS, and that the price of allowances is equal to the

assumed carbon price in our scenarios.

Through the examination of the EU ETS in SEE-REM taking into account different

allowance prices and hydropower availability scenarios, we have three main findings. First,

from reduction reversal we find that carbon leakage may be limited by demand response in

the non-ETS area as a result of higher domestic electricity prices. Second, ETS emissions may

be higher in the wet year than in the baseline year due to demand response in the ETS area

as a result of lower electricity prices. Third, according to relative leakage, between 6.3% to

40.5% of the reduction achieved in the SEE-REM ETS area could be leaked to the SEE-REM

non-ETS area. These findings indicate the possibility of undesirable outcomes resulting from

the EU ETS on the periphery of the EU, i.e., emissions leaked into the non-ETS part of

SEE-REM, which lead to higher electricity prices in that part. However, similar to the U.S.

Clean Air Act IV SO2 trading program, the initial design of the program partly reflects the

intention of the government to ensure “buy-in” of the energy sector. Incomplete coverage of

the EU ETS, while worrisome to economists, does pave a pathway that allows for a gradual

expansion of the ETS in the future to enhance its efficacy.

The findings in this paper are limited to the assumptions related to the considered model

and data implementation. First, we model only residual demand and make an assumption

that the producers are perfectly competitive, and, thus, we do not take into account the

ownership structure. This means that any market power that producers might have is not

11Alternative allocation mechanisms impact carbon leakage differently. It has often been observed that, e.g.,
output-based allocation could effectively lower the marginal cost of production, thereby mitigating leakage
(Bushnell and Chen, 2012; Burtraw et al., 2006).
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reflected in the model. Second, we make an assumption that the consumers are represented

by price-responsive demand with elasticity of -0.25 and face nodal prices, which in some

cases, leads to a decrease in carbon leakage. This means that when receiving a price signal

at the relevant node, consumers will respond. In reality, electricity prices in Europe are

frequently given by zonal, uniform, or tariff prices and are often fixed for a period of time,

which means that consumers would not be able to react so quickly to the change in nodal

prices. In addition, in reality, short-run demand might be more inelastic, which means that

demand response to higher electricity prices might be lower in reality. Thus, the decrease

in leakage according to reduction reversal that occurs as a result of demand response in the

model might be overestimated. On the other hand, since the decrease in leakage according to

relative leakage depends mostly on the reduction in the ETS area, relative leakage is more

robust vis-à-vis the elasticity assumption. Finally, the model does not include any dynamic

power plant constraints, which might affect the resulting generation mix.

For future work, it would be interesting to examine carbon leakage in an imperfect

competition setting. This could be carried out by including hydro and renewable power

producers in the model in order to account for all market participants who might have

market power. For realistically accounting for hydro and renewable electricity generation,

the model would have to include hydro scheduling (Bushnell, 2003) and stochastic scenarios

for wind production (Maurovich-Horvat et al., 2015). Furthermore, we could include an

additional constraint for zonal pricing and consider different values for elasticity. Finally, a

capacity-investment model would be needed to provide insights about the long-term effects of

a C&T policy on carbon leakage.
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Appendix A Nomenclature

Indices and Sets

i, j ∈ I Producers

` ∈ L Lines

`AC ∈ LAC AC lines, LAC ⊆ L

n,m ∈ N Nodes

nAC ∈ NAC Nodes part of the AC network, NAC ⊆ N

nDC ∈ NDC Nodes part of the DC network, NDC ⊆ N , NAC ∪NDC = N

37

http://download.terna.it/terna/0000/0255/90.pdf
http://download.terna.it/terna/0000/0255/90.pdf
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1137403


t ∈ T Time blocks

Parameters

An,` Network incidence matrix, 1 indicates a node where the line starts and -1

a node where the line finishes [–]

Ci,n Marginal cost of production for producer i at node n [e/MWh]

Dint
t,n Inverse demand intercept at node n for time block t [e/MWh]

Dslp
t,n Inverse demand slope at node n for time block t [e/MW2h]

Ei,n Carbon intensity of production for producer i at node n [t/MWh]

H`AC ,nAC Element of the network transfer admittance matrix for the line `AC ∈ LAC

that connects nodes nAC ∈ NAC [S]

K` Capacity of line ` [MW]

Nt Size of each time block [h]

R Price of emissions allowances [e/t]

Tn Binary parameter equals 1 if node n is in the ETS and 0 otherwise

XMAX
i,n Maximum production capacity for producer i at node n [MW]

Z Carbon cap [t]

Dual Variables

γt,`AC Dual variable for flow constraint on line `AC ∈ LAC for time block t [e/MW]

θt,i Dual variable for energy–balance constraint for producer i

for time block t [e/MW]

λt,i,n Dual variable for generation capacity constraint for producer i

at node n for time block t [e/MW]

µ−t,` Dual variable for line capacity constraint, lower bound on line `

for time block t [e/MW]
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µ+
t,` Dual variable for line capacity constraint, upper bound on line `

for time block t [e/MW]

τt,n Dual variable on electricity market–clearing conditions (wheeling fee)

at node n for time block t [e/MWh]

Primal Variables

dt,nAC Voltage angle at node nAC ∈ NAC for time block t [rad]

ft,` Flow on line ` for time block t [MW]

st,i,n Power sold by producer i at node n for time block t [MW]

xt,i,n Power generated by producer i at node n for time block t [MW]

Appendix B Demand Coefficients Calculation

If the inverse demand function in its general form is given by (B-1), where p(q) is the

price in function of the quantity sold and q is the quantity, then a and b are the intercept and

the slope of the inverse demand function, respectively.

p(q) = a+ bq (B-1)

The intercept and the slope of the inverse demand function can be calculated using

reference price pref , reference quantity qref , and elasticity ε (Dietrich et al., 2005), as shown

in (B-2) and (B-3), respectively. Considering the granularity of our data, i.e., monthly, if we

use (B-2) and (B-3), then we would obtain only one representative hour per month that is

based on the monthly average. However, because we want to distinguish between peak and

off-peak hours, we use hourly load profile data to calculate the load curve (see Section 4.1.4)
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and then obtain the intercept and slope based on (B-4) and (B-5), respectively.

a = pref − bqref (B-2)

b =
pref

qref
1

ε
(B-3)

a = pref − bqref loadcurve (B-4)

b =
pref

qref loadcurve

1

ε
(B-5)

Appendix C Data for SEE-REM

C.1 Line-Specific Data in Detail

Although NTCs are limits on commercial flows between two connecting areas rather than

actual thermal limits of the lines, the calculation of the former is based on the latter (ENTSO,

2001). Thus, we use NTCs as an approximation due to the lack of data on actual thermal

capacity limits. We distinguish between AC and DC lines, and because power flows on AC lines

are subject to both Kirchhoff’s laws, we model these flows using DC load-flow approximation.

The DC load-flow approximation is obtained from network transfer and susceptance matrices

(Schweppe et al., 1988), for which we require line reactance and resistance values (Glover

et al., 1987) that depend on the physical characteristics of AC lines (Terna, 2011). Resistance

and reactance values are displayed in Table C-1. In addition, we divide the nodes in the

network into the ones connected by the AC and DC lines. DC lines do not follow the loop-flow

law, and are, thus, not subject to Equation (10). This means that the model does not give

solutions for voltage angles at nodes connected by a DC line. Consequently, flows on lines

connecting a node in the DC part of the network and a node in the AC part of the network

cannot be subject to Equation (10) either. Therefore, flows on these lines are treated like

commercial flows. A similar approach was used by Bjørndal et al. (2014) to model a market

consisting of nodal and zonal pricing areas.
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Number Voltage Resistance Reactance

of conductors [kV] [Ω/km] [Ω/km]

1 < 380 0.059 0.236

3 ≥ 380 0.019 0.078

Table C-1: Line resistance and reactance values (Glover et al. (1987) and own calculation)

C.2 Node-Specific Capacities in Detail

Since ENTSO-E does not define well the category “mixed fuels,” which typically refers to

units that can be fired by more than one type of fuel, we adjust the generating capacities

in the ENTSO-E’s mixed fuel category by using more detailed generation data (Eurostat,

2014) and utility companies’ published information about generation capacities. In addition,

because we model Italy by eleven nodes, we distribute capacities obtained from ENTSO-E

(2013) across nodes based on information about capacities by regions (Terna, 2013a), which

we then aggregate into zones as defined by the Italian Power Exchange (IPEX) (GME, 2015).

The capacities that we obtain are in Table C-2.
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Node Gas Coal Oil CCGT Nuclear Lignite Mixed

n1 1.55 1.27 1.98 16.89 0 0 3.51

n2 0.57 0.11 1.12 1.48 0 0 0.39

n3 1.14 1.49 2.75 2.93 0 0 0.15

n4 0.61 0.03 0.15 5.28 0 0 1.14

n5 0.13 0.89 0.55 0.43 0 0 0.09

n6 0.83 0 1.24 1.41 0 0 0.23

n7 0 0.12 0.61 0 0 0 0

n8 0.01 0 0 0.30 0 0 0

n9 0 2.64 0 0.99 0 0 0

n10 0.65 0 0.65 0 0 0 0

n11 0 0 0 0.36 0 0 0

n12 0.08 0.22 0.15 0 0.69 0.58 0.36

n13 0.42 0.32 0.49 0.19 0 0 0.37

n14 0 0 0 0 0 1.57 0

n15 0.31 0 0 0 0 5.28 0

n16 0 0 0 0 0 0.22 0

n17 0.03 0 0.19 0 0 0.72 0

n18 2.72 0 0.70 2.19 0 4.46 0

n19 0 0 0 0 0 0 0

n20 2.99 0.28 0.41 1.72 1.89 0.75 0

n21 0.80 1.71 0 0 2.00 4.20 0

n22 2.38 1.18 0 0.86 1.30 5.12 0

Table C-2: Installed generation capacity mix per node [GW]
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C.3 Nodal Demand in Detail

In order to obtain residual demand, we divide the residual monthly consumption by the

number of hours in that month in order to obtain residual hourly demand. From this, we have

one hour representing the average hourly residual demand per month. Because the standard

frequency of reporting consumption data is monthly, we can only represent each month by

the average hourly demand in that month by using consumption data. In order to distinguish

between peak and off-peak hours, we use load profiles for which we can obtain hourly data.

With the help of load profile data, we obtain the load curve for four blocks per month. We

aggregate load data so that we obtain hourly load for the whole SEE–REM. Subsequently, we

divide every month into four blocks corresponding to base, shoulder, peak, and super–peak

loads (Paul et al., 2009) as defined in Table C-3.

Block Interval

Base load min {load} - 70th percentile {load}

Shoulder load 70th percentile {load} - 95th percentile {load}

Peak load 95th percentile {load} - 99th percentile {load}

Super-peak load 99th percentile {load} - max{load}

Table C-3: Intervals corresponding to four blocks

The load curve is given by the ratio of the block average load (over the number of hours

in that block) and the monthly average load (over the number of hours in that month). Four

load curves for each month are listed in Table C-4. Essentially, the load curve is a multiplier

for the reference demand that adds variation to the average demand through inverse demand

function coefficients, Dint
t,n and Dslp

t,n , (see Equations (B-4) and (B-5) in Appendix B). Since

the number of hours in each block, Nt, varies based on the number of days in a month, in

Table C-5, we show the number of hours in each of the blocks of 28-day, 30-day, and 31-day

months. Demand across Italy is distributed using regional consumption data (Terna, 2013a).

43



Block Base load Shoulder load Peak load Super-peak load

Jan 0.9 1.2 1.24 1.27

Feb 0.92 1.17 1.21 1.23

Jun 0.91 1.17 1.31 1.35

Dec 0.90 1.21 1.30 1.34

Table C-4: Load curve for block per month

Number of days in month
Blocks 31 28 30
Base load 520 470 504
Shoulder load 186 168 180
Peak load 30 27 28
Super-peak load 8 7 8

Table C-5: Number of hours per block

Fuel Cost Emission Intensity
[e/MWh] [t/MWh]

Lignite 21.0 0.826
Coal 22.0 0.746
Nuclear 10.0 0.000
Oil 50.0 0.930
Natural Gas - steam turbine 47.3 0.435
CCGT 35.7 0.363
Mixed fuels 48.0 0.800

Table C-6: Marginal cost of production per fuel and emission intensity

C.4 Electricity Prices

The data for Italy, Slovenia, and Greece are available from IPEX’s Website where Slovenia

and Greece are virtual zones. Data for Hungary are available from the Hungarian Power

Exchange (HUPX), and data for Romania are on the Romanian electricity and gas market

operator’s (OPCOM) Website. Although there are some other countries in SEE-REM that
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have day-ahead markets, since these markets did not exist in 2013, e.g., Bulgaria launched

its Independent Energy Exchange only in 2015 (Reuters, 2015), we exclude them from our

analysis.

Electricity prices derived from the inverse demand function (in the baseline scenario)

correspond to generation quantities associated with residual demand. Therefore, these prices

are not directly comparable to actual market electricity prices that correspond to total demand

under the assumed value of elasticity. Thus, for the purpose of more direct comparison, we

adjust the actual prices by rearranging Equation (C-1) in order to preserve the assumed

elasticity. Here, ε stands for elasticity, p for price of electricity, and q for generated quantity.

Furthermore, δq represents the difference between the total and residual quantity, and δp is

the difference between prices corresponding to those two quantities.

ε =
δq

δp

p

q
(C-1)

45


	Introduction
	Literature Review
	Mathematical Formulation
	Assumptions
	Producer i's Optimisation Problem and KKT conditions
	The Grid Owner's Optimisation Problem and KKT conditions
	Market-Clearing Conditions
	MCP

	Data Implementation, Calibration, and Results
	Data and Assumptions
	South-East Europe Regional Electricity Market
	Line-Specific Data
	Node-Specific Capacities
	Nodal Demand

	Scenario Description
	Calibration
	Generation Fuel Mix
	Emissions
	Electricity Prices

	Carbon Leakage Measures
	Results Analysis and Discussion
	Demand Response
	Fuel Switching
	Emissions, Carbon Leakage, and Demand Response


	Conclusions
	Appendix  Nomenclature
	Appendix  Demand Coefficients Calculation
	Appendix  Data for SEE-REM
	Line-Specific Data in Detail
	Node-Specific Capacities in Detail
	Nodal Demand in Detail
	Electricity Prices


