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We consider a two-dimensional periodic Schrödinger operator 
H = −Δ + W with Γ being the lattice of periods. We 
investigate the structure of the edges of open gaps in 
the spectrum of H. We show that under arbitrary small 
perturbation V periodic with respect to NΓ where N = N(W )
is some integer, all edges of the gaps in the spectrum of 
H + V which are perturbation of the gaps of H become 
non-degenerate, i.e. are attained at finitely many points by 
one band function only and have non-degenerate quadratic 
minimum/maximum. We also discuss this problem in the 
discrete setting and show that changing the lattice of periods 
may indeed be unavoidable to achieve the non-degeneracy.
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1. Introduction

Let

H = −Δ + W (1.1)
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be a Schrödinger operator in Rd, d ≥ 2, with a smooth periodic potential W = W (x). Let 
Γ be its lattice of periods and Γ† be the dual lattice. We put T := Rd/Γ and T† := Rd/Γ†. 
It is known [10] that the spectrum of H is

σ(H) = [λ0,+∞) \ (�n
m=1(μm,−, μm,+)), (1.2)

where the non-intersecting intervals (μm,−, μm,+) are called the gaps. There are finitely 
many of them, and for small V there are no gaps at all, [12,8]. We are interested in 
the behaviour of the spectrum of H near the spectral edges μm,± = μm,±(H). More 
precisely, consider the Floquet–Bloch decomposition of H into the direct integral:

H =
⊕∫

T†

H(k)dk (1.3)

(see Section 2 for more details) and denote by {λj(k)}∞j=0 the collection of eigenvalues of 
H(k) (in non-decreasing order, taking multiplicities into account). Then each function 
λj (called the Bloch function) is smooth, at least outside the values of k where the values 
of two such functions coincide. Then

σ(H) = ∪k ∪j λj(k). (1.4)

Therefore, for any spectral edge μ+ = μm,+ for some m there is a point k0 and an index 
j = j(μ+) such that λj(k0) = μ+, and k0 is a point of local (even global) minimum of 
λj (similarly, for any edge μ− there is a Bloch function λj , j = j(μ−), for which μ− is a 
maximal value). We are interested in the behaviour of the function λj in a neighbourhood 
of k0. One may expect that for each spectral edge μ± the following properties hold, at 
least generically:

A. No other Bloch function takes value μ±, meaning that if for some l and k ∈ T† we 
have λl(k) = μ±, then l = j.

B. The set of points

S = S(μ±) := {k0 ∈ T†, λj(k0) = μ±} (1.5)

is finite.
C. The quadratic form of λj around each critical point k0 ∈ S is non-degenerate, mean-

ing that

λj(k) = μ± ± [A(k − k0)](k − k0) + o(|k − k0|2) (1.6)

with positive definite matrix A.
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If these properties hold, we say that the spectral edge μ± is non-degenerate. In 
the physical papers it is often assumed that generic Schrödinger operators have non-
degenerate spectral edges. For example, in solid state physics, the tensor of effective 
masses is essentially defined as the inverse of the matrix A from (1.6) (see e.g. [1]). 
This definition makes sense only if all three conditions are satisfied. In one-dimensional 
situation the spectral edges are always non-degenerate, see e.g. [10]. The bottom of the 
spectrum is known to be non-degenerate in all dimensions, see [4] (but the same cannot 
be said about a magnetic Schrödinger operator, see [11], where an example of a mag-
netic operator the bottom of whose spectrum does not satisfy Condition C is given). 
It is commonly believed that in multidimensional case (d ≥ 2) the spectral gap edges 
are non-degenerate for generic potentials, see, for example, [7] and [6], where additional 
references are given.

Property A has been established to hold generically in [5]. In a recent paper [2]
Property B has been proved for all (not just generic) operators if d = 2. It is not 
known whether Property B holds even generically in higher dimensions. The remarkable 
simple example discovered recently by N. Filonov [2] shows that for discrete periodic 
Schrödinger operators Property B does not hold, not even generically: there is a discrete 
periodic Schrödinger operator Ĥ for which the set S corresponding to a spectral edge 
consists of two intervals, and the same holds for all operators close to Ĥ. It turns out, 
however, that this feature of Ĥ is generically destroyed if we perturb Ĥ by a potential 
with a smaller lattice Γ̃ ⊂ Γ, where Γ is the initial lattice of periods of Ĥ . We discuss 
this and related results in Section 4.

The main result of our paper concerns Property C in the two-dimensional case. We 
will prove that all spectral edges of H can be made non-degenerate by perturbing it with 
arbitrarily small periodic potential V , with a smaller lattice of periods Γ̃ ⊂ Γ. Namely, 
we will prove the following result:

Theorem 1.1. Let W = W (x), x ∈ R2, be a smooth function periodic with respect to some 
lattice Γ. Then for every ε > 0 there exist N = N(W, ε) ∈ N and a potential V (W, ε)
periodic with respect to Γ̃ := NΓ and satisfying ‖V ‖∞ < ε such that the following property 
holds. Suppose, (μm,−(H1), μm,+(H1)) is a spectral gap of the operator H1 := −Δ +W+V

with μm,+(H1) − μm,−(H1) > ε. Then the edges μm,± are non-degenerate.

Remark 1.2.

1. As previous paragraph (and Section 4) show, decreasing the lattice of periods to 
achieve non-degeneracy may be necessary in the discrete case; we do not know 
whether it is possible to make spectral edges non-degenerate by perturbing H with 
a small potential with the same lattice of periods Γ, nor do we know whether this 
result holds in higher dimension (a substantial part of our proof is based on the 
fact that Property B holds for all, not just generic operators, and there are no high-
dimensional analogues of [2] known so far).
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2. There are two problems we have to deal with when increasing the lattice of periods. 
The first one is that the perturbed operator H1 can have more spectral gaps than 
H. If the lattice of periods of V is Γ, the number of new gaps has an upper bound 
depending only on H and ||V ||∞. If the lattice of periods of V is NΓ, then the number 
of new gaps may also depend on N , and our construction of the perturbation W has 
no control on the size of N . Therefore, what can happen in principle is the following. 
We introduce a perturbation V1 periodic with respect to N1Γ so that H+V1 has edges 
of ‘old’ gaps non-degenerate, but some ‘new’ gaps (of very small length) may appear. 
Then we may deal with these gaps by adding another, even smaller perturbation V2

with lattice of periods N2Γ, but a further set of ‘new’ gaps may be opened, etc. We 
do not have control over whether this process can last indefinitely long. Therefore, 
in our theorem we can guarantee only that all the edges of ‘old’ gaps (i.e. gaps the 
length of which is not small) become non-degenerate.

3. Another problem of dealing with the perturbations with increasing lattice of peri-
ods is the stability issue. It follows from the standard perturbation theory that the 
non-degeneracy of the spectral edges is stable under further perturbations with the 
same lattice of periods. More precisely, let ε, N, V be as in Theorem 1.1 then the 
conclusion of the theorem holds for operator H2 = −Δ +W +V +Q with any smooth 
potential Q periodic with respect to NΓ, provided ‖Q‖∞ ≤ δ with δ = δ(W, V, N, ε)
being sufficiently small. We, however, cannot guarantee the same result if the lattice 
of periods of Q can increase further and become NMΓ with M ∈ N (we can probably 
achieve this stability only at the edges of the ‘old’ gaps by introducing an extremely 
weird-looking norm in the class of all periodic operators with lattices being a sub-
lattice of Γ, but the proof of corresponding statement is rather long and unhelpful, 
so we do not include it here).

4. As can be seen from the construction, the potential V is a finite trigonometric poly-
nomial. As a result, we can choose our perturbation satisfying ‖V ‖s < ε, where s is 
a fixed real number and || · ||s is a Sobolev norm.

5. The intuition behind the behaviour of the Bloch functions by the perturbations with 
increasing lattices of periods comes from studying the almost-periodic Schrödinger 
operators.

6. The same conclusions will hold if we consider a more general class of unperturbed 
operators, say the periodic magnetic Schrödinger operators (or even periodic second 
order coefficients); effectively, the only property we need from a class of operators 
we consider is the finiteness of the set S, see [2].

The rest of the paper is constructed in the following way. In section 2, we introduce the 
necessary notation and discuss how the decomposition (1.3) changes when we increase 
the lattice of periods Γ. In Section 3 we prove Theorem 1.1 and also give a simple proof 
of Property A (proved originally in [5]). Finally, in Section 4, we discuss the discrete 
situation when Property B is violated.
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2. General facts

Suppose,

H = −Δ + W (2.1)

is a Schrödinger operator with periodic potential W acting in Rd. For simplicity we 
assume W to be smooth, but in fact we do not require this assumption for our results. 
Let Γ be its lattice of periods and Γ† be the dual lattice. We put T := Rd/Γ and 
T† := Rd/Γ†. For each quasi-momentum k ∈ T† we denote by H(k) the fibre operator 
of H corresponding to k so that

H =
⊕∫

T†

H(k)dk. (2.2)

The domain of H(k) consists of functions from H2(T) satisfying k-quasi-periodic 
boundary conditions; let us denote this space by H2(T; k). The action of H(k) (consid-
ered as an unbounded operator acting in L2(T)) is given by the formula

H(k)f = −Δf + Wf, f ∈ H2(T;k). (2.3)

The other, more convenient way of defining these operators is the following. First, we 
put

eξ(x) := eiξx, ξ,x ∈ Rd. (2.4)

We then denote by Hs(Rd; Γ; k) the space of all infinite Fourier series of the form

f =
∑
θ∈Γ†

aθeθ+k, (2.5)

where aθ = 〈f, eθ+k〉L2(T)|T|−1 ∈ C satisfy

∑
θ∈Γ†

|aθ|2(|θ + k|2 + 1)s < +∞. (2.6)

Finally, we say that Hs(T; k) is the restriction of Hs(Rd; Γ; k) to the torus T, and the 
LHS of (2.6) multiplied by |T| defines the square of the norm of f in Hs(T; k). It will be 
convenient to define L2(Rd; Γ; k) as the collection of functions of the form (2.5) with

∑
|aθ|2 < +∞ (2.7)
θ∈Γ†
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and L2(T; k) as the restriction of L2(Rd; Γ; k) to the torus T. Note that when we change k, 
the space L2(Rd; Γ; k) does not change as the collection of elements (but the form in 
which we write these elements does change), whereas H2(Rd; Γ; k) changes with k.

Given another function

g =
∑
θ∈Γ†

gθeθ+k (2.8)

from L2(T; k), we obviously have

〈f, g〉L2(T) = |T|
∑
θ∈Γ†

aθbθ. (2.9)

Suppose, the Fourier decomposition of W has the following form:

W =
∑
θ∈Γ†

wθeθ. (2.10)

Then the action of H(k) on the function f is given by:

H(k)f =
∑
θ∈Γ†

⎡
⎣aθ|θ + k|2 +

∑
θ1∈Γ†

aθ1wθ−θ1

⎤
⎦ eθ+k. (2.11)

We denote by {λj(k)} (j = 0, 1, . . . ) the collection of eigenvalues of H(k) (counted 
with multiplicities; it will be convenient from now on to stop assuming that λj(k) are 
listed in the increasing order) and by ψj = ψj(k) = ψj(k; x) corresponding orthonormal 
eigenfunctions. We will also assume (as we can without loss of generality) that λj are 
piecewise continuous. We also denote

〈ψj(k), eθ+k〉L2(T)/|T| =: ψ̂j(θ;k), (2.12)

so that

ψj(k) =
∑
θ∈Γ†

ψ̂j(θ;k)eθ+k (2.13)

and

eθ+k = |T|
∑
j

ψ̂j(θ;k)ψj(k). (2.14)

These formulas also show that

|T|
∑

ψ̂j(θ;k)ψ̂m(θ;k) = δjm (2.15)

θ∈Γ†
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and

|T|
∑
j

ψ̂j(θ1;k)ψ̂j(θ2;k) = δθ1θ2 . (2.16)

Now we discuss how this decomposition changes when we increase the lattice (in the 
sense that we increase the size of a cell of the lattice). Let N be a natural number 
and put Γ̃ := NΓ. Then (Γ̃)† = Γ†/N . We also put T̃ := Rd/Γ̃ and T̃† := Rd/Γ̃†. The 
quotient group (Γ̃)†/Γ† consists of M := Nd elements; let us denote by {p1 = 0, . . . , pM}
representatives of the elements of this group in Γ̃†. Then each element of Γ̃† has a unique 
representation in the form pl + θ, θ ∈ Γ†. Moreover, every element k ∈ T† can be 
uniquely written as pl + κ, l = 1, . . .M and κ ∈ T̃†. In this case we say that κ = κ(k)
and l = L(k). This defines a mapping L : T† → {1, . . . , M} and a mapping κ : T† → T̃†; 
each point κ ∈ T̃† will have exactly M pre-images under mapping κ. Sometimes we will 
call coordinate k the old quasimomentum and κ the new quasimomentum.

Suppose, κ ∈ T̃†. Then the space L2(T̃; κ) consists of all the expansions of the form

f =
∑
θ̃∈Γ̃†

aθ̃eθ̃+κ =
M∑
l=1

∑
θ∈Γ†

apl+θepl+θ+κ. (2.17)

Obviously, we can treat the RHS of (2.17) as a sum of functions from L2(Rd; Γ; kl), where 
kl runs over all the pre-images of κ under the mapping κ.

Suppose, f ∈ L2(T; k). Then expansion (2.5) can be looked upon as the element from 
the space L2(T̃; κ) with κ = κ(k). This defines a mapping F : L2(T; k) → L2(T̃; κ(k)); 
obviously, this mapping maps also Hs(T; k) to Hs(T̃; κ(k)).

Lemma 2.1. Suppose, κ is fixed and k1 and k2 are two different pre-images of κ under 
the mapping κ. Suppose, fj ∈ L2(T; kj), j = 1, 2. Then F (f1) is orthogonal to F (f2)
(obviously, we talk about L2(T̃)-inner product here).

Proof. The proof is straightforward. We have:

fj =
∑
θ∈Γ†

ajθeθ+kj
, (2.18)

so

〈F (f1), F (f2)〉L2(T̃) =
∫
T̃

∑
θ1∈Γ†

a1
θ1

eθ1+k1(x)
∑

θ2∈Γ†

a2
θ2

e−θ2−k2(x)dx

=
∑

θ1∈Γ†

∑
θ2∈Γ†

a1
θ1
a2
θ2

∫
T̃

eθ1−θ2+(k1−k2)(x)dx = 0,
(2.19)

since θ1 − θ2 + (k1 − k2) 
= 0 (mod Γ̃†). �
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Corollary 2.2. Suppose, f ∈ L2(T; k) and l = 2, . . . , M . Then epl
F (f) is orthogonal to 

F (f) in L2(T̃).

These considerations have the following implications to the spectral decomposition of 
operator H considered as periodic operator with lattice of periods Γ̃. Suppose, κ ∈ T̃†. 
Then functions {F (ψj(κ+ pl; ·))/

√
M}, j = 0, 1, . . . ; l = 1, . . . , M form an orthonormal 

basis in L2(T̃; κ). The matrix of H(κ) (considered as an operator acting in L2(T̃; κ(k))) 
in this basis is diagonal with {λj(κ + pl)} standing on the diagonal. We denote

φj,l(κ) := F (ψj(κ + pl; ·))/
√
M. (2.20)

3. Description of the approach: main tools

Suppose that d = 2 and our operator H has a gap (μ−, μ+) in its spectrum.

Definition. We say that μ+ (resp. μ−) is a non-degenerate end of the spectral gap, if there 
are finitely many points k0, k1, . . . , kn ∈ T such that λj(kl) = μ+ (resp. λj(kl) = μ−) for 
some j (not depending on l), for any m 
= j the equation λm(k) = μ+ (resp. λm(k) = μ−) 
has no solutions k ∈ T, and in the neighbourhood of each kl the function λj behaves 
quadratically:

λj(k) = μ± ± [A(k − kl)](k − kl) + o(|k − kl|2) (3.1)

as k → kl for some positive definite matrix A = Al.

We want to prove that, generically, each end of the gap is non-degenerate. For the 
sake of definiteness, we will be working with the top end of the gap, but the proof will 
easily extend to the bottom end of the gap and similar results will hold for μ−. Denote

S = S(H) := {k : ∃j, λj(k) = μ+}. (3.2)

A recent result of Filonov and Kachkovskiy [2] shows that the set S is finite.
Suppose, ν is arbitrary non-zero vector from Rd. We denote δ := |ν|, n := νδ−1, and 

v := eν + e−ν . The perturbations we consider will be of type Hε := H + εV , where 
V is the operator of multiplication by v and ε > 0 a small parameter. We will always 
assume that δ is smaller than the distances between different points in S and that the 
perturbed operator Hε is still periodic with, possibly, a new lattice of periods Γ̃ ⊂ Γ, i.e. 
that ν is a rational multiple of a vector from Γ†: ν ∈ QΓ†. After adding εV to our initial 
operator H, the new operator becomes periodic with respect to a new lattice of periods 
Γ̃; we define this lattice as the lattice dual to Γ̃† – the lattice generated by Γ† and ν. 
Note that the new lattice Γ̃† contains more elements than the old one and therefore it 
may happen that some points from S (different modulo old lattice Γ†) become ‘glued 
together’ after introducing the shift by ν, i.e. there may be two points k1, k2 ∈ S so that 
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k1 +nν = k2 (mod Γ†) for some integer n. We impose an additional condition that such 
‘gluing’ does not occur. Later, we will explain why such a choice of ν is always possible 
(see Subsection 3.4).

For sufficiently small ε the operator Hε will have a gap (με−, με+), where |με±−μ±| =
o(1) as ε → 0. The set Sε := S(Hε) of quasimomenta where one of eigenvalues of Hε

equals με+ lies in a small neighbourhood of S. From now on we will always assume for 
simplicity that μ+ = 0, but we will nevertheless often write μ+ to emphasise that we are 
at the upper edge of the spectral gap.

Remark 3.1. In this section, as well as in the rest of the paper, we will work only with 
the dual space – the space where the quasimomentum k is located. We, thus, no longer 
need letters x or y to denote the original spacial variables. Therefore, we sometimes will 
be using this fact and introduce new coordinates denoted by x or y, etc. in the dual
space (the space where the quasimomenta live).

We will also need the following simple result which easily follows from the analytical 
perturbation theory, see e.g. [3]. Suppose, λn(k0) is a simple eigenvalue of H(k0). Then 
for k near k0 there exists a unique eigenvalue of H(k) close to λn(k0); denote it λn(k). 
We also can find a neighbourhood of k0 (denoted by O(k0)) such that λn(k) is a simple 
eigenvalue of H(k) whenever k is inside the closure of O(k0). Obviously, the same will 
hold for H ′(k) := H(k) + V , where ||V || – the L∞-norm of V is sufficiently small; we 
denote the corresponding eigenvalue by λ′

n(k). In these notations we have:

Lemma 3.2. Suppose that x, y are some orthogonal coordinates around k0, l, m ≥ 0 are 
integers and ε > 0 is given. Then there exist a real number η = η(ε, O(k0)) > 0 such 
that if ||V || < η and k ∈ O(k0), then we have

|∂
l+m(λ′

n − λn)
∂lx∂my

(k)| < ε. (3.3)

Proof. Indeed, (3.3) with l = m = 0 is an immediate consequence of analytic perturba-
tion theory and holds in a slightly bigger neighbourhood than O(k0). This together with 
analyticity of (λ′

n − λn) implies (3.3) for arbitrary l, m. �
This lemma shows that in order to prove our main result, it is enough to prove the 

following statement:

Theorem 3.3. Suppose, H is a periodic operator with [μ−, μ+] being its spectral gap. 
Suppose, ε ∈ (0, (μ+ − μ−)/2) and s are two fixed real numbers. Then there exists a 
periodic potential V with Hs-norm smaller than ε such that H + V is periodic with a 
spectral gap [μ′

−, μ
′
+] with |μ′

±−μ±| < ε and both spectral ends μ′
± being non-degenerate.

Indeed, if the spectrum of H has several gaps in it, we first make the edges of the first 
gap non-degenerate with the help of sufficiently small perturbation V1. Then, we deal 
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with the edges of the second gap by introducing a (even smaller) second perturbation 
V2. Note that Lemma 3.2 implies that if V2 is small enough, then the edges of the first 
gap remain non-degenerate. Of course, while we are doing this, we may open ‘new’ gaps, 
but their length will be smaller than the sum of the norms of our perturbations Vj. It 
remains to notice that the number of gaps of H is finite, see [9] or [8].

3.1. Description of the approach: the main idea

Let us for now assume for simplicity that there is a unique point k0 such that

λj(k0) = μ+ (3.4)

for some j, but (3.1) does not hold. Results of [5] show that (3.4) generically can hold 
only for one value of j (in the next subsection we will give a short proof of this); we 
will assume WLOG that j = 0, so that λ0(k0) = μ+ (remember that the labelling of 
eigenvalues is not necessarily done in increasing order, but λ0(k) continuously depends 
on k in some neighbourhood of k0). We will never use this specific labelling and have 
chosen it only for convenience. We also assume that there is a vector n of unit length 
such that ∂

2λ0
∂n2 (k0) = 0 (otherwise there is nothing left to do). This means that

λ0(k0 + δn) − λ0(k0) = C0δ
α + O(δα+1) (3.5)

as δ → 0 with even α ≥ 4 and C0 > 0. We denote n⊥ to be any of the two unit vectors 
orthogonal to n. Let ν be a vector that belongs to Γ̃† with some choice of sufficiently 
large N , but does not belong to Γ†/2 (so that κ0 + ν and κ0 − ν are different points 
modulo Γ†). We denote l0 := L(k0) so that k0 = κ0 + pl0 . Denote v := eν + e−ν

and Hε := H + εV , where V is the operator of multiplication by v. Whenever κ lies 
outside of a small neighbourhood of κ0 := κ(k0), all eigenvalues of Hε(κ) are located 
far away from μ+, therefore we are interested only in quasimomenta κ located in an 
o(1)-neighbourhood of κ0 as ε → 0. Therefore, we have to study the perturbation of the 
eigenvalues of the fibre operators Hε(κ) when κ is close to κ0. We will write down the 
action of this operator in the orthonormal basis

{φj,l(κ)}, j = 0, 1, . . . ; l = 1, . . . ,M. (3.6)

The matrix of H in this basis is diagonal, as we have established above. Let us compute 
the matrix of V (κ) (the fibre operator corresponding to V at the point κ). We denote 
by l+0 the unique index satisfying pl+0

= pl0 + ν (mod Γ̃†); similarly, we define l−0 by 

requiring pl−0
= pl0 − ν (mod Γ̃†). We will assume, as we can without loss of generality, 

that in fact we have

pl± = pl0 ± ν (3.7)

0
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(in order to achieve this we need to choose proper representatives pl from corresponding 
classes of equivalence). Then we obviously have

V : ek �→ ek+ν + ek−ν . (3.8)

Using (2.13) and (2.14), this implies

V : ψj(k) �→ |T|
∑
θ∈Γ†

ψ̂j(θ;k)
∑
m

ψ̂m(θ;k + ν)ψm(k + ν)

+ |T|
∑
θ∈Γ†

ψ̂j(θ;k)
∑
m

ψ̂m(θ;k − ν)ψm(k − ν).
(3.9)

This means that if we denote by

Vj1,l1;j2,l2(κ) := 〈V φj1,l1(κ), φj2,l2(κ)〉L2(T̃) (3.10)

the matrix element of operator V in the basis (3.6) then we have:

V0,l0;m,l(κ) =
{
|T|

∑
θ∈Γ† ψ̂0(θ;κ + pl0)ψ̂m(θ;κ + pl±0

), if l = l±0

0, otherwise.
(3.11)

Suppose, κ is close to κ0 so that the eigenvalue λ0(κ + pl0) is a simple eigenvalue of 
H(κ). Then for small ε the operator Hε(κ) will have a single eigenvalue τ = τε(κ) which 
is inside 2ε-neighbourhood of λ0(κ). Let us write a perturbation theory expansion of τ . 
Let P0 be the projection onto φ0,l0 and P ′ := I−P0. Using P0V P0 = 0 (see Corollary 2.2
or (3.11)) we obtain:

τε(κ + pl0) = λ0(κ + pl0) + Zε2 + Y (ε) (3.12)

as ε → 0. Here,

Z := −TrP0V P ′(H0(κ + pl0) − λ0(κ + pl0))−1P ′V P0 (3.13)

and Y (ε) = O(ε3) is analytic in κ in some neighbourhood of κ0. Next, let P1 be the 
orthogonal projection onto the two-dimensional subspace generated by φ0,l±0

; we also put 
P ′

1 := P ′ − P1. Then we can rewrite Z as follows:

Z = −TrP0V P1(H0(κ + pl0) − λ0(κ + pl0))−1P1V P0 + R0, (3.14)

where R0 := −TrP0V P ′
1(H0(κ+pl0) −λ0(κ+pl0))−1P ′

1V P0 is analytic in κ in sufficiently 
small neighbourhood of κ0 (see also (3.16) below). Using (3.11) we get

Z =
∑ | |T|

∑
θ∈Γ† ψ̂0(θ;k)ψ̂0(θ;k ± ν)|2
λ0(k) − λ0(k ± ν) + R0, (3.15)
±
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and

R0 =
∑
m�=0

| |T|
∑

θ∈Γ† ψ̂0(θ;k)ψ̂m(θ;k + ν)|2
λ0(k) − λm(k + ν)

+
∑
m�=0

| |T|
∑

θ∈Γ† ψ̂0(θ;k)ψ̂m(θ;k − ν)|2
λ0(k) − λm(k − ν) .

(3.16)

Note that expressions (3.15) and (3.16) depend only on k and ν and do not depend on 
N and Γ̃†.

Lemma 3.4. There exists a vector ν of arbitrarily small positive length such that

∂2Z

∂n2 (k0,ν) 
= 0. (3.17)

Proof. We will consider vectors ν := δn with small δ and write the expansion of 
∂2Z
∂n2 (k0, ν) in terms of δ when δ → 0. We will transform the formula for Z in the 
following way:

Z =
| |T|

∑
θ∈Γ† ψ̂0(θ;k)ψ̂0(θ;k)|2

λ0(k) − λ0(k + ν) +
| |T|

∑
θ∈Γ† ψ̂0(θ;k)ψ̂0(θ;k)|2

λ0(k) − λ0(k − ν) + R + R0

= 1
λ0(k) − λ0(k + ν) + 1

λ0(k) − λ0(k − ν) + R + R0.

(3.18)

The second equality in (3.18) is due to (2.15). Note that λ0(k± ν), ψ̂0(θ; k± ν), and 
R0 are analytic in δ near 0 and in k near k0. It is a straightforward calculation that R =
R(δ) = R(δ; k, ν) satisfies R(δ) = O(δ−α+1), R′(δ) = O(δ−α), and R′′(δ) = O(δ−α−1)
as δ → 0 (compare with calculations (3.19) and (3.20) and the proof of Lemma 3.5
below; recall that α is defined in (3.5)). Let us calculate now the second derivative of 
the principle term in (3.18). We have (here, by f ′ we denote ∂f∂n ):

∂2

∂n2

(
1

λ0(k) − λ0(k + ν)

)

= − ∂

∂n

(
λ′

0(k) − λ′
0(k + ν)

(λ0(k) − λ0(k + ν))2

)

= 2(λ′
0(k) − λ′

0(k + ν))2

(λ0(k) − λ0(k + ν))3 − λ′′
0(k) − λ′′

0(k + ν)
(λ0(k) − λ0(k + ν))2 .

(3.19)

Therefore,
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∂2

∂n2

(
1

λ0(k) − λ0(k + ν)

) ∣∣∣
k=k0

= 2λ′
0(k0 + ν)2 + λ′′

0(k + ν)(λ0(k) − λ0(k + ν))
(λ0(k) − λ0(k + ν))3

∼ 2C2
0α

2δ2α−2 − α(α− 1)C2
0δ

2α−2

−C3
0δ

3α = −C−1
0 α(α + 1)δ−α−2.

(3.20)

It is easy to check that the contribution from the derivative of the second term in (3.18)
is the same. Therefore, as δ → 0, we have

∂2Z

∂n2 (k0,ν) = −2C−1
0 α(α + 1)δ−α−2 + o(δ−α−2), (3.21)

which shows that for some ν this second derivative is non-zero. �
Now, we are going to make the formula for Z more specific by introducing the proper 

coordinates.

Lemma 3.5. Let us denote the coordinates of k around k0 by (x, y) so that x := 〈k−k0, n〉
is the coordinate along n, and y := 〈(k − k0), n⊥〉 is the coordinate along n⊥. Then we 
have:

Z = O(δ−α) +O(δ−α−1)x−C1δ
−α−2(1 +O(δ))x2 +C(δ)x3 + yf(x, y), C1 > 0, (3.22)

where f is a real analytic function in a neighbourhood of the origin. Function f(x, y)
also depends on δ but actual dependence is not important.

Proof. In our new coordinates formula (3.18) looks as follows

Z = 1
λ0(x, y) − λ0(x + δ, y) + 1

λ0(x, y) − λ0(x− δ, y) + R + R0,

where R0 is analytic in (x, y, δ) near zero and

R =
| |T|

∑
θ∈Γ† ψ̂0(θ;x, y)ψ̂0(θ;x + δ, y)|2 − | |T|

∑
θ∈Γ† ψ̂0(θ;x, y)ψ̂0(θ;x, y)|2

λ0(x, y) − λ0(x + δ, y)

+
| |T|

∑
θ∈Γ† ψ̂0(θ;x, y)ψ̂0(θ;x− δ, y)|2 − | |T|

∑
θ∈Γ† ψ̂0(θ;x, y)ψ̂0(θ;x, y)|2

λ0(x, y) − λ0(x− δ, y) .

(3.23)

We recall that ψ̂0 and λ0 are real-analytic in (x, y) near zero. Equation (3.5) has the 
form

λ0(δ, 0) = C0δ
α + O(δα+1)
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or, in other words,

λ0(x, y) = C0x
α + O(xα+1) + O(y).

Now, the direct calculations similar to the ones from the proof of Lemma 3.4 complete 
the proof of (3.22) which is just the Taylor series for Z in x and y near zero with δ being 
a parameter. We emphasise that while δ is going to be small (for example, to ensure 
that the coefficient in front of x2 is negative and the eigenvalue λ0 is still simple after 
the shift of the argument by δ) it will be fixed; then x and y are considered to be in 
a small neighbourhood (depending on δ) of the origin which ensures the convergence of 
the Taylor series (3.22). �
Remark 3.6. Since formula (3.22) is an identity of analytic in x, y functions (for every 
sufficiently small δ > 0), we can differentiate this identity with respect to x and y
arbitrary many times.

Now we discuss the broad strategy of our approach. Suppose, H =: H0 is our initial 
operator with a degenerate minimum of the spectral edge (meaning that S consists 
of several isolated points, but the quadratic form of the Bloch function λ(k) at one 
of them is degenerate). We then start perturbing H by adding potentials of the form 
εj(eνj

+ e−νj
), so that Hj = Hj−1 + εj(eνj

+ e−νj
). Each Hj is a periodic operator 

with the lattice of periods Γj , where each Γj is a sub-lattice of Γj−1. At each step we will 
achieve that a certain partial derivative (or a certain combination of partial derivatives) 
of a perturbed Bloch function at the new extremal point (or points) becomes non-zero. 
Lemma 3.2 shows that, once some combination of the partial derivatives on the Bloch 
function is non-zero for the operator Hj, we can choose εn, n > j so small that the same 
combination is non-zero for all operators Hn, n ≥ j (notice that the choice of how small 
we require each εn to be depends also on the lattice Γn). At the end our objective is 
to achieve that at all local minima of the Bloch functions λ(κ) of Hn located near μ+
we had ∂xxλ 
= 0, ∂yyλ 
= 0, and ∂xxλ∂yyλ − (∂xyλ)2 
= 0 in some coordinate system 
(x, y); then, all minima will be non-degenerate. Of course, we will also make sure that 
εj are so small that 

∑
j εj < μ+ − μ−, so we have not closed the spectral gap. We will 

also assume that the perturbed operator is still periodic with, possibly, a new lattice 
of periods Γ̃ ⊂ Γ. In order to achieve this, it is enough to require that each vector νj

belongs to the set QΓ†. This set is dense and the objective of our perturbation will always 
be making certain quantities (like combinations of partial derivatives) non-zero. Since 
these quantities will always depend continuously on ν, once we have found any vector 
ν for which these quantities are non-zero, we can always find a vector inside QΓ† with 
these quantities still being non-zero. For example, in Lemma 3.4 we can always find ν
satisfying the requirements of that Lemma such that, additionally, we have ν ∈ QΓ†. 
Therefore, we will always assume that our choice of νj will be rational multiples of a 
vector from Γ, without specifying it explicitly.
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3.2. Several band functions have the same minimum at the same point

In this section, we will get rid of a situation when a point k0 is a minimum of two or 
more different band functions simultaneously. It was proved in [5] that (generically) this 
cannot happen; here, we will give (an outline of) a different proof, which seems to us 
to be rather shorter. We will need the following Lemma, sometimes known as the Shur 
complement Lemma.

Lemma 3.7. Suppose, P1 and P2 are two orthogonal projections in a Hilbert space H with 
P1 + P2 = I, and H is the self-adjoint operator which has the following block form with 
respect to P1 and P2.

H =
(
U11 U12
U21 U22

)
. (3.24)

This means that Ujl = PjHPl. We put Hj := Pj(H) and assume that λ /∈ σ(U22).

1. Suppose, ψ ∈ H1 is a vector lying in the kernel of (U11−λ) −U12(U22−λ)−1U21. Then 

φ̃ :=
(
ψ

φ

)
, where φ := −(U22 − λ)−1U21ψ, is an eigenvector of H corresponding 

to λ.
2. Suppose, λ is an eigenvalue of H. Then the kernel of (U11 −λ) −U12(U22 −λ)−1U21

(considered as an operator in H1) is non-trivial.

Proof. This is a straightforward computation. �
To begin with, let us assume that μ+ is the minimum of two band functions reached 

at the same point, say λ1(k0) = λ2(k0) = μ+. In this case we will not be taking vector 
ν from a finer lattice Γ̃†, instead we will assume that ν ∈ Γ† \ {0}. We also take slightly 
more complicated potential than before, namely we put v = aeν + āe−ν and denote by V
the operator of multiplication by v. Let us check what will happen with the eigenvalues at 
k0 after this perturbation. We apply the Shur complement Lemma to study eigenvalues 
of Hε(k) with k close to k0. We denote by P1 the orthogonal projection onto H(k) – 
the two-dimensional subspace generated by ψ1(k; ·) and ψ2(k; ·) and P2 = I − P1. Then 
the Shur complement Lemma shows that the perturbed eigenvalues coincide with the 
eigenvalues of the 2 × 2 matrix A = A(ε, k) = (amn)2m,n=1 with the coefficients given by

amm = λm(k) + ε[a
∑
θ∈Γ†

ψ̂m(θ;k)ψ̂m(θ;k + ν) + ā
∑
θ∈Γ†

ψ̂m(θ;k)ψ̂m(θ;k − ν)]

+ O(ε2)
(3.25)

and
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amn = ε[a
∑
θ∈Γ†

ψ̂m(θ;k)ψ̂n(θ;k + ν) + ā
∑
θ∈Γ†

ψ̂m(θ;k)ψ̂n(θ;k − ν)] + O(ε2) (3.26)

if m 
= n. We notice that the choice of the basis in H(k0) is not uniquely determined; we 
just fix some orthonormal basis φ := (ψ1(k0; ·), ψ2(k0; ·)) of H(k0).

Lemma 3.8. For some a ∈ C and ν ∈ Γ† \ {0} we have

a
∑
θ∈Γ†

ψ̂1(θ;k0)ψ̂2(θ;k0 + ν) + ā
∑
θ∈Γ†

ψ̂1(θ;k0)ψ̂2(θ;k0 − ν) 
= 0. (3.27)

Proof. Suppose not. Then for each ν ∈ Γ† we have 
∑

θ∈Γ† ψ̂1(θ; k0)ψ̂2(θ;k0 + ν) = 0
(this sum is zero if ν = 0 due to (2.15) anyway). Notice that

∑
θ∈Γ†

ψ̂1(θ;k0)ψ̂2(θ;k0 + ν) =
∑
θ∈Γ†

ψ̂1(θ;k0)ψ̂2(θ + ν;k0), (3.28)

and these numbers are Fourier coefficients of the product ψ1(k0, x)ψ2(k0,x). This prod-
uct, however, cannot be identically equal to zero for all x due to the unique continua-
tion. �

This lemma shows that off-diagonal elements of A(ε, k0) are non-zero for a certain 
choice of a and ν 
= 0. Therefore, its eigenvalues are different and we have achieved the 
required splitting. This simple argument is already sufficient to prove that Condition A 
is generic if eigenfunctions ψj are continuous in k, since then off-diagonal elements of A
will be non-zero for all k in a neighbourhood of k0.

In general situation we proceed as follows. We denote by {vmn(k)}2
m,n=1 the matrix 

of V in the basis ψj(k), j = 1, 2, and for any choice φ = (φ1, φ2) of an orthonormal basis 
of H(k0) we denote by {vmn(k0; φ)}2

m,n=1 the matrix of operator V in this basis. Let 
us fix a and ν so that the left-hand side of (3.27) is equal to one, i.e. v12(k0; ψ) = 1. 
This means that for any other choice of the basis φ we either have |v12(k0; φ)| ≥ 1/4 or 
|v11(k0; φ) −v22(k0; φ)| ≥ 1. Since the projection onto H(k) is analytic in k, for every η >

0 there exists δ > 0 such that whenever |k−k0| ≤ δ the matrix {vmn(k)}2
m,n=1 is η-close 

to the matrix {vmn(k0; φ)}2
m,n=1 with some choice of the basis φ. As a consequence, 

taking η = 1/8 we obtain the following statement. For every k in some neighbourhood 
M of k0 the elements of the matrix {vmn(k)}2

m,n=1 satisfy either |v12(k)| ≥ 1/8 or 
|v11(k) − v22(k)| ≥ 3/4.

Now, we consider the matrix of A(ε, k) in the basis ψj(k), j = 1, 2. We have

ajj(k) = λj(k) + εvjj(k) + O(ε2), a12(k) = εv12(k) + O(ε2).

Here, O(ε2) is uniform in k ∈ M . If k is such that |v12(k)| ≥ 1/8 then we obviously don’t 
have a multiple eigenvalue for ε small enough to dominate O(ε2). Assume the second 
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alternative, i.e. |v12(k)| ≤ 1/8 but |v11(k) − v22(k)| ≥ 3/4. Assume for definiteness 
v11(k) > v22(k) + 3/4 and λ1(k0) = λ2(k0) = 0, and 0 is the minimal value of these 
functions. We also have |vjj(k) − vjj(k0; φ)| ≤ 1/8 for some choice of the basis φ. The 
matrix of A(ε, k0) in this basis has the form

ajj(k0;φ) = εvjj(k0;φ) + O(ε2), a12(k0;φ) = εv12(k0;φ) + O(ε2).

Now, assume that we have a multiple eigenvalue at k ∈ M . Then a22(k) = a11(k), which, 
together with the observation that λj(k) ≥ 0, implies λ2(k) ≥ 3ε/4 + O(ε2) and thus

a22(k) ≥ ε(3/4 + v22(k)) + O(ε2) ≥ ε(5/8 + v22(k0;φ)) + O(ε2) > a22(k0;φ).

this means that k is not a point of minimum. Thus we proved that in some neighbourhood 
of k0 we cannot have the edge of the spectrum attained by more than one band function.

Suppose now that μ+ is the minimum of t band functions reached at the same point, 
λ1(k0) = λ2(k0) = · · · = λt(k0) = μ+. Then we proceed as above and our perturbation 
will be described by a t × t matrix the off-diagonal elements of which are non-zero for 
some choice of parameters. Arguments similar to those above imply that after this per-
turbation, the resulting operator will have an eigenvalue of multiplicity at most t − 1. 
Repeating this procedure t − 1 times if necessary, we will achieve that no two different 
bands can have a minimum at the same point. The arguments which justify the subse-
quent elimination of the multiple minima at different points or/and at different edges 
are standard. This proves the following Theorem (originally due to Klopp–Ralston, [5]):

Theorem 3.9. Condition A is generic for two-dimensional periodic potentials.

3.3. Minimum is a minimum of only one band function

First, we choose coordinates around k0 so that x goes along ν. In this section we will 
change these coordinates many times; in order to avoid cumbersome notation, we will 
call both old and new set of coordinates by the same letters (x, y) (sometimes writing 
xold and xnew to avoid confusion). Each time we perform a change of coordinates, we 
will have to check that the perturbation Z in the new coordinates still satisfies (3.22)
(or, at least, (3.17)).

Step 1. Obtaining a quadratic term in one direction.
Let k0 be a point of local minimum of λ0; we will introduce the orthogonal coordinates 

(x, y) around k0 so that the Taylor expansion of λ0 at k0 in these coordinates has a form

λ0(x, y) = x2n +
∑
α,β

dαβx
αyβ (3.29)

and the sum is over all (α, β) with α + β ≥ 2n with the exception of (α, β) = (2n, 0). If 
n = 1, we move to the next step, so now we assume that n ≥ 2. We apply the Weierstrass 
Preparation Theorem and obtain that λ0 has the following form:
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λ0(x, y) = (x2n +
2n−1∑
j=0

aj(y)xj)c(x, y),

where aj are analytic functions such that aj(y) = O(y2n−j) and c(0, 0) = 1. Making a 
change of variables xnew = xold − a2n−1(y)/(2n), we can assume that a2n−1 = 0. We 
notice that this change of variables does not affect the representation (3.22). So, for 
simplicity we will use the same notation (x, y) for the new variables. Then the Bloch 
function after the perturbation has a form

τε(x, y) = λ0(x, y) + ε2Z(x, y) + ε3b(x, y, ε)

= c(x, y)

⎛
⎝x2n +

2n−2∑
j=0

aj(y)xj + ε2Z(x, y)/c(x, y) + ε3b(x, y, ε)/c(x, y)

⎞
⎠ .

(3.30)

Here, b is analytic function in all variables. Each aj is analytic function of one variable 
and therefore has a simple form aj(y) = cjy

kj (1 + O(y)), cj 
= 0 (either this, or aj ≡ 0, 
in which case we put kj := ∞). Obviously, kj ≥ 2n − j. Let (x∗, y∗) be a point where 
the minimum of τε is attained in a small neighbourhood of the origin, i.e. x∗, y∗ = o(1)
as ε → 0. We prove that there is an improvement after the perturbation, namely:

Lemma 3.10. There is a partial derivative of τε of order smaller than 2n that does not 
vanish at (x∗, y∗).

Proof. Assume that it is not so. Then all partial derivatives of τε of order smaller than 
2n are equal to zero at (x∗, y∗). It is easy to see that τε(x∗, y∗) = O(ε2). Indeed, in any 
case τε(0, 0) = O(ε2) and τε(x∗, y∗) ≥ −Cε2 (as a sum of a non-negative function λ0 and 
O(ε2)). Thus, either τε(x∗, y∗) = O(ε2), or τε(x∗, y∗) > τε(0, 0), in which case (x∗, y∗)
cannot possibly be a minimum of τ .

Thus, all partial derivatives of τ̃ := τε/c(x, y) of order smaller than 2n are O(ε2) at 
(x∗, y∗). We get

O(ε2) = ∂2n−1τ̃

∂x2n−1 = (2n)!x∗ + O(ε2),

which gives x∗ = O(ε2). Next, for j = 0, . . . , 2n − 2,

O(ε2) = ∂2n−1τ̃

∂xj∂y2n−1−j
= cj

j!kj !
(kj − 2n + 1 + j)!y

kj−2n+1+j
∗ (1 + o(1)) + O(ε2),

and this implies y∗ = O(ε2/(kj−2n+1+j)) for j = 0, . . . , 2n − 2.
Now we notice that formula (3.22) implies that
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Z(x, y) = b0 + b1x− b2x
2 + O(x3) + O(y), (3.31)

where bj are functions of δ and b2 > 0 for small δ. Then our assumption that all deriva-
tives of τε of order smaller than 2n disappear implies

0 = ∂2τε
∂x2

= 2c2yk2
∗ (1 + o(1))c(x∗, y∗) + 2c1yk1

∗ (1 + o(1))c′x(x∗, y∗) + c0y
k0
∗ (1 + o(1))c′′xx(x∗, y∗)

− 2b2ε2 + o(ε2),

assuming kj , j = 0, 1, 2, are finite. But since kj > kj − 2n + 1 + j, j = 0, 1, 2, for 2n ≥ 4, 
this is the contradiction. The case when one or more kj = ∞ is even simpler and can be 
considered in the same way. �

This lemma shows that after the perturbation we get a non-zero derivative of order 
smaller than 2n in the new (and therefore in the old) variables. Repeating this procedure, 
we obtain a new Bloch function for which the second derivative in one direction does 
not vanish. Now we move to the next step.

Step 2. Obtaining a non-degenerate quadratic form.
Suppose now that the second derivative at our minimum in one direction is non-

degenerate, i.e.

(λ0)′′yy(0, 0) 
= 0. (3.32)

If second derivatives in all directions are non-degenerate, we have nothing else to do, so 
we also assume that

(λ0)′′xx(0, 0) = 0. (3.33)

By Weisstrass Preparation Theorem λ0 = (y2+2f1(x)y+f2(x))p(x, y) with some analytic 
functions f1, f2, p, such that p(0, 0) > 0. We immediately notice that f1(x) = O(x2). 
Indeed, if f1(x) has a non-trivial linear term in its Taylor expansion, then, since (0, 0)
is a minimum, f2(x) must have a non-trivial quadratic term, which contradicts (3.33). 
Changing variables xnew = xold, ynew = yold + f1(xold) we get

λ0 = (y2 + f(x))p1(x, y), p1(0, 0) > 0.

Since we have an isolated minimum, f(x) = bx2n(1 + O(x)) with some b > 0 and 
n ≥ 2. Now, rescaling we obtain that λ0 has the form λ0 = (x2n(1 + O(x)) + y2)c(x, y)
with c(0, 0) > 0. Finally, we make another change of variables x2n

new = x2n
old(1 +

O(xold))c(xold, yold) and y2
new = y2

oldc(xold, yold) so that in the new coordinates we have

τ̃ = x2n + y2 + ε2Z + O(ε3), (3.34)
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where we have denoted τ̃(xnew, ynew) = τ(xold, yold). Below (see Lemma 3.11) we will 
show that Z from (3.22) still admits similar representation in new variables:

Z(x, y) = b0 + b1x− b2x
2 + O(x3) + O(y), b2 > 0. (3.35)

As before, we assume that (x∗, y∗) is a point of a local minimum for τ̃ε near point (0, 0)
(in particular, x∗, y∗ = o(1)). We consider three cases.

Case 1. Suppose, b1 
= 0. Then from ∇τ̃(x∗, y∗) = 0 we get y∗ = O(ε2), x∗ =(−b1
2n ε2) 1

2n−1 (1 + o(1)). This implies

(τ̃)′′yy(x∗, y∗) = 2 + O(ε2), (τ̃)′′xy(x∗, y∗) = O(ε2),

(τ̃)′′xx(x∗, y∗) = 2n(2n− 1)
(
−b1
2n ε2

) 2n−2
2n−1

(1 + o(1)) + O(ε2).

Thus, we have a non-degenerate minimum at (x∗, y∗).
Case 2. Suppose, b1 = 0 and n ≥ 3. We notice that if x∗ = O(ε) then (τ̃)′′xx(x∗, y∗) < 0

which leads to a contradiction. So, |x∗/ε| → ∞ as ε → 0. Then, similar to the previous 
case one gets y∗ = O(ε2), x∗ =

(
b2
n ε2) 1

2n−2 (1 + o(1)) and

(τ̃)′′yy(x∗, y∗) = 2 + O(ε2), (τ̃)′′xy(x∗, y∗) = O(ε2),

(τ̃)′′xx(x∗, y∗) = 2n(2n− 1)
(
b2
n
ε2
)

(1 + o(1)) − 2b2ε2.

Thus, we again have non-degenerate minimum at (x∗, y∗).
Case 3. Finally, we consider the case b1 = 0 and n = 2. It is convenient to rescale 

xold = εxnew, yold = ε2ynew and divide by ε4. Then we have to consider

τ̂ = x4 + y2 + Ox,y(1)ε− b2x
2 + O(1)x + O(1)y + O(1)ε−2. (3.36)

Here we have used the fact that Y (ε) from (3.12) is analytic in (x, y). We are using the 
following convention: O(1) is a bounded function of ε only, and Ox,y(1) is a bounded 
analytic function of ε, x, y. Calculating the derivatives at point (x∗, y∗) we get

τ̂ = (1 + O(ε))(x− x∗)4 + (1 + O(ε))(y − y∗)2

+ (4x∗ + O(ε))(x− x∗)3 + (6x2
∗ − b2 + O(ε))(x− x∗)2 + const + Ox,y(1)ε.

(3.37)

Since we have a minimum, the worst scenario is when our quadratic form is degenerate. 
This means that

6x2
∗ − b2 = O(ε)

and corresponding form becomes zero in the direction (y − y∗) = O(ε)(x − x∗). In this
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direction the cubic term becomes (4x∗ + O(ε))(x − x∗)3 which contradicts to minimum 
condition since x2

∗ ∼ b2/6.
Now, let us show that the change of variables we use above does not destroy our 

achievements, i.e. that (3.35) holds in the new variables.

Lemma 3.11. All changes of the variables described above do not change the representation 
(3.22) for sufficiently small δ. In particular, (3.35) holds.

Proof. First, we discuss the change of variables

xnew = xold, ynew = yold + f1(xold). (3.38)

If f1(x) = O(x3) then the statement immediately follows from (3.22). So, we assume 
that f1(x) = sx2(1 + O(x)), s 
= 0. Then, since we have a minimum at point (0, 0) we 
have f2(x) = as2x4(1 + O(x)), a ≥ 1. Using this explicit form for λ0 = (y2 + 2f1(x)y +
f2(x))p(x, y) and repeating the calculations similar to (3.19), (3.20), it is not difficult to 
obtain more detailed version of (3.22). Namely,

Zp(0, 0) = O(δ−4) + O(δ−5)x− 20δ−6

as2 (1 + O(δ))x2 + 4δ−6

a2s3 (1 + O(δ))y

+ O(x3) + O(y2)

= O(δ−4) + O(δ−5)x̃−
(

20
as2 + 4

a2s2

)
δ−6(1 + O(δ))x̃2 + O(x̃3) + O(ỹ).

(3.39)

This proves the statement for the substitution (3.38).
Finally, the change of variables of the form xnew = xold(s1 + O(xold) + O(yold)) and 

ynew = yold(s2 + O(xold) + O(yold)), s1s2 
= 0, does not affect the representation (3.22)
for sufficiently small δ because the coefficient in front of x have smaller order in δ than 
the one in front of x2. �
3.4. Several minima

All the results of this Section obtained so far prove our main Theorem under assump-
tions that on each step of the procedure we have |S| = 1 (i.e. the minimum of the band 
function is attained at one point). Let us discuss the changes we need to make if S
consists of several points. Then we have to be slightly more careful with the choice of ν. 
The properties we need are summarised in the following statement:

Lemma 3.12. Suppose S is finite and arbitrarily sufficiently small δ > 0 is fixed. Then 
we can find a vector ν ∈ QΓ† arbitrarily close to a given direction with the length 
|ν| ∈ (δ/2, δ) and such that there are no two different points k1, k2 ∈ S satisfying 
k1 + nν = k2 + θ, where n ∈ Z and θ ∈ Γ†.
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Let us first discuss why these properties are sufficient for our purposes (and where 
exactly in our procedure these properties are required). We need to be able to choose ν
close to any direction to be able to perform Step 2. Here it is important to have uniform 
control of the length of ν so that all the estimates from Step 2 still hold for sufficiently 
close direction. Since δ is arbitrarily small we can also ensure that, e.g., C1 > 0 in 
(3.22). Let us denote by Γ̃† the lattice generated by Γ† and ν (this lattice is discrete 
due to the assumption ν ∈ QΓ†). Our last assumption means that all points kj ∈ S

are different modulo this new lattice Γ̃† (i.e. κj are different). This guarantees that 
(3.12) holds. Indeed, without this assumption Y is infinite and with this assumption Y , 
although depending on ν in an uncontrolled way, is still O(ε3) and analytic in κ in a 
neighbourhood of κ0.

Proof. We assume that δ is smaller than 1
100 min{|γ|, 0 
= γ ∈ Γ†}. Let us start by 

choosing any vector μ̃ from QΓ† with direction close to a given one. Let μ be the 
smallest vector in Γ† having the same direction as μ̃. We put ν := p̃μ

p , where p̃ and p
are natural numbers defined as follows. Suppose, kj, ks ∈ S are two points such that 
kj − ks = mjs

njs
μ + θ, where njs > 1 and mjs are co-prime integers and θ ∈ Γ†; note 

that njs is uniquely determined by kj and ks and does not depend on θ ∈ Γ†. If there 
are no such points kj, ks, we just define p̃ := 1 and choose p to be any natural number 
such that |ν| ∈ (δ/2, δ). Otherwise, we first choose p to be any large prime number 
(namely, p > 100|μ|/δ) co-prime with all njs. Then we choose p̃ such that |ν| ∈ (δ/2, δ). 
Obviously, p̃ is smaller than p and thus it is co-prime with p. We claim that this choice 
of ν satisfies all the required conditions. Indeed, assume that k1 + nν = k2 + θ, where 
n ∈ Z and θ ∈ Γ†. This means that m12+qn12

n12
μ + np̃

p μ = 0 for integer n, q with |n| < p, 
n 
= 0. However, this implies that np̃n12 = −(qn12 + m12)p, which is a contradiction 
since n12 and p̃ are co-prime with p, and 0 < |n| < p. �
4. Counter-examples

First of all, in Subsection 4.1, we will give several examples of discrete periodic 
Schrödinger operators for which property B is violated on an open set of potentials. 
This obviously shows that property B cannot possibly be generic in the discrete setting. 
Then, in Subsection 4.2, we will discuss how property B can be forced to hold by a 
small perturbation of our example if this perturbation is periodic with a sublattice of 
our original lattice of periods (of index two).

4.1. Counter-example

The following example is due to N. Filonov (see [2]). We define the discrete Schrödinger 
operator in l2(Z2) as H = Δ + V , where

(Δu)(n1,n2) = u(n1+1,n2) + u(n1−1,n2) + u(n1,n2+1) + u(n1,n2−1),
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and (V u)(n1,n2) = V0u(n1,n2) for n1 + n2 being even and (V u)(n1,n2) = V1u(n1,n2) for 
n1 + n2 being odd.

Then H can be represented as the direct integral

H =
⊕∫

Ω̃

H(k) dk, Ω̃ = {k ∈ R2 : |k1 + k2| ≤ π},

where H(k) acts in C2 and is represented by the following matrix

H(k) :=
(

V0 2 cos k1 + 2 cos k2
2 cos k1 + 2 cos k2 V1

)
.

Then it is easy to see that the spectrum of H consists of two bands

[
V0 + V1

2 −
√

(V0 − V1)2
4 + 16, min{V0, V1}

]
(4.1)

and

[
max{V0, V1},

V0 + V1

2 +
√

(V0 − V1)2
4 + 16

]
, (4.2)

and these intervals are disjoint unless V0 = V1. Moreover, the upper edge of the first band 
and the lower edge of the second band both are attained on the boundary of Ω̃. Thus, 
we have degenerate edges of the gaps with the corresponding degeneracy undestroyable 
with any small perturbation of the potential.

Of course, for the continuous Schrödinger operator the degeneracy on the lines is 
impossible by Thomas construction, moreover, as recently was proved in [2], even degen-
eracy on the curves is impossible for 2-dimensional continuous Schrödinger operators. 
However, this example is important as it shows that the question is not as obvious as 
it may look. Here we would also like to mention [11] where the magnetic Schrödinger 
operator was constructed with degenerate lower edge of the spectrum (still attained at 
one point) while the proof from [2] excludes degeneracy on the curves for 2D magnetic 
operators too.

Remark 4.1. The example described above can be adjusted to obtain degeneracy even if 
the number of parameters is very large. For example, assume that n ≥ 3 and consider 
the periodic operator with the lattice of periods generated by (n, 0) and (1, 1) and the 
potential (V0, V1, . . . , Vn−1) satisfying V0 < Vj−2. Then, if we put s := eik1 and t := eik2 , 
the matrix of the fibre operator has the following form:
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H(k) :=

⎛
⎜⎜⎜⎝

V0 s + t 0 . . . 0 s + t

s + t V1 s + t 0 . . . 0
...

...
...

...
...

...
s + t 0 . . . 0 s + t Vn−1

⎞
⎟⎟⎟⎠ .

Note that the quadratic form of H(k) equals V0 on the vector (1, 0, . . . , 0), which shows 
that the point V0 is the right edge of the first spectral zone, attained at {s + t = 0}. 
Thus the degeneracy of the spectral edge is an interval (not the union of two intervals 
as in the case n = 2).

4.2. How to destroy the degeneracy by changing the lattice of periods

Now we discuss how the degeneracy in the example from the previous subsection 
will be destroyed using our approach. We consider the initial operator with doubled 
period (in vertical direction); we also assume (as we can without loss of generality) that 
V0 = V > 0, V1 = −V . Then we have

H =
⊕∫

Ω̂

H(k) dk, Ω̂ := {k ∈ R2 : 0 ≤ kj ≤ π, j = 1, 2},

where H(k) acts in C4 and is represented by the following matrix

H(k) :=

⎛
⎜⎝

V 2 cos k1 0 2 cos k2
2 cos k1 −V 2 cos k2 0

0 2 cos k2 V 2 cos k1
2 cos k2 0 2 cos k1 −V

⎞
⎟⎠ .

We denote a := 2 cos k1 and b := 2 cos k2. The spectrum of the operator H consists of two 
bands [−

√
V 2 + 16, −V ] and [V, 

√
V 2 + 16]. The edges ±V are attained when a = ±b, 

i.e. on the diagonals of the square Ω̂.
We will show that now the small perturbation of the potential destroys the degeneracy 

of the edges. We consider in details the lower edge of the second band, the construction 
for the upper edge of the first band is similar. Our perturbation has the form B :=
diag{2ε, 0, 0, 0}, ε > 0. Equation det(H(k) + B − λ) = 0 reads as follows

[(λ2 − V 2) − (a2 + b2)]2 − 2ε(λ + V )[(λ2 − V 2) − (a2 + b2)] − 4a2b2 = 0.

We put t := [(λ2 − V 2) − (a2 + b2)] and solve the quadratic equation for t. We get

t = ε(λ + V ) ±
√
ε2(λ + V )2 + 4a2b2. (4.3)

First, let us show that the minimum of the second band is situated near the centre of 
the square a = b = 0. Indeed, obviously it must be near the diagonals a = ±b. In a 
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neighbourhood of any point on the diagonals which is not the centre of the square we 
have |ab| � 1. Then (4.3) gives

(λ2 − V 2) − (a2 + b2) = t = ε(λ + V ) ± 2ab
(
1 + O(ε2)

)
and thus

λ2 − ελ− (a± b)2 − V 2 − εV + O(ε2) = 0.

The eigenvalue corresponding to the second band is

λ = ε/2 +
√
V 2 + εV + (a± b)2 + O(ε2) ≥ V + ε + O(ε2).

At the same time, for a = b = 0 there is the solution t = 0 for (4.3) which corresponds 
to λ = V , and thus, the lower edge of the second band occurs near the point a = b = 0, 
i.e. k1 = k2 = π/2.

For the unperturbed operator we have λ2 = V 2 + (a ± b)2. This leads to

λ± = V + 1
2V (a± b)2 + O((a2 + b2)2).

We consider the two-dimensional subspace of the eigenvectors corresponding to the per-
turbed eigenvalues when ε ≥ 0. Let P be the orthogonal projection onto this subspace. 
We notice that while the eigenvectors, generally, are not analytic in a, b and ε, the projec-
tion P is analytic and can be represented by the convergent series P = P0 +

∑∞
n=1 ε

nPn

with Pn = Pn(a, b) being analytic in the small neighbourhood of (0, 0). Moreover, it is not 
hard to see that one can choose the analytic orthonormal basis f1(a, b, ε), f2(a, b, ε) in 
the range of P such that fj(0, 0, 0) = (1, 0, ±1, 0)/

√
2. Indeed, first we notice that the un-

perturbed matrix has analytic eigenvectors fj(a, b, 0) with fj(0, 0, 0) = (1, 0, ±1, 0)/
√

2
and then one should just apply Gram–Schmidt orthogonalisation to Pfj(a, b, 0). Since 
the range of P is, obviously, an invariant subspace of H(k) + B, it is enough to con-
sider the restriction of H(k) + B to this space. The matrix of this restriction in the 
orthonormal basis constructed above has the following form:

M :=
(
λ+ + ε(1 + g1(a, b, ε)) ε(1 + g3(a, b, ε))

ε(1 + g3(a, b, ε)) λ− + ε(1 + g2(a, b, ε))

)
,

with gj(0, 0, 0) = 0.
Put x = a+b

2
√
V

and y = a−b
2
√
V

. Then in these new coordinates the matrix M − V I has 
the following form:

M̃ :=
(

2μ1 σε
σε 2μ

)
, (4.4)
2
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where μ1 = x2 + O((x2 + y2)2) + εf1(x, y, ε), μ2 = y2 + O((x2 + y2)2) + εf2(x, y, ε), 
σ = 1 +f3(x, y, ε). Functions fj are analytic in all variables and f3(0, 0, 0) = 0. Obviously, 
we are interested in the smallest eigenvalue of M̃ , i.e.

τ := μ1 + μ2 −
√

(μ1 − μ2)2 + ε2σ2.

Let (x∗, y∗) be a point of local minimum for τ in a small neighbourhood of zero, i.e. 
|x∗| + |y∗| = o(1) as ε → 0. Without loss of generality we also assume x2

∗ ≥ y2
∗. We also 

notice that since the point (0, 0) was the minimum for the unperturbed eigenvalue, we 
also have μj(x∗, y∗) > −|o(ε)|.

Case 1. First, we assume that μ1 − μ2 ≥ 2ε at (x∗, y∗). Then we notice that

τ(x∗, y∗) ≥ (μ1 − μ2)
(

1 −
√

1 + ε2σ2

(μ1 − μ2)2

)
+ o(ε)

≥ − ε2σ2

2(μ1 − μ2)
+ o(ε) > −εσ = τ(0, 0).

(4.5)

Thus, the lower edge of the zone is not attained at point (x∗, y∗) and we can ignore this 
point.

Case 2. Let μ1 − μ2 ≤ 2ε at (x∗, y∗). Then

1 − μ1 − μ2√
(μ1 − μ2)2 + ε2σ2

≥ 1
20 .

Now, direct calculation shows that

0 = τ ′x(x∗, y∗)

=
(

1 − μ1 − μ2√
(μ1 − μ2)2 + ε2σ2

)
(μ1)′x

+
(

1 + μ1 − μ2√
(μ1 − μ2)2 + ε2σ2

)
(μ2)′x + O(ε2)√

(μ1 − μ2)2 + ε2σ2

=
(

1 − μ1 − μ2√
(μ1 − μ2)2 + ε2σ2

)
(2x∗(1 + o(1))) + O(ε) + O(ε2)√

(μ1 − μ2)2 + ε2σ2

(4.6)

and therefore

x∗ = O(ε) + O(ε2)√
(μ1 − μ2)2 + ε2σ2

= O(ε). (4.7)

Thus, we proved that
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x∗ = O(ε), y∗ = O(ε).

Now direct calculation of the derivatives of τ gives

∂2τ

∂x2 (x∗, y∗) = 2 + O(ε), ∂2τ

∂y2 (x∗, y∗) = 2 + O(ε), ∂2τ

∂x∂y
(x∗, y∗) = O(ε). (4.8)

Thus, we have obtained the non-degenerate minimum.

Acknowledgments

We are grateful to Nikolay Filonov, Ilya Kachkovskiy and Peter Kuchment for useful 
discussions and to the referee for several important suggestions. We also would like to 
thank the Isaac Newton Institute for Mathematical Sciences for its hospitality during 
the programme ‘Periodic and Ergodic Spectral Problems’ supported by EPSRC grant 
EP/K032208/1. The visit of LP to the Newton Institute was partially supported by the 
Simons Foundation. The research of LP was partially supported by the EPSRC grant 
EP/J016829/1; RS was partially supported by the NSF grant CCF-1527822.

References

[1] N. Ashcroft, N. Mermin, Solid State Physics, Brooks Cole, 1976.
[2] N. Filonov, I. Kachkovskiy, On the structure of band edges of 2d periodic elliptic operators, 

arXiv:1510.04367.
[3] T. Kato, Perturbation Theory for Linear Operators, Second edition, Grundlehren der Mathematis-

chen Wissenschaften, vol. 132, Springer-Verlag, Berlin–New York, 1976.
[4] W. Kirsh, B. Simon, Comparison theorems for the gap of Schrödinger operators, J. Funct. Anal. 

75 (2) (1987) 396–410.
[5] F. Klopp, J. Ralston, Endpoints of the spectrum of periodic operators are generically simple, Meth-

ods Appl. Anal. 7 (3) (2000) 459–463.
[6] P. Kuchment, The Mathematics of Photonic Crystals, Mathematical Modeling in Optical Science, 

SIAM, 2001.
[7] P. Kuchment, Y. Pinchover, Liouville theorems and spectral edge behavior on abelian coverings of 

compact manifolds, Trans. Amer. Math. Soc. 359 (12) (2007) 5777–5815.
[8] L. Parnovski, Bethe–Sommerfeld conjecture, Ann. Henri Poincaré 9 (3) (2008) 457–508.
[9] V.N. Popov, M. Skriganov, A remark on the spectral structure of the two dimensional Schrödinger 

operator with a periodic potential, Zap. Nauchn. Sem. LOMI AN SSSR 109 (1981) 131–133 (in 
Russian).

[10] M. Reed, B. Simon, Methods of Modern Mathematical Physics, vol. IV: Analysis of Operators, 
Academic Press, 1978.

[11] R. Shterenberg, An example of a periodic magnetic Schrödinger operator with degenerate lower 
edge of the spectrum, Algebra i Analiz 16 (2) (2004) 177–185, English translation: St. Petersburg 
Math. J. 16 (2) (2004) 417–422.

[12] M. Skriganov, Geometrical and arithmetical methods in the spectral theory of the multi-dimensional 
periodic operators, Proc. Steklov Inst. Math. 171 (1984).

http://refhub.elsevier.com/S0022-1236(17)30092-7/bib41s1
http://refhub.elsevier.com/S0022-1236(17)30092-7/bib46694B61s1
http://refhub.elsevier.com/S0022-1236(17)30092-7/bib46694B61s1
http://refhub.elsevier.com/S0022-1236(17)30092-7/bib4B61s1
http://refhub.elsevier.com/S0022-1236(17)30092-7/bib4B61s1
http://refhub.elsevier.com/S0022-1236(17)30092-7/bib4B695369s1
http://refhub.elsevier.com/S0022-1236(17)30092-7/bib4B695369s1
http://refhub.elsevier.com/S0022-1236(17)30092-7/bib4B6C5261s1
http://refhub.elsevier.com/S0022-1236(17)30092-7/bib4B6C5261s1
http://refhub.elsevier.com/S0022-1236(17)30092-7/bib4B75s1
http://refhub.elsevier.com/S0022-1236(17)30092-7/bib4B75s1
http://refhub.elsevier.com/S0022-1236(17)30092-7/bib4B755069s1
http://refhub.elsevier.com/S0022-1236(17)30092-7/bib4B755069s1
http://refhub.elsevier.com/S0022-1236(17)30092-7/bib5061s1
http://refhub.elsevier.com/S0022-1236(17)30092-7/bib5053s1
http://refhub.elsevier.com/S0022-1236(17)30092-7/bib5053s1
http://refhub.elsevier.com/S0022-1236(17)30092-7/bib5053s1
http://refhub.elsevier.com/S0022-1236(17)30092-7/bib52655369s1
http://refhub.elsevier.com/S0022-1236(17)30092-7/bib52655369s1
http://refhub.elsevier.com/S0022-1236(17)30092-7/bib5368s1
http://refhub.elsevier.com/S0022-1236(17)30092-7/bib5368s1
http://refhub.elsevier.com/S0022-1236(17)30092-7/bib5368s1
http://refhub.elsevier.com/S0022-1236(17)30092-7/bib536Bs1
http://refhub.elsevier.com/S0022-1236(17)30092-7/bib536Bs1

	Perturbation theory for spectral gap edges of 2D periodic Schrödinger operators
	1 Introduction
	2 General facts
	3 Description of the approach: main tools
	3.1 Description of the approach: the main idea
	3.2 Several band functions have the same minimum at the same point
	3.3 Minimum is a minimum of only one band function
	3.4 Several minima

	4 Counter-examples
	4.1 Counter-example
	4.2 How to destroy the degeneracy by changing the lattice of periods

	Acknowledgments
	References


