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Mendelian randomisation implicates hyperlipidaemia as a risk factor for
colorectal cancer
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Novelty and Impact

While observational studies have suggested an association between blood cholesterol levels and

colorectal cancer (CRC), they do not establish causality and may be influenced by confounding

factors. Here we use Mendelian randomisation using genetic instrumental variables to provide

evidence for a causal link between blood cholesterol levels and colorectal cancer. Thus, reducing

hyperlipidaemia is an important target for primary prevention of CRC in the population.
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ABSTRACT

While elevated blood cholesterol has been associated with an increased risk of colorectal cancer

(CRC) in observational studies, causality is uncertain. Here we apply a Mendelian randomisation

(MR) analysis to examine the potential causal relationship between lipid traits and CRC risk. We

used single nucleotide polymorphisms (SNPs) associated with blood levels of total cholesterol (TC),

triglyceride (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) as instrumental

variables (IV). We calculated MR estimates for each risk factor with CRC using SNP-CRC

associations from 9,254 cases and 18,386 controls. Genetically predicted higher TC was associated

with an elevated risk of CRC (odds ratios (OR) per unit SD increase = 1.46, 95% confidence interval

[CI]: 1.20-1.79, P=1.68x10-4). The pooled ORs for LDL, HDL, and TG were 1.05 (95% CI: 0.92-1.18,

P=0.49), 0.94 (95% CI: 0.84-1.05, P= 0.27), and 0.98 (95% CI: 0.85-1.12, P=0.75) respectively. A

genetic risk score for 3-hydoxy-3-methylglutaryl-coenzyme A reductase (HMGCR) to mimic the

effects of statin therapy was associated with a reduced CRC risk (OR=0.69, 95% CI: 0.49-0.99,

P=0.046). This study supports a causal relationship between higher levels of TC with CRC risk, and

a further rationale for implementing public health strategies to reduce the prevalence of

hyperlipidaemia.
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INTRODUCTION

Colorectal cancer (CRC) is the third most common cancer diagnosed in economically developed

countries1. The mortality rate from CRC has been declining over the last twenty years as a

consequence of improved medical care and probably through the introduction of population

screening programs for the early detection of tumours2-4. Despite this improvement in patient

outcome, it is still important to understand the risk factors for CRC in order to inform public health

policy.

A number of factors influenced by lifestyle have been reported to be associated with the

development of CRC in epidemiological observational studies, including a positive correlation with

circulating levels of plasma cholesterol and other components of the lipid profile5, 6. It is, however,

unclear from these studies if findings reflect a causal relationship or are simply a consequence of

confounding by factors common to the aetiology of both CRC and hyperlipidaemia (e.g. common

dietary factors) or reverse causality. Because lipid levels can be modified by lifestyle and treatment

with statins, deciphering the basis for the association should be informative in formulating and

optimizing prevention programs for CRC.

Evidence that statin use will effect a reduction in CRC is highly controversial7, 8. Although an

analysis of The Health Improvement Network (THIN) database found that statin usage was

associated with reduced CRC (long term usage: odds ratio [OR] = 0.95, 95% confidence interval

[CI]: 0.91-0.99; short term usage: OR= 0.92, 95% CI: 0.85-0.99); no difference was shown between

continued versus discontinued therapy, suggesting indication bias8. Moreover a recent meta-

analysis of data from eight randomized controlled trials (RCTs) failed to demonstrate a beneficial

effect which was statistically significant (relative risk = 0.89, 95% CI: 0.74-1.07)9. Each of these

RCTs, however have the same limitations of short follow-up time, few CRC cases, and

ascertainment of CRC as a secondary outcome.

Mendelian randomisation (MR) provides a useful complement to the traditional epidemiological

study10. This strategy makes use of genetic variants that are robustly associated with traits of

interest, in this case lipid traits - total cholesterol (TC), low-density lipoprotein (LDL), high-density 

lipoprotein (HDL), and triglyceride (TG) - as instrumental variables (IV) to infer whether
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associations between exposure and disease are causal. The use of genetic variants as IV to proxy

modifiable exposure therefore avoids confounding by environmental factors, can be reflective of

life-long exposure (propensity), and is not be subject to reverse causality. The strength of the IV in

MR is important for power, but weak instruments can also lead to inconsistent instrumental

variables estimators. Hence using a genetic score derived from a combination of single nucleotide

polymorphisms (SNPs), which collectively explains more of the variance in the risk factor, mitigates

against weak instrument bias thereby increasing study power.

Genetics scores derived from multiple SNPs for lipid traits have been used in MR studies to

investigate associations between blood lipids and coronary heart disease11, and most recently

prostate cancer12. Here we have employed MR to examine the impact of lipid traits on the risk of

developing CRC.



Rodriguez-Broadbent et al

7

METHODS

Colorectal cancer datasets

We investigated the relationship between genetic risk scores for lipid traits and CRC risk using data

from seven previously reported genome-wide association studies (GWAS) of CRC13 (Table 1).

Briefly, these GWAS were all based on individuals with European ancestry and comprise: CCFR1,

CCFR2, COIN, FINLAND, UK1, Scotland1 and VQ58. All studies were approved by their respective

institutional review boards and conducted with appropriate ethical criteria in each country and in

accordance with the Declaration of Helsinki. Comprehensive details on the cases and controls are

available in previously published work13-16.

Genotyping data

Details of the genotyping and quality control of the seven CRC GWAS have been previously

published13. Briefly, we excluded SNPs with a minor allele frequency of <1%, low call rate <95%,

SNPs violating Hardy-Weinberg equilibrium, and individuals with non-European ancestry as

assessed using HapMap v2 reference data17. Imputation of untyped SNP genotypes was performed

using IMPUTEv2 software18 using a merged reference panel consisting of Sequencing Initiative

Suomi (for the FINLAND data) or UK10K (for the remaining data) in addition to 1000 Genomes

Project data. Poorly imputed SNPs (i.e. INFO score of <0.8) were excluded. Summary statistics from

the seven GWAS were used to calculate the ORs for lipid-related SNPs.

Gene variants used to construct genetic risk scores

Genetic risk scores as IVs for circulating lipid fractions were developed from SNPs previously

identified by the Global Lipids Genetics Consortium (GLGC)19. Median and range of standard

deviations of lipid trait measurements in European cohorts of the Global Lipids Genetics

Consortium are shown in Supplementary Table 1. We considered only SNPs associated at

genome-wide significance (i.e. P ≤ 5.0x10-8) and restricted to individuals with European Ancestry.

To avoid co-linearity between SNPs, we excluded SNPs that were correlated (i.e. r2 value ≥ 0.01), 

only considering the SNP with the strongest effect on the lipid trait for inclusion in genetic risk

scores. Pairwise r2 values were calculated using PLINK v1.90 utilising samples of European ancestry

from the 1000 Genomes and UK10K sequencing projects (Supplementary Data). This resulted in

58 SNPs for HDL, 29 SNPs for LDL, 26 SNPs for TG, and 38 SNPs for TC (Supplementary Table 2).
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Because lipid traits share common genetic variants, in addition to calculating an ‘unrestricted

allele score’ that included all SNPs associated with the lipid trait, we also calculated a ‘restricted

allele score’ as per Holmes et al 11 based on SNPs exclusively associated with HDL (n=43), LDL

(n=9), or TG (n=14) to make them as specific as possible (Supplementary Table 3). Risk alleles

were those that were positively associated with TC, LDL and TG or negatively associated with HDL

levels. For all identified SNPs, we recovered the chromosome positions, the risk alleles, association

estimates and standard errors.

Statistical analysis

We performed MR analysis to assess the association between TC, LDL, HDL, TG and CRC using

summary statistics as described Burgess et al. (2015) 20. The combined ratio estimate ( ) of all

SNPs associated with each lipid trait on CRC was calculated under a fixed-effects model:

Xk corresponds to the association between SNP k with the lipid trait and Yk is the association

between SNP k and CRC risk with standard error The standard error of the combined ratio

estimate is given by:

With the statistics generated by following these calculations on the seven different cohorts in the

CRC data, we performed a meta-analysis under a fixed-effects model to derive the final ORs and

confidence intervals.

A key assumption for this MR analysis is there is no pleiotropism (i.e. a gene influencing multiple

traits) between the genes influencing CRC and the lipid traits under study. Therefore, before

performing the MR analysis, we performed LD regression to test for global evidence of pleiotropy

as per Bulik-Sullivan et al. (2015) 21, 22, and subsequently implemented an MR-Egger regression to

examine for violation of the standard IV assumptions in our analysis 23.

For each statistical test we considered a global significance level of P≤0.05 as being satisfactory to 

derive conclusions. To assess the robustness of our conclusions, we imposed a conservative

Bonferroni-corrected significance threshold of 0.0125 (i.e. 0.05/4 lipid traits). We deemed a P-
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value > 0.05 as non-significant (i.e. no association), a P-value ≤0.05 as evidence for a potential 

causal association, and a P-value ≤0.0125 as significant evidence for a causal association. All 

statistical analyses were undertaken using R software (Version 2.14.1).

The power of a MR investigation depends greatly on the proportion of variance in the risk factor

that is explained by the IV. We estimated study power using the methodology of Burgess (2014) 24,

utilizing published estimates of the heritability of lipid trait associated IV SNPs 19 and the reported

effect of each trait on CRC risk in epidemiological studies 8.

In a subsidiary analysis we constructed a genetic risk score for 3-hydroxy-3-methylglutaryl-CoA 

reductase (HMGCR) using rs12916, rs17238484, rs5909, rs2303152, rs10066707 and rs2006760.

These specific SNPs have previously been used to mimic statin intervention to estimate a causal

association of statin use and coronary heart disease and diabetes 25.
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RESULTS

Using LD regression, we found no evidence for global pleiotropism (i.e. shared genetic

components) between CRC and any of the lipid traits under investigation (Table 2). Following on

from these observations we performed MR-Egger regression tests to explicitly examine for

infringement of the standard instrumental variable assumptions in our MR analysis. We did not

find evidence of any violation in respect to TC, LDL, HDL or TG (Table 2, Supplementary Figure 1).

In view of the totality of these findings we were reassured of the validity of our MR-based analysis

to infer whether the relation between exposures and CRC were likely to be causal.

The associations of each unrestricted allele score for respective target lipid traits are shown in

Figure 1. A positive correlation between variants associated with higher risk levels of TC and CRC

was observed. The pooled OR meta-analysis for CRC by TC, estimated in IV analysis using the allele

score was 1.46 per genetically instrumented SD increase in TC (95% CI: 1.20-1.79, P = 1.68 x 10-4,

test for heterogeneity between studies I2 = 6%, Phet = 0.38).

The strongest reported SNP association for TC levels was provided by rs10401969 (CILP2) and

rs12916 (HMGCR)19. To examine if the correlation between TC and CRC risk was primarily driven

by these variants, we performed a sensitivity analysis excluding rs10401969 and rs12916.

Omission of these two SNPs from the MR analysis did not appreciably affect our MR findings with

results remaining significant (OR = 1.69, 95% CI: 1.25-2.28, P = 6.76 x 10-4). Albeit not significant,

there was some support for a positive association with LDL (OR = 1.05, 95% CI: 0.92-1.18, P = 0.49)

and CRC risk, and a negative association between HDL (OR = 0.94, 95% CI: 0.84-1.05, P = 0.27) and

CRC risk.

Following on from these analyses, we performed a MR based analysis of LDL, HDL and TG using

genetic scores derived from restricted sets of SNPs. As with the unrestricted analysis, no significant

causal effect for each of these lipid traits was observed (Supplementary Figure 2).

Finally, genetically predicted lowered TC using the HMGCR genetic risk score was associated with

43% reduction in CRC (OR=0.69, 95% CI: 0.49-0.99, P=0.046, Phet= I2=56%).
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DISCUSSION

The present study strengthens a causal inference between circulating levels of TC and risk of

developing CRC that is independent of known confounding effects. The positive correlation

between the IV for TC and CRC risk, remained significant even after imposing a Bonferroni-

correction to account for multiple testing. It is noteworthy that none of the IV SNPs for TC also

represent IVs for obesity26, supporting an independent relationship between TC and CRC. As

illustrated here and in previously studies of obesity and CRC 27, 28, insulin levels and uterine cancer

29, and lipid levels and coronary heart disease 30 MR provides an attractive means of establishing

causal associations. In addition to demonstrating an association between TC and CRC risk we

found that genetic variants that mimic the effect of HMGCR inhibition were associated with a

reduced CRC risk, supporting findings from observational epidemiological studies that statins have

beneficial effect on the population burden of CRC.

Studies in mice have shown that knocking out the cell surface cholesterol-sensing receptor gene

NPC1L1, which plays a critical role in the absorption of intestinal cholesterol, reduces CRC risk31.

However, the biological mechanism by which cholesterol may affect CRC risk remains to be

established. Cholesterol is thought to have multiple carcinogenic/cancer promoting effects at the

cellular level and several mechanisms have been variously suggested, including the cholesterol-

mediated activation of the NLRP3 inflammasome32. Since statins are largely retained by

hepatocytes, their effect on CRC will be indirect, via HMGCR inhibition. Intriguingly, recent data

suggests that any impact of statin therapy on CRC is by prevention of progression of adenomas to

frank cancers rather than their development per se 33. Further research on the biological

relationship between cholesterol and CRC is needed to address such a proposition.

A major strength of our MR analysis is that it does not suffer from the influence of recall bias and

confounding that affects traditional observational studies. Nevertheless, a primary assumption in

MR is that the variants used to generate genetic scores are indeed associated with the exposure

being examined. To ensure this was the case, we only made use of variants associated with each

lipid trait at genome-wide significance from hypothesis-free GWAS. A second assumption is that

variants are associated with CRC only through the exposure and are not confounded by shared

genetic (i.e. pleiotropy). This would be revealed as an increasing linear relationship between SNPs

and their effect size for any lipid trait and CRC risk; we did not observe such a relationship.
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Although it is not possible to exclude confounding by unknown confounders, the use of multiple

independent variants acting through different pathways reduces the likelihood of confounded IV-

associations. Moreover by using LD regression, we have been able to exclude pleiotropism on a

global basis21. Finally, we only made use of data from individuals of European descent in the GWAS

SNPs to limit potential bias from population stratification influencing study findings.

As with any MR analysis, there are potential limitations to our findings, including the limited trait

variance explained by genetic variants, restricting statistical power. This is especially relevant for

null findings, since wide confidence intervals leave uncertainty over the presence of a causal

effect. It is estimated that the SNPs from the Global Lipids Genetics Consortium GWAS explain

approximately 8-11% of the total variation in each lipid trait19. Recent analyses of observational

studies found higher impact on CRC for TC than LDL or TG; respective ORs and 95% CIs – 1.49

(1.32-1.69), 1.37 (1.11-1.69), and 1.16 (1.06-1.27) 8. Based on these data our MR study was well-

powered to demonstrate a causal relation for TC (≈80%, stipulating a P-value of 0.05), but we had

limited power to identify associations for other lipid traits, particularly TG and HDL (respective

power estimates for TG, LDL and HDL being 13%, 68% and 31%). Hence while the ORs for CRC with

LDL and TG are congruous with observational studies 34 larger studies are required to formally

establish a relationship using MR.

There are differences in the genomic landscapes of colonic and rectal cancers which presumably

may reflect differences in aetiology. Unfortunately, these data were not uniformly collected across

datasets, and we therefore did not investigate the possibility of differential effects of cholesterol

on risk by anatomical location within the colorectum35.

In conclusion, this study provides evidence for a causal role of higher TC levels in the aetiology of

CRC. Hence our findings encouragingly support the overall findings of past observational studies.

Our limited power to further refine the relationship between lipid profile and CRC provides a

motivational for larger MR studies, which will benefit from enhanced statistical power to

demonstrate relationships for the spectrum of colorectal neoplasia. Irrespective of the exact

functional basis of the association between TC and CRC risk, reducing hyperlipidaemia is an

important target for primary prevention of CRC in the population. Our analysis therefore supports

the hypothesis that the increasing use of statins in the population for prevention of cardiovascular

disease will have the added bonus of reducing the burden of CRC.
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FIGURE LEGENDS

Figure 1: Meta-analysis odds ratios (OR) for colorectal cancer per unit increase in genetic risk
score (SD trait) for each lipid trait. TC: Total cholesterol, TG: Triglyceride, LDL: low density
lipoprotein, HDL: high density lipoprotein; Horizontal lines: 95% Confidence Intervals (95% CI). Phet:
P-value for heterogeneity; I2: proportion of the total variation due to heterogeneity. Box: OR point
estimate; its area is proportional to the weight of the study. Diamond: overall summary estimate,
with confidence interval given by its width. Vertical line: null value (OR = 1.0). 





Table 1: Summary of the seven genome-wide association studies of colorectal cancer (9,254 cases and 18,386)

Series Study setting Study centre Sampling No. cases No. controls

CCFR1 Colon Cancer Family Registry University of Southern California Recently diagnosed cases reported to population-based cancer
registries in the USA (Seattle Familial Colorectal Cancer
Registry). Canada (Ontario Familial Cancer Registry) and
Australia (Australasian Colorectal Cancer Family Study).
Population-based controls.

1,290 1,055

CCFR2 Colon Cancer Family Registry University of Southern California Recently diagnosed cases reported to population-based cancer
registries in the USA (Seattle Familial Colorectal Cancer Registry,
Mayo Clinic Cooperative Family Registry for Colon Cancer
Studies, USC Consortium Colorectal Cancer Family Registry,
University of Hawaii Colorectal Cancer Family Registry). Canada
(Ontario Familial Cancer Registry) Australia (Australasian
Colorectal Cancer Family Study). Unaffected family controls.

796 2,236

COIN COIN trial: Multicentre study of
cetuximab and other therapies in
metastatic CRC. Controls were
unselected blood donors

Cardiff University Cases recruited as a clinical-based series and controls as
population-based series.

2,244 2,162

FINLAND Finnish Colorectal Cancer
Predisposition Study

Helsinki University Cases requited through Finnish Hospitals and Finnish Cancer
Registry. Population-based controls from FINRISK, Health 2000,
Finnish Twin Cohort and Helsinki Birth Cohort Studies.

1,172 8,266

UK1 CORGI (colorectal Tumour Gene
Identification Consortium)

Oxford University Cases enriched for family history of CRC, ascertained through UK
clinical genetics clinics. Spouse controls with no personal history
or family history of CRC.

940 965

Scotland1 COGS (Colorectal Cancer
Susceptibility Study)

Edinburgh University Scottish population-based incidence cases aged <55 at diagnosis.
Population-based controls frequency matched by area of
residence. Scotland

1,012 1,012

VQ58 Cases: VICTOR, post treatment stager
of a phase III, randomised trial of
rofecoxib (VIOXX) in patients after
potentially curative therapy.
QUASAR2, multi-centre study of
capectibine±bevacizumb as adjuvant
treatment. 1958 Birth Cohort controls

Oxford University Cases recruited as a clinical-based series and controls as
population-based series.

1,800 2,690



Table 2: Testing for global and instrumental-specific pleiotropism. Point estimates, confidence
intervals, and P-values from linkage disequilibrium (LD) regression analysis, and MR-Egger
methods. For MR-Egger, the intercept represents the average pleiotropic effect; an intercept
significantly different from zero implies directional pleiotropy.

LD regression results

Trait Heritability estimate Genetic correlation Standard error P-value

TC 0.2408 0.049 0.0635 0.4402

TG 0.2939 0.0322 0.0639 0.6143

LDL 0.2122 0.0729 0.066 0.2696

HDL 0.2499 -0.0603 0.563 0.2834

MR-Egger regression results

Trait Estimate
Corrected

standard error
CI lower CI upper P-value

TC intercept 1.11x10-2 1.25x10-2 -1.42x10-2 3.64x10-2 0.38

slope 0.16 0.33 -0.51 0.83 0.64

TG intercept -1.13x10-2 1.10x10-2 -3.38x10-2 1.12x10-2 0.31

slope 5.65x10-2 0.17 -0.30 0.42 0.75

LDL intercept -3.41x10-3 7.67x10-3 -1.91x10-2 1.23x10-2 0.66

slope 0.10 0.11 -0.11 0.32 0.34

HDL intercept 2.23x10-3 5.58x10-3 -8.94x10-3 1.34x10-2 0.69

slope -0.11 0.11 -0.32 0.11 0.31


