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Abstract

We devise and analyze a new stabilized finite element method to solve the first-
order transport (or advection-reaction) equation. The method combines the usual
Galerkin/Least-Squares approach to achieve stability with a nonlinear consistent
penalty term inspired by recent discretizations of contact problems to weakly enforce
a positivity condition on the discrete solution. We prove the existence and the
uniqueness of the discrete solution. Then we establish quasi-optimal error estimates
for smooth solutions bounding the usual error terms in the Galerkin/Least-Squares
error analysis together with the violation of the maximum principle by the discrete
solution. Numerical examples are presented to illustrate the performances of the
method.

Key words: stabilized finite element method, consistent penalty, positivity
preserving, transport equation, discrete maximum principle

1 Introduction

The design of robust and accurate finite element methods for first-order trans-
port (or advection-reaction) equations or for advection-dominated advection-
diffusion equations remains an active field of research. Indeed, the task of
designing a numerical scheme that is of higher order than one in the zone
where the exact solution is smooth, but preserves the monotonicity properties
of the exact solution on the discrete level, is nontrivial. Since it is known that
such a scheme necessarily must be nonlinear even for linear equations, one
typical strategy adopted when working with stabilized finite element methods
is to add an additional nonlinear shock-capturing term, designed to make the
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method satisfy a discrete maximum principle; see, e.g., [1,2]. These methods,
however, often result in ill-conditioned nonlinear equations and include param-
eters that may be difficult to tune and that depend on the mesh geometry.
Another approach is the so-called flux-corrected finite element method [3,4]. In
this scheme, the system matrix is manipulated so that it becomes a so called
M-matrix, the inverse of which has positive coefficients which yields a maxi-
mum principle. Such a scheme is monotonicity preserving, but of first order.
In order to improve the accuracy, anti-diffusive mechanisms, or flux-limiter
techniques, have been proposed so as to reduce the amount of dissipation in
the smooth regions by blending a low- and a high-order approximation [4,5].

In this paper, we consider a method that follows a completely different ap-
proach. The starting observation is that, if the problem satisfies a maximum
principle of the form

u ≥ 0, (1)

then this constraint can be added to the problem without any perturbation. On
the discrete level however, the condition (1) is not necessarily satisfied, unless
enforced by the numerical method, which is the purpose of all the methods dis-
cussed above. One may argue that one can solve the problem with any method
under the constraint (1). This was proposed in [6]. The resulting method, in
the form of a variational inequality, is unwieldy, with the need of Lagrange
multipliers to impose the constraint and associated stability and solver issues.
In the present work, we instead draw on recent advances in the field of contact
problems [7,8], where the variational inequality instead is discretized by means
of a nonlinear consistent penalty method. Note however that in the present
context the formulation cannot be associated with an augmented Lagrangian
method, due to the lack of symmetry of the formulation.

Our method combines the well-known Galerkin/Least Squares (GaLS) dis-
cretization of the transport equation (see [9,10]) with a nonlinear switch in-
spired from [8] and that changes the equations in the zones where (1) is vi-
olated to a least-squares penalty on this inequality (more precisely, the neg-
ative part of the discrete solution) together with a least-squares penalty on
the residual. Our method is not meant to enforce strictly a discrete maximum
principle, but to blend asymptotically the satisfaction of the GaLS approxi-
mation of the PDE with the satisfaction of the discrete maximum principle,
in the same spirit of the above-mentioned methods for contact problems. We
first prove the existence and uniqueness of the discrete solution. Then, our
main result is Theorem 3.1 where we establish a quasi-optimal error estimate
bounding at the same time the error measured in the usual GaLS norm (com-
bining the L2-norm on the solution, its boundary values, and the advective
derivative weighted by the local mesh size) and the violation of the positiv-
ity condition (1) measured by the weighted L2-norm of the negative part of
the discrete solution. These convergence results hold for all polynomial orders
k ≥ 1. Another salient feature of our method is its flexibility in incorporating
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a priori lower and upper bounds on the discrete solution by simply adding the
corresponding consistent penalty term to the discrete formulation. Finally, we
report some numerical experiments illustrating that accurate solutions with
mild and asymtotically vanishing violations of the discrete maximum principle
can be obtained at moderate computational costs.

2 Model problem and GaLS discretization

Let Ω be an open, bounded, Lipschitz set in Rd, d ∈ {2, 3}, let β ∈ W 1,∞(Ω;Rd)
be a given advection velocity, and let σ ∈ L∞(Ω;R) be a given reaction co-
efficient. We assume that β and σ satisfy the following (classical) positivity
assumption: There exists σ0 > 0 such that

0 < σ0 ≤ σ − 1

2
∇·β, a.e. in Ω. (2)

We split the boundary ∂Ω of Ω as ∂Ω = ∂Ω− ∪ ∂Ω0 ∪ ∂Ω+ with ∂Ω− =
{x ∈ ∂Ω | (β·n)(x) < 0} (inflow boundary), ∂Ω0 = {x ∈ ∂Ω | (β·n)(x) = 0}
(characteristic boundary), and ∂Ω+ = {x ∈ ∂Ω | (β·n)(x) > 0} (outflow
boundary). On the boundary, we introduce the linear space composed of those

functions v : ∂Ω 7→ R such that the weighted L2-norm ‖|β·n| 12v‖∂Ω is bounded,
and we denote this space by L2

|β·n|(∂Ω;R).

We consider the following model problem: Find u : Ω→ R such that

A(u) := β·∇u+ σu = f in Ω, (3a)

u = g on ∂Ω−. (3b)

We assume that f ∈ L2(Ω;R) and g ∈ L2
|β·n|(∂Ω−;R) and look for a weak

solution in the graph space V := {v ∈ L2(Ω;R) | β·∇v ∈ L2(Ω;R)}. Assuming
that dist(∂Ω−, ∂Ω+) > 0, one can show [11] that functions in the graph space
admit a trace in the weighted space L2

|β·n|(∂Ω;R) and that there exists one
and only one weak solution in the graph space V to the model problem (3).
In particular, we observe that the following positivity condition holds:

σ0‖v‖2
Ω +

1

2
‖|β·n|

1
2v‖2

∂Ω ≤ (β·∇v+ σv, v)Ω− 〈(β·n)v, v〉∂Ω− , ∀v ∈ V. (4)

Several stabilized H1-conforming finite element methods are available in the
literature to discretize (3). We focus on the Galerkin/Least-Squares method
(GaLS). Let Th be a mesh from a shape-regular mesh sequence. We assume for
simplicity that Ω is a polytope (polygon/polyhedron) so that Th can cover Ω
exactly. Let k ≥ 1 be the polynomial degree and consider the H1-conforming
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finite element space

V k
h := {vh ∈ C0(Ω;R) | vh|T ∈ Pk(T ;R), ∀T ∈ Th}, (5)

where Pk(T ;R) denotes the space composed of R-valued functions that are
the restriction to T of d-variate polynomials of degree at most k. We consider
the following discrete problem: Find uh ∈ V k

h such that

aτh(uh, wh) = `τh(wh), ∀wh ∈ V k
h , (6)

with the following bilinear and linear forms:

aτh(vh, wh) := (A(vh), wh + τA(wh))Ω − 〈(β·n)vh, wh〉∂Ω− , (7a)

`τh(wh) := (f, wh + τA(wh))Ω − 〈(β·n)g, wh〉∂Ω− . (7b)

The stabilization parameter τ is piecewise constant on Th and is of the order
of the local mesh size hT for all T ∈ Th; more precisely, a suitable choice is
τ |T = min(σ−1

0 , β−1
T hT ) with βT = ‖β‖L∞(T ;Rd). By construction, the discrete

bilinear form aτh is coercive with respect to the norm:

aτh(v, v) ≥ |||v|||2 := σ0‖v‖2
Ω + ‖|β·n|

1
2v‖2

∂Ω + ‖τ
1
2A(v)‖2

Ω, ∀v ∈ V. (8)

Moreover, exact consistency holds, and the following quasi-optimal error esti-
mates can be established [9,10]: There exists C, uniform, such that

|||u−uh||| ≤ C inf
vh∈V k

h

(‖τ−
1
2 (u−vh)‖Ω+‖|β·n|

1
2 (u−vh)‖∂Ω+‖τ

1
2A(u−vh)‖Ω), (9)

and if u ∈ Hk+1(Ω), |||u − uh||| ≤ C(
∑
T∈Th φTh

2k+1
T |u|2Hk+1(T ;R))

1
2 with φT =

max(βT , σ0hT ).

3 The consistent penalty method

The model problem (3) has a maximum principle; for instance, if f ≥ 0 and
g ≥ 0, then u ≥ 0 in Ω. Unfortunately, this property rarely carries over to
finite element discretizations. Our goal is to modify the GaLS finite element
approximation (6) by using a consistent penalty method.

Let γ > 0 be a penalty parameter. For any function v ∈ V , let us define the
function ξγ : Ω→ R such that

ξγ(v) := [v − γ(A(v)− f)]−, (10)

where x− = 1
2
(x − |x|) denotes the negative part of the real number x. Note

that ξγ(u) = 0 in Ω for the weak solution u since A(u) = f and u− = 0. Let
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us consider the following discrete problem: Find uh ∈ V k
h such that

aτγh (uh;wh) = `τh(wh), ∀wh ∈ V k
h , (11)

with
aτγh (vh;wh) := aτh(vh, wh) + (γ−1ξγ(vh), wh)Ω. (12)

Since ξγ(u) vanishes identically in Ω, exact consistency still holds for (11).
The discrete problem (11) remains meaningful and exactly consistent if the
penalty parameter γ is replaced by a function taking uniformly positive values
in Ω. We will take γ to be piecewise constant on the mesh Th since the error
analysis below will reveal that quasi-optimal error estimates are obtained by
taking γ to be locally of the order of hT (on quasi-uniform mesh sequences, a
constant function γ can be considered).

3.1 Rationale of the consistent penalty method

Before embarking on the analysis of the method, let us briefly discuss the de-
sign principle behind the approach. First, we observe that if [uh − γ(A(uh)−
f)]− = 0, then the formulation coincides with the standard GaLS discretiza-
tion. Assume now that [uh − γ(A(uh)− f)]− 6= 0 everywhere in the macroele-
ment Ωi := supp(ϕi) where ϕi is an interior nodal (or hat) basis function.
Then, since x− = x if x− 6= 0, we observe that the standard Galerkin part is
eliminated by the second term in the penalty term, so that (11) with wh = ϕi
becomes

(γ−1uh, ϕi)Ωi
+ (τ(A(uh)− f), A(ϕi))Ωi

= 0. (13)

This shows that the nonlinear penalty term changes the discrete equation
locally to the sum of two least-squares contributions, one on the violation of
positivity by the discrete solution and one on the PDE residual. By choosing γ
small, one can expect that the violation of the maximum principle is reduced.
This is indeed one of the main conclusions of the error analysis below, where
we additionally prove that quasi-optimal error estimates of the form (9) also
hold for the consistent penalty method.

Remark 1 (Variant) Variants are possible in (12) for the penalty term, such
as

aτγh (vh;wh) := aτh(vh, wh) + (γ−1ξγ(vh), wh + τA(wh))Ω. (14)

This variant can be analyzed using the same arguments as below. In particu-
lar, considering an interior nodal basis function, we now obtain (γ−1uh, ϕi +
τA(ϕi))Ωi

= 0. Comparing with (13), only the penalty on the violation of the
positivity remains, but the term is no longer symmetric.
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3.2 Well-posedness and convergence

Let us first establish that aτγh has reasonable monotonicity properties.

Lemma 3.1 (Monotonicity) Assume that 0 < γ ≤ τ . Then the following
holds for all u1, u2 ∈ V :

1

2
(|||u1 − u2|||2 + ‖γ−

1
2 (ξγ(u1)− ξγ(u2))‖2

Ω) ≤ aτγh (u1;u1 − u2)− aτγh (u2;u1 − u2),

(15a)

1

4
(|||u1|||2 + ‖γ−

1
2 ξγ(u1)‖2

Ω) ≤ aτγh (u1;u1) + ‖γ
1
2f‖2

Ω. (15b)

Proof. Let us prove (15a). We observe that

aτγh (u1;u1 − u2)− aτγh (u2;u1 − u2)

= aτh(u1 − u2, u1 − u2) + (γ−1(ξγ(u1)− ξγ(u2)), u1 − u2)Ω

≥ |||u1 − u2|||2 + (γ−1(ξγ(u1)− ξγ(u2)), u1 − u2)Ω,

where we have used (8). Moreover, we have

(γ−1(ξγ(u1)− ξγ(u2)), u1 − u2)Ω

= (γ−1(ξγ(u1)− ξγ(u2)), u1 − γ(A(u1)− f)− (u2 − γ(A(u2)− f)))Ω

+ (ξγ(u1)− ξγ(u2), A(u1 − u2))Ω

≥ ‖γ−
1
2 (ξγ(u1)− ξγ(u2))‖2

Ω + (ξγ(u1)− ξγ(u2), A(u1 − u2))Ω,

where we have used the fact that

|x− − y−|2 ≤ (x− − y−)(x− y), ∀x, y ∈ R. (16)

Using Young’s inequality and the fact that γ ≤ τ , we infer that

((ξγ(u1)−ξγ(u2)), A(u1−u2))Ω ≥ −
1

2
‖γ−

1
2 (ξγ(u1)−ξγ(u2))‖2

Ω−
1

2
‖τ

1
2A(u1−u2)‖2

Ω.

Putting everything together shows that (15a) holds. Finally, the proof of (15b)

follows from (15a) by taking u2 = 0 and using the fact that 1
2
‖γ− 1

2 (ξγ(u1) −
ξγ(0))‖2

Ω ≤ ‖γ−
1
2 ξγ(u1)‖2

Ω + ‖γ− 1
2 ξγ(0)‖2

Ω ≤ ‖γ−
1
2 ξγ(u1)‖2

Ω + ‖γ 1
2f‖2

Ω.

We can now prove that the discrete problem (11) is well-posed.

Proposition 3.1 (Well-posedness) Assume that 0 < γ ≤ τ . Then the dis-
crete problem (11) admits one and only one solution.

Proof. Uniqueness follows from (15a). To prove existence, letN := dimV k
h and
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let G : RN → RN be the map defined by (G(U), V )RN := aτγh (uh; vh)− `τh(vh),
where U, V ∈ RN are the component vectors associated with the functions
uh, vh in the Lagrange basis of V k

h . It is readily seen that G is a continuous map
(observe in particular that |x− − y−| ≤ |x− y| for all x, y ∈ R). Furthermore,
since Cauchy–Schwarz inequalities and τ ≤ σ−1

0 show that |`τh(vh)| ≤ K|||vh|||
with K = (2σ

− 1
2

0 ‖f‖Ω + ‖|β·n| 12 g‖∂Ω−), we infer using (15b) that

(G(U), U)RN = aτγh (uh;uh)− `τh(uh)
≥ 1

4
(|||uh|||2 + ‖γ−

1
2 ξγ(uh)‖2

Ω)− ‖γ
1
2f‖2

Ω −K|||uh|||.

This proves that there is a real number, say K ′, so that (G(U), U)RN > 0 for
all U ∈ RN with ‖U‖RN ≥ K ′. Indeed, using norm equivalence on discrete
spaces, we infer that there exists CN > 0 such that CN‖U‖RN ≤ |||uh||| for all
U ∈ RN with associated discrete function uh ∈ V k

h . This leads to

(G(U), U)RN ≥ 1
8
|||uh|||2 − ‖γ

1
2f‖2

Ω − 2K2 ≥ 1
8
C2
N‖U‖2

RN − ‖γ
1
2f‖2

Ω − 2K2,

and we conclude that the expected inequality holds with

K ′ =
8

CN

√
‖γ 1

2f‖2
Ω + 2K2 + 1.

Existence then follows using well-known arguments (see, for instance, [12,
Lemma 1.4, Chapter 2]).

The next theorem is the main result of this paper. It shows that the GaLS
finite element method with penalty has essentially the same behavior as that
without penalty when approximating smooth solutions.

Theorem 3.1 (Error estimate) Let u ∈ V be the solution to (3) and let
uh ∈ V k

h be the solution to (11). Assume that 0 < γ ≤ τ . Then there exists
C > 0, uniform, such that

|||u− uh|||+ ‖γ−
1
2 [uh]−‖Ω ≤

C inf
vh∈V k

h

(‖τ
1
2A(u− vh)‖Ω + ‖|β·n|

1
2 (u− vh)‖∂Ω + ‖γ−

1
2 (u− vh)‖Ω). (17)

Moreover, if u ∈ Hk+1(Ω), τ is chosen as in the GaLS method as τ |T =
min(σ−1

0 , β−1
T hT ), and cτ |T ≤ γ|T for all T ∈ Th with c uniformly bounded

from below away from zero, then

|||u− uh|||+ ‖γ−
1
2 [uh]−‖Ω ≤ C

 ∑
T∈Th

φTh
2k+1
T ‖u‖2

Hk+1(T ;R)

 1
2

. (18)
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Proof. Let e = u− uh. Then, using (8), we infer that

|||e|||2 ≤ aτh(e, e) = aτh(e, u− vh) + aτh(e, vh − uh).

Moreover, the exact consistency of the GaLS approximation and the definition
of the discrete problem (11) imply that

aτh(e, vh − uh) = `τh(vh − uh)− `τh(vh − uh) + (γ−1ξγ(uh), vh − uh)Ω

= (γ−1ξγ(uh), vh − uh)Ω

= (γ−1ξγ(uh), vh − u+ γA(e))Ω + (γ−1ξγ(uh), u− uh − γA(e))Ω.

Since ξγ(u) = 0, using the monotonicity property (16), we infer that

(γ−1ξγ(uh), u− uh − γA(e))Ω ≤ −‖γ−
1
2 ξγ(uh)‖2

Ω.

As a result, we obtain

|||e|||2 + ‖γ−
1
2 ξγ(uh)‖2

Ω ≤ aτh(e, u− vh) + (γ−1ξγ(uh), vh − u+ γA(e))Ω.

The boundedness properties of the GaLS approximation yield

aτh(e, u− vh) ≤ |||e|||(‖τ
1
2A(u− vh)‖Ω + ‖|β·n|

1
2 (u− vh)‖∂Ω + ‖τ−

1
2 (u− vh)‖Ω).

Moreover, we have

(γ−1ξγ(uh), vh − u+ γA(e))Ω ≤ ‖γ−
1
2 ξγ(uh)‖Ω(‖γ−

1
2 (u− vh)‖Ω + ‖γ

1
2A(e)‖Ω)

≤ 3

4
‖γ−

1
2 ξγ(uh)‖2

Ω + ‖γ−
1
2 (u− vh)‖2

Ω +
1

2
‖γ

1
2A(e)‖2

Ω.

Collecting these two bounds and using that γ ≤ τ , we infer that |||e||| +

‖γ− 1
2 ξγ(uh)‖Ω is bounded by the right-hand side of (17). To conclude that (17)

holds, it suffices to establish that

‖γ−
1
2 [uh]−‖Ω ≤ ‖γ−

1
2 ξγ(uh)‖Ω + |||e|||.

This inequality, in turn, follows from the elementary inequality |[x + y]−| ≤
|x−|+ |y−| for arbitrary real numbers x and y, leading to

‖γ−
1
2 [uh]−‖Ω ≤ ‖γ−

1
2 ξγ(uh)‖Ω + ‖γ

1
2 [(A(uh)− f)]−‖Ω,

together with the fact that A(u) = f and the assumption that γ ≤ τ so

that ‖γ 1
2 [(A(uh)− f)]−‖Ω ≤ |||e|||. Finally, (18) results from the approximation

properties of finite elements and the assumptions on τ and γ.

The error estimates derived in Theorem 3.1 show that the present consistent
penalty method delivers similar bounds on the error |||u−uh||| to those obtained
with the usual GaLS discretization, while additionally controlling the violation
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of positivity by means of the measure ‖γ− 1
2 [uh]−‖Ω (note that γ scales as the

mesh size, so that the factor γ−
1
2 in front of [uh]− makes the bound even

stronger.

4 Numerical example

In this section, we assess the proposed method on two test cases: the first
one features a solution with inner layer, and the second one a solution with
discontinuity.

4.1 Test case 1: solution with inner layer

We consider problem (3) in the domain Ω ⊂ R2 shown in the left panel of
Figure 1, with

β =
1

(x2 + y2)
1
2

(y,−x)T, σ = 0, f = 0.

The advection field β rotates clockwise, and the inflow boundary corresponds
to the part of ∂Ω where x = 0. The exact solution given by u = 1

2
(tanh(((x2 +

y2)
1
2 − 0.5)/ε) + 1.0) is a consequence of inflow data imposed on the inflow

boundary (see the contourlines in the right panel of Figure 1). The boundary
data has a sharp layer of width ε at y = 0.5. This creates spurious under- and
overshoots that are transported downstream throughout the domain.

We compute approximate solutions for both a mild layer (ε = 0.1) and a
sharp layer (ε = 0.01) using either the nonlinear method (11) with the bilinear
form aτγh defined by (12) or the standard (linear) GaLS method obtained by
dropping the nonlinear term. Computations not reported here indicate that
using the definition (14) leads to similar results. We consider affine (k = 1) and
quadratic (k = 2) finite elements on a sequence of quasi-uniform unstructured
meshes characterized by the mesh sizes h = 0.09× 2−l with l ∈ {0, 1, 2, 3, 4}.

The nonlinear penalty term is evaluated using nodal quadrature when k = 1
and a quadrature that is exact for polynomials of order up to five when k = 2.
Since the integrand of the nonlinear term is only H1 in the interior of the
elements, an exact quadrature requires a careful local analysis of where the
nonlinearity is active. To assess the effect of possible under-integration of
the nonlinear term, we also consider, in the case where k = 2, evaluating the
nonlinear term with a hybrid quadrature rule obtained as a linear combination
of two low-order terms, one using nodal quadrature and the other midpoint
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Figure 1. Test case 1. Left: computational mesh. Right: contourlines of discrete
solution for ε = 0.01

l ‖e‖Ω ‖β·∇e‖Ω emin emax Φ(uh)

0 1.13e-2 (–) 9.13e-2 (–) – 1.09e-2 4.59-3

1 2.33e-3 (2.3) 2.65e-2 (1.8) – 1.93e-3 1.49e-4

2 9.57e-4 (1.3) 1.94e-2 (0.4) – 9.20e-4 2.72e-5

3 2.54e-4 (1.9) 9.92e-3 (1.0) – 3.90e-4 8.59e-6

4 6.35e-5 (2.0) 4.64e-3 (1.1) – 1.6e-4 2.17e-6

Table 1
Test case 1, mild layer (ε = 0.1). Nonlinear method with consistent penalty, k = 1,
γ = 0.0001h, τ = h/2

quadrature. The hybrid quadrature is insufficient to resolve the integration of
the nonlinearity, but it gives control on the degrees of freedom of the quadratic
polynomials.

We set the penalty parameter to γ = 0.0001h for k = 1 and to γ = 0.005h for
k = 2 when consistent quadrature is used and to γ = 0.0001h for the low-order
quadrature. Our results show that these choices are sufficient to reduce under-
shoots to less than one percent in all cases. Strengthening the penalty in the
case of quadratic approximation does not improve the positivity, but increases
the stiffness of the nonlinear problem. We present in Tables 1 to 5 the results
for (i) the error e = u − uh in the L2-norm and in the streamline derivative
(experimental convergence orders are given between parenthesis), (ii) the vi-
olations of the maximum principle evaluated as emin := −minxi∈N (uh(xi))−
and emax := maxxi∈N u(xi) − 1, where N denotes the set of nodes for the
Lagrange basis functions (the symbol ‘–’ means that the discrete maximum
principle is actually satisfied), and (iii) the error on the global conservation
property Φ(uh) := |

∫
∂Ω(β·n)uh ds| = 0. Note that the lack of exact global

conservation for the linear problem is due to quadrature errors. Note also that
we only impose weakly by the consistent penalty method the lower bound on
the discrete solution; the upper bound could be imposed similarly.
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l ‖e‖Ω ‖β·∇e‖Ω emin emax Φ(uh)

0 1.18e-2 (–) 9.69e-2 (–) 2.37e-2 1.09e-2 3.44e-4

1 2.33e-3 (2.3) 2.65e-2 (1.9) – 1.93e-3 1.45e-4

2 9.57e-4 (1.3) 1.94e-2 (0.4) – 9.20e-4 2.72e-5

3 2.54e-4 (1.9) 9.92e-3 (1.0) – 3.90e-4 8.59e-6

4 6.35e-5 (2.0) 4.64e-3 (1.1) – 1.60e-4 2.17e-6

Table 2
Test case 1, mild layer (ε = 0.1). Linear GaLS method, k = 1, τ = h/2

l ‖e‖Ω ‖β·∇e‖Ω emin emax Φ(uh)

0 7.24e-2 (–) 5.63e-1 (–) 8.37e-6 8.20e-2 2.11e-3

1 5.26e-2 (0.5) 4.90e-1 (0.2) – 1.14e-1 8.34e-4

2 2.56e-2 (1.0) 6.53e-1 (-0.4) – 6.70e-2 1.40e-3

3 1.54e-2 (0.7) 6.27e-1 (0.1) – 5.97e-2 1.40e-3

4 5.20e-3 (1.6) 2.97e-1 (1.0) – 2.04e-2 3.05e-4

Table 3
Test case 1, sharp layer (ε = 0.01). Nonlinear method with consistent penalty, k = 1,
γ = 0.0001h, τ = h/2

l ‖e‖Ω ‖β·∇e‖Ω emin emax Φ(uh)

0 7.43e-2 (–) 5.64e-1 (–) 9.94e-2 8.86e-2 5.68e-4

1 5.23e-2 (0.5) 5.04e-1 (0.2) 7.01e-2 1.13e-1 1.41e-4

2 2.69e-2 (1.0) 6.67e-1 (-0.4) 6.41e-2 6.77e-2 1.84e-5

3 1.59e-2 (0.8) 6.47e-1 (0.0) 6.01e-2 5.88e-2 1.20e-5

4 5.31e-3 (1.6) 2.95e-1 (1.1) 1.94e-2 2.0e-2 2.01e-6

Table 4
Test case 1, sharp layer (ε = 0.01). Linear GaLS method, k = 1, τ = h/2

For the above results on the nonlinear method with consistent penalty, the
nonlinear system is solved using fixed-point iteration to an accuracy of TOL =
10−6 on the increment ‖ukh − uk+1

h ‖Ω where k is the index of the fixed-point
iteration. This convergence criterion has been used for the sole purpose of
numerical illustrations. In practice, a computationally-effective possibility is
to prescribe the fixed-point convergence tolerance so that the error induced
by the stopping criterion of the iteration is comparable to that of the a priori
estimate.
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l ‖e‖Ω ‖β·∇e‖Ω emin emax Φ(uh)

0 5.60e-2 (–) 6.47e-1 (–) 4.36e-3 7.58e-2 5.82e-3

1 2.77e-2 (1.0) 7.17e-1 (-0.1) 5.25e-3 6.27e-2 2.47e-3

2 1.05e-2 (1.4) 4.39e-1 (0.7) 1.81e-4 3.91e-2 1.06e-3

3 2.86e-3 (1.9) 1.90e-1 (1.2) 4.07e-4 8.81e-3 1.10e-4

4 3.96e-4 (2.9) 4.07e-2 (2.2) 2.31-19 – 3.78e-9

Table 5
Test case 1, sharp layer (ε = 0.01). Nonlinear method with consistent penalty, fifth-
order quadrature, k = 2, γ = 0.005h, τ = h/2

l ‖e‖Ω ‖β·∇e‖Ω emin emax Φ(uh)

0 5.40e-2 (–) 6.27e-1 (–) 9.35e-6 7.66e-2 7.47e-3

1 2.60e-2 (1.1) 6.68e-1 (-0.1) 8.87e-6 6.21e-2 2.83e-3

2 1.03e-2 (1.3) 4.50e-1 (0.6) – 3.80e-2 1.37e-3

3 2.86e-3 (1.8) 1.90e-1 (1.2) – 8.82e-3 1.20e-4

4 3.96e-4 (2.9) 4.07e-2 (2.2) – – 3.78e-9

Table 6
Test case 1, sharp layer (ε = 0.01). Nonlinear method with consistent penalty, hybrid
quadrature, k = 2, γ = 0.0001h, τ = h/2

l ‖e‖Ω ‖β·∇e‖Ω emin emax Φ(uh)

0 5.33e-2 (–) 6.58e-1 (–) 9.26e-2 7.68e-2 3.34e-4

1 2.56e-2 (1.1) 7.29e-1 (-0.1) 7.82e-2 6.22e-2 5.84e-5

2 1.05e-2 (1.3) 4.70e-1 (0.6) 4.17e-2 3.83e-2 2.07e-6

3 2.93e-3 (1.8) 1.92e-1 (1.3) 1.03e-2 8.82e-3 5.31e-8

4 3.96e-4 (2.9) 4.07e-2 (2.2) 4.76e-18 – 3.78e-9

Table 7
Test case 1, sharp layer (ε = 0.01). Linear GaLS method, k = 2, τ = h/2

Assume that the fixed-point iteration is a contraction so that for some 0 <
δ < 1, the approximation at iteration k of uh, say ukh, satisfies

‖uh − ukh‖Ω ≤ δ‖uh − uk−1
h ‖Ω.

Since

‖uh − ukh‖Ω ≤ ‖uh − uk+1
h ‖Ω + ‖ukh − uk+1

h ‖Ω ≤ δ‖uh − ukh‖Ω + ‖ukh − uk+1
h ‖Ω,
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l ‖e‖Ω ‖β·∇e‖Ω emin emax Φ(uh)

0 7.13e-2 (–) 5.57e-1 (–) – 8.17e-2 6.04e-4

1 5.23e-2 (0.4) 4.90e-1 (0.2) – 1.13e-1 5.50e-4

2 2.56e-2 (1.0) 6.53e-1 (-0.4) – 6.70e-2 1.40e-3

3 1.54e-2 (0.7) 6.27e-1 (0.1) – 5.97e-2 1.40e-3

4 5.20e-3 (1.6) 2.97e-1 (1.0) – 2.04e-2 3.05e-4

Table 8
Test case 1, sharp layer (ε = 0.01). Nonlinear method, balanced fixed-point iteration,
k = 1, γ = 0.0001h, τ = h/2

we infer that
‖uh − ukh‖Ω ≤ (1− δ)−1‖ukh − uk+1

h ‖Ω.

Then, we obtain the following error estimate for the error at the iteration k:

‖ukh − u‖Ω ≤ ‖uh − u‖Ω + ‖uh − ukh‖ ≤ Chk+ 1
2 + (1− δ)−1‖ukh − uk+1

h ‖Ω.

Hence, if δ stays uniformly bounded away from 1 during the fixed-point itera-
tions, we can reasonably stop the iterations whenever ‖ukh−uk+1

h ‖Ω ∼ Chk+ 1
2 ∼

e0/(2
l)k+ 1

2 , where e0 denotes the L2-norm error on the coarsest mesh and l de-
notes the level of mesh refinement. We call the resulting iterative method the
balanced fixed-point iteration. We present the results using balanced fixed-
point iteration with TOL = 0.01/(2l)k+ 1

2 in Tables 8 and 9. We observe that
the results are of comparable or even better quality when the balanced fixed-
point iterations are used.

In this context, it is also interesting to compare the behaviour of the present
consistent penalty method with a method employing diffusion-based shock-
capturing terms with artificial viscosity depending on the residual. We observe
that for the present method, the computational cost is reduced as the accuracy
of the solution improves and the violation of the DMP is isolated close to
layers, whereas no such reduction is observed for nonlinear diffusion where
the nonlinearity appears to have a much more global character. Indeed, it is
known that the effects of the nonlinearity for shock-capturing can propagate
into the zones where the solution is smooth in the form of gradient oscillations
(this is sometimes called a terracing phenomenon). No such spurious gradient
fluctuations were observed for the present consistent penalty method.

4.2 Test case 2: solution with discontinuity

In this section we apply the present consistent penalty method to approximate
a solution with a discontinuity. The example that we consider is taken from
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l ‖e‖Ω ‖β·∇e‖Ω emin emax Φ(uh)

0 5.30e-2 (–) 6.56e-1 (–) – 7.68e-2 9.08e-3

1 2.60e-2 (1.0) 7.30e-1 (-0.15) – 6.21e-2 1.83e-3

2 1.03e-2 (1.3) 4.63e-1 (0.7) – 3.80e-2 1.46e-3

3 2.87e-3 (1.8) 1.98e-1 (1.2) – 8.82e-3 1.20e-4

4 3.96e-4 (2.9) 4.07e-2 (2.3) – – 3.78e-9

Table 9
Test case 1, sharp layer (ε = 0.01). Nonlinear method, hybrid quadrature, balanced
fixed-point iteration, k = 2, γ = 0.0001h, τ = h/2

[13]. The equation is similar to in the previous example, but this time we set
Ω = (−1, 1)×(0, 1), take β = (y,−x)T (so that ∂Ω− = (−1, 0)×{0} ∪ {−1}×
(0, 1) ∪ (0, 1)× {1}) and use the inflow data

g =

 1 on (−0.65,−0.35)× {0},

0 elsewhere on ∂Ω−.

The corresponding exact solution reads

u =

 1 if 0.35 ≤
√
x2 + y2 ≤ 0.65,

0 elsewhere in Ω.

We compute the approximate solutions to this problem on structured meshes
with mesh-size h = 0.1 × 2−l, l ∈ {0, . . . , 4}. First, using the linear GaLS
method and piecewise linear or quadratic finite elements, we recorded vio-
lations of positivity of more than 14% for the former case and more than
11% in the latter on all meshes. Using the present consistent penalty method
with lumped quadrature for linear elements and the hybrid low-order quadra-
ture (using vertices and midpoints) for quadratic elements resulted in strictly
nodally positive solutions in all cases. Balanced fixed-point iterations were also
used and we observed convergence after two iterations, yielding an accuracy
similar to that of the linear method. In Figure 2, we report an illustration
for the piecewise linear case with h = 1/20. In Figure 3 we report the con-
tour plots of the nodal interpolant of the negative part of the solution. The
magnitude of the DMP violation in the linear case is of the order 15% and
in the nonlinear case of the order 4 · 10−3%. The elevation of the linear GaLS
method is presented in the left panel and that of the present method in the
right one, here a term eliminating local overshoots has been added as well.
In Figure 4 and 5, we report the same results, but this time for piecewise
quadratic approximation and h = 1/10. The magnitude of the DMP violation
in the linear case is of the order 20% and in the nonlinear case of the order
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Figure 2. Test case 2. Elevations of solutions using piecewise affine elements. Left:
Linear GaLS, violation DMP 15%. Right: consistent penalty method with lumped
quadrature and balanced fixed-point iteration, nodal violation DMP less than
4 · 10−3%

Figure 3. Test case 2. Contour plots of the negative part of the interpolant of
solutions using piecewise affine elements. Left: Linear GaLS, violation DMP 15%.
Right: consistent penalty method with lumped quadrature and balanced fixed-point
iteration, nodal violation DMP less than 4 · 10−3%

4 · 10−3%. Observe that in spite of the small nodal DMP violation, the piece-
wise quadratic approximation is observed to violate the DMP with up to 10%
due to the non-positivity of the quadratic basis functions.
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