Author’s Accepted Manuscript

A tract-specific approach to assessing white matter
in preterm infants

Diliana Pecheva, Paul Yushkevich, Dafnis Batalle,
Emer Hughes, Paul Aljabar, Julia Wurie, Joseph V.
Hajnal, A. David Edwards, Daniel C. Alexander,
Serena J. Counsell, Hui Zhang

www.elsevier.com

PII: S1053-8119(17)30376-2
DOI: http://dx.doi.org/10.1016/j.neuroimage.2017.04.057
Reference: YNIMG13998

To appear in:  Neurolmage

Received date: 3 March 2017
Revised date: 12 April 2017
Accepted date: 25 April 2017

Cite this article as: Diliana Pecheva, Paul Yushkevich, Dafnis Batalle, Eme
Hughes, Paul Aljabar, Julia Wurie, Joseph V. Hajnal, A. David Edwards, Daniel
C. Alexander, Serena J. Counsell and Hui Zhang, A tract-specific approach tc

assessing white matter n preterm infants, Neurolmage
http://dx.doi.org/10.1016/j.neuroimage.2017.04.057

This is a PDF file of an unedited manuscript that has been accepted fo
publication. As a service to our customers we are providing this early version o
the manuscript. The manuscript will undergo copyediting, typesetting, an
review of the resulting galley proof before it is published in its final citable forn
Please note that during the production process errors may be discovered whic
could affect the content, and all legal disclaimers that apply to the journal pertain


http://www.elsevier.com
http://dx.doi.org/10.1016/j.neuroimage.2017.04.057
http://dx.doi.org/10.1016/j.neuroimage.2017.04.057

A tract-specific approach to assessing white matter in preterm infants.

Diliana Pecheva'?, Paul Yushkevich®, Dafnis Batalle!, Emer Hughes?!, Paul Aljabar?,
Julia Wurie!, Joseph V. Hajnal', A. David Edwards?, Daniel C. Alexander?, Serena J.

Counsell*” and Hui Zhang?.

1Centre for the Developing Brain, Division of Imaging Sciences & Biomedical

Engineering, King's College London, UK

?Department of Computer Science and Centre for Medlical Image Computing,

University College London, UK

JPenn Image Computing and Science Laboratory (PISCL), Department of

Radiology, University of Pennsylvania, Philadelphia, USA

“Corresponding author: Serena J. Counsell. Department of Perinatal Imaging,
Division of Imaging Sciences & Biomedical Engineering, Kings College London, 1st
Floor South Wing, St Thomas' Hospital, London, SE1 7EH.

Serena.counsell@kcl.ac.uk

Abstract

Diffusion-weighted imaging (DWI) is becoming an increasingly important tool for
studying brain development. DWI analyses relying on manually-drawn regions of
interest and tractography using manually-placed waypoints are considered to
provide the most accurate characterisation of the underlying brain structure.
However, these methods are labour-intensive and become impractical for studies

with large cohorts and numerous white matter (WM) tracts. Tract-specific analysis



(TSA) is an alternative WM analysis method applicable to large-scale studies that
offers potential benefits. TSA produces a skeleton representation of WM tracts
and projects the group’s diffusion data onto the skeleton for statistical analysis.
In this work we evaluate the performance of TSA in analysing preterm infant data
against results obtained from native space tractography and tract-based spatial
statistics. We evaluate TSA's registration accuracy of WM tracts and assess the
agreement between native space data and template space data projected onto
WM skeletons, in 12 tracts across 48 preterm neonates. We show that TSA
registration provides better WM tract alignment than a previous protocol
optimised for neonatal spatial normalisation, and that TSA projects FA values that
match well with values derived from native space tractography. We apply TSA for
the first time to a preterm neonatal population to study the effects of age at scan
on WM tracts around term equivalent age. We demonstrate the effects of age at
scan on DTI metrics in commissural, projection and association fibres. We
demonstrate the potential of TSA for WM analysis and its suitability for infant

studies involving multiple tracts.
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1. Introduction

Diffusion-weighted magnetic resonance imaging (dMRI) is increasingly being used
to study brain development and injury in infants. Using metrics derived from
diffusion tensor imaging (DTI) (Basser et al., 1994) we have gained valuable
insights into the effects of maturation and injury on white matter (WM) in healthy
and patient infant populations. DTI analyses of WM have been used to assess
quantitatively microstructural changes during normal development in infancy
(Dubois et al., 2006; Gao et al,, 2009) and through childhood to adulthood (Lebel
et al., 2008); provide in vivo quantification of the spatio-temporal pattern of WM
maturation (Dubois et al., 2008); assess differences in cerebral WM between term
and preterm infants (Anjari et al., 2007; Huppi et al., 1998; Rose et al.,, 2008); and
correlate DTI metrics with early developmental outcome in preterm infants

(Counsell et al., 2008; van Kooij et al., 2012).

A number of approaches have been used to analyse DTI data during
development. Manually-drawn regions of interest (ROI) (Gao et al., 2009; Huppi et
al., 1998) or tractography using manually-placed waypoints (Bassi et al., 2008;
Dubois et al., 2008; Dubois et al., 2006) are generally assumed to produce
anatomically accurate results but these methods become prohibitively labour-

intensive for large cohort studies. Subsequently a number of methods have been



developed for automatic segmentation of WM tracts (Suarez et al., 2012; Zhang
et al., 2010b). However, establishing correspondence between subjects’ WM tracts
can be problematic due to inter-subject variability in anatomy and DTI
characteristics, which can result in differences in tractography or segmentation. It
is possible to average the DTI metrics over the entire tract (Lebel et al., 2008) but
localised differences may be missed. Correspondence can be achieved by
sampling at equivalent levels along tracts (Groeschel et al., 2014; Verde et al.,
2014) or parameterising WM tracts by arc length, essentially reducing entire tracts
to a single, core line (Corouge et al., 2006; Goodlett et al., 2009; O'Donnell et al,
2009; Verde et al., 2014; Yeatman et al., 2012). These methods have been used to
study neurodevelopment in toddlers (Geng et al., 2012; Goodlett et al., 2009), WM
heritability in twin neonates (Lee et al., 2015), infantile Krabbe disease (Gupta et
al., 2015), and prenatal exposure to selective serotonin reuptake inhibitors (Jha et
al., 2016). However these methods are more suitable for tubular rather than
sheet-like tracts. Collapsing tracts such as the corticospinal tract into a single line,
especially in the region of the fanning cortical projections, fails to appropriately
represent the tract macrostructure and averaging over such a large area may
obscure microstructural changes. Moreover, bundles such as the corpus callosum

have to be separated into tubular regions and cannot be analysed as a whole.

Exploiting the sheet-like structure of many WM tracts, tract-based spatial statistics
(TBSS) was introduced (Smith et al., 2006) and initiated the practice of projecting
volumetric data onto a WM skeleton. Although it has proven to be a valuable
analysis tool for studying development (Anjari et al., 2007; Ball et al., 2010;

Counsell et al., 2008; Rose et al.,, 2008; van Kooij et al., 2012), recent studies have



discussed the potential pitfalls of TBSS (Bach et al,, 2014; de Groot et al,, 2013;
Edden and Jones, 2011; Schwarz et al., 2014; Van Hecke et al., 2010; Zalesky,
2011). A particular limitation of TBSS is a lack of anatomical specificity due to the
construction of the skeleton for the entire WM, rather than separately for each
individual WM tract. Although TBSS is useful when there is no a priori hypothesis
regarding the anatomical location of an effect of interest, it makes it impossible
to distinguish between adjacent WM tracts such as the inferior longitudinal and

inferior-fronto-occipital fasciculi.

Tract-specific analysis (TSA) (Yushkevich et al., 2008) is an alternative WM analysis
method that creates skeleton models of individual WM tracts onto which diffusion
data can be projected for statistical analysis. In TSA, subjects are registered to a
study-specific template using a tensor-based algorithm (Zhang et al., 2006).
Following registration, tracts of interest are delineated from the template using
deterministic tractography and manually-drawn regions of interest. From the
tractography results, a medial surface is determined for each tract that
simultaneously defines its skeleton and boundary (Yushkevich and Zhang, 2013).
The skeleton also describes local tract thickness via the radius function defined as
equal to the radius of the maximal inscribed sphere within the boundary centred
at that point on the skeleton. Diffusion data from every subject is then projected
onto the skeleton, similarly to TBSS. TSA samples data to be projected onto each
point of the skeleton by searching along the unit normal from that point to the
tract boundary. The tract boundary defines the stopping criteria. This aims to limit
potential voxel misassignment from neighbouring tracts. The TSA framework

allows for either a maximum-value or mean-value data projection strategy. In the



maximum-value strategy, the tensor with the highest FA value is selected. In the
mean-value strategy, the average tensor is computed and from this average
tensor, scalars such as FA are computed. Statistical analysis of projected diffusion
data is then carried out at each point on the skeleton. The key aspects of the TSA

and TBSS pipelines and their differences are summarised in Table 1.

TSA offers potential advantages as an analysis tool. It is automated therefore
reducing the time cost and inter-rater variability which affect manual-input
methods. It characterises WM tracts as surfaces rather than aggregating tracts
into a single core line thereby capturing the overall tract morphology.
Theoretically TSA also offers improvements over TBSS by (i) employing a tensor-
based rather than scalar-based registration; (ii) defining tracts individually and so
making it possible to distinguish between adjacent tracts; and (iii) having a data
projection search stopping criteria intended to limit crossing over into
neighbouring tracts. TSA has been successfully applied to study pathologies such
as paediatric chromosome 22q11.2 deletion syndrome (Yushkevich et al., 2008)
and amyotrophic lateral sclerosis (Zhang et al.,, 2010a), and changes in DTI metrics
over the lifespan (Chen et al., 2016), however has not been previously applied to
study infant populations. Moreover, the performance of TSA has not been

assessed extensively.

The aim of this study is to evaluate the performance of TSA within the context of
preterm infant data. We compare TSA with native space tractography as a gold
standard, and with TBSS, a similar and widely-used method. Despite some known

limitations, TBSS remains a widely-used tool, having been cited over 3000 times



(618 alone since 2016). Our evaluation of TSA involves (i) an assessment of TSA's
ability to align WM tracts from different subjects and the accuracy of its data

projection step in comparison to TBSS; and (ii) an application of TSA for the first
time to a cohort of preterm infants at term equivalent age to determine whether

TSA is able to detect developmental changes in diffusion properties of WM tracts.

2. Methods

2.1 Subjects

Permission for this study was granted by Queen Charlotte's and Hammersmith
Hospitals Research Ethics Committee (07/H0704/99) and written parental consent
was acquired prior to imaging. MR data were collected from 53 preterm subjects
who were imaged between February and July 2013. All images were reviewed by
an experienced perinatal neuroradiologist and cases with major focal lesions were
excluded. Five data-sets were excluded; 2 unilateral haemorrhagic infarction, 1
cerebellar infarct, 1 cerebellar haemorrhage and 1 infant had temporal and
cerebellar haemorrhages with cerebellar hypertrophy. 48 subjects (23 female) born
at a median (range) gestational age (GA) of 30.6 (24.0 - 32.9) weeks and imaged
at a median age of 41.9 (38.6 - 47.1 weeks) weeks post-menstrual age (PMA)
were analysed in this study. The perinatal characteristics of the study group are

summarised in Table 2.



2.2 Data acquisition

MR imaging was performed on a 3-T MR system sited on the neonatal intensive
care unit. T1- and T2-weighted MR imaging and single shot echo planar dMRI
data were acquired using an 8-channel phased array head coil. The pulse
sequence parameters were as follows. 3D MPRAGE: repetition time (TR) = 17 ms,
echo time (TE) = 4.6 ms, flip angle 13°, voxel size: 0.82 x 0.82 x 0.8. mm T2
weighted fast-spin echo imaging: TR = 8670 ms, TE = 160 ms, flip angle 90°, slice
thickness 2 mm with 1 mm overlapping slices, in-plane resolution 1.14 x 1.14
mm. dMRI was acquired in the transverse plane in 32 non-collinear directions
using the following parameters: TR = 8000 ms, TE = 49 ms, voxel size: 2mm

isotropic, b-value: 750 s/mm?, SENSE factor of 2.

All examinations were supervised by a paediatrician experienced in MR imaging
procedures. Infants were sedated with oral chloral hydrate (25-50 mg/kg) prior to
scanning and pulse oximetry, temperature, and electrocardiography data were
monitored throughout. Ear protection was used, comprising earplugs moulded
from a silicone-based putty (President Putty, Coltene Whaledent, Mahwah, NJ,
USA) placed in the external auditory meatus and neonatal earmuffs (MiniMuffs,

Natus Medical Inc., San Carlos, CA, USA).

2.3 Diffusion weighted image processing

Diffusion-weighted images were visually inspected in 3 orthogonal planes for the
presence of motion artefact and corrupt diffusion weighted volumes were
excluded before tensor fitting. 33 subjects had no volumes excluded, eight

subjects had one volume excluded, three subjects had two volumes excluded,



three subjects had three volumes excluded and one subject had four volumes
excluded. Non-brain tissue was removed using BET (Smith, 2002), images were
corrected for eddy current artefacts using eddy (Andersson and Sotiropoulos,
2015) and the tensor model was fitted using dt/fit from FSL (FMRIB, Oxford,
http://fsl.fmrib.ox.ac.uk). Signal-to-noise-ratio (SNR) was calculated for each
subject from the raw DW data. A 5x5 voxel ROI was manually placed in the
central corona radiata of the b=0 volume and SNR was calculated as the mean
signal divided by the standard deviation. For each subject deterministic
tractography based on the FACT approach (Mori et al., 1999) (part of DTI-TK
http://dti-tk.sf.net) was used to delineate WM tracts in native space. Each subject’s
FA map was thresholded at 0.1 and whole brain tractography was seeded from
each voxel with tracking parameters: maximum angle threshold of 45 and
minimum FA threshold of 0.1. ROIs used to delineate tracts in native space were
drawn manually for each subject, according to the protocol outlined in Wakana et
al. (2007) . Separate ROIs were drawn for TSA. Placement of the ROIs is described
in table 3. The tracts delineated were the bilateral corticospinal tract (CST), inferior
fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF), superior
longitudinal fasciculus (SLF), uncinate fasciculus (UNC) and genu and splenium of
the corpus callosum (CC), to include commissural, projection and association

tracts in our comparison.

2.4 Evaluation of TSA

To evaluate TSA, we assessed two key aspects of the pipeline that are comparable

in both TSA and TBSS. To determine how well TSA is able to align subjects’ WM



tracts we compared the standard TSA registration with an existing protocol that
was optimised for neonatal spatial normalisation (Ball et al., 2010). To determine
how accurately the TSA skeletons represent subjects’ WM tracts we compared the
mean FA values in each tract and the distributions of FA values over the whole
tract projected by TSA with those calculated from native space tractography,

which we take to be the ground truth.

2.4.1 Registration comparison

WM tracts delineated in native space were warped using the transformations from
TSA's tensor-based registration, DTI-TK, and the scalar-based registration from an
optimised neonatal protocol to their respective template spaces. The scalar-based
registration is an adaptation of the FNIRT (FMRIB, Oxford, http://fsl.fmrib.ox.ac.uk)
registration used in TBSS (Ball et al., 2010). Each subject’s tracts were converted
into binary ROIs which were compared using Dice scores. For each of the two
registration methods, a Dice score was calculated pairwise between each subject
and all other subjects, measuring the degree of overlap between two subjects’
WM tracts at the voxel level. The median Dice score was calculated per tract for
each subject. The Wilcoxon signed rank test was used to compare the differences

between the Dice scores from the two registrations.

2.4.2 Data Projection

To determine how accurately TSA projects each subject’s diffusion data, we

compared projected FA values, in template space following registration, with
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those calculated from the subjects’ native space tractography. We also compared
TSA's data projection step with the data projection step carried out in TBSS, to
determine how TSA performs with respect to a similar and widely used method.
While previous studies have investigated the accuracy of data projection step in
TBSS in terms of alleviating misregistrations (Zalesky, 2011) and voxel
misassignment following projection (Bach et al., 2014), none have investigated
how template space data projected onto the skeleton representation of WM
deviates from native space data for either method. For each subject, we
calculated the mean of the FA values as well as the distribution of FA values over
a tract derived from native space tractography, and projected by TSA and TBSS.
This was done for the left and right CST, IFOF, ILF, UNC and genu and splenium
of the CC. We take the FA values calculated from each subjects’ native space
tractography as our ground truth. For each subject, and across all eight tracts, we
calculated the Bhattacharyya distances between the distribution of values over the
tract derived from native space tractography and TSA, and between native space
tractography and TBSS. The Wilcoxon signed rank test was used to compare the
difference in the resulting paired Bhattacharyya distances. The tract-averaged FA
values provide a summary of the differences between the methods, whereas the
Bhattacharryya distance calculation assesses the difference between TSA and
TBSS's deviation from the native space data over the entire distribution of FA

values within a tract.

Some of the differences in projected values will be due to differences in
registration since TBSS uses a different registration to TSA. As we are only

interested in the data projection step, TSA's registration was incorporated into the
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TBSS pipeline. TBSS was also adapted to make the TBSS skeleton “tract specific”
to allow a comparison with TSA and native space tractography. The tracts from
the deterministic tractography identified in the TSA template were warped to the
TBSS mean FA template. A binary segmentation of each tract was then
overlapped with the TBSS skeleton. The voxels in the TBSS skeleton that overlap
with the binary segmentation of a particular tract were assigned to that tract. This
produced a mean FA value and distribution of FA values for the different tracts
for each subject. The skeleton segmentation for the TBSS skeleton is shown in

Figure 1.

2.5 Correlation of DT-derived measures and post-menstrual age at scan using

TSA

We study the effects of PMA at scan on DTI-derived measures in a number of
commissural, association and projection fibres. We expect to observe an increase
in FA and a decrease in MD and RD with increasing PMA at scan, consistent with
the maturation pattern observed previously. Each infant’s diffusion tensor images
were registered to a study-specific template that was created as an iteratively-
refined average of all subjects’ tensor images (Zhang et al., 2007). Deterministic
tractography was carried out in the template to delineate the CC, CST, IFOF, ILF,
UNC and SLF using the same protocol as in Section 2.3. The tract skeleton and
boundary were derived from the template tractography results for each tract.
Each subject’s registered DTI data were projected onto the WM skeletons using
the maximum-value strategy. Linear regression analysis carried out on the tract

skeletons was used to assess the correlation between PMA at scan and FA, axial,
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radial and mean diffusivities (AD, RD, MD) with GA at birth as a covariate. We
corrected for multiple comparisons using non-parametric permutation-based
suprathreshold cluster analysis (Nichols and Holmes, 2002) with family-wise error
rate (FWER) correction. We also analysed the effects of GA at birth on DTI metrics,
with PMA at scan as a covariate, and the effects of post-natal day at scan with GA

at birth and PMA at scan as covariates.

3. Results

3.1 Evaluation of TSA

3.1.1 Registration comparison

Figure 2 shows the median Dice scores following tensor-based and scalar-based
registration for the eight tracts, representing the degree of alignment between
subjects. For each tract, the Dice scores for the tensor-based registration were
higher (p < 0.001, summarised in table 4) than those for the scalar-based
registration, demonstrating that TSA’s tensor-based registration provides better
alignment consistently over all tracts. However, it should be noted that for the
subjects with the very lowest Dice scores the two registration techniques have
very similar scores. Although native space tractography produced anatomically
plausible results for these subjects and in these tracts, they contained fewer
voxels resulting in a lower degree of overlap with other subjects’ tracts. Indeed,
there was notable variability across subjects within the native space tracts in
terms of both FA values and number of voxels (figure 3), however SNR was

variable across subjects with mean SNR=22.2 (range=11.3 — 48.6).
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3.1.2 Data Projection

The means and distributions of FA values from different WM tracts are shown in
Figures 4 and 5, respectively. Figure 4 shows the mean values per subject for each
tract as derived from native space tractography and TSA. Overall TSA projects FA
values similar to those obtained from the native space tractography, however
these were still significantly different from native space-derived FA values in all
but three tracts — left CST, right IFOF and right SLF (table 5). TBSS projects FA
values significantly higher than those produced by both native space tractography

and TSA.

Figure 5 shows the normalised histograms for each subject from the native space
tractography, TSA and TBSS across eight tracts. Overall the distributions of FA
values across the tracts derived from TSA are in close agreement with those
obtained from native space. Although the TSA and native space tractography
distributions are similar, there are some differences, most noticeably for the left
IFOF and ILF where TSA overestimates FA values. The Bhattacharyya distances
between native space tractography and TSA, and native space tractography and
TBSS are shown for each subject in Figure 6 and summarised in table 6. The
Bhattacharyya distances between native space tractography and TBSS were
significantly greater (p < 0.001), than that between native space tractography and

TSA, which were close to zero for every tract.
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3.2 Correlation of DT-derived measures and age at scan using TSA

The results from the TSA model fitting are shown in Figure 7. All tracts were
wholly reconstructed apart from the trajectories into the temporal lobe for the
right SLF. The results from the TSA statistical analysis of DTI metrics are shown in
Figures 8-15, showing clusters where DTI metrics were significantly correlated
with PMA at scan, FWER-corrected p=0.05. TSA shows increases in FA, decreases
in MD and RD with increasing PMA at scan, and limited negative correlation with
AD. There was no negative correlations between FA and PMA and no positive
correlations between AD, MD or RD and PMA. There was no significant
correlation between GA at birth and DTI metrics, and there was no significant

correlation between postnatal day at scan and DTI metrics.

4. Discussion

4.1 Evaluation of TSA

We have evaluated the performance of TSA in analysing preterm infant dMRI data
in comparison to TBSS, with native space tractography as our gold standard. The
registration comparison shows that TSA's tensor-based registration improves WM
tract alignment over TBSS's scalar-based registration. The results from the data
projection step show that TSA can approximate native space tractography FA
values more closely than TBSS. We applied TSA to the preterm infant population
for the first time to study the association between PMA at scan DTI metrics. The
results show decreases in RD, MD and AD, and an increase in FA with increasing

PMA.
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4.1.1 Registration comparison

The improvements in alignment seen with TSA's registration are likely to be due
to both leveraging the full tensor information and how the template is
constructed. Scalar-based registration algorithms discard orientation information,
making it difficult to distinguish neighbouring tracts with similar FA values but
different orientations, and utilising orientation information during registration
significantly improves alignment (Van Hecke et al., 2007). Tensor-based algorithms
use the full tensor features resulting in better alignment of the dominant diffusion
orientation (Zhang et al., 2007) which may help distinguish neighbouring tracts
(Bach et al. 2014). The tensor-based algorithm from TSA has previously been
shown to improve registration in adults (Keihaninejad et al., 2013). However infant
population registrations require further consideration because the lower contrast
and resolution in neonatal scans can be problematic for registration (Ball et al.,
2010). Wang et al. (2011) showed that the registration used in TSA outperformed
other registration algorithms, including FNRIT, in neonates with Krabbe disease.
Their analysis included 10 subjects, was limited to 4 WM regions and did not test
the same FNIRT protocol as that used in this study. Here we build on these
results in a larger study group and across a wider range of WM fasciculi using a

more appropriate metric of assessment.

The registration methods explored here both use a template that is averaged
from the study cohort, which improves image alignment accuracy (Van Hecke et
al, 2011). The scalar-based registration evaluated here was improved for neonatal

populations by introducing an extra linear registration step and registering all the
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subjects to the mean FA map created after first registering to the most
representative subject. This improved alignment over standard TBSS registration,
which previously failed for some subjects (Bassi et al., 2008). TSA's algorithm uses
an iteratively refined template averaged from all subjects’ tensor images.
Keihaninejad et al. (2012) showed that alignment was improved when registering

to an iteratively refined template over registering to the mean FA.

Our analysis presents a novel approach to assessing registration accuracy in the
neonatal population. Previous studies have focused on using image similarity
measures and tissue label overlap scores to assess registration performance.
However it has been shown that these are not reliable criteria for establishing
registration accuracy and that only local labeled ROIs are able to appropriately

distinguish registration performance (Rohlfing, 2012).

We report similar Dice score results to those seen in previous registration
comparison studies. Klein et al. (Klein et al., 2009) reported similar values in
overlap measures in an evaluation of 14 different registration methods with adult
subjects. They obtained slightly higher measure of overlap only when looking at
larger regions which cover a greater extent of the brain. It should be noted that
by looking at smaller local ROIs even small disagreements in overlap can lower
the Dice score. Moreover we are looking at a relatively large age range which

may explain the high variability observed in native space tracts.
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4.1.2 Data Projection

We present the first analysis of the concordance between template space data
projected onto WM skeletons derived from TSA and TBSS and native space data.
The closer agreement between FA values derived from native space tractography
and FA values projected by TSA demonstrates that the TSA skeleton model is able
to represent more accurately individual subjects’ tracts than TBSS. The discrepancy
between TSA-projected, TBSS-projected and native space-derived FA values is
most likely due to (i) dimensionality reduction in TBSS and TSA from volumetric
tracts to voxel-wise skeleton and surface skeleton, respectively; (ii) the projection
of the maximum FA value; and (iii) misregistrations between the template and
subject. The closer agreement between the values projected by TSA and native
space tractography than those projected by TBSS may be due to better-defined
stopping criteria for the data projection search in TSA. The search for the
maximum FA value in TBSS can cross over into neighbouring tracts (Bach et al.,
2014) and the different maturation rates for different tracts during early
development (Nossin-Manor et al.,, 2015) may compound this. Moreover, the data
projection in TBSS aligns voxels with the same FA rather than voxels from the

same anatomical structure (Zalesky, 2011).

4.2 Correlation of DT-derived measures and post-menstrual age at scan using

TSA

Our results show a maturation-dependent increase in FA and decrease in

diffusivity that concurs with previous studies in preterm infants (Bonifacio et al.,
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2010; Nossin-Manor et al., 2015; Partridge et al., 2004). Age-related changes in
the CC were localised to the splenium and genu for FA and RD, and in the
cortical projections for MD and very little correlation with AD. (Rose et al., 2014)
found no correlations between DTI metrics in the CC and PMA in preterm infants
scanned near term equivalent age (TEA) using a ROl method averaging over the
whole tract. Considering that the effect observed here is not widespread it is
possible that such approaches would fail to detect smaller, localised changes
previously observed in the genu (Gilmore et al,, 2007) and splenium (de Bruine et
al, 2011). Using TSA, we can assess the CC in its entirety without obscuring
regional changes or needing to segment the tract into its constituent parts. The
CST showed age-dependent changes in DTI metrics in the central semiovale and
posterior limb of the internal capsule similar to previous studies (Aeby et al.,

2009; Partridge et al., 2004).

Association fibres such as the SLF, ILF and IFOF can be difficult to identify at birth
in term infants as they mature more slowly (Hermoye et al., 2006). We were able
to delineate these tracts using TSA, apart from the temporal projections of the
right SLF, demonstrating that TSA can be applied successfully to neonatal
populations. We identified a maturation pattern previously observed in preterm

infants (Nossin-Manor et al., 2015) and term infants (Oishi et al., 2011).

FA values in the UNC demonstrated a strong positive correlation with PMA at
scan and we observed a negative correlation between MD and RD in the frontal
lobe projections with increasing PMA. The UNC has been shown to be affected by

preterm birth (Constable et al., 2008) and similar pattern of increased FA and
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decreased diffusivity with increasing PMA has been detected in term infants
(Dubois et al., 2006) however it has not been studied extensively in preterm
infants in the perinatal period. Here we demonstrate that TSA is appropriate for

such analysis.

Our results show limited correlation between AD and PMA. Previous studies have
reported differing results for changes in AD associated with age at scan. Studies
with similarly-sized cohorts found age-related changes only in the anterior limb of
the internal capsule and the thalamus (Rose et al., 2014; Seo et al., 2013) while
larger studies (Ball et al., 2010; Kersbergen et al., 2014) report wider changes
across the WM. The absence of age-related changes in AD indicate that changes
in FA are driven by reductions in RD, in line with previous studies (Adams et al,
2010). These changes are likely to reflect myelination and premyelination events
such as increases in axon diameter and decreased membrane permeability,
oligodendrocyte proliferation and maturation, resulting in more coherent axonal
organization and overall reduction in free water (Beaulieu, 2002; Wimberger et al,,

1995).

We found no correlation between GA at birth or post-natal day at scan and DTI
metrics. Prematurity at birth has been shown to affect DTI metrics in larger
cohorts (Ball et al.,, 2010), while a similarly-sized study (n=45) (Rose et al., 2014)
found no correlations between DTI metrics and GA, apart from changes in
diffusivity in the extreme capsule, anterior limb of the internal capsule,

retrolenticular part of the internal capsule and the putamen.
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4.3 Advantages and limitations of TSA

TSA has several advantages as an analysis tool. It is automated; its surface
representations of tracts approximate closely native space diffusion data and TSA

offers improved alignment between WM tracts.

A major benefit of TSA is that it is anatomically specific, like other tracts-of-
interest methods. Tract-of-interest approaches using tractography have been
previously used to study development, averaging DTI values over the whole tract
(Berman et al., 2005; Braga et al., 2015; Miller et al., 2002). The axonal
configuration of a tract may vary along its length resulting in different diffusion
properties at different locations. WM development follows an asynchronous
spatio-temporal pattern (Oishi et al., 2011) and differences in FA between subjects
born preterm and controls and have been shown to be non-uniform along WM
tracts (Groeschel et al., 2014; Travis et al., 2015; Yeatman et al., 2012). In this
respect, TSA offers the benefits of anatomically specific analysis with the ability to
highlight regions of statistical significance at locations along a tract, and is less
likely to obscure localised differences. The downside to using TSA is that the
investigator must assume a priori where they expect to observe a change of
interest. When no such information is available exploratory, whole-brain analyses

like TBSS may be more appropriate.

A possible application of TSA could be to study subjects where tractography is
unsuccessful due to brain injury. As the tract skeletons are defined in the
template it would be possible to project such subjects’ diffusion data onto the

skeleton, as long as the registration was successful.
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A limitation of TSA, as assessed here, is the geometry it is able to describe. The
choice made here, the FACT algorithm for tractography, is motivated by its
suitability to the diffusion data at hand (32 gradient directions and a b-value of

750 s/mm?3).

While most of the TSA pipeline is automated, we have chosen to identify tracts in
the study-specific template with manually-drawn ROIs to maximize the accuracy
of the tract delineation. This step may be further automated with atlas-based
techniques which have proven to be successful in recent studies (Akazawa et al.,
2016; Qishi et al., 2011). Such an approach may be beneficial for large studies
such as the Developing Human Connectome Project (Hughes et al., 2016) where

multiple study-specific templates may be required.

We have also omitted tracts that have a tubular structure, such as the fornix and
cingulum. This is because TSA is ill-suited to such structures. The tract skeleton is
determined by thinning the tract-boundary down to a medial surface. This
strategy is poorly defined when there are multiple directions in which it possible
to thin, as would be the case for cylindrical structures. For such tracts, it would be
more appropriate to use methods such as those developed by (Corouge et al.,

2006; O'Donnell et al., 2009; Yeatman et al., 2012).

As part of our evaluation of TSA we have analysed only DTI-derived measures,
however the framework allows data from other diffusion models, such as NODDI
(Tariq et al., 2016; Zhang et al., 2012) or g-ratio mapping (Stikov et al., 2015), to

be projected onto the skeletons.
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5. Conclusions

We evaluate the performance of TSA against native space tractography, which
serves as the gold standard, using TBSS as a benchmark, for the

preterm population. This work demonstrates that TSA is a suitable method for
infant studies using dMRI when particular tracts are to be targeted. The
framework allows numerous WM tracts to be analysed and, by design, can easily
be applied to large cohort studies. Here we have demonstrated the effects of
age at scan on DTI metrics in nine tracts showing that TSA is indeed sensitive to

the developmental changes.
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Figure 1. The tract skeletons from TBSS. The top four rows show the tract
skeletons evaluated and the bottom three rows show the tracts overlaid on the

whole WM skeleton (shown in grey).

Figure 2. Median Dice scores for each subject over eight tracts following tensor-

based and scalar-based registration.

Figure 3. The variability across subjects’ native space tractography for the left and
right CST, IFOF, ILF and UNC shown in terms of a. FA values averaged over the

entire tract and b. the total number of voxels included.

Figure 4. The mean FA values for each subject across eight tracts as estimated by

native space tractography (green), TSA (blue) and TBSS (red).

Figure 5. The distribution of FA values for all subjects across eight tracts as
estimated by native space tractography (green), TSA (blue) and TBSS (red).
Normalised histograms for each subject (semi-transparent green, blue and red)
were averaged and smoothed to represent the general trend (green, blue and red

lines).

Figure 6. The Bhattacharyya distance between native space tractography and TSA

(blue) and TBSS (red).
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Figure 7. The TSA model fitting results for the left and right CC, CST, IFO, ILF, SLF

and UNC.

Figure 8. The results of the cluster analysis correlating PMA with FA at each point
within the tracts. Statistically significant regions are shown in red (p<0.01), orange
(0.01<p=<0.02), yellow (0.02<p<0.03), green (0.03<p<0.04) and light blue

(0.04<p<0.05).

Figure 9. The results of the cluster analysis correlating PMA with MD . at each
point within the tracts. Statistically significant regions are shown in red (p<0.01),
orange (0.01<p<0.02), yellow (0.02<p<0.03), green (0.03<p<0.04) and light blue

(0.04<p<0.05).

Figure 10. The results of the cluster analysis correlating PMA with RD at each
point within the tracts. Statistically significant regions are shown in red (p<0.01),
orange (0.01<p<0.02), yellow (0.02<p<0.03), green (0.03<p<0.04) and light blue

(0.04<p<0.05).

Figure 11. The results of the cluster analysis correlating PMA with AD at each
point within the tracts. Statistically significant regions are shown in red (p<0.01),
orange (0.01<p<0.02), yellow (0.02<p<0.03), green (0.03<p<0.04) and light blue

(0.04<p<0.05).

Figure 12. Partial regression plots showing the linear relationship between FA and
PMA from the regions showing significant correlation for the CC, CST, IFOF, ILF,

SLF and UNC.
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Figure 13. Partial regression plots showing the linear relationship between MD
and PMA from the regions showing significant correlation for the CC, CST, IFOF,

ILF, SLF and UNC.

Figure 14. Partial regression plots showing the linear relationship between RD and
PMA from the regions showing significant correlation for the CC, CST, IFOF, ILF,

SLF and UNC.

Figure 15. Partial regression plots showing the linear relationship between AD and
PMA from the regions showing significant correlation for the CC, CST, IFOF, ILF,

SLF and UNC.
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Table 1. A summary of the key aspects of the TSA and TBSS pipelines.

Aspect

TSA

TBSS

Registration

Search direction

Choice of voxel to project

Stopping criteria

Statistical resolution

Multiple comparisons

Tensor-based

Perpendicular to the

skeleton surface

Maximum FA tensor or

mean tensor

Tract boundary

Point on surface

Suprathreshold cluster

analysis

Scalar-based (FA)

Direction of maximum
change within a local
3x3x3 voxel

neighbourhood.

Maximum FA tensor

Skeleton distance map

Voxel

Threshold-free cluster

enhancement
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Table 2. Perinatal characteristics of the study group.

Perinatal clinical characteristic

Median (range) gestational age at birth 30.64 (24-32.86) weeks
Median (range) postmenstrual age at scan 41.93 (38.57 — 47.14) weeks
Median (range) day age at scan 84 (142 — 48) days

Median (range) birthweight 1218 (655-1960) grams
Median (range) days of ventilation 0 (0 —40) days

Small for gestational age* (number of infants) 13

* defined as < 10th birthweight percentile
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Table 3. ROI placement for tractography.

Tract First ROI Second ROI Exclusion ROI
CCgenu The CCis identified in N/A Exclude fibres that
the mid-sagittal plane project posteriorly
and only the genu is along the fornix.
selected
cc The CC is identified in N/A Exclude fibres that
splenium the mid-sagittal plane project inferiorly along
and only the splenium is association fibres.
selected.
CC The CC is identified in N/A Exclude fibres passing
(whole)  the mid-sagittal plane. through the cingulum
and fornix.
CST CST is identified in the Projections to the Exclude fibres crossing
axial plane at the level of cortex are identified in  into the opposite
the of the decussation of the axial plane at the hemisphere and into
the superior cerebellar level of the central the cerebellum.
peduncle. semiovale.
IFOF The occipital lobe is The entire hemisphere  Exclude fibres crossing

selected in the coronal
plane identified halfway

between the posterior

in the coronal plane at
the level of the genu of

the CC identified in the

edge of the cingulum and mid-sagittal slice.

the posterior of the

medially through the

anterior commissure.
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ILF

SLF

UNC

brain.

The entire hemisphere is
selected in the coronal
plane at the posterior
edge of the cingulum
identified at the mid-

sagittal slice.

The SLF is identified in
the coronal plane at the
lowest axial level in
which the fornix can be
identified as a single

structure.

The entire temporal lobe
identified in the coronal
plane at the level where
the frontal and temporal
lobe are no longer

connected.

The entire temporal
lobe identified in the
coronal plane at the
level where the frontal
and temporal lobe are

no longer connected.

Projections that pass
through the coronal
plane at the level of the
splenium of the CC
identified in the mid-

sagittal slice.

All the projections into

the frontal lobe.

Exclude fibres that
track medially into the

fornix and CC.

Exclude fibers that
project into the external

capsule.

Exclude fibres which
project into the anterior
limb of the external

capsule and posteriorly.
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Table 4. p-values from the Wilcoxon signed rank test comparing Dice scores from the

tensor-based and scalar-based registration

Tract p-value

CC genu 1.63 x 109
CCsplenium 1.63 x 10-°
L CST 1.63 x 10-?
R CST 1.74 x 109
L IFOF 1.85 x 10-?
RIFOF 1.63 x 10-?
L ILF 1.63 x 10-°
RILF 2.10 x 10
L SLF 1.74 x 10-°
R SLF 1.63 x 10-°
L UNC 1.63 x 10-?
RUNC 2.54 x 10
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Table 5. p-values from the Wilcoxon signed rank test comparing mean FA values
between native space and TBSS, native space and TSA, and TSA and TBSS.

Tract Native space vs TBSS  Native space vs TSA TSA vs TBSS
(p-value) (p-value) (p-value)
CC genu 1.63 x 10-° 9.84 x 10 1.63 x 10-°
CC 1.63 x 10-° 0.0058 1.63 x 10-°
splenium
L CST 1.63 x 10 0.87 1.63 x 10
R CST 1.63 x 102 241 x 104 1.63 x 102
L IFOF 1.63 x 102 1.69 x 10-8 1.63 x 10-°
R IFOF 1.63 x 102 0.74 1.63 x 102
L ILF 1.63 x 102 1.63 x 10-? 1.63 x 10
RILF 1.63 x 102 3.22 x 106 1.63 x 10
L SLF 1.63 x 10-° 2.23 x10° 1.63 x 10-°
R SLF 1.63 x 10-° 0.18 1.63 x 10-°
L UNC 1.63 x 10-2 1.90 x 10-8 1.63 x 10-°
RUNC 1.63 x 10-° 5.69 x 10-° 1.63 x 10-°

38



Table 6. Summary of the Bhattacharyya distances.

Tract TSA TBSS p-value

CC genu Mean 0.044 0.354 1.63 x 10-°
SD 0.008 0.091

CCsplenium Mean 0.043 0.244 1.63 x 10-°
SD 0.012 0.051

L CST Mean 0.031 0.151 1.85 x 10
SD 0.011 0.041

R CST Mean 0.036 0.197 1.63 x 10-°
SD 0.01 0.049

L ILF Mean 0.079 0.429 1.63 x 10-°
SD 0.025 0.106

RILF Mean 0.06 0.388 1.63 x 10-°
SD 0.033 0.083

L IFOF Mean 0.057 0.258 1.63 x 10-°
SD 0.021 0.058

R IFOF Mean 0.047 0.253 2.88 x 10
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L SLF

R SLF

L UNC

R UNC

SD

Mean

SD

Mean

SD

Mean

SD

Mean

SD

0.034

0.059

0.022

0.034

0.015

0.044

0.041

0.047

0.037

0.073

0.368

0.087

0.348

0.083

0.290

0.086

0.299

0.065

1.63 x 10-°

1.63 x 10-°

1.63 x 10-°

1.74 x 10-°
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9. Figure 2
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9. Figure 3
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9. Figure 4
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9. Figure 5
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9. Figure 6
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9. Figure 12
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9. Figure 13
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9. Figure 14
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9. Figure 15
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Highlights

e Evaluation of tract-specific analysis (TSA) for white matter studies in infants.
e TSA improves white matter tract alignment over scalar-based registration.
e TSA closely approximates native space tractography DTl values.

e The first application of TSA to a neonatal population.





