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Small angle x-ray scattering has been proven to be a valuable method for accessing structural
information below the spatial resolution limit implied by direct imaging. Here, we theoretically derive the
relation that links the subpixel differential phase signal provided by the sample to the moments of scattering
distributions accessible by refraction sensitive x-ray imaging techniques. As an important special case we
explain the scatter or dark-field contrast in terms of the sample’s phase signal. Further, we establish that,
for binary phase objects, the nth moment scales with the difference of the refractive index decrement to
the power of n. Finally, we experimentally demonstrate the utility of the moments by quantitatively
determining the particle sizes of a range of powders with a laboratory-based setup.
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Small angle x-ray scattering (SAXS) provides access to
morphological information about the sample on nanometer
to micrometer scales without the need to resolve the
structures. Several x-ray imaging techniques are sensitive
to small angular deviations in the x-ray direction allowing
for the retrieval of the SAXS signal, including coherent
x-ray scattering (CXS) [1,2], analyzer-based imaging
(ABI) [3,4], grating interferometry (GI) [5–7] and edge-
illumination (EI) [8,9]. Examples for the utilization of
SAXS just from the field of biomedical imaging range
from cancer detection [10–13] to bone structure determi-
nation [14–16] to the diagnosis of pulmonary emphysema
[17–19]. The ability to differentiate between subpixel
structures opens the intriguing possibility of increasing
pixel sizes and decreasing dose, while maintaining access
to the desired sample information.
Most of these investigations focus on three contrast

modalities: absorption, refraction, and scatter width (or
dark-field contrast in the case of GI), where the latter is
experimentally observed through a broadening of the
techniques’ response function (or reduction of visibility
in case of GI). The three modalities can be viewed as
parameters describing the angular resolved scattering dis-
tribution gðαÞ with the scattering angle α. The uncentral-
ized moments of g are given by [20]

Mn ¼
Z

dααngðαÞ; ð1Þ

with n an integer denoting the order of the moment. It has
been experimentally demonstrated that M0 corresponds to
absorption,M1=M0 to refraction, andM2=M0 to the scatter
width [3,7,19,21,22].
In the following, we will relate the momentsMn directly

to the phase signal provided by the sample ϕðxÞ. This will
be done for two different models of scattering distributions.
First, we will use the power spectrum of the complex wave
amplitude as a model for the scattering distribution, which
is a well-established fact for CXS and related techniques [2]
and a reasonable approximation for GI and ABI [23–26].
Second, we will use the histogram over refraction angles as
a model for the scattering distribution and we will argue
that this applies for the incoherent illumination conditions
utilized by EI. For simplicity’s sake, we will limit the
discussion to one dimensional sensitivity to refraction.
Extension to the two dimensional case applicable to
CXS is straightforward.
In terms of experimentally accessing the scattering

distribution, the four x-ray imaging techniques discussed
here can be classified in two categories. In the first category
the scattering distribution is directly provided by the
detector signal, which is the case for CXS. In fact, it is
well known that for CXS and related techniques the
observable intensity at the detector IðxÞ is directly propor-
tional to the power spectrum of the complex wave field of
the sample DðxÞ [2], i.e.,

IðxÞ ∝ jD̂ðKx=zÞj2; ð2Þ
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where D̂ denotes the Fourier transform of DðxÞ, K is the
wave number, and z is the distance between the sample
and detector (see Fig. 1). Please note that the shape of the
incident beam can be accounted for by redefining the
complex wave amplitude as DðxÞ ¼ DsðxÞDbðxÞ with Ds
the contribution from the sample and Db the contribution
from the beam shape, respectively.
Imaging techniques that experimentally utilize optical

elements fall into the second category. Scanning one optical
element (i.e., the analyzer crystal for ABI, a grating for GI,
and a mask for EI) with and without the sample provides
the method-specific response functions sðαÞ and fðαÞ for
each detector pixel, respectively. For these techniques the
scattering distribution gðαÞ appears in a convolution
[19,27,28].

sðαÞ ¼ fðαÞ ⊗ gðαÞ; ð3Þ
where ⊗ denotes the convolution operator. Thus, g can be
accessed from experimental data by deconvolution.
The width of gðαÞ (i.e., its 2nd moment) corresponds to

scatter strength, which is directly related to the so-called
dark-field contrast [6] in GI [7]. Considerable investiga-
tions have been performed with the aim of acquiring a
deep understanding of the dark-field contrast, which were
mainly aimed at establishing a theoretical basis for tomo-
graphic reconstruction [28–32]. However, increasing theo-
retical and experimental evidence [23–25] suggests that g
can be reasonably approximated by the power spectrum of
the sample, i.e.,

gðαÞ ∝ jD̂ðαKÞj2: ð4Þ
Becauseof thesimilarityofprovidedcontrasts inGIandABI,
we speculate that an analogous approximation should be
valid for ABI. Thus, we will assume that the scattering
distributions accessible by CXS, GI, and ABI are all propor-
tional to the power spectrum of the sample. In contrast to
CXS, GI, and ABI, which utilize coherent illumination
conditions, EI employs incoherent illumination, which will
allow us to further approximate g later in this article. In order
to distinguish these two cases we will label the scattering
distributions as coherent and incoherent, respectively.
Using the small angle approximation for the scattering

angle α ¼ x=z in Eq. (2) leads to the coherent scattering
distribution gcoh

gcohðαÞ ¼ KjD̂ðαKÞj2: ð5Þ

Here, we have normalized gcoh, so that the total detected
intensity equals the transmission through the sample, i.e.,Z

dxjDðxÞj2 ¼
Z

dqjD̂ðqÞj2

¼ K
Z

dαjD̂ðαKÞj2 ¼
Z

dα gcohðαÞ; ð6Þ

where Parseval’s theorem was used. The integrals extend
over one pixel, which were assumed to be infinitely wide
(i.e., limits: �∞) corresponding to the subpixel origin of
the contrasts and negligible pixel cross talk for the relevant
imaging techniques (ABI and GI). The Fourier transform of
gcohðαÞ constitutes an autocorrelation

ĝcohðβÞ ¼
1ffiffiffiffiffiffi
2π

p
Z

dxD�ðxÞDðβ=K þ xÞ; ð7Þ

where D� denotes the complex conjugate of D and β the
variable reciprocal to α. The moments of gðαÞ correspond
to derivatives at β ¼ 0 in Fourier space [20]

Mn¼
ffiffiffiffiffiffi
2π

p

ð−iÞn g
ðnÞ
cohðβÞjβ¼0¼

1

ð−iKÞn
Z

dxD�ðxÞDðnÞðxÞ; ð8Þ

where the superscript ðnÞ denotes the nth derivative and the
fact that

∂n

∂βn Dðβ=K þ xÞj
β¼0

¼ K−n ∂n

∂xn DðxÞ ð9Þ

was exploited. Rewriting the complex wave amplitude
as DðxÞ ¼ AðxÞeiϕðxÞ and assuming that AðxÞ is a slowly
varying function, so that DðnÞðxÞ ¼ AðxÞð∂n=∂xnÞeiϕðxÞ,
leads to

Mn ¼
1

ð−iKÞn
Z

dxAðxÞ2e−iϕðxÞ ∂n

∂xn e
iϕðxÞ: ð10Þ

Using AðxÞ2 ¼ tðxÞ, with tðxÞ the local transmission of
the sample, provides intermediate results for the first five
moments:

M0 ¼
Z

dx tðxÞ; ð11Þ

M1 ¼ −
1

K

Z
dx tðxÞϕ0ðxÞ; ð12Þ

M2 ¼
1

K2

Z
dx tðxÞ½ϕ0ðxÞ2 − iϕ00ðxÞ�; ð13Þ

M3 ¼ −
1

K3

Z
dx tðxÞ½ϕ0ðxÞ3

− ϕ000ðxÞ þ 3iϕ0ðxÞϕ00ðxÞ� ð14Þ

M4 ¼
1

K4

Z
dx tðxÞ½ϕ0ðxÞ4 − 3ϕ00ðxÞ2 − 4ϕ0ðxÞϕ000ðxÞ

þ iϕ0000ðxÞ − 6iϕ0ðxÞϕ00ðxÞ�: ð15Þ

FIG. 1. Generic representation of an imaging system sensitive
to small angle x-ray scattering. The shaded box represents optical
elementsforseveralmethods:ananalyzercrystal forABI, twogratings
for GI, two masks for EI, and absent optics (but large z) for CXS.
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For the underlined terms hðxÞ a primitive of the form
HðxÞ ¼ ϕðmÞðxÞl with two integers m and l can be found.
Thus, partial integration can be applied, which leads toZ

dx tðxÞhðxÞ ¼ tðxÞHðxÞj∞−∞ −
Z

dx t0ðxÞHðxÞ ¼ 0;

because tð�∞Þ ¼ 0 and t0ðxÞ≡ 0 according to the
above assumption of a slowly varying absorption signal.
Therefore, the moments simplify to

Mn ¼ ð−KÞ−n
Z

dx tðxÞϕ0ðxÞn for n ≤ 3; ð16Þ

M4 ¼
1

K4

Z
dx tðxÞ½ϕ0ðxÞ4 − 3ϕ00ðxÞ2

− 4ϕ0ðxÞϕ000ðxÞ�: ð17Þ
Higher order moments can be retrieved by following
similar lines of reasoning. Equations (16)–(17) establish
a direct connection between the moments of coherent
scattering distributions and the phase signal of the sample
for CXS, ABI, and GI. For GI the dark-field signal B [6]
is related to the second moment by M2 ¼ −2 lnB if a
Gaussian scattering distribution is assumed [28]. Thus,
Eq. (16) provides the relation between the differential phase
signal and the dark-field contrast as

B ¼ exp

�
−

1

2K2

Z
dx tðxÞϕ0ðxÞ2

�
: ð18Þ

An important special case for the complex wave function
is given by a binary, pure phase object (i.e., a nonabsorbing
sample composed of two homogeneous materials, where
one material could be air). In this case the complex wave
function can be written as

DðxÞ ¼ exp½iϕðxÞ� ¼ exp

�
iKδ

Z
dx dðxÞ

�
; ð19Þ

with dðxÞ the thickness of one material and δ the difference
between the refractive index decrement of the two materi-
als. By inserting Eq. (19) into Eqs. (16)–(17) it can easily
be shown that the magnitude of the nth moment scales as

Mn ∝ δn: ð20Þ
Notably, M2 ∝ δ2 holds true, which provides a scaling law
for the scattering width.
We will now turn to the case of incoherent scattering

distributions ginc. As mentioned above, EI constitutes a
noninterferometric method [33] utilizing incoherent illu-
mination conditions [34,35]. The method-specific response
function without the sample fðαÞ is called the illumination
curve (IC). Introducing a wedge-shape sample into the
beam provides a single refraction angle αs and shifts the IC,
which leads to fðα − αsÞ. Since we can assume incoherent
illumination conditions, the signals from several refraction
angles simply add up according to their weight gincðαsÞ,
which means the IC in the presence of a sample s can be
expressed as

sðαÞ ¼
Z

dαs gincðαsÞfðα − αsÞ ¼ gincðαÞ ⊗ fðαÞ; ð21Þ

where ⊗ denotes a convolution [9,29]. The weight of the
contributing refraction angles gincðαÞ is given by their
histogram [7]

gincðαÞ ¼
Z

dx δD

�
−
ϕ0ðxÞ
K

− α

�
; ð22Þ

where δD is Dirac’s δ function and α ¼ −ϕ0ðxÞ=K [36] was
used. Once again we assume negligible pixel cross talk, so
that the limits of the integral are �∞. Equation (22) holds
true for negligible absorption and nonunity transmission
tðxÞ can be accounted for by using tðxÞ as an additional
weighting function

gincðαÞ ¼
Z

dx δD

�
−
ϕ0ðxÞ
K

− α

�
tðxÞ: ð23Þ

The relation of the moments of ginc to the differential phase
signal ϕ0ðxÞ can now be derived by using Eqs. (1) and (23)
and performing the integral with respect to α

Mn ¼
Z

dα αn
Z

dx δD

�
−
ϕ0ðxÞ
K

− α

�
tðxÞ; ð24Þ

Mn ¼ð−KÞ−n
Z

dx tðxÞϕ0ðxÞn: ð25Þ

Equation. (25) establishes the relation between the
moments of the incoherent scattering distribution and the
differential phase signal provided by the sample. This result
is remarkable in two ways. First, the first four moments for
ginc are identical to the ones for gcoh [Eq. (16)]. Thus, the
histogram of refraction angles constitutes a valid approxi-
mation for the power spectrum of the sample. Second, the
introduction of a binary, pure phase object leads again to
the scaling law Mn ∝ δn, which, therefore, holds true for
both coherent and incoherent imaging techniques.
In addition to explaining the moments of scattering

distributions in terms of the differential phase signal
Eqs. (16)–(17) or Eq. (25) can be used for the rapid
estimation of expected scattering characteristics for a given
phase signal without the need for time intensive numerical
simulations. This will be useful for optimizing experimen-
tal parameters for specific samples.
As a notable example for the application of the theory

laid out so far, we will experimentally demonstrate the
possibility for quantitative subpixel structural analysis. This
will be done by relating the scattering moments of various
powders measured by laboratory-based EI to a structure
size parameter σ of a model phase distribution ϕðxÞ, and
comparing the results to the average particle sizes deter-
mined by synchrotron-based microtomography.
The laboratory-based experiment was carried out with

the EI setup at University College London (London, UK).
EI utilizes two apertured masks as optical elements in
order to provide access to the SAXS signal. The presample
mask shapes the incident radiation into small beamlets,which
are distorted by the sample due to scattering. Thesedistortions
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are converted into detectable intensity variations by the
detector mask. A lateral scan of the presample mask with
andwithout thesampleprovides thesampleICsðαÞandtheflat
IC fðαÞ [see Eq. (3)] for each detector pixel, respectively.
The source was a Rigaku MM007 microfocus rotating

anodewith aMo target operated at 25mA current and 40 kVp
voltage. A Pixirad-2 photon counting detector (PIXIRAD
ImagingCounters s.r.l., Pisa, Italy)with an isotropic pixel size
of 62 μm was used. Both masks were manufactured by laser
cutting (EMPA, Dübendorf, Switzerland) into 150 μm tung-
sten foil (Goodfellow, Huntingdon, UK). The sample mask
featured a pitch of 98 μm and openings of 8 μm, while the
detector mask had a pitch of 122 μm and apertures of 12 μm.
In order to achieve a high sensitivity to the tails of the
illumination curve, the masks had a column-skipped design
and raw images were binned 4 times for subsequent data
analysis resulting in an effective pixel size of 248 μm. The
sample to detector distancewas z ¼ 0.4 m and the total setup
length amounted to 2 m.
Five different powders (i.e., talcum, icing sugar, flour,

vestosint-1184, and powdered milk) were put into plastic
sample holders with rectangular cross sections and imaged
on 33 IC positions with 5 s exposure for both the sample
sðαÞ and the flat IC fðαÞ, which resulted in a total scan time
of 10 min. Lucy-Richardson deconvolution was applied
with 1000 iteration steps in order to retrieve a scattering
distribution ginc for each pixel. Subsequent moment analy-
sis of the scattering distributions [Eq. (1)] was then used to
determine the kurtosis κ according to

κ ¼ M4=M2
2: ð26Þ

κ constitutes a dimensionless measure of tail strength of a
distribution [20]. Please note that the kurtosis is indepen-
dent of δ and, thus, of the powder’s specific material as can
be seen by combining Eqs. (20) and (26). The experimen-
tally determined kurtosis for each powder is indicated as a
dashed horizontal line in Fig. 2. More details about the
experimental implementation and data analysis can be
found in Ref. [19].
We will show that a Gaussian-like function for the phase

signal, given as

ϕðxÞ ¼ Kδ exp
�
−x6=2σ6

�
; ð27Þ

constitutes a simple yet reliable model for the scattering
properties of powders. The dependence of the kurtosis on
the structure size parameter σ was calculated according to
Eq. (25), where the aperture of the presample mask was
taken into account by using a rectangular function for the
transmission tðxÞ. The choice of x6=σ6 over x2=σ2 in the
exponent ensured that the range of the model kurtosis
(Fig. 2) matched the experimentally determined range
for the different powders, i.e., κ ∈ ð3.0; 5.2Þ. The model
kurtosis shows a reversal of its dependency on σ at the point
where truncation effects of the aperture (i.e., 8 μm) become
noticeable, and we used the knowledge of the powder’s
relative grain sizes in order to identify the part of the curve

after the reversal point as the correct branch for the retrieval
of the powders structure size parameter.
Synchrotron microtomography measurements were

performed on the I13-2 Diamond-Manchester Imaging
Beamline at Diamond Light Source (DLS)(Didcot, UK)
in order to determine the particle size of the powders. Each
powder was loosely scooped into separate inverted pipette
tips, mounted individually onto a goniometer. The in-house
detector system consisted of a 150 μm CdWO 4 scintillator
screen (Hilger Crystals Ltd) coupled to an optical micro-
scope with 4x objective (Olympus UPLSAPO 4X) and a
pco.edge 5.5 sCMOS camera (PCO AG, Kelheim,
Germany), where a total optical magnification of eightfold
yields an effective pixel size of 0.81 μm. Using pink beam,
exposure times were 0.05 s with 3000 projections acquired
over 180° of rotation in 2.5 min. Standard absorption-based
tomographic reconstructions were performed using the
tomo-recon pipeline at DLS, which makes use of the
Diamond Clusters Grid engine for parallel-processed
reconstruction based on the filtered back projection algo-
rithm [37]. The mean particle size r of the powders was
determined by thresholding the reconstructed slices, label-
ing individual particles, calculating their cross-sectional
area A, and then using r ¼ ffiffiffiffiffiffiffiffiffi

A=π
p

. While averaging,
particles with areas smaller than 100 voxels2 were
excluded in order to reduce the influence of noise.
Representative reconstructed slices as well as final seg-
mentations are available in the Supplemental Material [38].
Figure 3 compares the size parameter σ of the powders

extracted from the EI measurements to the mean particle
sizes determined by microtomography. The very strong
correlation (R2 ¼ 0.92, p ¼ 0.009) clearly demonstrates a
linear relationship between the model size parameter sigma
and the actual particle sizes. The regression shown in Fig. 3
provides a calibration line that can be used to quantitatively
determine unknown particle sizes of other powders and

FIG. 2. Kurtosis of the model sample [Eq. (27)] as a function of
the structure size parameter σ. Horizontal lines are the exper-
imentally determined average kurtosises of different powders and
the right-hand branch of the model’s kurtosis was chosen for the
determination of the powder’s size parameters.
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similar samples through the proposed implementation of
EI. By following an analogous approach, the proposed
method should enable quantitative particle size determi-
nation with subpixel scattering contrasts also with other
phase-based imaging methods (e.g., GI or ABI).
The robustness of this approach is made evident by the

utilization of a laboratory-based x-ray source with a large
spectrum as well as a wide range of powder materials and
shapes that featured a significant spread of cross-sectional
particle sizes [38], where other published approaches are
limited to monodisperse microspheres [24,26]. Further, the
strong correlation justifies the choice for the model sample
[Eq. (27)] and the assumption of total incoherence for EI
[Eq. (25)]. The result also indicates that the kurtosis of
subpixel SAXS distributions can be interpreted as a
measure of typical structure sizes of powderlike samples,
which will be especially of interest in the context of
detecting lung structure abnormalities [17,19].
In conclusion, we have theoretically derived the relation

of the moments of coherent and incoherent scattering
distributions to the differential phase signal generated by
the sample. Further, we have demonstrated that the first
four moments are identical for coherent and incoherent
scattering distributions implying a close relationship in
terms of accessible information between the corresponding
techniques. In addition, we have shown that the magnitude
of the nth moment scales with the refractive index
decrement to the power of n for binary phase objects.
The developed theoretical framework can provide a basis
for rapid estimation of the expected scattering character-
istics and significantly adds to a deeper understanding of
scatter contrast, which will support widespread applications
of methods exploiting SAXS with refraction sensitive x-ray
imaging techniques. Finally, we utilized this framework in
order to demonstrate a reliable experimental approach to
determine the average particle size of a range of powders
with subpixel scattering contrasts.
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