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We examine transient circular dichroism (TRCD) spectroscopy as a technique to investigate signa-
tures of exciton coherence dynamics under the influence of structured vibrational environments.
We consider a pump-probe configuration with a linearly polarized pump and a circularly polar-
ized probe, with a variable angle θ between the two directions of propagation. In our theoretical
formalism the signal is decomposed in chiral and achiral doorway and window functions. Using
this formalism, we show that the chiral doorway component, which beats during the population
time, can be isolated by comparing signals with different values of θ. As in the majority of
time-resolved pump-probe spectroscopy, the overall TRCD response shows signatures of both excited
and ground state dynamics. However, we demonstrate that the chiral doorway function has only a
weak ground state contribution, which can generally be neglected if an impulsive pump pulse is
used. These findings suggest that the pump-probe configuration of optical TRCD in the impulsive
limit has the potential to unambiguously probe quantum coherence beating in the excited state.
We present numerical results for theoretical signals in an example dimer system. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4948943]

I. INTRODUCTION

Chirality (handedness) occurs in systems which are
distinguishable from their mirror image, that is, systems
which lack reflection symmetry. Both matter and light can
display chirality, and the chirality of certain molecules leads
to a difference in the absorption of left and right circularly
polarized light and therefore exhibit circular dichroism (CD)
and optical rotation dichroism (ORD). CD and ORD are
not independent, as they are linked by Kramers–Kronig
relations.1 Linear CD and ORD spectroscopy have been used
extensively to determine more accurately the structure of
proteins2–4 and the excitonic states in photosynthetic antennae
including the Fenna-Matthews-Olson complex (FMO) from
Green Sulfur bacteria,5 and light harvesting complex I6 and
II.7,8 Transient circular dichroism (TRCD), that is, the time-
domain CD spectra of a system away from equilibrium, has
been used within the infra-red9,10 and ultra-violet frequency
ranges.11,12 This technique has proved useful in measuring
protein conformation and lipid structure.13,14

In the optical regime, however, TRCD has been developed
very little and there is a less comprehensive understanding of
what signals should be expected. While some investigations
of the relations between photoexcitation dynamics and
chiral response have been carried out using pump-probe
configurations15 and, more recently, two-dimensional (2D)
spectroscopy configurations,16 the full potential of time-
resolved CD is yet to be explored. The reluctance to use
this technique originates from the lower signal to noise ratios;
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typically CD signals are 3 to 4 orders of magnitude weaker
compared to non-chiral origin signals.17 Quantum transitions
between electronic states of matter due to the interaction with
light can be understood within a multipole expansion: electric
dipoles give the most significant (lowest order) contribution
but give the same absorption for left and right circularly
polarized light. The next most significant terms are magnetic
dipole and electric quadrupole terms, which are typically
weaker by a factor proportional to the chromophore size
divided by an optical wavelength.18 The combination of these
higher order moments and an electric dipole moment results
in a difference in left-right absorption and hence CD. Systems
of multiple chromophores such as photosynthetic pigment-
protein complexes may show circular dichroism even when
individual chromophores do not. The origin of chirality here is
both the electronic interactions between chromophores and the
lack of reflection symmetry in the transition dipole moments
of each chromophore and the vectors describing the relative
displacements and orientation between them.19 In the absence
of electronic coupling there will be no CD and if all the
relative displacement vectors lie in a plane, the system is
no longer chiral and will not exhibit CD either. Therefore
CD signals from such systems show a strong dependence
on excited state delocalization and on the relative positions
and orientations between individual dipole moments.20 This
indicates that TRCD can probe dynamic exciton localization16

as well as the sensitivity of electronic transitions to structural
changes following photoexcitation.20

Furthermore, transitions to states which have negligible
electric dipole moments (and are thus “dark” to non-chiral
spectroscopy) can potentially have magnetic dipole transitions
which can be of comparable order to bright states within the
complex and therefore be directly probed via TRCD. While it
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may be possible to infer the dynamics related to a dark state
from the ground state dynamics or transitions to double excited
states21 it is not possible to directly detect signals relating to
coherences between the dark state and other “bright” states
(as this term would vanish by definition) without observing
the chiral signals.

In the context of photosynthetic excitons in light-
harvesting antennae a current problem under scrutiny is to
probe quantum coherences among exciton states.22 In these
systems the comparable strength of interactions between
site electronic excitations and the coupling to a structured
vibrational background leads to a complex exciton and
vibrational dynamics that has been incisively investigated
in the last decade by 2D optical spectroscopy.23–26 These
experiments have revealed pico-second coherence beating
in a variety of photosynthetic complexes23–26 and chemical
systems27,28 generating an intense debate about the electronic
and vibrational origin of such signals. There is mounting
theoretical29–32 and experimental28,33–36 evidence that coupling
to some well resolved vibrational modes may indeed
enable quantum coherent dynamics of excitons through
vibronic coupling. Notwithstanding, coherence beating in 2D
spectroscopy signals is influenced by both excited state and
ground state vibrational coherences.37,38

There is therefore a need for experimental approaches that
can isolate coherence specific signals in the excited state with
minimal or no contribution of the ground state vibrational
coherences. This is a quite challenging problem as in the
majority of the experimental conditions one would expect
such contributions and therefore the experimental scenarios
for achieving isolation of excited state coherences seem to
be system specific.39,40 In this paper we present a theoretical
description of TRCD in excitonic systems and show that chiral
time-resolved experiments in pump-probe configurations and
in the impulsive limit could be potentially used to probe
excited state coherences. We develop a doorway window
formalism to analyze the chiral and non-chiral contributions to
the signal and discuss the conditions under which ground state
coherences have negligible influence in the chiral doorway
functions. We illustrate the technique by presenting numerical
results for a dimer exciton system, which shows signatures of
vibronic dynamics. The paper is organized as follows: Sec. II
discusses exciton physics and our model system, along with
origins of linear circular dichroism in excitonic systems and
main assumptions we make. Sec. III describes the extension to
TRCD in a pump-probe configuration in a doorway window
formalism, along with discussions of how to obtain coherence
specific signals. Sec. IV includes numerical results for our
example system and Sec. V outlines our main results and
conclusions.

II. ORIGINS OF CD IN ISOTROPIC ENSEMBLES
OF EXCITONIC SYSTEMS

A. Excitons and their structured
vibrational environments

We are interested in systems consisting of interacting
chromophores which have negligible overlap in their

electronic wavefunctions. Each chromophore site is located
at a position R j and has one excited state with a transition
dipole moment µ j. The electronic degrees of freedom for
each chromophore are linearly coupled to independent baths
of harmonic oscillators. The strength of such interaction
is given by identical structured spectral densities of the
form:

J(ω) = 2λDγDω

γ2
D + ω

2
+

2ω2
0λBγBω

γ2
Bω

2 + (ω2 − ω2
0)2
. (1)

The first term in Eq. (1) is a smooth Drude component
describing the interaction with a continuous distribution
of modes with a characteristic cutoff frequency γD and
reorganization energy λD. The second term describes the
interaction with a well resolved, under-damped vibrational
mode of frequency ω0, damping rate γB, and reorganization
energy λB. These expressions are associated with an
overdamped and underdamped Brownian oscillator model,
respectively.

Throughout this work we use cm−1 units, which involves
setting h = c = 1 cm = 1. However, when we plot angular
frequencies we scale these by a factor of 2πc to keep
consistency with the energy ~ω.

The total Hamiltonian (consisting of the system and bath
together) is split into three components

ĤS+B = ĤS + ĤB + ĤSB, (2)

with ĤS the system Hamiltonian relating to the electronic
degrees of freedom, ĤB the bath of harmonic oscillators
couple to each site excitation, and ĤSB is the excitation-bath
interaction. The primary dynamics are determined by the
system Hamiltonian41

HS =

N
j=1

ω j | j⟩⟨ j |

+

j, j′

�
Vk,k′| j⟩⟨ j ′| + (ω j + ω j′ + κ j, j′)| j; j ′⟩⟨ j; j ′|� , (3)

where | j⟩ is the excited state of chromophore j (while all
other chromophores are in the ground state) and | j; j ′⟩ is
state where chromophores j and j ′ are both in their excited
states (and all other in their ground state). The transition
frequencies ω j = ω

(0)
j + λD + λB are shifted from the “bare”

excitation frequency ω
(0)
j by the reorganization energies due

to the interaction with the structured thermal bath. Transition
frequencies to double excited states are furthermore shifted
by κ j, j′, which for simplicity will be set to zero.

The electronic excitation dynamics under the influence
of the vibrational environment will be exactly computed via a
hierarchy of equations of motion (HEOM).42 This formalism,
being non-perturbative, tracks down the influence of higher-
order correlations of the vibrational environment via auxiliary
density matrices, thereby capturing the information flow from
system to environment and back and therefore capable of
accounting for non-Markovian effects.43

We consider the exciton basis that diagonalize Hs into
the form
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ĤS =

N
ξ=1

ω̃ξ |ξ⟩⟨ξ | +
N (N−1)/2

f =1

ω̃ f | f ,2⟩⟨ f ,2|, (4)

where ω̃ξ and ω̃ f are the energies of the single and double
exciton states, which are related to chromophore excitations
via

|ξ⟩ =

j

Cξ, j | j⟩, | f ,2⟩ =

j, j′

Cf , j ; j′| j; j ′⟩. (5)

Associated to this basis it is helpful to define effective dipole
moments for transitions to different exciton states as follows:

µξ =

j

⟨ j |ξ⟩µ j, µξ, f =

j, j′

⟨ξ | j ′⟩⟨ j ′; j | f ,2⟩µ j . (6)

B. Effects from non-local terms
in the polarization operator

Circular dichroism, the difference in absorption of left and
right circularly polarized light, is due to the lack of reflection
symmetry in the matter involved. In excitonic systems such
signals can have two origins. The first is from the intrinsic
chirality (due to the lack of reflection symmetry) in the
chromophores themselves, giving transitions a finite magnetic-
dipole and/or electric quadrupole moment. We do not consider
this case explicitly in this work, although we briefly discuss
how the effects can be included within this formalism without
significantly changing our key results. The second originates
from the combination of the spatial separation and orientation
of the chromophores and their dipole moments within a
molecular complex, or multichromophore system, and the
position dependence of the phase of the laser.

Treating the light as a classical field, the time dependent
interaction Hamiltonian between the light and the mth
molecular complex in our sample reads18

Ĥm(t) = −


P̂m · E⊥(r, t)dr, (7)

with E⊥(r, t) the transverse component of the electric field and

P̂m ≈
N
j=1

µ̂ j ;m(q⃗)δ(r − Rm − Rm; j), (8)

the polarization operator for the m complex. In Eq. (8) we
have assumed a dipole interaction for transitions to the
single excitation states of each chromophore, which are
displaced by Rm; j from the center. The parameter q⃗ is the
set of coordinates for the normal modes associated to the
vibrational bath. In our numerical calculations we will neglect
this dependence (i.e., make the Condon approximation44)
and take µ j ;m(q⃗) ∼ µ j ;m(⃗0). However, in a realistic system,
linear order terms in a Taylor expansion of µ j ;m(q⃗) will
couple vibrational states to states with ±1 quanta of
excitation (within the harmonic oscillator approximation),
hence we discuss the impact of these couplings in
Sec. III.

In order to simplify Eq. (8), we make the rigidity
approximation Rm; j = TmR0; j in which we have intro-
duced the rotation operator Tm = T(θ1,m, θ2,m, θ3,m). This
approximation assumes all chromophore positions relative
to the center are identical up to a rotation. Fluctuations
in the positions and dipole moments could be accounted
for as static disorder, assuming the distribution is known.
The rotation operator describes the orientation relative
to our reference molecule (m = 0) in terms of the
three Euler angles. The transition dipole operator µ̂ j ;m
for chromophore j in complex m can now be written
as

⟨gj,m|µ̂ j ;m| j ′m′⟩ = δm,m′δ j, j′Tmµ j,m, (9)

where |gj,m⟩ is the ground state of chromophore j of complex
m. Hence we can express this dipole operator for a given
chromophore within a complex with orientation operator Tm,
as

µ̂ j ;m = Tmµ j,m|gj ;m⟩⟨ jm| + (Tµ j ;m)∗| jm⟩⟨gj ;m |. (10)

Throughout this work we also make a single wavevector
approximation for the pulses of light which will be relevant
here, hence the electric field is a sum of terms of the form

E(r, t) = (
pE(t)ei(k·r−ω j t+ϕ) + p∗E∗(t)e−i(k·r−ω j t+ϕ)

)
. (11)

We can calculate the expectation value of the polarization
operator P(r, t) = 

m Tr{P̂mρ(t)} via time-dependent pertur-
bation theory in Ĥint =


m Ĥm(t). Assuming the initial state

is the equilibrium density matrix for the system ρ̂eq, then to
lowest order we have

P(1)(r, t) = i


dr1

 ∞

0
dt1


m

N
j2, j1=1

δ(r − Rm − TmR j2)δ(r1 − Rm − TmR j1)Tr{µ j2;mG(t1)[E(r1, t − t1) · µ̂ j1;m, ρ̂eq]}

= i
 ∞

0
dt1


m

N
j2, j1=1

δ(r − Rm − TmR j2)Tr{µ j2;mG(t1)[E(Rm + TmR j1, t − t1) · µ̂ j1;m, ρ̂eq]}, (12)

with [, ] a commutator bracket and G(t1) the time propagation
operator for the system alone, i.e., without coupling to
the electric field. As the ground, single and double
excited state manifolds are uncoupled without light, we can

propagate coherences between these levels separately and
use the notation Gab(t1) for the component acting on a
particular manifold. For linear spectroscopy it is sufficient
to consider only coherences between ground and excited
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state and therefore ab → eg. This equation describes a
very general situation in which the complexes need to
be uniformly distributed or randomly orientated (and can
easily incorporate static disorder in terms of the variation in
site transition energies and dipole moments). We consider
an isotropic system and take a continuum approximation

for the molecular positions and for simplicity we do not
average over static disorder. This modifies the sum over
m to a integral over the positions Rm and the three Euler
angles in T ≡ T(θ1, θ2, θ3), we also make the substitution
in Eq. (10) to separate the vector components of the
operators

P(1)(r, t) ≈ i
 ∞

0
dt1


dR

 2π

0
dθ1

 π

0
dθ2

 2π

0
dθ3

n′ sin(θ2)
8π2

N
j2, j1=1

δ(r − R − TR j2)

×Tr{(Tµ j2|g⟩⟨ j2| + h.c.)G(t1)[E(R + TR j1, t − t1) · (Tµ j1|g⟩⟨ j1| + h.c.), ρ̂eq]}

≈ i


dθ1dθ2dθ3
n′ sin(θ2)

8π2

N
j2, j1=1

Tµ j2Tµ j1 · p eik·(r+TR j1−TR j2)

×
 ∞

0
dt1Tr{e−iω1(t−t1)E(t − t1)|g⟩⟨ j2|Geg(t1)| j1⟩⟨g | ρ̂eq − h.c.}. (13)

Here |g⟩ is the state where all chromophores are in their
ground state and we have made the rotating wave approx-
imation to write the final line. This expression is valid
for r inside the sample (edge effects which are assumed
to be negligible) with n′ complexes per unit volume.
In this form we have separated off the parts which are
affected by the average over the Euler angles. Assum-
ing our system is significantly smaller than an optical
wavelength, we can expand the exponential term to first

order

Tµ j2(Tµ j1 · p)eik·T (R j1−R j2)

≈ Tµ j2(Tµ j1 · p)[1 + ik · T(R j1 − R j2) + · · ·]. (14)

In the right hand side of Eq. (14), isotropic averages can be
performed analytically. If we have a pulse with polarization
p1 and take averages for P(1) · p2 (the component of the
polarization along direction p2)

⟨(µ j1 · p1)(µ j2 · p2)⟩ ≡


dθ1dθ2dθ3
sin(θ2)

8π2 (Tµ j2 · p2)(Tµ j1 · p1) = (p1 · p2)(µ j1 · µ j2)/3, (15)

⟨(µ j1 · p1)(µ j2 · p2)(k · ∆R j1, j2)⟩ = [p2 · (p1 × k)][µ j2 · (µ j1 × ∆R j1, j2)]/6. (16)

The first average therefore produces no polarization orthog-
onal to the input field (or p2 · p1 = 0) and the second produces
only polarization orthogonal to p1 (as k must be orthogonal to
the polarization since light is a transverse wave) and vanishes
for µ j1 = µ j2. It is this latter term that is responsible for the
circular dichroism (and also optical rotation) as we will see in
Subsection II C.

C. Linear CD and the chiral interaction operator

Because excitons are the relevant basis for considering
CD effects in our system, we introduce a third order tensor
relating to the chiral interaction involving excitons ξ1 and ξ2

ψ
ν,ν1,ν2
ξ1,ξ2

=

N
j1, j2=1

C j1
ξ1

C j2
ξ2
µ
ν1
j1
µ
ν2
j2
(Rν

j1
− Rν

j2
). (17)

This chiral factor will be useful for the extension to non-linear
effects which are the primary consideration of this work.

We have introduced tensor notation and assume Einstein
summation notation in which repeated indices are summed
over, i.e., AνBν ≡ 

ν=x, y,z AνBν = A · B. Averages of this
operator can be expressed as

⟨kνj p
ν j

j pν
′
ψ
ν,ν j,ν

′

ξ j,ξ
⟩ = − [p

′ · p j × k j]
6


ℓ,ℓ′

Cℓ
ξCℓ′

ξ j

× [µℓ · µℓ′ × rℓ′ + µℓ′ · µℓ × rℓ]
= −|k j | [p

′ · b j]
3

[µξ · m̃ξ j
+ µξ j

· m̃ξ], (18)

where we have defined an effective magnetic dipole moment
of the one-exciton and double-exciton states as

m̃ξ =

j

⟨ j |ξ⟩µ j × R j/2,

m̃ξ, f =

j, j′

⟨ξ | j ′⟩⟨ j ′, j | f ,2⟩µ j × R j/2.
(19)
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We are departing from the usual convention for the magnetic
dipole moment here, which would have an additional factor of
i |k | = 2πi/λ (such that it can be combined with a unit vector
in the direction of the magnetic field). In our case we have
extracted this complex factor so that the magnetic moments
are real.

The frequency space absorption profile is related to the
Fourier transform of the polarization in Eq. (12), using the
new notation and the convolution theorem is given by

Pν2(k,ωs) ∝
N

ξ2,ξ1=1

pν1
j ⟨µν1

ξ1
µ
ν2
ξ2
+ kνjψ

ν,ν1,ν2
ξ1,ξ2

⟩

×Tr{Ẽ(ω − ωs)B̂ξ2G̃eg(ω)B̂†ξ1
ρ̂eq − h.c.}. (20)

Here we have introduced the lowering operator for an exciton
B̂ξ ≡ |g⟩⟨ξ |, Ẽ(ω) the Fourier transform of E(t) and G̃ab(ω)
the one sided Fourier transform of the propagation operator

G̃ab(ω) = −i
 ∞

0
Gab(t)eiωt . (21)

Assuming the excitons are a good basis for the electronic
dynamics, the cross terms with ξ1 , ξ2 will be small in

Eq. (20) and can often be neglected. This polarization of the
medium produces a signal electric field Es proportional to
the imaginary component of the polarization. Assuming the
medium is optically thin, we can consider the total intensity
to be the combination of this signal field and a local oscillator
field ELO with wavevector ks. Typically in a linear or pump
probe experiment ELO is just the input probe field, but
we consider a general field as this allows us to consider
frequency resolved detection. We therefore measure the
intensity

ILO+s(t) = |ELO|2 + 2Re[Es · E∗LO]
�
+|Es|2�

, (22)

the |Es|2 term is usually small enough to be neglected because
|ELO| ≫ |Es| and, as we know ELO, we can subtract the first
term to leave Re[Es · E∗LO] ∝ −ωsIm(P(1) · E∗LO) and therefore
extract the signal.

We assume the probe field, which is also our local
oscillator, consists of a single frequency ω (therefore
Ẽ(ω) → δ(ω)). We obtain the signal by subtracting the
absorption signal with left circularly polarized (cp) light,
with pL = (x̂ + i ŷ)/√2 from right cp light (pR = (x̂ − i ŷ)/√2
= p∗L) giving

Scd(ω) ≡ S(ω; pL) − S(ω; pR)

∝ ω Re



N
ξ2,ξ1=1

(pν1
L (p∗L)ν2 − pν2

R (p∗R)ν1)⟨µν1
ξ1
µ
ν2
ξ2
+ kνjψ

ν,ν1,ν2
ξ1,ξ2

⟩{B̂ξ2G̃(ω)B̂†ξ1
ρ̂eq − h.c.}



. (23)

Using the results from Eq. (16), we can show the term
proportional to µ

ν1
ξ1
µ
ν2
ξ2

vanishes. Finally using Eq. (18) and
the assumption that only ξ1 = ξ2 terms are significant, we can
show this average is equal to

Scd(ω) ∼ ω
N
ξ=1

µξ · m̃ξTr{B̂ξG̃ge(ω)B̂†ξ ρ̂eq − h.c.}. (24)

The term (µξ · m̃ξ) is proportional to the rotational strengthRξ

of the transition to exciton |ξ⟩.45 The total rotational strength
is defined via

R = C
n
f 2


dω

αL(ω) − αR(ω)
ω

=

ξ

Rξ, (25)

with αL/R(ω) molar extinction coefficients for left- and right-
circularly polarized light, n the refractive index, f the local
field correction, and C a constant.

D. Information from linear CD and its limits

We can use Eq. (24) to extract useful information
from a linear CD experiment. Assuming the exciton
lineshapes (Tr{B̂ξG̃(ω)B̂†ξ ρ̂eq − h.c.}) are known from non-
chiral linear spectroscopy, we can fit these to the
CD data and gain more information about the dipole
orientation and exciton delocalization. Taking the simple
example of a dimer, we can rotate our coordinates such

that µ1 = |µ1|x̂, µ2 = |µ2|(cos(θ1)x̂ + sin(θ1)ŷ), and R1 − R2
≡ δR = |δR| (cos(θ2) sin(φ2) x̂ + sin(θ2) sin(φ2)ŷ + cos(φ2)ẑ);
in this way the weights for the non-chiral and chiral exciton
lineshapes are

|µξ |2 = |C1ξ |2|µ1|2 + |C2ξ |2|µ2|2
+ 2C1ξC2ξ cos(θ1)|µ1| |µ2|,

µξ ·mξ = |δR| |µ1| |µ2|C1ξC2ξ sin(θ1) cos(φ2).
(26)

The weight terms for the CD signal have a maximum value of
|δR| |µ1| |µ2|/2. This maximum occurs when θ1 = π/2 and
φ2 = 0 (the two dipole moments are orthogonal and the
displacement vector between them is orthogonal to the plane
spanned by the two dipoles); and C1ξ = C2ξ = 1/

√
2 and C1ξ′

= −C2ξ′ = 1/
√

2 (maximum delocalization of eigenstates),
with opposite sign for each exciton ξ and ξ ′. Note that if there
is no difference in the locations of the peaks or the lineshapes
of the two excitons, the CD signals will cancel. More generally,
the sum of a linear CD signal over all frequency space should
be zero if it originates from excitonic delocalization.17,19 This
is equivalent to stating that the rotational strength, given
in Eq. (25), is zero.

This extra information can be used to improve estimates
for dipole orientations and positions of chromophores (thereby
electronic couplings) compared to ordinary linear absorption
spectroscopy alone. However, steady state spectroscopy
cannot directly inform us of excited state dynamics, such
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as exciton migration, dynamic localization, and coherent
evolution. In Sec. III we extend this discussion to nonlinear CD
in a pump-probe configuration, which can be understood as a
linear probe of a density matrix which is not in equilibrium.
For this work we are primarily interested in observation of
signatures of quantum superpositions as given by coherence
oscillations. We therefore focus on strategies that allow us to
extract coherence specific signals.

III. DOORWAY WINDOW FORMULATION
FOR A TRCD EXPERIMENT

A. Pump-probe spectroscopy in the doorway
window formulation

Pump-probe spectroscopy is a nonlinear technique in
which a sample is excited by a strong “pump” pulse that is
followed by a “probe” pulse, which is measured after leaving
the sample. The pump-probe signal is obtained by comparing
the measurements with and without the pump being used.
For TRCD we assume the pump is linearly polarized in a
direction orthogonal to the probe propagation and the probe is
circularly polarized as illustrated in Fig. 1(a). We are interested
in a situation in which ultra-short (<150 fs full-width at
half-maximum (FWHM)) pulses are used for the pump and
probe and will ultimately assume we have frequency resolved
detection for the probe, which can be achieved by passing the
probe through a monochromator.46

The pump pulse is assumed to be composed of a single
wavevector ku at a variable angle θ to the probe wavevector
kr (see Fig. 1(a)). We note that increasing the angle between
the pump and probe pulses also increases the uncertainty
in the time difference, τ, between the interactions with the
pump and probe. This uncertainty is unhelpful when we
wish to observe signals from coherence beatings and may
need to be compensated for in the signal analysis. These
effects are discussed further in Appendix E. For practical
considerations, the pump might need to be focused within the
sample to improve time resolution, increasing the amount of
wavevectors contribution to the signal.

Generally the amplitude of the pump and probe are
chosen to be small enough such that (third order) time-
dependent perturbation theory can be used, and thus

FIG. 1. (a) Experimental configuration with linearly polarized pump and
circularly polarized probe; inset shows frequency resolved detection via
monochromatic. (b) Doorway window time variables related to non-linear
response function time variables. The time t2=τ+ t − t ′ is split into the delay
time and two additional time variables. These extra time variables include
the uncertainty in the population time due to the finite width of the two
pulses.

the polarization of the medium is linear in the probe electric
field and quadratic (linear) with the electric field amplitude
(intensity) of the pump and so we do not need to consider
these explicitly. We assume the pump and probe pulses are of
the form given in Eq. (11), with E(t) a Gaussian envelope.
Using the labels r for the probe and u for the pump, the above
requires the definition of a carrier frequencyωr/u, polarization
pr/u and FWHM


8 ln(2)σr/u for each pulse. Additionally

we consider a “local oscillator” (LO) at a relative phase of ϕ to
the probe, in order allow for generalization to both frequency
and non-frequency resolved detection.

We can express the full pump-probe signal (chiral and
non-chiral components) for a linearly polarized pump in terms
of a third order response function

↔
S(t3, t2, t1; k3,k2,k1). This

response function is a 4th rank tensor, however, as it is also
explicitly contracted over the three wavevectors; it therefore
has components which are averaged as 4th or 5th rank tensors
respectively (higher orders terms are neglected). The pump
probe signal can therefore be expressed

SPP ∝ ωrRe

eiϕ

 ∞

−∞
dtELO(t)

 ∞

0
dt3

 ∞

0
dt2

 ∞

0
dt1


s=±

pν1
u pν2

u pν3
r pν4

LO
ei[(ωLO−ωr )t+ωr t3−sωut1]

× Er(t − t3)Eu(t − t3 − t2)Eu(t − t3 − t2 − t1)Sν1,ν2,ν3ν4(t3, t2, t1; k3, sku,−sku)] , (27)

with s taking values ±1. The TRCD signal obtained from
the difference signal with right/left circularly polarized probe
pulses. Numerically we calculate a response function in this
form and then obtain pump-probe signals from it, however
this expression is not particularly enlightening in terms of
understanding our results.

The doorway window formalism is useful to understand
pump-probe experiments when the pump and probe pulses

are well separated (τ ≫ σr + σu). The time variables related
to non-linear response function within this formalism are
illustrated in Fig. 1(b). After interacting with the pump
pulse, the density matrix describing our system is out of
equilibrium. At some time τ ≫ σu after the first pulse, we
can calculate this nonequilibrium density matrix to second
order in time-dependent perturbation theory ρne(τ) = ρeq

+ ρ
(1)
ne (τ) + ρ(2)ne (τ) + h.o.t. where the second order correction
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is of the form

ρ̂
(2)
ne (τ) = G(τ) *

,

Dg 0
0 De

+
-
≡ *

,

Ggg(τ)Dg 0
0 Gee(τ)De

+
-
. (28)

The two “doorway” functions Dg and De describe the changes
to components in the ground and excited state manifolds
respectively. This separation is sensible because the time
propagator of the join system and bath G(τ) does not couple
ground and excited states and hence G(τ)Dg ≡ Ggg(τ)Dg and
so on. Dg will have a negative trace because population
is removed from the ground state after photoexcitation
(bleaching) and so −Dg represents a “hole” population. Notice
also that there are also second order corrections related to
coherences between the ground and the two-exciton states but
these do not contribute to a third order signal in the direction
of the probe so can be ignored.

The final signal is obtained by combining each doorway
function with corresponding window functions Wg/e/ f repre-
senting the interaction with the probe and the detection which
follows

SPP = ωr⟨Tr[WgGgg(τ)Dg                    
GSB

+WeGee(τ)De                  
SE

+ W fGee(τ)De                  
ESA

]⟩.

(29)

The ⟨. . .⟩ brackets denote an average over all molecular
orientations, which are assumed to be effectively static
during the wait time τ. The three contributions from each
window function are the ground state bleaching (GSB, from
Wg) stimulated emission (SE, from We) and excited state
absorption (ESA, from W f ) to the two-exciton states.

The three terms in Eq. (29) will, in general, have both
chiral and non-chiral contributions. In Subsections III B–III D
we will derive mathematical expressions for these terms in
different limits and focus on identifying the contribution to
TRCD. Finally in Sec. III E we show how coherence specific
components can be isolated.

B. Doorway functions in different limits

1. Doorway functions with chiral and non-chiral
components

Expressions for the non-chiral (NC) doorway functions
can be found regularly in the literature (see, for example,
Ref. 18). Within second order time-dependent perturbation
theory, we have two interactions with the pump; assuming the
rotating wave approximation interaction is with the forward
component (wavevector ku) and the other with the backward
component (wavevector −ku). As we must include both chiral
interactions, the additional effects can be expressed in the form
kνψν,ν1,ν2

ξ1,ξ2
as defined in Eq. (17). Recalling that Eu is electric

field envelope of the pump pulses with a (linear) polarization
pu (in tensor notation pνu) we have

Dg ∝ −
 t+τ

−∞
dt ′

 ∞

0
dt1eiωut1E∗u(t ′)Eu(t ′ − t1)pν1

u pν2
u

×

ξ1,ξ2

(µν1
ξ1
µ
ν2
ξ2
+ ikνuψ

ν,ν1,ν2
ξ1,ξ2

)G†gg(t ′)

× V̂g,ξ2Geg(t1)B̂†ξ1
ρ̂eq + h.c., (30a)

De ∝
 t+τ

−∞
dt ′

 ∞

0
dt1eiωut1E∗u(t ′)Eu(t ′ − t1)pν1

u pν2
u

×

ξ1,ξ2

(µν1
ξ1
µ
ν2
ξ2
+ ikνuψ

ν,ν1,ν2
ξ1,ξ2

)G†ee(t ′)

× [Geg(t1)B̂†ξ1
ρ̂eq]B̂ξ2 + h.c. (30b)

Here h.c. denotes the Hermitian conjugate, B̂†ξ j
|g⟩ = |ξ j⟩,

B̂ξ j
|ξk⟩ = δξ j,ξk and Gab(t) the time propagation operator for

the sub-block ab of the system (for example, ee is the first
excited state manifold). The time variable t ′ is a result of the
transformation displayed in Fig. 1(b). As we only consider a
linearly polarized pump, the chiral contribution will vanish
for terms in the sum with ξ1 = ξ2 because ψν,ν′,ν′

ξ,ξ = 0. The
contributions for a circularly polarized pump would not vanish
and we would need to take the conjugate of one of the
polarizations in Eq. (30b), as has been considered by Cho.47

Moreover, we assume the pulses are well separated and hence
we can take the limit of the integral over t ′ to +∞.

2. Limit of a low frequency-bandwidth pump

We first investigate the limit in which the frequency
bandwidth of the pump is much narrower than the energy
gaps between any exciton transition, but not so wide in
time space that it overlaps with the probe (hence time
ordering still applies). In this regime the time-width of the
pump is much greater than electronic dephasing times18 and
we can make the approximation E∗u(t ′)Eu(t ′ − t1) ≈ |Eu(t ′)|2.
Assuming our exciton states |ξ⟩ are good approximations to
the true electronic eigenstates we have

De ∼
 ∞

−∞
dt ′|Eu(t ′)|2pν1

u pν2
u


ξ

µ
ν1
ξ µ

ν2
ξ G

†
ee(t ′)

× [G̃eg(ω1)B̂†ξ ρ̂eq]B̂ξ + h.c. (31)

Here G̃ge is as defined in Eq. (21). When vibrational modes
are strongly coupled to exciton states, leading to splitting of
energy levels as shown in Fig. 3, we would instead need to
take |ξ⟩ as the hybrid “vibronic” states which we discuss
later.

As the pump is frequency resolved in this limit, |E(t ′)|2
varies quite slowly and henceG†ee(t ′) propagates the system for
a significant time interval. The signal we receive is therefore
effectively a weighted average (with a slowly varying weight
function) of many different values of τ. This has two important
consequences. Firstly, all terms in the sum must have ξ1 = ξ2
because coherences between states of different energies will
evolve in phase during the population time, leading to
cancellation when time averaged. We therefore excite only
a statistical mixture of the system eigenstates. A similar effect
occurs due to the wavevector mismatch between the pump and
probe as discussed in Appendix E (cf. Eq. (E2)). The difference
here is that exciton coherences are always excited in individual
complexes but the spatial variation causes cancellation in the
total signal. Secondly, the chiral contribution in Eq. (31) has
vanished. Note that the chiral contribution will still vanish
when the chromophores have intrinsic magnetic dipole or
electric quadrupole moments as ψν,ν′,ν′

ξ,ξ = 0 (cf. Appendix A).
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Furthermore, in Appendix D we show that ψν,ν′,ν′

ξ,ξ = 0 remains
true when we have transitions to different vibrational states
after relaxing the Condon approximation.

3. Limit of a short time-width (impulse) pump

We now consider the impulsive limit, opposite to
the frequency resolved situation, the pump pulse is
extremely short compared to electronic dephasing times (and
therefore very broad in frequency) such that E∗u(t ′)Eu(t ′ − t1)
≈ |E0|2δ(t ′)δ(t1). Within the Condon approximation, Eq. (30b)
reduces to

Dg ∼ −|E0|2pν1
u pν2

u


ξ1,ξ2

(µν1
ξ1
µ
ν2
ξ2
+ ikνuψ

ν,ν1,ν2
ξ1,ξ2

)B̂ξ2B̂
†
ξ1
ρ̂eq + h.c.,

(32a)
De ∼ |E0|2pν1

u pν2
u


ξ1,ξ2

(µν1
ξ1
µ
ν2
ξ2
+ ikνuψ

ν,ν1,ν2
ξ1,ξ2

)[B̂†ξ1
ρ̂eq]B̂ξ2 + h.c.

(32b)

This form inevitably excites coherences between all states to
which transitions are possible in the excited state manifold
such that De will evolve during the wait time τ. The
decomposition of De into vibronic states is discussed
in Appendix B 4. On the other hand, the semiclassical
Condon approximation we have made means that the nuclear
(vibrational) degrees of freedom remain static during the short
pump-length. This implies that the doorway function for the
ground state hole Dg will be proportional to the equilibrium
state as Ggg(τ)B̂ξ2B̂

†
ξ1
ρ̂eq = δξ1,ξ2 ρ̂eq. Then, in this view, Dg is

independent of time and has no chiral contribution.
In general, the Franck-Condon approximation is not

completely adequate for describing the response of a system,
as the vibrational modes will slightly affect dipole moments
as indicated in Eq. (8). In this situation, transitions from
|g⟩el |n1,n2, . . . ⟩vib to |e⟩el | . . . ,nℓ + ℓ, . . . ⟩vib will have a
finite electric dipole moment µg,nℓ;e,nℓ+ℓ. This leads to
correction terms to Dg , which we denote D′g , involving
vibrational coherences that will beat during in the wait
time. These terms are related to resonant impulsive Raman
scattering.39 Our analysis presented Appendix D shows that
even in this more general situation the chiral contribution
to D′g =


n,n′ |n⟩⟨n′|ρD(n,n′) will cancel completely in the

impulsive limit. The key physical rationale underlying this
result is the conservative nature of excited state CD which
can be seen as follows. In the impulsive limit Ẽu(ω) is very
broad and thus has roughly equal amplitudes over the entire
range of excited state transition frequencies. The vanishing
rotational strength Eq. (25) implies


ξ mξ · µξ = 0. Hence,

we expect the Liouville pathways of the form |g,n⟩⟨g,n| →
|ξ,n⟩⟨g,n| → |g,n + 1⟩⟨g,n| (similar to that shown in Fig. 2,
but with both interactions occurring on the same side) to give
a net contribution of zero. More generally, cancellation of
the ground state coherence contribution to the chiral signal
in the impulsive limit still occurs due to the opposite signs
for the forward and backward propagating terms in Fig. 2.
For example, the pathways |g,n⟩⟨g,n| → |e,n⟩⟨g,n| → |g,n +
1⟩⟨g,n| and |g,n⟩⟨g,n| → |e,n + 1⟩⟨g,n| → |g,n + 1⟩⟨g,n|
both contribute to the same ground state coherence; the

FIG. 2. Two Feynman diagrams contributing to a stimulated emission path-
way in SChD. Here |ek⟩ represent arbitrary electronically excited eigenstates
and |g ⟩ and |g ′⟩ the ground electronic state with different vibrational quanta
present. For large t2, it is possible |ξ1⟩⟨ξ2| mixes to a different coherence
before the probe interaction as a result of bath interactions.

pathways have prefactors of µe,1 ·me −me,1 · µe and µe ·
me,1 −me · µe,1, which cancel exactly. We discuss this further
in Appendix D.

The above discussion for the chiral doorway in the
impulsive limit shows the potential of time-resolved, impulsive
chiral spectroscopy to probe excited state dynamics free
of ground-state vibrational contributions that are difficult
to prevent in other setups. In a more general experimental
situation, the pump pulse will have a finite time width
and lie between these two extremes. This will mean some
dependence on the carrier frequency is present (allowing us
to address particular transitions), but vibrational coherences
can be formed in Dg and also in the chiral component of D′g .
We however expect this effect to be small. Therefore in what
follows we will neglect any effects due to the breakdown of
the Condon approximation.

C. Chiral and non-chiral doorway functions

We now proceed to show that chiral doorway functions
in the excited state are in fact coherence specific signals. We
proceed by separating the doorway functions into chiral (C)
and non-chiral (NC) components. The chiral terms give a
contribution to the output signal of the form

SChD(τ) = ωr⟨Tr[W (NC)
g Ggg(τ)D(C)

g ]⟩
+ ⟨Tr[(W ′(NC)

f
+W (NC)

e )Gee(τ)D(C)
e ]⟩, (33)

with W (NC)
α the non-chiral window functions, which can be

found, for example, in Mukamel.18 In Fig. 2 we show a
typical stimulated emission pathway contributing to SChD. The
effective magnetic dipole interaction can occur on either the
forward or backward interaction; with a linearly polarized
pump, this results in terms with opposite sign and hence full
cancellation for ξ1 = ξ2. For a general profile Eu(t) real we
have

D(C)
g ∝ −i

 ∞

−∞
dt ′

 ∞

0
dt1Eu(t ′)Eu(t ′ − t1)pν1

u pν2
u kνu

×

ξ1,ξ2

ψ
ν,ν1,ν2
ξ1,ξ2

G†gg(t ′)

× (eiωut1B̂ξ2Geg(t1)B̂†ξ1
ρ̂eq − h.c.), (34a)
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D(C)
e ∝ i

 ∞

−∞
dt ′

 ∞

0
dt1Eu(t ′)Eu(t ′ − t1)pν1

u pν2
u kνu

×

ξ1,ξ2

ψ
ν,ν1,ν2
ξ1,ξ2

G†ee(t ′)

× (eiωut1[Geg(t1)B̂†ξ1
ρ̂eq]B̂ξ2 − h.c.). (34b)

Notice that in D(C)
e the term eiωut1[Geg(t1)B̂†ξ1

ρ̂eq]B̂ξ2 is
subtracted from its Hermitian conjugate (and similarly for
D(C)

g ); if these matrices have real numbers on the diagonal
these will cancel out exactly, leaving only off diagonal
elements, i.e., coherences. This chiral density matrix can
be traceless (it is only a component of ρ̂e) but the global
imaginary prefactor of i means it is Hermitian. To illustrate
these points consider the simplest system with two electronic
excited states |1⟩ and |2⟩ coupled to a vibrational bath
described by ρ̂vib, initially at thermal equilibrium. For an
impulsive pump pulse we have via Eq. (32b)

De ∼ 2{|A|2|1⟩⟨1| + |B|2|2⟩⟨2| + AB(|1⟩⟨2| + |2⟩⟨1|)                                                                                                      
D

(NC)
e

+ i C(|1⟩⟨2| − |2⟩⟨1|)                                
D

(C)
e

} ⊗ ρ̂vib, (35)

with A = E0(pu · µ1), B = E0(pu · µ2) coming from the non-
chiral terms, and C = |E0|2pν1

u pν2
u kνuψ

ν,ν1,ν2
1,2 from the chiral

interactions. Moreover we have Dg ∼ −2(|A|2 + |B|2) ρ̂eq with
no chiral contribution. The key issue here is that the chiral
contribution in the excited state D(C)

e is traceless and therefore
the signal component SChD in Eq. (33) is coherence specific
and has no contribution from ground state hole as discussed
in Subsection III B. Together with the arguments presented
for the impulsive regime of the chiral doorway, our analysis
shows the potential advantages of this technique to probe
excited state coherences.

D. Chiral window functions

Besides the chiral doorway function, we also have the
contribution from the chiral window function

SChW(τ) = ωr⟨Tr[W (C)
g Ggg(τ)D(NC)

g ]⟩
+ ⟨Tr[(W (C)

f
+W (C)

e )Gee(τ)D(NC)
e ]⟩. (36)

Here we explicitly show the chiral component of the GSB
window function W (C)

g while the remaining components W (C)
e

andW (C)
f

are presented in Appendix C

W (C)
g ∝ Re

 ∞

−∞
dt

 ∞

0
dt3 eiϕ+iωLOt3+i(ωLO−ωr )t

× E∗LO(t + t3)Er(t)

ξ3,ξ4

kνr pν4
LOpν3

r ψ
ν,ν3,ν4
ξ3,ξ4

B̂ξ4

×Gge(t3)B̂†ξ3
Ggg(t), (37)

with the Re indicating the real part, which should be taken
after combining this expression with the doorway function. In
a CD setup, pr = pL/R = (x̂ ± i ŷ)/√2 and pLO = (pr)∗, hence
the contraction over ψν,ν3,ν4

ξ3,ξ4
will be non-zero when ξ3 = ξ4.

We note that if the first two interactions came from different
pulses with different wavevectors (as would be the case in

2DS), we would have more complicated expressions which
cannot be expressed just using the factor ψ.

We consider frequency resolved detection with an
ultrafast probe pulse Er(t) ∼ Er0δ(t); the signal with a
frequency component ωLO can be obtained by setting the
amplitude of that frequency component in the probe pulse,
i.e., ELO(t) = Ẽr(ωLO − ωr) and the relative phase between
LO and probe to be zero, i.e., (ϕ = 0) in Eq. (37). The modified
window function after considering difference between left (pL)
and right (pR) circularly polarized light becomes

W̃ (C)
g ∼ Re Ẽ∗r(ωLO − ωr)Er0

×

ξ3,ξ4

kνr (pν4
L (p∗L)ν3 − pν4

R (p∗R)ν3)

×ψν,ν3,ν4
ξ3,ξ4

B̂ξ4G̃ge(ωLO)B̂†ξ3
. (38)

The factor of Ẽ∗r(ωLO − ωr) is included here for completeness,
but we will ignore this term in the numerical calculations as it
can simply be scaled out. Eq. (38) represents a configuration
that achieves the best possible time and frequency resolution
and is also the most simple theoretically.

Other experimental geometries for TRCD can still be
described by Eq. (37). A setup with non-frequency resolved
detection would be described by ELO(t) → Er(t) and ωLO

→ ωr . Alternative configurations like that of Niezborala15

involve manipulating the output light by using polarizing beam
splitters to select output light. This is equivalent to taking
a linearly polarized probe and a local oscillator polarized
orthogonal to this at relative phase of ϕ = π/2 (taking ϕ = 0
would measure the transient optical rotation instead).

E. Isotropic averaging and separation of chiral
doorway and window components

1. Linearly independent contributions to the signal

As the system is isotropic we must average the
signals over all possible sample orientations. There are six
linearly independent chiral contributions to the third order
response tensor48 (although additional degrees of freedom
are associated with the wavevectors); from these, only three
are ever required for pump probe with a linearly polarized
pump. As the system is isotropic, we can simply fix the probe
direction along the z axis without any loss of generality.
Denoting the polarizations of the pump, the probe, and the
local oscillator in a bracket as [ppump,pprobe,pLO], we can
access the three independent configurations with polarizations
[x, y, x], [y, y, x], and [z, y, x]. The TRCD signal is an average
of the [x, y, x] and [x, x, y] ≡ [y, y, x] signals. There is also
an additional degree of freedom relating to angle between the
wavevectors of the pump and probe θ (see Fig. 1(a)), hence
we must also consider colinear and non-colinear contributions
(where possible) to cover all possibilities. Note that the pump-
probe angle θ lies in the plane orthogonal to ppump.

2. Relevant averages for TRCD

In order to calculate the TRCD signals with our method,
we have to compute the isotropic average of the three electric



194112-10 Holdaway, Collini, and Olaya-Castro J. Chem. Phys. 144, 194112 (2016)

dipole transitions and one effective magnetic transition dipole,
for every possible pathway in Liouville space. These can be
calculated via fourth rank averages (see, for example, Ref. 49).
We derive the averages in Appendix F and summarize the key
results here.

For compactness we denote µ jk = µξ j
· µξk and m jk

= mξ j
· µξk. The average of a pathway contributing to the

chiral doorway contribution SChD is of the form

Av(ξ1, ξ2, ξ3, ξ4)ChD

=
ku · ẑ

12
[(m13µ42 − m24µ13) − (m23µ41 − m14µ23)], (39)

with ẑ a unit vector in the direction of the probe. This average
vanishes when ξ1 = ξ2 as expected, indicating that this is
indeed a coherence specific pathway. The equivalent average
for the chiral window SChW is calculated to be

Av(ξ1, ξ2, ξ3, ξ4)cW = |kr |
60

[6µ12(m34 + m43) − (µ24m31 + µ14m32 + µ23m41 + µ32m42)]. (40)

Notably, Eq. (40) is independent of the angle between the
pump and probe but Eq. (39) is not and, in fact, vanishes
if the pump and probe are orthogonal. It is precisely this
dependence that will allow us to separate the chiral-window
and chiral-doorway contributions. The numerical factor of
1/60 is a combination of the 1/30 factor in fourth rank
averages and 1/2 from the circular x and y components of the
circular polarization, the components in Eq. (39) sum together
with a factor of 5 leading to cancellation.

3. Isolating chiral-doorway and chiral-window
contributions by manipulating the angle between
the pump and probe

One of the most important consequences of the relations
presented in Equations (39) and (40) is that manipulation
of the angle θ between the pump and the probe allows us
to obtain the chiral doorway signal. Specifically, the chiral
doorway function can be obtained by computing the difference
between the TRCD signals obtained via a colinear and a
orthogonal pump configurations.

More generally, we can consider taking two otherwise
identical measurements with the probe traveling along the z
axis, but with the pump (linearly polarized in the x-y plane)

at angles θ1 and θ2 to the z-axis. Neglecting any differences in
the overlap of the paths, these two signals can be broken down
as S1 = cos(θ1)SChD + SChW and S2 = cos(θ2)SChD + SChW. To
extract the two chiral contributions we can therefore combine
these signal as

SChD =
S1 − S2

cos(θ1) − cos(θ2) , (41a)

SChW =
S1 cos(θ2) − S2 cos(θ1)

cos(θ2) − cos(θ1) . (41b)

Both the non-chiral and SChW contributions are assumed
independent of the pump angle for this direct subtraction to
work. Within this approximation, the difference in signals with
a forward/backward propagating pump pulse would provide
ideal contrast. In reality, the wavevector mismatch also affects
the signal by turning it into a convolution over a range of
τ values, as we discuss in Appendix E. In practical terms it
may therefore be better to compare two (or more) signals with
smaller angle differences. Fortunately this convolution effect
will be the same for the chiral and non-chiral components,
hence the change in the non-chiral signals (which have much
better signal to noise) could be used as a calibration measure.
We can therefore re-scale/numerically compensate for this
effect before making the subtraction.

FIG. 3. (a) Energy landscape of the two chromophores in the ground and excited states (b) energy levels (vertical scale) of the system in the site, exciton, and
vibronic basis when the anti-correlated component of the vibrational mode (b̂R in Eq. (B4)) is included in the Hamiltonian. Red arrows indicate strong coupling
between states in the Hamiltonian.



194112-11 Holdaway, Collini, and Olaya-Castro J. Chem. Phys. 144, 194112 (2016)

IV. RESULTS

A. Example system

In this section we examine theoretical TRCD signals
for our example system, consisting of an electronic coupled
dimer subject to the influence of a thermal bath with spectral
density of fluctuations that includes an overdamped and a
well resolved, underdamped vibrational mode as discussed
in Sec. II A. Systems of this kind are expected to show
signatures of vibronic states leading to long-lived excitonic
coherences.29–31 We assume the probe pulse is circularly
polarized and is of an extremely short time width. The
detection is assumed to be frequency resolved. We start
by discussing the results when the pump is short enough
to be considered impulsive. In particular, we examine
the differences between the non-chiral (standard pump
probe signal) and the chiral doorway and chiral window
contributions discussed in Sec. III. We then move on to
analyzing the situation where the pump is of finite time and
we can achieve frequency resolution.

The electronic parameters for the dimer with Hamiltonian
as given in Eq. (3) are ~ω1 = 12 328 cm−1, ~ω2 = 12 472 cm−1,
and V1,2 = 70.7 cm−1. The energy gap between the upper
(|+⟩) and lower (|−⟩) excitons states, ∆ex ∼ 202 cm−1, is
close to the energy quanta of the underdamped mode in
Eq. (1), i.e., ~ω0 ∼ 222 cm−1 ∼ ∆ex. The quantum interaction
between the electronic excitations and this well resolved
vibration leads to hybridized exciton-vibration states that
enables non-exponential population transfer between exciton
states, i.e., coherent energy transfer.32 In our numerical
calculations we compute non-perturbative electronic dynamics
via the HEOM as outlined in Appendix G. To gain a better
understanding of the relations between the reduced dynamics

for the excitonic system and the transitions between exciton-
vibration states, in Appendix B 3 we reformulate the problem
by explicitly considering the exciton-vibration Hamiltonian.
Within this approach, we use vibronic eigenstates |X±,n⟩
(defined in Eq. (B8)) which are a mixture of |+⟩ with n − 1
quanta in the vibrational mode and |−⟩ with n quanta in the
mode (note |X,0⟩ is just the lower exciton state |−⟩). The
states |X±,1⟩ have energies 230 cm−1 and 193 cm−1 larger
than |X,0⟩. This is shown schematically in Fig. 3.

The remaining parameters relating to the spectral density
are λD = 20 cm−1 and γD = 630 cm−1 for reorganization
energy and cutoff frequency for the Drude mode and
λB = 4.4 cm−1 and damping γB = 19 cm−1 for the near
resonant underdamped mode. The sample temperature is
assumed to be cryogenic T = 77 K and no static disorder in
energy levels or dipole moments is included. These parameters
are chosen to be similar to a dimer system of the FMO complex
as investigated in Ref. 38. For simplicity we have considered
a larger value for the cutoff frequency γD such that the
overall decay of exciton-vibration coherences is Markovian
thereby simplifying the analysis. The choice of a cryogenic
temperature reduces broadening but is not essential for the
techniques we propose.

B. Chiral signals with an impulsive pump

As we discussed in Section III B, in the limit of an
impulsive pump the chiral doorway component of the ground
state bleaching vanishes. Furthermore, we ignore the time-
dependence of GSB in the chiral window component of
the signal SChW(τ). This means that in our case the chiral
doorway and window functions given in Equations (33) and
(36) become

SChD(τ) ≃ ωr⟨Tr[(W ′(NC)
f
+W (NC)

e )Gee(τ)D(C)
e ]⟩, (42a)

SChW(τ) ≃ ωr

(⟨Tr[W (C)
g Ggg(0)D(NC)

g ]⟩ + ⟨Tr[(W (C)
f
+W (C)

e )Gee(τ)D(NC)
e ]⟩) , (42b)

where chiral component D(C)
e can be extracted from Eq. (32b).

We now proceed to describe our numerical results for the
SChW(τ) and SChD(τ) in our example system.

1. Chiral window contributions

The total signals from the non-colinear configuration
are shown in Fig. 5 with the underdamped mode included
(excluded) in (b). This contributes only to SChW as defined
in Eq. (41b) because SChD vanishes due to isotropic averaging
in this geometry, as can be seen in Eq. (40). Note that this
CD signal is scaled relative to maximum non-chiral signal
(given by the average left and right absorption) multiplied
by λtyp/(2πR12) to allow for arbitrary separation between our

chromophores. We have chosen λtyp = 806 nm as the mean
signal wavelength considered. If we take R12 ∼ 2.6 nm, the
maximum amplitude in Fig. 5 would be about 1/100 of the
non-chiral signal.

The signals in both Figs. 5(a) and 5(b) are somewhat
masked by the GSB component. The GSB is constant due to
the fast pump approximation and is very similar in shape to
the linear CD spectra shown in Fig. 4, with a small relative
difference (<10−3 of the relative signal) due to changes in the
dipole averaging. In Fig. 5(b) the signal is almost constant
after 250 fs, whereas in Fig. 5(a), where the underdamped
mode is included, oscillations are visible even at long times.
While oscillations must arise purely from the excited state
contributions due to the impulsive pump limit in our model,
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FIG. 4. Linear absorption (left axis)
and CD signal (right axis), both nor-
malized to a magnitude of unity,
with/without the underdamped mode
present (solid/dotted lines). Angular
frequency is scaled by a factor of 2πc.
The mode red shifts the lower exciton
peak and the coupling splits the upper
exciton peak into two components. An
extra peak appears in the absorption re-
lating to higher vibronic states but con-
tributes only weakly to the CD signal.

it is still possible for coherences between states which differ
only in vibrational degrees of freedom to contribute to this
chiral window signal.

2. Chiral doorway contributions

We next examine the chiral doorway contribution SChD

by subtracting the signal of the non-colinear configuration
(pump along y probe along z) from the signal from the
colinear configuration. Or more generally via the relationship
in Eq. (41b). In an experiment, noise and changes to the
spatial overlap of the pump and probe pulse may make
a direct subtraction unfeasible. As such extracting SChD may
require looking at the emergence of new or modified amplitude
beating peaks when the pump angle is changed.

Within the fast (impulsive) pump limit, the only terms
which contribute to SChD are proportional to coherences of the
type (|ξ1⟩⟨ξ2| − |ξ2⟩⟨ξ1|), which we show can be decomposed
into different vibronic states in Appendix B. Notably we
have no contribution from purely vibrational coherences,
which have been shown to dominate 2DS signals in
FMO.50

As contributions only come from terms which undergo a
quantum beating during the population time τ, this is referred
to as coherence specific contribution. This is a novel feature
of the chiral spectroscopy, as it is not possible to extract
coherence specific features in ordinary pump-probe setups.

The doorway contribution SChD is plotted in Fig. 6(a)
along with the non-chiral pump-probe signal in Fig. 6(b).
The lines of oscillating contours come from the beating
coherences. Two distinct branches of oscillating peaks are
visible at ωs ∼ 12 500 cm−1 and ωs ∼ 12 250 cm−1 Feynman
diagram analysis shows each branch will have contributions
from both SE and ESA pathways due to the fact that both
rephasing and non-rephasing contributions are present in a
pump-probe signal.

The sustained oscillations in Fig. 6(a) can be explained as
originated from a coherence between the lower exciton state
and a vibronic state28 because the coherence time is longer
than would be excepted for pure exciton coherences and
contributions from pure vibrational coherences are not here. In
Fig. 6(b) the oscillations originate from a coherence between
the lower and upper exciton states, which decay much faster.
The side bands visible at the end of the frequency range are

FIG. 5. TRCD signal from a noncolinear configuration (equal to the chiral window signal SChW) with an impulsive pump and (a) the full spectral density
and (b) just a Drude spectral density (no underdamped mode). Some oscillation is visible in (a) whereas (b) appears relatively constant indicating the mode is
responsible for prolonging coherent beating in this system. Angular frequency is scaled by a factor of 2πc.



194112-13 Holdaway, Collini, and Olaya-Castro J. Chem. Phys. 144, 194112 (2016)

FIG. 6. (a) Excited state contribution to the SChD (doorway) signal component, defined in Eq. (41b), multiplied by a factor of 100. (b) Ordinary pump-probe
signal with the pump and probe linearly polarized along the x-axis. The non-chiral pump-probe signal included dynamics from population evolution which
complicates the interpretation. Note that both signals can be obtained simultaneously as the difference/sum of the left and right absorptions.

associated to transitions between different harmonic oscillator
energy levels of the center-of-mass mode (cf. Appendix B 2),
which will differ by around ω0 or can also correspond to
transitions to higher energy vibronic states.

In order to better understand these oscillations, we
consider particular frequency slices of these plots and perform
a Prony decomposition51 as shown in Appendix H. The
simplicity of the coherence specific signal allows for an easier
decomposition and a more accurate determination of the beat
frequencies than in a non-chiral impulsive pump-probe signal.

C. Frequency resolution with finite width Gaussian
pulses

The opposite limit to the ultra-fast time resolution setup
is the frequency resolved configuration, in which the carrier
frequency of the pump is well defined. Within this limit, a
Gaussian pulse cannot excite coherences between the states
with different energies and only population type transfers
would be possible, completely eliminating the chiral doorway
contribution SChD and hence giving no difference in the chiral
signals from the colinear and non-colinear geometries.

Since we are interested in measuring signals from coher-
ences, we consider an intermediate and more experimentally
relevant limit in which the pump pulse has a finite duration
and frequency bandwidth. The probe is still assumed to be
short with frequency resolved detection employed. Such a
signal is calculated from our data using Eq. (G3). Our pump
pulse is therefore described by

Eu(t) = Eu(0) exp
(
− t2

4σ2
u

)
, (43)

note that σu is the standard deviation of the intensity profile
|Eu(t)|2.

As the pump pulse is of a finite duration, the coherences
will give a suppressed contribution to the total signal, but
must still be accounted for. The chiral doorway signal
SChD is plotted in Fig. 7 for a range of Gaussian pulse

standard deviations σu and a carrier frequencies. The
time widths σu = 25,50,75,100 fs correspond to frequency
FWHM of 500,250,167,125 cm−1 (or standard deviations
of σ̃u = 212,106,70.8,53 cm−1) respectively. The initial rise
in Fig. 7 is due to the assumption of strict time ordering.
In reality, there are additional contributions with the probe
giving rise to the 1st or 2nd interaction instead of the 3rd, and
therefore also a coherence component, sometimes unhelpfully
referred to as the coherence artifact.18 Therefore these graphs
are only valid at times larger than around 2σu.

When the pump carrier frequency is set at ~ω1
= 12 278 cm−1, resonant with the lower exciton state
|−⟩ ≡ |X,0⟩, the transitions to the two vibronic states |X±,1⟩
(predicted to be around 193 cm−1 and 230 cm−1 higher) lie
in the frequency tail of this pulse. It is therefore possible
to excite the coherences between the vibronic states and
the ground exciton state, denoted |X±,1⟩⟨X,0|, but with
decreasing amplitudes as the pulses get longer. The 50 fs
pulse has a FWHM of 250 cm−1 and so can non-negligibly
excite such a coherence. However, the contribution to our
signal is reduced by a factor of exp(∆E2/4~2σ̃2

u), the relative
amplitude of Ẽ(ω) at the frequency of the upper exciton
transition. With our parameters, the signal reduces to around
exp(−2302/[4 × 1062]) ∼ 0.3 of the impulsive pump limit.
When the carrier frequency is set at ~ω1 = 12 376 cm−1, which
lies at the mid-point between transitions to |−⟩ and |X−,1⟩, both
transitions will be slightly off resonant. In this case the signal
is reduced to around ∼ exp(−(1322 + 982)/[4 × 1062]) ∼ 0.55
of the impulsive pump limit, thus giving more signal as shown
in Fig. 7(b). This analysis is only approximate since effects
like transition broadening are not taken into account.

This effect is even more pronounced for the longer pulses
in Figs. 7(c) and 7(d), with significant drops in signal and more
pronounced differences between the two carrier frequencies.
We also note the coherence |X−,1⟩⟨X,0| will be preferentially
excited (as |X−,1⟩ is lower in energy than |X+,1⟩). This
coherence decays faster than |X+,1⟩⟨X,0| [visible in Fig. 9(a)
in Appendix H], hence the apparently more rapid signal
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FIG. 7. Full contribution to the SChD (chiral doorway) signal component defined in Eq. (41b) with pulse widths σ of (a) 25 fs, (b) 50 fs, (c) 75 fs, and (d) 100 fs.
Oscillations become less visible as the pulse time-width increases because insufficient bandwidth is available to excite coherent superposition of states and the
lines with different pump carrier frequencies become distinct. Note these labels denote ω/2πc in inverse cm units. The signal in (c) and (d) also decay with
time faster than typical vibronic coherences, indicating they have a different origin.

decay. We also note that a small thermal population is
present in vibrational excited electronic ground state |g,1⟩
can potentially allow the |X+,1⟩⟨X−,1| coherence to contribute
when the lower carrier frequency is used and the pulses are
narrow band.

The chiral doorway function will now have a finite
contribution from the ground state hole, which consists of
purely vibrational coherences. This contribution is plotted in
Fig. 8. Initially the contribution grows as the pulse width
increases since the coherence time is longer and the exciton-
vibration coupling allows vibrational coherences to form.
However, in the range we are showing, the contribution
decreases as the pulse width grows because the frequency
range is too narrow to excite coherences (the same reason
as the excited state contribution). This is still a fairly minor
contribution to the overall signal (difference).

By manipulating carrier frequency and pulse width it
should be possible to identify the energies of states which are
responsible for the beatings observed in the signals. In order
to select coherences between particular states one can extend
the technique to include chirped pulses that effectively have
two carrier frequencies.

D. Comparison with other techniques

Coherence specific polarization configurations in 2D
optical spectroscopy are possible,52 but present additional
experimental difficulties due to the number of independent
pulse polarizations which must be controlled. Pump-probe
experiments are also generally easier to perform than 2D
spectroscopy as there is no need to control relative phase (no
phasing problem) and no Fourier artifact from measurement.

FIG. 8. GSB contribution to the SChD (doorway) signal component, defined in Eq. (41b), for pulse widths σ of (a) 25 fs, (b) 50 fs, (c) 75 fs, and (d) 100 fs. The
contribution is much less than that from the excited state, with the minimum difference being an order of magnitude at σ = 50 fs.
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Additionally, the ability to use a short pump pulse allows
us to limit the chiral contribution of ground state vibrational
coherences, which may otherwise mask quantum beats from
vibronic states.

Pump-probe polarization anisotropy spectroscopy has
also been used to study the evolution of coherences
within multichromophore systems.53–55 However this requires
specific geometrical properties of the chromophores, namely
degenerate perpendicular transition dipole moments and thus
it is not fully general.27 Excitonic TRCD requires chirality,
which for a dimer system of chromophores means the
electric transition dipole moments and the displacement vector
between the centers of each chromophore are not parallel and
do not lie in the same plane.

There are two primary challenges associated with TRCD
bases spectroscopy. Firstly we expect a 3–4 fold reduction
in signal compared with non-chiral techniques.17 Secondly
the positions of chromophores may also drift relative to one
another, on time scales much longer than measurements, and in
ways that are not well understood. This can lead to cancellation
of certain signals from an ensemble measurement and
generally complicate analysis. Moreover, circular polarization
can introduce experimental complexity, though alternative
methods exist to overcome this.15

V. CONCLUSIONS

We investigated the different contributions to the
time-resolved circular dichroism signal from a system
of electronically coupled chromophores. Our formalism
separates out doorway (SChD) and window (SChW) components
to this chiral signal. This distinction is useful as the
chiral doorway component is dependent on the presence
of coherences within the non-equilibrium electronic density
matrix formed after the interaction with the pump pulse.
Comparing signals from two experimental geometries enables
us to isolate SChD thereby directly probing excited state
coherences that beat sinusoidally in the pump-probe delay
time. Our numerical results focus on the example of a
dimer system, similar to a subsystem found within the FMO
complex. We have shown that for this system the oscillations
due to the vibronic coherences excited by a pump pulse are
visible in the time-domain (short pump pulse) transient CD
signal, free from any ground state contribution, and therefore
provide evidence of exciton coherence being mediated by
hybrid exciton-vibration states. We also show that vibrational
coherences with no coupling to excitons do not contribute to
this signal.

In the frequency domain (well resolved pump carrier
frequency) spectroscopy, SChD is found to vanish if the
pump beam is linearly polarized. Using a pump pulse
with a finite width in time, SChD is non-zero and has the
ability to excite coherences between specific states and
has an additional contribution originating from vibrational
coherences in the ground state. This contribution is however

found to be at least an order of magnitude lower than that
of the excited state contribution for our system, allowing for
unambiguous signatures of excited state dynamics. This is
different to techniques such as 2D Fourier transform optical
spectroscopy and ordinary pump-probe, in which the ground
state contribution can conceal excited state coherences.

By systematically changing the pulse width and carrier
frequency, it would be possible to eliminate the participation
of coherences between states with energy differences larger
than the pulses frequency width, or which are out of
resonance. This spectroscopy technique can therefore help
to isolate and characterize coherences which have been
predicted from theory or other experiments using different
techniques. Additional this technique could be used to identify
coherences between exciton states with a negligible electric
dipole moment, too small to be identified with non-chiral
techniques.
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APPENDIX A: GENERAL DERIVATION OF THE CHIRAL
INTERACTION OPERATOR INCLUDING INTRINSIC
SUPRA-MOLECULAR CHIRALITY

Starting with the minimum coupling Hamiltonian for light
and matter in the semiclassical approximation18

Ĥ ′(t) = −


dr

Ĵ(r, t) · A(r, t) + Q̂(r, t) : A(r, t)A(r, t) .

(A1)

We then neglect the term proportional to the charge density
Q̂(r, t) times square of the (classical) electromagnetic vector
potential A(r, t)2. Notice that this term is typically much
smaller in experiments with visible light probing matter with
strong dipole transitions. We can then express the effective
semi-classical Hamiltonian in k space as

Ĥ ′(t) ≈ −


dkĴ(k, t) · A(−k, t). (A2)

Denoting the creation and annihilation operators for the ath
excited state of the ℓth chromophore B̂†ℓa and B̂ℓa, we can
express current density operator in momentum space as

Ĵ(k, t) =

ℓ,a

(
j
∗
ℓa(−k)B̂†ℓa + jℓa(−k)B̂ℓa

)
. (A3)

The terms jℓa(k) can in principle be calculated from the
many-body wavefunctions of the ground and excited states
via a multipole expansion in the displacement of charges qα
from the chromophore center48

jℓa(−k) = −ieik·r j

α

qα⟨φℓa |ω �(rα − r j) − ik · (rα − r j) ⊗ (rα − r j)/2 + · · · � + k ×
�(rα − r j) × pα/2 jα + · · ·

� |φ jg⟩. (A4)
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Note that c = ~ = 1 in the above expression and the “. . .”
denote higher order magnetic/electric multipole moments.18

Here q denotes the charge of the αth particle in the system.
When the sum over all charges is performed, the first two terms
are the electric transition dipole moment µℓa and quadrupole
Qν1,ν2

ℓa moment (contracted over k). The only term explicitly
written term in the second bracket is the magnetic dipole
moment mℓa.

Naturally Eq. (A4) is very complicated. To simplify it,
we Taylor expand the exponential prefactor (assuming that all
rm are much smaller than an optical wavelength) and truncate
terms of order k2 or higher

jℓa(−k) = −iωµℓa − ωk · (↔Qℓa + µℓar j) + ik ×mℓa. (A5)

Here ω = |k|/c,
↔
Qℓa is the electric quadrupole tensor and mℓa

is the magnetic dipole for the transition from the ground state
to excited state a of chromophore ℓ. The term µℓarm is the
familiar super-molecule coupling term considered in the bulk
of this paper.

We now have the added complication that our coupling
Hamiltonian is defined in terms of a vector potential. However
we can still make a single mode approximation with a gauge
choice ∇φ = 0 and the slowly varying envelope approximate
to use the expression

Aℓ(r, t) ≈ − i
ωℓ

(
pℓEℓ(t)ei(kℓ ·r−ωℓt+ϕℓ) − p∗ℓE

∗
ℓ(t)e−i(kℓ ·r−ωℓt+ϕℓ)

)
, (A6)

for the vector potential for each of our pulses. The
approximation Eq. (A6) is less valid when pulses excite a
wide range of frequencies. In this case it is also preferable
to scale the effective transition moments by the wavelength
of light resonant with that transition and contract over a unit
vector k̂.

The factors of 1/ω j in Eq. (A6) will cancel those in
Eq. (A5) and we can derive similar expression to those in the
body of the paper. However, we must now include the extra
terms relating to supra-molecular chirality within Eq. (17).
Hence we have a more general expression

ψ
ν,ν1,ν2
ξ1,ξ2

= µ
ν2
ξ2
(Qνν1

ξ1
+ ϵν1νν′m̃

ν′
ξ1
) − µν1

ξ1
(Qνν2

ξ2
+ ϵν2νν′m̃

ν′
ξ2
),

(A7)

with ϵ i jk the Levi-civita tensor and

Qνν′
ξ =


ℓ,a

⟨g |B̂ℓa|ξ⟩Qνν′
ℓa ,

m̃ν
ξ =


ℓ,a

⟨g |B̂ℓa |ξ⟩(imν
ℓa + ϵνν1ν2Rν1

m µ
ν2
ℓa/2),

(A8)

the exciton basis electric quadrupole moment and magnetic
dipole moments. We note Eq. (A7) will still vanish if ξ j = ξ4
and νj = ν4 as before. The intrinsic magnetic dipoles of each
transition can easily be included into the expressing derived
in this paper using effective magnetic dipoles but the electric
quadrupole moments would require additional calculation for
averaging.

APPENDIX B: DERIVATION OF VIBRONIC STATES
WITH AN EXPLICIT VIBRATIONAL MODE
1. Reformulation as Hamiltonian dynamics

In our numerical calculations we compute the exact
dynamics of electronic degrees of freedom using the HEOM.
This approach will give exactly the same dynamics as
that in which the underdamped mode is included in the
system Hamiltonian and then traced out. However, accounting
explicitly for quantum interaction between excitons and

underdamped vibration allows us to relate this dynamics to the
transitions and coherences in the Hilbert space of the vibronic
(exciton-vibration) states. The full system Hamiltonian now
consists of the electronic Hamiltonian ĤElec and two addition
components

Ĥsys = ĤElec + ĤOsc + ĤEl−Osc , (B1)

we denote the exact kth energy eigenstate in the single (e) or
double ( f ) electronically excited manifold of this Hamiltonian
as |ψk,e/ f ⟩. Labeling the creation and annihilation operators
for the mode on site j as b̂†j and b̂j, the individual components
are

ĤElec = E1|1⟩⟨1| + E2|2⟩⟨2| + V (|1⟩⟨2| + |2⟩⟨1|), (B2a)

ĤOsc = (ω0 + 1/2)(b̂†1b̂1 + b̂†2b̂2), (B2b)

ĤEl−Osc =

2
j=1


SHRω0| j⟩⟨ j |(b̂†j + b̂j), (B2c)

with the Huang-Reiss factor
√

SHR related to the reorganization
of the underdamped mode via λB = SHRω0. In our case the
electronic coupling V = 71 cm−1 is also comparable to the
energy gap E2 − E1 = 144 cm−1 and larger than the effective
coupling to Drude component of the bath, i.e., V >

√
λDωD.

Then excitons are well defined. The upper and lower
exciton states are denoted by |+⟩ = cos(θ)|2⟩ + sin(θ)|1⟩
and |−⟩ = cos(θ)|1⟩ − sin(θ)|2⟩ respectively, with energies
E± = (E2 + E1)/2 ±


V 2 − (E2 − E1)2/4. The mixing angle θ

is given by θ = tan−1
(

1√
1+ϵ2−ϵ

)
for ϵ = (E2 − E1)/2V . For our

parameters the energy difference between the upper and lower
excitons is ∆ex ∼ 202 cm−1 and the mixing angle related to
the degree of delocalization of an exciton is θ ∼ 0.376π. Note
this angle is not related to the pump-probe angle mentioned
in the main text.

2. Relative mode coordinates

The assumption of identical modes for the two sites leads
to consider two collective nuclear motions: a center-of-mass
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(correlated) oscillation and relative (anti-correlated) oscilla-
tion, with creation and annihilation operators

b̂C = (b̂1 + b̂2)/
√

2, (B3)

b̂R = (b̂1 − b̂2)/
√

2, (B4)

with the oscillator Hamiltonian now given by

ĤOsc = (ω0 + 1/2)(b̂†
C

b̂C + b̂†Rb̂R). (B5)

The key feature of these collective motions is that the center-
of-mass mode dynamics decouple from the exciton dynamics

ĤEl−Osc = g
�
2 cos(θ) sin(θ) [|−⟩⟨+| + |+⟩⟨−|] + [cos2(θ) − sin2(θ)][|+⟩⟨+| − |−⟩⟨−|]	 (b̂R + b̂†R)

+ [|+⟩⟨+| + |−⟩⟨−|](b̂C + b̂†
C
). (B6)

The second line of Eq. (B6) is independent of population
differences and coherences between the exciton states, only
requiring that the system is in the excited state. This
center-of-mass therefore evolves as a damped quantum
harmonic oscillator, initially displaced from equilibrium.
We use the notation |+,n⟩ ≡ |+⟩ ⊗ |n⟩ for the joint exciton-
vibration states, with the second index denoting the number
of vibrational quanta in the relative mode. Note that the
vibrational states used are eigenstates within the ground
electronic state.

3. Vibronic states

For further analysis it is useful to split Eq. (B6) into three
different terms:

HJC =
√

2gk cos(θ) sin(θ)[|−⟩⟨+|b̂R + |+⟩⟨−|b̂†R], (B7a)

HNRW =
√

2gk cos(θ) sin(θ)[|−⟩⟨+|b̂†R + |+⟩⟨−|b̂R], (B7b)

HNHD =
√

2gk[cos2(θ) − sin2(θ)]
× [|+⟩⟨+| − |−⟩⟨−|](b̂R + b̂†R). (B7c)

Here JC stands for Jaynes Cummings, as the Hamiltonian
including this form of interaction to the relative mode maps
to the well-known Jaynes-Cummings model.56 The subscripts
NRW and NHD stand for “non-rotating wave” and “not
Homodimer.” The former vanishes when we ignore the terms
that couple subspaces with different number of excitations via
the rotating wave approximation (although the system is still
solvable without this approximation57) and the latter can be
neglected if the onsite excitation energies are identical.

The coupling term HJC strongly couples the upper and
lower exciton states, particularly in the resonant case where
ω0 matches the exciton splitting and the resulting states
are degenerate. This means the effective eigenstates are
superpositions of exciton-vibration states referred from now
on as vibronic states. Denoting the states with population in

the upper/lower state and n quanta in the relative component
of the vibrational mode by |±,n⟩, a better basis for n ≥ 1 is
the states

|X+,n⟩ = cos(φn)|+,n − 1⟩ + sin(φn)|−,n⟩,
|X−,n⟩ = sin(φn)|+,n − 1⟩ − cos(φn)|−,n⟩. (B8)

With our parameters these new states have energies 230 cm−1

and 193 cm−1 relative to the lower exciton state and
φ1 = 0.3410π is the mixing angle. The higher energy state
|X+,m⟩ has more character from the lower exciton state.
Because our vibrational dephasing time is much longer than
our electronic one, we therefore expect a longer coherence
time associated with |X,0⟩⟨X−,1| compared to |X,0⟩⟨X+,1|.

When θ ≈ π/2, ω0 ≈ ∆ex, and |g/∆ex | ≪ 1, these states
are good approximations to the system eigenstates. The new
mixing angles φm are chosen to diagonalize ĤElec + ĤOsc
+ HJC. The lowest eigenstate in the excited manifold, denoted
|X,0⟩ is still the lower exciton state with zero quanta in the
relative vibrational mode |−,0⟩ as the weak mixing to the state
|+,1⟩ from HNRW is neglected.

When θ , π/2, which is the case in our system, the states
|±,n⟩ are coupled to |±,n ± 1⟩ from HNHD. Combined with the
damping this will lead to a Stokes shift on the relative mode.
Transitions dipole moments to all the exciton vibrational states
(except |X,0⟩) are a mixture of µ− and µ+ with the equivalents
for the beyond-dipole approximation moments.

4. Impulsive pump doorway evolution in a vibronic
state basis

For the electronic excited state of our dimer, we
noted that the initial chiral doorway function is given
by D(C)

e = iC(|ξ1⟩⟨ξ2| − |ξ2⟩⟨ξ1|) ⊗ ρ̂v,eq where ρ̂v,eq is the
equilibrium density matrix for the vibrational degrees of
freedom in the electronic ground state. In terms of the vibronic
eigenstates of the Hamiltonian (B1) with a single excitation,
i.e., |ψk,e⟩, we can express this initial condition as

D(C)
e = iC





k⟨k′

|ψk,e⟩⟨ψk′,e |[⟨ψk,e|(|ξ1⟩ ρ̂v,eq⟨ξ2|)|ψk′,e⟩ − ⟨ψk,e |(|ξ2⟩ ρ̂v,eq⟨ξ1|)|ψk′,e⟩] − h.c.


. (B9)

This operator still lacks any terms on the diagonal and so
consists only of terms which beat during the population
time (unless degenerate states are present). These decay
due to the interaction with the remaining degrees of

freedom of the thermal bath. Since detection is performed
in frequency space we expect to probe resonances related
to transitions from vibronic states. In the case of our
dimer, the center-of-mass mode b̂C is uncoupled from the
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electronic dynamics and evolves as a quantum harmonic
oscillator with decoherence, effectively undergoing simple
harmonic motion as the coherence time is much larger for
vibrational modes than for the electronic degrees of freedom.
This lead to undressed oscillations with a period of ω0
on top of the vibronic dynamics, but no pure vibrational
coherences can contribute because (⟨ψk |(|ξ1⟩ ρ̂v,eq⟨ξ2|)|ψk′,e⟩
− ⟨ψk,e |(|ξ2⟩ ρ̂v,eq⟨ξ1|)|ψk′,e⟩) would evaluate to zero and hence
the mode b̂C can only contribute overtones.

APPENDIX C: CHIRAL WINDOW FUNCTIONS

Additionally to the window function associated with
ground state bleaching (GSB) we have the two excited state
window functions We and W f related to stimulated emission
and excited state absorption. These stimulated emission
window function is given by

We ∝ −Re
 ∞

−∞
dt

 ∞

0
dt3 eiϕ+iωLOt3+i(ωLO−ωr )t

× E∗LO(t + t3)Er(t)

ξ3,ξ4

pν4
LOpν3

r (µν3
ξ3
µ
ν4
ξ4
+ ikνrψ

ν,ν3,ν4
ξ3,ξ4

)

× [B̂†ξ3
Geg(t3)]B̂ξ4Gee(t). (C1)

As before, the chiral part W (C)
e is given by the terms in the

sum featuring ψ
ν,ν3,ν4
ξ3,ξ4

and the non-chiral part by those with
only dipole transitions. For the ESA part we have

W f ∝ Re
 ∞

−∞
dt

 ∞

0
dt3 eiϕ+iωLOt3+i(ωLO−ωr )t

× E∗LO(t + t3)Er(t)
×


ξ3,ξ4


f3, f4

pν4
LOpν3

r (µν3
ξ3, f3

µ
ν4
ξ4, f4
+ ikνrψ

ν,ν3,ν4
[ξ3, f3],[ξ4, f4])

× V̂ξ4, f4Ge f (t3)B̂†ξ3, f3
Gee(t), (C2)

where the additional sum over the N(N − 1)/2 double excited
states has now been included and B̂ξ, f = |ξ⟩⟨ f ,2|. For this
work, N = 2 and hence only one double excited state is
possible; for larger systems the number of double excited
state becomes unfavorable and models such the coherent
exciton scattering model become favorable.

APPENDIX D: IMPACT OF DIPOLE COUPLING
BEYOND THE CONDON APPROXIMATION

All of our numerics feature dipole moments only for
transitions in which the vibrational degrees of freedom are
unaffected, known as the Condon approximation. To go
beyond this approximation, we can expand the molecular
polarizability to first order in normal mode coordinates58

α(q⃗) = α0 +

j

(
∂q
∂qj

)
0
qj + · · ·, (D1)

with the . . . denoting higher order terms. The linear terms
lead to dipole moments which couple vibrational states on
different chromophores with ±1 quanta. Our dipole moment
operator can now be written as

µ̂ =

j

[B̂j + B̂†j ][µg j + µg, j ;1(b̂j + b̂†j)]. (D2)

More generally, anharmonicity with the mode coordinate
allows some weak coupling to energy levels with a difference
of multiple quanta. As we mentioned in the main text, these
additional couplings do not affect the chiral doorway compo-
nent of our signal in the impulsive pump limit. To see this, we
consider a generalized chiral interaction tensor which includes
transitions between different levels of a particular mode

ψ
ν,ν1,ν2
ξ1,ξ2;n,ℓ,n′ =

N
j1, j2=1

C j1
ξ1

C j2
ξ2
µ
ν1
g,n; j1,ℓ

µ
g,n′; j2,ℓ
j2

(Rν
j1
− Rν

j2
). (D3)

In the impulsive limit, we excite all excitons with equal
weight and hence we take the sum over all ξ1 = ξ2. The
sum


ξ C j1

ξ C j2
ξ = δ j1, j2 as the states are orthonormal and

(Rν
j1
− Rν

j2
) is clearly zero when j1 = j2, hence we have

no chiral contribution. Outside of the impulsive limit this
logic no longer holds and the detuning between the carrier
frequency of our pump pulse and the exciton energies becomes
increasingly important, hence all excitons are not excited
equally.

More generally, when we have a transition with both
an intrinsic magnetic dipole moment and an electric dipole
moment the situation is now more complicated. We look at
the chiral contribution to the projector |n⟩⟨n′| in our doorway
function correction D′g =


n,n′ ρD(n,n′)|n⟩⟨n′|, still in the

impulsive limit

ρD(n,n′) =

ξ, ñ

{P(n) �(b ·mgn;ξ ñ)(p · µξ ñ;g,n′) − (p · µg,n;ξ ñ)(b ·mξ ñ;g,n′)�

− P(n′) �(b ·mgn′;ξ ñ)(p · µξ ñ;g,n) − (p · µg,n′;ξ ñ)(b ·mξ ñ;g,n)�}. (D4)

Here b = k × p is a vector in the direction of the magnetic
field; the first term comes from the left acting Feynman
diagram and the latter from the right side. Both terms will
vanish for n = n′, however in general cancellation is less
obvious. The sum over all ξ will not lead to full cancellation
as the CD signal is no longer conservative; however, the sum
over ñ will lead to cancellation.

As all possible paths are summed over with equal weight,
the terms to the left of each bracket will be repeated on the
right. For example, taking n = 0, n′ = 1 the ñ = 1 term will
give (b ·mg0;ξ1)(p · µξ1;g1) for the left term in the square
brackets and ñ = 0 will give (p · µg0;ξ0)(b ·mξ0,g1) on the
right side. As µξ0;g,0 = µξ1;g,1 (this is simply the zero order
term in q⃗ expansion) and mg0;ξ1 ≈ mξ0,g1 these two terms
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approximately cancel. The difference in resonant excitation
frequency of the two transitions may mean cancellation is
not complete; but this difference is small compared to optical
frequencies, leaving only a negligible difference term. Since
all terms can be paired off in this way, we have nearly full
cancellation.

It therefore seems quite general that the chiral doorway
signal remains free of significant ground state contributions in
the impulsive limit and therefore only excited state electronic
coherences will contribute to this signal component. Outside of
the impulsive limit, the pulse time width becomes comparable
to electronic transition frequencies and dephasing rates and
this is no longer true. However in the frequency resolved
limit we also expect the chiral doorway contribution to vanish
anyway. Pinched between these two extremes, the ground
state contribution to the chiral doorway function is expected
to be weak in all cases.

APPENDIX E: INCLUDING THE EFFECTS OF SPATIAL
OVERLAP OF THE PUMP AND PROBE

When the pump and probe beams are not exactly colinear,
we need to consider a formalism that explicitly considers
the locations where the pump and probe both interact with

molecules. This situation is barely covered in the literature,
as typically the pump can be focused to a point much smaller
than the probe width. However, as we wish to make a
precise subtraction of measurements with different angles, it
is worth considering explicitly. Additionally, strong focusing
is undesirable for us here, as it will mean more wavevectors-
polarization combinations will contribute to the final signal,
complicating our understanding.

We assume cylindrical symmetry for our pulses, with
Gaussian envelopes Er(R, t) = exp(−(z − z0(t))2/2σ̃2

r − (x2

+ y2)2/2σ2
r) for the probe and the pump at an angle of θ

to this, lying in the z-y plane.
Within the doorway window formalism, the doorway

and window functions will remain the same, but acquire
an additional factor for the pulse intensity relative to the
maximum. This factor is exp

�
−R2
⊥/σ

2
r

�
for the window

and exp
�
−R2
⊥′/σ

2
u

�
for the doorway; we have defined

R⊥ =


x2 + y2 and R⊥′ =


x2 + (y cos(θ) − z sin(θ))2 the
displacements from the primary maxima of each pulse, in
the plane orthogonal to propagation. More significantly, the
time delay τ will now be a function of position within the
sample; τ will decrease along the positive z and y axes.

For the ground state contribution, we therefore have to
evaluate a term of the form

S̃GS B(ωs, τ; Eu; Er) = ωs


d3R exp *

,
−

R2
⊥′

σ2
u

−
R2
⊥
σ2
r

+
-
⟨Tr[Wg(ωs; Er)G

(
τ − n

c
[z(1 − cos(θ)) − z0 + y sin(θ)]

)
Dg(Eu)]⟩, (E1)

where n is the refractive index. The most significant change here is that the time delay is now dependent on z and y . We note
the y dependence will vary across the probe pulse, which means this could theoretically be separated with spatially resolved
detection. The z dependence is in the direction of propagation and therefore could not be removed within this experimental
geometry.

In the case of a fully non-colinear experiment (θ = π/2), we essentially have to integrate our “ideal” signal over a range of
τ with a weight function equal to the radial width of our pump beam. If our “ideal” phase matched signal is oscillating about
some constant A with a frequency ω (i.e., S(τ) ≈ A + sin(ωτ) exp(−Γτ)) our actual signal is

S̃(τ) ∝


dz


dy e
− z2

σ2
u
− y2

σ2
r {A + e−Γ[τ−n(z+y)/c] sin(ω[τ − n(z + y)/c])} ∝ A + sin(ωt + φ)e−

n2(ω2−Γ2)(σ2
1+σ

2
2)

4c2 , (E2)

with φ =
�
σ2

1 + σ
2
2

�
Γωn2/c2 a phase shift. Unless

nω

σ2

1 + σ
2
2/c . 1, any weakly damped, oscillating compo-

nent will be much weaker in this configuration. Additionally
the overall amplitude will be reduced as the beam angle
increases because less molecules are in the path of both pulses.
For our signals we have ω/2πc ≈ 200 cm−1 with n ∼ 1.3 in
water, hence we require max(σ1,σ2) . 6 µm. This is a fairly
narrow waist and so some focusing (at least along the z direc-
tion) is likely required to take measurements in this geometry.

To directly compare signals taken at different angles
we may have to numerically “undo” the effect of this
convolution over τ. This would probably be easiest to achieve
in Fourier space (over τ), where it essentially involves a
rescaling of peaks depending on their frequency and width.

Experimentalists would have to look at the change to these
peaks when θ is varied, compared with that expected from
the convolution effect alone, in order to extract the doorway
contribution.

APPENDIX F: ISOTROPIC AVERAGES FOR
POLARIZATION CONFIGURATIONS WITHIN TRCD
1. Relevant orientation averages

We consider the averaging by considering effective
magnetic dipoles m̃ξ rather than explicitly considering fifth
rank tensors. To indicate why this is possible we note that the
result (A · ŷ)(B · ẑ) − (B · ŷ)(A · ẑ) = (A × B) · x̂ combined
with the fact odd rank tensors change sign49 when two indices
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are permuted means

⟨A1 · x̂1 · · · (An · ŷ)(An+1 · ẑ)⟩
= ⟨A1 · x̂1 · · · ((An × An+1) · x̂)/2⟩. (F1)

As r j × µ j transforms as a vector, these order n + 1 averages
can be calculated from nth rank tensors.

Applying this to the calculation of our chiral window
averages, we have for pu = x̂ and pr = (x̂ ± i ŷ)/√2

kνr pν1
u pν2

u pν3
L/Rpν4

R/L⟨µν1
ξ1
µ
ν2
ξ2
ψ
ν,ν3,ν4
ξ3,ξ4

⟩ = ∓ i |kr |
2

⟨µxξ1
µxξ2


j3, j4

C j3
ξ3

C j4
ξ4
(µxj3µyj4 − µ

y
j3
µxj4)∆Rz

j3, j4
⟩,

= ± i |kr |
2

⟨µxξ1
µxξ2

(µxξ3
mx

ξ4
+ µxξ4

mx
ξ3
+ µ

y
ξ3

my
ξ4
+ µ

y
ξ4

my
ξ3
)⟩. (F2)

Note that we use the notation µxξ1
≡ µξ1 · x̂ and hence the indices x, y, z should not be subject the Einstein summation notation!

The second line uses the results Eqs. (F1) and (19). Equivalently for the chiral doorway average we have

kνupν1
u pν2

u pν3
L/Rpν4

R/L⟨µν3
ξ3
µ
ν4
ξ4
ψ
ν,ν3,ν4
ξ1,ξ2

⟩ = kz
u

2
⟨[µxξ3

µxξ4
+ µ

y
ξ3
µ
y
ξ4
∓ i(µxξ3

µ
y
ξ4
− µyξ3

µxξ4
)]


j1, j2

C j1
ξ1

C j2
ξ2
(µxj1µxj2[Rz

j1
− Rz

j2
])⟩

= ±i
kz
u

2
⟨(µyξ3

µxξ4
− µxξ3

µ
y
ξ4
)(my

ξ1
µxξ2
− my

ξ2
µxξ1

)⟩. (F3)

2. Isotropic average formalism

In order to evaluate the averages Eqs. (F3) and (F2), we introduce the isotropic average for a 4th rank tensor47

pv1pv2
2 pv3

3 pv4
4 ⟨µv1

1 µ
v2
2 µ

v3
3 µ

v4
4 ⟩iso =

*...
,

(p1 · p2)(p3 · p4)
(p1 · p3)(p2 · p4)
(p3 · p2)(p1 · p4)

+///
-

†

M (4) *...
,

(µ1 · µ2)(µ3 · µ4)
(µ1 · µ3)(µ2 · µ4)
(µ3 · µ2)(µ1 · µ4)

+///
-

, (F4)

with pk the polarization of the field responsible for the kth interaction and

M (4) =
1
30

*...
,

4 −1 −1
−1 4 −1
−1 −1 4

+///
-

. (F5)

Using Eq. (F4) we can show that the averages for the chiral window function evaluate to

ikνr pν1
u pν2

u pν3
L/Rpν4

R/L⟨µν1
ξ1
µ
ν2
ξ2
ψ
ν,ν3,ν4
ξ3,ξ4

⟩ = ∓ |kr |
60

[6µ12(m34 + m43) − (µ24m31 + µ14m32 + µ23m41 + µ32m42)], (F6)

where we have introduced the compact notation µ jk

= µξ j
· µξk and m jk = mξ j

· µξk. This result does not vanish
for ξ1 = ξ2 or ξ3 = ξ4 and is therefore not coherence specific
as expected. The ∓ terms at the front relate to whether the
probe is left or right circularly polarized and will vanish when
we take one signal from the other.

The averages for the chiral doorway evaluate to

ikνupν1
u pν2

u pν3
L/Rpν4

R/L⟨µν1
ξ1
µ
ν2
ξ2
ψ
ν,ν1,ν2
ξ1,ξ2

⟩

= ∓
kz
u

12
[(m13µ42 − m24µ13) − (m23µ41 − m14µ23)], (F7)

this average does vanish for ξ1 = ξ2 as expected. This
average remains finite for ξ3 = ξ4 (reducing to a term
∝ m13µ23 − m23µ13), however for a pump probe configuration
we always have the conjugate term with ξ1 and ξ2 reversed
which leads to cancellation of these terms and is therefore

coherence specific. Note that this latter effect is not down to
orientation averaging.

APPENDIX G: METHODS FOR NUMERICAL
CALCULATION
1. Evaluation of third order response functions
using the HEOM

Calculating the pump-probe signals for a specific
configuration of pulses with known shapes, carrier frequencies
and delays is possible as a direct calculation, for example,
by using the doorway-window formalism outlined earlier.
However in this work we calculate the signals directly from the
components of the response function relating to the rephasing
and non-rephasing signals in two-dimensional spectroscopy.
The pump probe signal is then obtained via the method
outlined in Appendix G 2.
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We calculate the rephasing and non-rephasing response
functions, Fourier transformed over the first and last
variables52

SigR/NR ≈
 ∞

0
dt3

 ∞

0
dt1eiω3t3∓iω1t1

× S(t3, τ, t1;∓ku,±ku, kr)
≡ S̃R/NR(ω3, τ,ω1; k1, k2, k3). (G1)

Here we have taken the contraction over polarizations
and wavevectors as implicit. Each response function is
further broken down into three components, the ground
state bleaching (GSB) component, the stimulated emission
(SE) component, and the excited state absorption (ESA)
component. All subsequent quantities can be calculate
from these response functions. We can also calculate these
quantities in the time domain t1 instead of ω1 when we wish
to consider very short pump pulses, or simply at t1 = 0 for the
impulsive pump.

In order to perform this calculation we roughly follow
the method of Ref. 42. We first solve for the Heisenberg
picture interaction operators in Liouville space. In terms
of computation, our Liouville space terms ⟨⟨O | are the
operator Ô (described by a matrix) flattened into a vector
and ⟨⟨O |ρ⟩⟩ ≡ Tr{Ô ρ̂}. We compute ⟨⟨Vξ4(ω3)| with Vξ4(0)
= |g⟩⟨ξ4| or |ξ4⟩⟨ f4,2| for transitions to the double excited
states, for all ξ4 and f4 in order to make analytically calculating
orientation averages easier. We perform this calculation
directly in frequency space via the following equation, valid
for matrix L constant in time and 1 an identity matrix the size
of L  ∞

0
dte−iωteLt =

1
iω1 − L

. (G2)

This method is generally more accurate than propagating
in time and then taking a fast Fourier transform due to

the periodicity implicit in a discrete Fourier transform. If
the dynamics are Markovian, the Liouvillian can always
be expressed as a matrix and our system as a vector
obtained by flattening the density matrix. Within the
Hierarchical equations of motion formalism59,60 additional
tiers of “auxiliary” density matrices are included. The auxiliary
matrices are coupled to those in the tier above and below
and have additional decay terms; these matrices contain
information about the displacement (and higher moments) of
the bath.61 Assuming we truncate the hierarchy at a finite
level (with what is essentially a Markovian assumption)
we can combine all these dynamics into a single matrix
operator Λ which acts on the entire Hierarchy and Eq. (G2)
can again be used. We use 3 Matsubara frequencies and
four tiers in the hierarchy to achieve satisfactory numerical
convergence.

We also solve for |ρe,g(ω1; ξ1)⟩⟩ = G(ω1)B̂ξ1|ρeq⟩⟩, with
ξ1 a state in the single exciton manifold. This quantity
then relates to two different classes of second order density
matrix elements, the ground state hole |ρg,g(t1,0; ξ1, ξ2)⟩⟩
or excited state elements |ρe,e(t1,0; ξ1, ξ2)⟩⟩. Each of
these second order elements are then propagated in time
by solving the set of coupled ODEs | ρ̇(t)⟩⟩ = L |ρ(t)⟩⟩,
the rephasing contributions can be calculated from the
Hermitian conjugate of these matrices. These terms can
then be combined to calculate any of the response
functions.

The pump probe signal can be calculated from both of
these frequency domain response functions as we outline in
Appendix G 2. We consider the limit in which the pump pulse
has a finite duration, but the probe is assumed to be short, and
frequency resolved detection is employed via a heterodyne
detection sequence. Using these approximations our signal
can be calculated from the rephasing and nonrephasing
components as

SPP(ωs,ω1) ≈ ωsRe
 ∞

−∞
dω′

 τ

−∞
dt ′E1(t ′)E1(ω′)[eiω′t′SR(ωs, τ − t ′,ω1 + ω

′) + e−iω
′t′SNR(ωs, τ − t ′,ω1 − ω′)]


. (G3)

We outline the derivation of this expression in Appendix G 2.

2. Derivation of the pump probe signal from the response functions

For a pump-probe configuration with two pulses separated by a delay τ with resonant frequencies ω1, and envelope E1(t)
for the pump and ω2 and E2(t) for the probe, we can express the signal within the rotating wave approximation as18

SPP(ω1,ω2,ωs; τ) = 2ωsRe
 ∞

−∞
dt

 ∞

0
dt3

 t+τ

−∞
dt ′

 ∞

0
dt1

× ei[(ω2−ωs)t+ωst3] �
E∗LO(t + t3)E2(t)E∗1(t ′)E1(t ′ − t1)e+iω1t1SNR(t3, τ + t − t ′, t1)

+ E∗LO(t + t3)E2(t)E1(t ′)E∗1(t ′ − t1)e−iω1t1SR(t3, τ + t − t ′, t1)� + Scoh + Snto. (G4)

Here ωs is the signal frequency and LO stands for the local oscillator; in our case a particular frequency component of E2.
We have also included the coherent (coh) and non-time ordered (nto) contributions, which only occurs if the pump and probe
pulses overlap (i.e., the pulse widths are not much smaller than τ). For this work we will ignore these terms and hence set
Scoh = Snto = 0. Using the convolution theorem, we can express the integrals over t1 and t3 as an inverse Fourier transform of the
Fourier transforms of the convoluted quantities and obtain (up to constant prefactors)
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SPP(ω1,ω2,ωs; τ) ≈ ωsRe
 ∞

−∞
dt

 ∞

−∞
dω

 t+τ

−∞
dt ′

 ∞

−∞
dω′

× Ẽ∗LO(ω)E2(t)ei(ω2−ωs)tei(ωt+ω′t′) �
E∗1(t ′)Ẽ1(ω′)S̃NR(ωs − ω,τ + t − t ′,ω1 − ω′)

+ E1(t ′)Ẽ∗1(ω′)S̃R(ωs − ω,τ + t − t ′,ω1 + ω
′)� . (G5)

For simplicity we assume that probe is short in time and the
local oscillator (which represents frequency resolved detection
of the probe, with some manipulation of the polarization) is
well resolved in frequency with a carrier frequency ω2 not too
different from the signal frequency. Hence, we can make
the approximation exp[i(ω2 − ωs)t]Ẽ∗LO(ω)E2(t) ∼ δ(t)δ(ω).
In principle, one would need to account for the finite length
of the probe pulse with a factor of Ẽ∗2(ωs − ω2), but this
dependence is assumed to be scaled out of the final signal.
With this approximation we have

SPP(ω1,ωs; τ)
= ωsRe

 t+τ

−∞
dt ′

 ∞

−∞
dω′ eiω

′t′

×
�
E∗1(t ′)Ẽ1(ω′)S̃NR(ωs, τ − t ′,ω1 − ω′)

+ E1(t ′)Ẽ∗1(ω′)S̃R(ωs, τ − t ′,ω1 + ω
′)� , (G6)

noting that the dependence on the probe carrier frequency ω2
has now dropped out. This expression can be used to calculate
pump probe signals with finite during pump pulses. When
we also have a very short pump pulse we can ignore the t ′

dependence in the response function during the population
time and we have

SPP(ω1,ωs; τ)
≈ ωsRe

 ∞

−∞
dω′|Ẽ1(ω′)|2

×
�
S̃NR(ωs, τ,ω1 − ω′) + S̃R(ωs, τ,ω1 + ω

′)� . (G7)

Finally in the extreme short time limit we can ignore the
frequency dependence in the Fourier transform of the pulse

envelope and Fourier transform the response function back
into time space in t1 and set this to zero.

APPENDIX H: PRONY ANALYSIS

In order to better understand the oscillations present in our
results, we consider particular frequency slices through Fig. 6
and perform a Prony decomposition. Prony decomposition
takes an impulsive signal and decomposes it into oscillating
and decaying exponential components. This technique has
been used for analysis of impulse responses,51 notably in
NMR signals.62,63 More noise tolerant methods are generally
preferred for experimental data64 such as time-frequency
and wavelet methods.65 Even so it remains a powerful tool
in low noise systems (such as simulated data) as it can
estimate frequency, damping, and relative phase of beating
components.

In Fig. 9 we show slices through ~ωs = 12 495 cm−1 and
take a Prony decomposition (into 13 complex components,
the three largest amplitude are shown) of the first picosecond
of signal. The decomposition in (a) of the SChD is mainly
comprised of two oscillating signals with frequencies
232 cm−1 and 194 cm−1 close to the frequencies of the
effective vibronic states which we introduced in Appendix B.
The ordinary (non-chiral) pump probe signal (b) is dominated
by two exponential decays (the larger amplitude is not shown
on this scale) and a single oscillation at 223 cm−1, close
to ~ω0. Beatings from both the vibronic states and pure
vibrational coherences are present in the non-chiral pump
probe (and cannot be in SChD), along with effects from

FIG. 9. Three largest components in the Prony decomposition of a slice at ωs = 12 495 cm−1 (all angular frequencies quoted are scaled by 2πc) of SChD ((a)
top) and the non-chiral component ((b) middle) in the impulsive pump regime. The bottom graph (c) shows the raw signal for both SChD (left axis), the non-chiral
pump-probe (right axis) and the sum of all components in the N = 13 Prony decomposition. The pump probe signal is dominated by a decay due to population
relaxation (not shown in (b)) and is not reproduced well by the Prony decomposition.
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population transfers, hence we are unable to resolve all
contributions at this level. This analysis shows the simplicity
in extracting beating components from our coherence specific
signal.

The presence of multiple oscillating signals lying on
top of one another is partly a weakness of the impulsive
pump configuration, as it is not possible to excite coherences
between two particular states. The Prony analysis fails to
reproduce the ordinary pump-probe signal at late times which
may be due to the complicated coherent population transition
dynamics, which cannot be represented by exponential decays
and hence Prony analysis. Slow bath induced processes during
the population time τ can also mix coherences pathways and
hence cause signals to deviate from oscillating exponentials,
however this effect is much less significant.
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