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Abstract. In this work, we investigate the value of uncertainty mod-
elling in 3D super-resolution with convolutional neural networks (CNNs).
Deep learning has shown success in a plethora of medical image trans-
formation problems, such as super-resolution (SR) and image synthesis.
However, the highly ill-posed nature of such problems results in inevitable
ambiguity in the learning of networks. We propose to account for intrin-
sic uncertainty through a per-patch heteroscedastic noise model and for
parameter uncertainty through approximate Bayesian inference in the
form of variational dropout. We show that the combined benefits of both
lead to the state-of-the-art performance SR of diffusion MR brain images
in terms of errors compared to ground truth. We further show that the
reduced error scores produce tangible benefits in downstream tractogra-
phy. In addition, the probabilistic nature of the methods naturally con-
fers a mechanism to quantify uncertainty over the super-resolved output.
We demonstrate through experiments on both healthy and pathological
brains the potential utility of such an uncertainty measure in the risk
assessment of the super-resolved images for subsequent clinical use.

1 Introduction and Background

Algorithmic and hardware advancements of non-invasive imaging techniques,
such as MRI, continue to push the envelope of quality and diversity of obtain-
able information of the underlying anatomy. However, their prohibitive cost and
lengthy acquisition time often hinder the translation of such technological innova-
tions into clinical practice. Poor image quality limits the accuracy of subsequent
analysis, potentially leading to false clinical conclusions. Therefore, methods
which can efficiently and reliably boost scan quality are in demand.

Numerous machine learning based methods have been proposed for various
forms of image enhancement, generally via supervised regression of low quality
(e.g., clinical) against high quality (e.g., experimental) image content. Alexander
et al. [1] propose a general framework for supervised image quality enhancement,
which they call image quality transfer (IQT). They demonstrated this with a ran-
dom forest (RF) implementation of super-resolution (SR) of brain diffusion ten-
sor images (DTIs) and estimation of advanced microstructure parameter maps
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from sparse measurements. More recently, deep learning has shown additional
promise in this kind of task. For example, [2] proposed a CNN model to upsam-
ple a stack of 2D MRI cardiac volumes in the through-plane direction. The SR
mapping is learnt from 3D cardiac volumes of nearly isotropic voxels, requiring
a clinically impractical sequence due to its long scan time. Another application
of CNNs is the prediction of 7T images from 3T MRI [3], where both contrast
and resolution are enhanced. Current methods typically commit to a single pre-
diction, leaving users with no measure of prediction reliability. One exception is
Bayesian IQT [4], which uses a piece-wise linear Bayesian model, implemented
with a RF to quantify predictive uncertainty over high-resolution (HR) DTIs
and demonstrate its utility as a surrogate measure of accuracy.

This paper proposes a new implementation of Bayesian IQT via CNNs. This
involves two key innovations in CNN-based models: 1) we extend the subpixel
CNN of [5], previously limited to 2D images, to 3D volumes, outperforming
previous models in accuracy and speed on a DTI SR task; 2) we devise new
architectures enabling estimates of different components of the uncertainty in
the SR mapping. The first enables us to bring the performance benefits of deep
learning to this important problem, as well as reducing computation time to
super-resolve the entire brain DTI in 1 s. For our second contribution, we de-
scribe two kinds of uncertainty which arise when tackling image enhancement
problems. The first kind of uncertainty, which we call intrinsic uncertainty is
defined as the irreducible variance of the statistical mapping from low-resolution
(LR) to HR. This inherent ambiguity arises from the fact that the LR to HR
problem is one-to-many, and is present independent of the amount of data we
collect. We model the variation in intrinsic uncertainty over different structures
within the anatomy through a per-patch heteroscedastic noise model [6]. The
second kind of uncertainty, which we call parameter uncertainty, quantifies the
degree of ambiguity in the model parameters that best explain the observed data,
which arises from the finite training set. We account for it through approximate
Bayesian inference in the form of variational dropout [7].

We first evaluate the performance of the proposed CNN methods and the
benefits of uncertainty modelling by measuring the deviation from the ground
truth on standard metrics. Human Connectome Project (HCP) dataset [8] and
the Lifespan dataset (http://lifespan.humanconnectome.org/) are used for
the quantitative comparison. We also test the benefits of the CNN-based methods
in downstream tractography through SR of Mean Apparent Propagator (MAP)-
MRI [9]. Lastly, we investigate the utility of uncertainty maps over the predicted
HR image from the probabilistic CNN methods by testing on images of both
healthy subjects and brain tumour patients.

2 Method

As in [1,2,3], we formulate the SR task as a patch-wise regression where an in-
put LR image is split into smaller overlapping sub-volumes and the resolution
of each is sequentially enhanced. For this, we propose a baseline CNN, on which

http://lifespan.humanconnectome.org/
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Fig. 1: 2D illustration of the baseline network with upsampling rate, r = 2. The
receptive field of the central 22 output activations is shown in yellow.

we build by introducing two complementary ways of accounting for uncertainty
to achieve a more robust model.
Baseline network: Efficient subpixel-shifted convolutional network (ESPCN)
[5] is a recently proposed method with the capacity to perform real-time per-
frame SR of videos while retaining cutting-edge performance. We extend this
method to 3D and use this as our baseline model (3D-ESPCN). Most CNN-
based SR techniques [2,10,11] first up-sample a low-resolution (LR) input image
(e.g. through bilinear interpolation, deconvolution, fractional-strided convolu-
tion, etc.) and then refine the high-resolution (HR) estimate through a series of
convolutions. These methods suffer from the fact that (1) the up-sampling can
be a lossy process and (2) refinement in the HR-space has a higher computa-
tional cost than in the LR-space. ESPCN performs convolutions in the LR-space,
upsampling afterwards. The reduced resolution of feature maps dramatically de-
creases the computational and memory costs, which is more pronounced in 3D.

More specifically the ESPCN is a fully convolutional network, with a special
shuffling operation on the output (see Fig. 1). The fully convolutional part of
the network consists of 3 convolutional layers, each followed by a ReLU, where
the final layer has cr2 channels, r being the upsampling rate. The shuffling
operation takes an input of shape h× w × cr2 and remaps pixels from different
channels into different spatial locations in the HR output, producing a rh×rw×c
image, where h, w and c denote height, width and number of channels. The 3D
version of this shufflling operation S is mathematically given by S(F )i,j,k,c =
F[i/r],[j/r],[k/r],(r3−1)c+mod(i,r)+r ·mod(j,r)+r3 ·mod(k,r) where F is the pre-shuffled
feature maps. [5] showed that the combined effects of the last convolution and
shuffling is effectively a learned interpolation.

At test time, the network takes each subvolume x in a LR image, and predicts
the corresponding HR sub-volume y. The network increases the resolution of
the central voxel of each receptive field, e.g. the central 23 output voxels are
estimated from the corresponding 53 receptive field in the input, coloured yellow
in Fig. 1. By tessellating the predictions from shifted inputs x, the whole HR
volume is reconstructed.

Given a training set D = {(xi,yi)}Ni=1, we optimize the network parame-
ters by minimising the sum of per-pixel mean-squared-error (MSE) between the
ground truth y and the predicted HR patch µθ(x) over the training set. θ de-
notes all network parameters. This is equivalent to minimising the negative log
likelihood (NLL) under the Gaussian noise model p(y|x, θ) = N (y;µθ(x), σ

2I).
Here, HR patches are modelled as a deterministic function of LR patches cor-



rupted by isotropic noise with variance σ2. On the assumption that the model
is correct, the variance σ2 signifies the degree of irreducible uncertainty in the
prediction of y given x, and thus the intrinsic uncertainty in the SR mapping
defined in the introduction. However, the quality of this intrinsic uncertainty
estimation is limited by the quality of likelihood model; the baseline network
assumes constant uncertainty across all spatial locations and image channels,
which is over-simplistic for most medical images.
Heteroscedastic likelihood: Here we introduce a heteroscedastic noise model
to approximate the variation in intrinsic uncertainty across the image. The like-
lihood becomes p(y|x, θ1, θ2) = N (y;µθ1(x), Σθ2(x)) where both mean and co-
variance are estimated by two separate 3D-ESPCNs µθ1( · ) and Σθ2( · ) as a
function of the input. The mean network makes predictions and the covariance
network estimates the intrinsic uncertainty (see Fig. 2). We only use the diag-
onal of Σθ2(x), which quantifies estimated intrinsic uncertainty over individual
components in µθ1(x).
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Fig. 2: 2D illustration of a heteroscedastic network with variational dropout. Diagonal
covariance is assumed. The top 3D-ESPCN estimates the mean and the bottom one
estimates the covariance matrix of the likelihood. Variational dropout is applied to
feature maps after every convolution.

Adapting the NLL to heteroscedastic model gives Lθ(D) = Mθ(D) +Hθ(D)

with Mθ(D) = 1
N

∑N
i=1 ∥yi − µθ1(xi)∥2Σ−1

θ2
(xi)

i.e. mean squared Mahalanobis

distance and Hθ(D) = 1
N

∑N
i=1 log detΣθ2(xi) i.e. mean differential entropy. In-

tuitively, Mθ(D) seeks to minimise the weighted MSE under the covariance while
Hθ(D) keeps the ‘spread’ of Σθ2(x) under control.
Bayesian inference through variational dropout: The baseline 3D-ESPCN
and heteroscedastic model neglect parameter uncertainty, relying on a single esti-
mate of the network parameters. In medical imaging where data size is commonly
limited, this point-estimate approach potentially leads to overfitting. We com-
bat this with a Bayesian approach, averaging over all possible models p(y|x, θ)
weighted by the (posterior) probability of the parameters given the training data,
p(θ|D). Mathematically this is p(y|x,D) = Ep(θ|D)[p(y|x, θ)]. However, this ex-
pectation is intractable because: 1) evaluation of p(θ|D) is intractable, and 2)
p(y|x, θ) is too complicated for the expectation to be computed in closed form.
Variational dropout [7] addresses this problem for neural networks, using a form
of variational inference where the posterior p(θ|D) is approximated by a fac-
tored Gaussian distribution qϕ(θ) =

∏
ij N (θij ;mij , s

2
ij). The algorithm injects



Gaussian noise into the weights during training, where the amount of noise is
controlled by ϕ = {mij , s

2
ij}, which are learnt.

At test time, given a LR input x, we estimate the mean and covariance of the
approximate predictive distribution q∗ϕ(y|x) =∆ Eqϕ(θ)[p(y|x, θ)] with the MC es-

timators µ̂y|x =∆ 1
T

∑T
t=1 µθt

1
(x) and Σ̂y|x =∆ 1

T

∑T
t=1

(
Σθt

2
(x)+µθt

1
(x)µθt

1
(x)T

)
−

µ̂y|xµ̂
T
y|x, where θt = (θt1, θ

t
2) are samples of the network parameters (i.e. the fil-

ters) from the approximate posterior qϕ(θ). We use the sample mean as the final
prediction of an HR patch and the diagonal of the sample variance as the cor-
responding uncertainty. When we use the baseline model, the first term in the
sample variance reduces to σ2I.
Implementation details: We employed a common protocol for the training
of all networks. We minimized the loss using ADAM [12] for 200 epochs with
learning rate 10−3. The best performing model was selected on a validation set.

As in [5], we use a minimal architecture for the baseline 3D-ESPCN, consist-
ing of 3 convolutional layers with filters (3, 3, 3, 50) → (1, 1, 1, 100) → (3, 3, 3, r3c)
where r is upsampling rate and c is the number of channels. The filter sizes are
chosen so a (5, 5, 5) LR patch maps to a (r, r, r) HR patch, which mirrors compet-
ing random forest based methods [1,4] for a fair comparison. The heteroscedastic
network of Section 2 is formed of two 3D-ESPCNs, separately estimating the
mean and standard deviations. Positivity of the standard deviations is enforced
by passing the output through a softplus function. For variational dropout we
tried two flavours: Var.(I) optimises per-weight dropout rates, and Var.(II) opti-
mises per-filter dropout rates. Variational dropout is applied to both the baseline
and heteroscedastic models without changing the architectures.

All models are trained on datasets generated from 8 randomly selected HCP
subjects [8], each consisting of 90 diffusion weighted images (DWIs) of voxel size
1.253 mm3 with b = 1000 s/mm2. The training set is created by sampling HR
subvolumes inside the brain region from the ground truth DTIs (or MAP-MRI
coefficients) and then artificially downsampling to generate the LR counterparts.
Downsampling is done in the raw DWI by a factor of r by taking a block-wise
mean and then the DT or MAP coefficients are subsequently computed. Each
network is trained on ∼ 4000 pairs of input/output patches of size 113c and
(7r)3c, amounting to ∼ 1.4 × 106 receptive field patch pairs of dimensions 53c
and r3c, which is roughly the same size as the maximal training set used in RF-
IQT [1]. It takes under 30/120 mins to train a single network on DTI/MAP-MRI
data on 1 TITAN X GPU.

3 Experiments and Results

Performance comparison for DTI SR: We evaluate the performance of our
models for DTI SR on two HCP datasets. The first contains 8 unseen subjects
from the same HCP cohort used for training. The second consists of 10 subjects
from the HCP Lifespan dataset. The latter tests generalisability, as they are
acquired with different protocols, at lower resolution (1.5 mm isotropic), and on



(a) Performance comparison
Models HCP (interior) HCP (exterior) Life (interior) Life (exterior)
CSpline 10.069± n/a 31.738± n/a 32.483± n/a 49.066± n/a
β-Spline 9.578± n/a 98.169± n/a 33.429± n/a 186.049± n/a
IQT-RF 6.974± 0.024 23.139± 0.351 10.038± 0.019 25.166± 0.328
BIQT-RF 6.972± 0.069 23.110± 0.362 9.926± 0.055 25.208± 0.290
3D-ESPCN(baseline) 6.378± 0.015 13.909± 0.071 8.998± 0.021 16.779± 0.109
Dropout-CNN(0.1) 6.963± 0.034 14.568± 0.068 9.784± 0.048 17.357± 0.091
Gaussian-CNN(0.1) 6.519± 0.015 14.038± 0.038 9.183± 0.024 16.890± 0.097
Var.(I)-CNN 6.354± 0.015 13.824± 0.031 8.973± 0.024 16.633± 0.053
Var.(II)-CNN 6.356± 0.008 13.846± 0.017 8.982± 0.024 16.738± 0.073
Hetero-CNN 6.294± 0.029 15.569± 0.273 8.985± 0.051 17.716± 0.277
Hetero+Var.(I) 6.291± 0.012 13.906± 0.048 8.944± 0.044 16.761± 0.047
Hetero+Var.(II) 6.287± 0.029 13.927± 0.093 8.955± 0.029 16.844± 0.109

(b) Mask

Fig. 3: (a) RMSE on HCP and Lifespan dataset for different upsampling methods. For
each method, an ensemble of 10 models are trained on different training sets, and the
mean/std of the average errors over 8 test subjects are computed over the ensemble.
Best results in bold red, and the second best in blue. (b) Interior (yellow) and exterior
region (red).

subjects of a different age range (45-75) to the original HCP data (22-36). We
perform ×2 upsampling in each direction, measuring reconstruction accuracy
with RMSE, PSNR and MSSIM on the interior and the exterior separately as
shown in Fig. 3(b). This is important, as the estimation problem is quite differ-
ent in boundary regions, but remains valuable particularly for applications like
tractography where seed or target regions are often in the cortical surface of the
brain. We only present the RMSE results, but the derived conclusions remain
the same for the other two metrics.

Fig. 3(a) shows our baseline achieves 8.5%/39.8% reduction in RMSE on
the HCP dataset on the interior/exterior regions with respect to the best pub-
lished method, BIQT-RF[4]. Note that IQT-RF and BIQT-RF are only trained
on interior patches, and SR on boundary patches requires a separate ad-hoc
procedure. Despite including exterior patches in training our model, which com-
plicates the learning task, the baseline CNN out-performs the RF methods on
both regions—this goes for the Lifespan dataset too. The 3D-ESPCN estimates
whole HR volumes <10 s on a CPU and ∼ 1 s on a GPU, while BIQT-RF takes
∼ 10 mins with 8 trees. Faster reconstruction is achieved using input patches of
size 223, twice as large as the training input size 113.

Heteroscedastic network further improves on the performance of 3D-ESPCN
with high statistical significance on the interior region for both HCP and Lifespan
data (p < 10−3). However, poorer performance is observed on the exterior than
the baseline. Using 200 weight samples, we see Var.(I)-CNN performs best on
both datasets on the exterior region. Combination of heteroscedastic model and
variational dropout (i.e. Hetero+Var.(I) or (II)) leads to the top 2 performance
on both datasets on the interior region and reduces errors on the exterior to the
level comparable or better than the baseline.

The performance difference of heteroscedastic network between the interior
and the exterior region roots from the loss function. The term Mθ(D) imposes
a larger penalty on the regions with smaller intrinsic uncertainty. The network



Fig. 4: Tractography on Prisma dataset for different methods. From left to right: (i) HR
acquisition, (ii) CNN prediction; (iii) RF; (iv) Linear interpolation; (v) LR acquisition.

therefore allocates more of its resources towards the lower noise regions where
the statistical mapping from the LR to HR space is less ambiguous. The dramatic
reduction on the exterior error from variational dropout indicates its regularisa-
tion effect against such overfitting, and as a result also improves the robustness
of prediction on the interior.
Tractography with MAP-MRI SR: Reconstruction accuracy does not re-
flect real world utility. We thus further assessed SR quality with a tractography
experiment on the Prisma dataset, which contains two DWIs of the same subject
from a Siemens Prisma 3T scanner, with 1.35 mm and 2.5 mm resolution. The
b-values and gradient directions match the HCP protocol. An ensemble of 8 het-
ero+var.(I) CNNs super-resolves the MAP-MRI coefficients [9] derived from the
LR DWIs (2.5 mm), then the HR MAP volume is used to predict the HR DWIs
(1.25 mm). The final prediction is computed as the average estimate weighted
by the inverse covariance as in RF-IQT. We also generate HR datasets by using
IQT-RF and linear interpolation.

Fig. 4 shows streamline maps of the probabilistic tractography [13] for the
original LR/HR data and various upsampled images, and focuses on examples
that highlight the benefits of reduced SR reconstruction errors. In the top row,
tractography on the LR data produces a false-positive tract under the corpus
callosum (yellow arrow in the 1st row), which tractography at HR avoids. Re-
constructured HR images from IQT-RF and CNN avoid the false positive better
than linear intepolation. Note that we do not expect to reproduce the HR trac-
tography map exactly, as the HR and LR images do not aligned exactly. The
bottom row shows shaper recovery of small gyral white matter pathways (green
arrow) at HR than LR resulting from reduced partial volume effect. CNN recon-
struction produces a sharper pathway than RF-IQT and linear interpolation.
Visualisation of predictive uncertainty: We measure the expectation and
variance of mean diffusivity (MD) and fractional anisotropy (FA) with respect to
the predictive distribution q∗ϕ(y|x) of Hetero+Var. (I) by MC sampling. Compar-
ative results are shown in Fig. 5(a), where we drew 200 samples of HR DTIs from
the predictive distribution of the Hetero+Var.(I). The uncertainty map is highly
correlated with the error maps. In particular, the MD uncertainty map captures
subtle variations within the white matter and central CSF, which demonstrates
the potential utility of the uncertainty map as a surrogate measure of accuracy.



(a) Uncertainty propagation (b) Tumour

Fig. 5: (a) Comparison between RMSE and uncertainty maps for FA and MD com-
puted on a HCP subject. LR input, ground truth and HR prediction are also shown.
(b) DTI SR on a brain tumour patient. From top to bottom: (i) MD computed from
the original DTI; (ii) the estimated HR version; (iii) uncertainty.

Fig. 5(b) shows the best-performing SR model (Hetero+Var (II)) trained
on a healthy HCP cohort applied to the DTI of a brain tumour patient. The
raw data (DWI) with b = 700 s/mm2 is processed as before with input voxel
size 23 mm3. We show the input, SR image and uncertainty map. The ground
truth is unavailable but the estimated image sharpens the input without intro-
ducing noticeable artifacts. The uncertainty map shows high uncertainty on the
tumour, not represented in the training data, again illustrating the potential of
the uncertainty maps to flag potential low accuracy areas.

4 Discussion

We present a super-resolution algorithm based on 3D subpixel-CNNs with state-
of-the-art accuracy and reconstruction efficiency on diffusion MRI datasets. An
application to the MAP-MRI coefficients indicates benefits to tractography in
comparison with the previous methods. We also demonstrate that assimilation
of intrinsic and parameter uncertainty in the model leads to best predictive
performance. The uncertainty map highly correlates with reconstruction errors
and is able to highlight pathologies. This can be used to gain insight into the
‘black-box’ prediction from CNNs. Understanding the behaviours of these un-
certainty measures in unfamiliar test environments (e.g. pathologies) and their
relations to predictive performance is an important future work for designing a
more generalisable method. The presented ideas extend to many other quality
enhancement problems in medical image analysis and beyond.
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