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Abstract

The contribution of this thesis is in developing and investigating novel

dependence modelling techniques in financial applications. Further-

more, the aim is to understand the key factors driving the dynamic

nature of such dependence.

When modelling the multivariate distribution of the returns associ-

ated to a portfolio of financial assets one is faced with a multitude

of considerations and potential choices. For example, in the currency

studies undertaken in this thesis suitably heavy-tailed marginal time

series models are developed for the returns of each currency exchange

rate, and then the multivariate dependence structure of the returns of

multiple-currency baskets at each time instant is considered. These

dependence relationships can be studied via numerous concordance

measures such as correlation, rank correlations and extremal depen-

dences. Such studies can be undertaken in a static or dynamic setting

and either parametrically or non-parametrically.

Another important aspect of financial time series is the enormous

amount of financial data available for statistical analysis and financial

econometrics that can be used to better understand economic and

financial theories. In this thesis, the focus is on the influence of

dependence structures in complex financial data in two asset classes:

currencies and commodities. These are challenging data structures

as they contain temporal serial dependence, cross dependence and

term-structural dependences. Each of these forms of dependence are

studied in this thesis in both parametric and non-parametric settings.



Statistical Modelling and Estimation Contributions

Three complementary dependence modelling approaches are developed

in this thesis. The first two approaches address the challenge of

modelling the multivariate distribution of a portfolio of asset returns.

The third approach developed concerns commodity price dependence

modelling where the link between maturities through the term structure

of futures prices is considered. Firstly, a parametric copula modelling

approach is considered in order to capture the complex dependence

structure present in such data. In particular, flexible mixture copula

models, consisting of weighted Archimedean copula members such

as Clayton, Frank and Gumbel components, are developed including

additional structural flexibility via distortion transforms corresponding

to inner and outer-transform variants. These models are estimated via

the inference for margins method which consists of a two step fitting

procedure for the marginal model and then the dependence structure.

In addition, an expectation-maximisation method is considered.

Secondly, a covariance factor regression framework is utilised in order to

understand the influence of observed covariates on the covariance of the

multivariate distribution of a portfolio of asset returns. This framework

provides a number of desirable properties. Crucially, the model is

interpretable in a way that GARCH-type models are not and as such,

forecasting the covariance matrix is straightforward and transparent.

This is achieved by constructing time series models for the observed

covariates and calculating forecasts, which are then used as inputs to

the covariance matrix forecast. Furthermore, the estimation of the

covariance factor model can be performed using a simple and efficient

Expectation-Maximization (EM) algorithm. A sensitivity analysis of

the covariance matrix to the factors is also presented allowing the

estimation of a confidence interval of the covariance matrix entries as

a function of the marginal distribution of each covariate used for the

covariance regression.

The resulting forecasts of the covariance matrix of asset returns can



then be utilised in portfolio optimisation. In particular, this modelling

framework allows one to calculate the sensitivity of the portfolio weights

to the observable covariance factors and accordingly helps to devise

a global and dynamic hedging strategy for portfolios of assets. Thus,

the relationship between interpretable factors and the weightings of

assets in a portfolio can be further understood.

Thirdly, a novel Hybrid Multi-Factor (HMF) state-space modelling

framework is proposed in order to understand the key factors driving

the dependence structure among commodity futures prices along their

term structure. A consistent estimation framework is developed, which

builds on the familiar two-factor model of Schwartz and Smith (2000),

to allow for an investigation of the influence of observable covariates on

commodity prices. Using this novel Hybrid Multi-Factor (HMF) model,

it is possible to obtain closed form futures prices under standard risk

neutral pricing formulations. One can incorporate state-space model

estimation techniques to consistently estimate both the structural

features related to the convenience yield and spot price dynamics (long

and short term stochastic dynamics) and also the structural parameters

that relate to the influence on the spot price of the observed exogenous

covariates. Such models can then be utilised to gain significant insight

into the futures and spot price dynamics in terms of interpretable

observed factors that influence speculators and hedgers heterogeneously.

This is not attainable with existing modelling approaches.

The proposed HMF modelling framework reconciles two classes of

model: the latent multi-factor stochastic differential equation (s.d.e.)

models and the alternative class of observable regression econometric

factor models, by doing so in a statistically consistent manner from

interpretation and estimation perspectives. The novel class of stochas-

tic HMF models developed in this thesis allows for incorporation of

exogenous covariate structures in a statistically rigorous manner. Such

models are a genuine combination of the two approaches and do not

presume any prevalence from one approach or the other. The crux of



the matter lies in building a state-space model which allows a one-stage

estimation with simultaneous inference of the latent factors dynamic

and the covariates coefficients in order to overcome the estimation

error associated to the two-stage approach generally proposed in the

literature. In such a two-stage model, typically the latent factor esti-

mates are first extracted in order to later regress as a function of a set

of covariates. This conditional estimation of the latent factor suffers

from several flaws compared to the conditional estimates proposed in

this thesis.

The HMF modelling framework also allows one to consider covariate

forecasts in order to extrapolate values for the futures prices along the

term structure while considering the confidence interval associated to

this estimate. This is particularly convenient in risk management and

commodity hedging as one needs to consider not only the amount to

invest but also the uncertainty associated to this measurement.

Novel Insights into Finance and Econometric Studies

This thesis also contributes to the literature by the application of the

dependence structure modelling techniques described above to two

challenging financial modelling problems: modelling multiple-currency

basket returns and modelling commodity futures price term structure.

In order to perform the empirical analyses considered in this thesis in

a robust manner a substantial amount of effort and time was invested

into collecting, cleaning and preparing the data.

Multiple Currency Basket Modelling

Firstly, this thesis investigates the well-known financial puzzle of the

currency carry trade, which is yet to be satisfactorily explained. It is

one of the most robust financial puzzles in international finance and

has attracted the attention of academics and practitioners alike for

the past 25 years. The currency carry trade is the investment strategy

that involves selling low interest rate currencies in order to purchase



higher interest rate currencies, thus profiting from the interest rate

differentials. Assuming foreign exchange risk is uninhibited and the

markets have rational risk-neutral investors, then one would not expect

profits from such strategies. That is uncovered interest rate parity

(UIP); the parity condition in which exposure to foreign exchange

risk, with unanticipated changes in exchange rates, should result in an

outcome that changes in the exchange rate should offset the potential

to profit from such interest rate differentials.

The two primary assumptions required for interest rate parity are

related to capital mobility and perfect substitutability of domestic and

foreign assets. Given foreign exchange market equilibrium, the interest

rate parity condition implies that the expected return on domestic

assets will equal the exchange rate-adjusted expected return on foreign

currency assets. However, it has been shown empirically, that investors

can actually earn on average arbitrage profits by borrowing in a country

with a lower risk free interest rate, exchanging for foreign currency,

and investing in a foreign country with a higher risk free interest rate,

whilst allowing for any losses (or gains) from exchanging back to their

domestic currency at maturity. Therefore trading strategies that aim

to exploit the interest rate differentials can be profitable on average.

This research comprises of a comprehensive review of the literature

surrounding the forward premium puzzle, a mathematical background

to copulas and a review of their various uses in the literature to model

dependence, followed by an investigation of the forward premium

puzzle via an analysis of the multivariate tail dependence in currency

carry trades. A dataset of daily closes on spot and one month forward

contracts for 20 currencies from 2000 to 2013 was used to investigate

the behaviour of carry portfolios, formed by sorting on the forward

premium (a proxy to the interest rate differential to US dollar). A

rigorous statistical modelling approach is proposed, which captures the

specific statistical features of both the individual currency log-return

distributions as well as the joint features, such as the dependence



structures prevailing between the exchange rates.

The individual currency returns were transformed to standard uni-

form margins after fitting appropriately heavy tailed marginal models,

namely log-normal and log generalised gamma models. In order to

analyse the tail dependence present in the carry portfolios: mixture

copula models, consisting of weighted Clayton, Frank and Gumbel

components, were fitted on a rolling daily basis to the previous six

months of transformed log returns. Extracting and interpreting the

multivariate tail dependence present in the rolling daily baskets pro-

vided significant evidence that the average excess returns earned from

the carry trade strategy can be attributed to compensation for not

only individual currency tail risk, but also exposure to significant risk

of large portfolio losses due to joint adverse movements.

A key contribution of this thesis is therefore to provide a rationale for

the unintuitive excess returns seen empirically in the currency carry

trade via the presence of multivariate tail dependence and therefore

increased portfolio crash risk. This is a novel and promising approach.

A further contribution of this research is the identification of significant

periods of carry portfolio construction and unwinding through the

analysis of multivariate tail dependence in mixture copula models.

From a fundamental perspective this thesis also explores the impact of

speculative trading behaviour on the dependence structure of currency

returns. The ratio of speculative open interest (net non-commercial

positions) to total open interest, termed the SPEC factor, is shown

to provide a good proxy to the behaviour of carry trade investors via

a PCA analysis and consequently the resulting complex non linear

relation between international exchange rates.

To investigate this phenomena, a covariance regression modelling

approach whereby the influence of observed covariates on the covariance

of the multivariate returns of a basket of assets is proposed. In

particular, the impact of speculative trading behaviour, i.e. the SPEC

factors, on the covariance of carry currencies is investigated. These



SPEC factors are shown to hold several orders of magnitude more

explanatory power than the price index factors, DOL and HMLFX ,

previously suggested in the literature. Furthermore, it is demonstrated

that the time series for the DOL and HMLFX factors are very close to

white noise and as such are essentially unforecastable. The suggested

speculative open interest factors are shown to be amenable to ARIMA

model fits and so produce reasonable forecast accuracy.

Thus, time series models for these covariates of interest are built and

hence forecasts of the covariance of a basket of currencies can be ob-

tained. Therefore, the inherent heteroskedasticity of the covariance of

a basket of currencies can be modelled and forecast whilst maintaining

the desirable property of interpretability of the model. This forecasting

ability is then useful for risk management, portfolio optimisation and

trading strategy development.

A sensitivity analysis of the covariance to the factors is also presented

allowing the estimation of a confidence interval of the covariance matrix

entries as a function of the marginal distribution of each covariate

used for the covariance regression. In addition, a regression of the tail

dependence measures, obtained from the mixture copula modelling

approach, on the SPEC factors illustrates the influence of carry trade

speculative behaviour on the extremal joint currency returns. The

DOL and HMLFX are shown to hold little explanatory power in the

joint tails.

Commodity Price Modelling

In addition, this thesis employs a state-space modelling approach to un-

derstand the joint dynamic of the commodity spot price and the related

futures prices along the curve. This framework is extended to allow for

an investigation of the influence of observed macroeconomical covari-

ates on the commodity term structure and in particular whether these

covariates affect the short or long end of the curve. This modelling can

be used for risk management, derivatives pricing, real options analysis

and (carry) strategy development, e.g. backwardation/contango plays.



In particular, in this thesis the focus is on the behaviour of oil prices.

Oil has historically been one of the most closely scrutinized commodi-

ties in the market. First and foremost, this is because of the important

role this commodity plays in the worldwide economy and international

relations, which gives it a prominent role, when compared to other

energy, agricultural and metals commodities, in many aspects of the

global economy and each country’s specific macro, micro and monetary

economic policy decisions.

Historically, one has seen the importance that economies have placed

on the price variation of oil and understanding the factors that affect

such a dynamic in order to better understand the determinants of

shocks and volatility regimes in the spot price, demand and supply.

Another determining reason for the continued interest lies in the

frequent shocks affecting the supply and demand of the so called “black

gold” giving birth to sudden and dramatic price movements, such as

during the 1973/74 oil crisis. The price of this exhaustible commodity

has indeed been in the past heavily impacted by the discovery of new

fields or the conflicts in oil-producing countries. On the other hand, the

demand behaviour has generally been more influenced by the business

cycles or even the evolution of the extracted oil inventories. That being

said, according to the US Department of the Interior (DOI) as well

as the US Energy Information Administration (EIA), the technology

used for its extraction has recently been the main factor influencing

the market supply. Over the last decade, advances in the application

of horizontal drilling and hydraulic fracturing in shale have indeed

drastically modified the international supply and demand equilibrium

as well as the existing international relations by allowing the biggest

oil consumer, namely the United States, to become over the same time

period less and less dependent on its energy imports. According to

the EIA, in 2015, 24% of the petroleum consumed in this country was

imported which corresponds to the lowest level since 1970.

From a modelling perspective, such changes in the physical market



conditions are significantly impacting the commodity price dynamic

and need to be incorporated into any interpretable and realistic com-

modity futures stochastic model. In addition, if the model is developed,

as is the case with the class of Hybrid Multi-Factor (HMF) models

introduced in this thesis, to allow for clear closed form representations

of structural features such as sensitivity, shock transient response

and perturbation influence on the model parameters and the driving

exogenous covariates characterizing the features just discussed, then

such a class of models has the potential to significantly aid in the study

of stochastic variation in oil futures prices and to aid in forecasting

and policy decision. The main aim of this research is to provide such

a class of models and demonstrate their utility in incorporating a

range of exogenous covariates into different structural components

that will clearly explain short term and long term speculator and

hedger positions in oil futures and their influences.

Finally, the results presented in this thesis shed light upon several

topical challenges raised in the literature about the relation between

crude oil term structure behaviour and financial or physical information

available in the market. One can conclude that the recent increase of

the US oil production over the last decade has significantly influenced

the behaviour of the crude oil long term equilibrium price and also the

dynamics of the futures term structure.





Contents

1 Introduction 39

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.3 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Part I Copula Modelling Contributions 51

2 Part I Overview 53

3 Copula Modelling 55

3.1 Origins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Copula Modelling and Its Emergence in Financial Modelling . . . 59

3.3 Classical Measures of Dependence . . . . . . . . . . . . . . . . . . 64

3.3.1 Linear Correlation . . . . . . . . . . . . . . . . . . . . . . 64

3.3.2 Rank Correlation . . . . . . . . . . . . . . . . . . . . . . . 65

3.3.2.1 Spearman’s Rho . . . . . . . . . . . . . . . . . . 65

3.3.2.2 Kendall’s Tau . . . . . . . . . . . . . . . . . . . . 66

3.3.2.3 Blomqvist’s Beta . . . . . . . . . . . . . . . . . . 67

3.4 Tail Dependence . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4.1 Non-Parametric Estimators . . . . . . . . . . . . . . . . . 70

3.4.2 Asymptotic Independence . . . . . . . . . . . . . . . . . . 72

3.5 Decomposing Multivariate Distributions . . . . . . . . . . . . . . 72

3.6 Elliptical Copulae . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.6.1 Gaussian Copula . . . . . . . . . . . . . . . . . . . . . . . 75

21



CONTENTS

3.6.2 t-Copula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.7 Archimedean Copulae . . . . . . . . . . . . . . . . . . . . . . . . 78

3.7.1 Multivariate Archimedean Copula Tail Dependence . . . . 79

3.7.2 Archimedean Copula Generators . . . . . . . . . . . . . . 81

3.7.3 Archimedean Copula Generators and the Laplace

Transform of a Non-Negative Random Variable . . . . . . 83

3.7.4 Archimedean Copula Generators, l1-Norm Symmetric

Distributions and the Williamson Transform . . . . . . . . 86

3.7.5 One-parameter Archimedean Members . . . . . . . . . . . 90

3.7.6 Archimax Copulae . . . . . . . . . . . . . . . . . . . . . . 94

3.7.7 Two-parameter Archimedean Members via Outer

Power Transforms . . . . . . . . . . . . . . . . . . . . . . . 99

3.7.8 Two-parameter Archimedean Members via Inner

Power Transforms . . . . . . . . . . . . . . . . . . . . . . . 100

3.7.9 Mixtures of Archimedean Copulae . . . . . . . . . . . . . . 101

3.8 Estimation Methods for Copulae . . . . . . . . . . . . . . . . . . . 104

3.8.1 Maximum Likelihood Estimation . . . . . . . . . . . . . . 104

3.8.2 Expectation-Maximisation . . . . . . . . . . . . . . . . . . 105

4 Currency Carry Trade Literature Review 107

4.1 The Forward Premium Puzzle . . . . . . . . . . . . . . . . . . . . 107

4.2 Currency Carry Trade . . . . . . . . . . . . . . . . . . . . . . . . 108

4.3 A Review of the Literature . . . . . . . . . . . . . . . . . . . . . . 110

5 Investigating Multivariate Tail Dependence in Currency Carry

Trade Portfolios via Copula Models 113

5.1 Research Contribution: Tail Dependence and Forward Premium

Puzzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2 Data Description and Portfolio Construction . . . . . . . . . . . . 115

5.2.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . 115

5.2.2 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . 117

5.2.3 Currency Portfolio Construction . . . . . . . . . . . . . . . 117

22



CONTENTS

5.3 Interpreting Tail Dependence as Financial Risk Exposure in Carry

Trade Portfolios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.4 Likelihood Based Estimation of the Mixture Copula Models . . . 123

5.4.1 Two Stages: Inference For the Margins . . . . . . . . . . . 125

5.4.1.1 Stage 1: Fitting the Marginal Distributions via

MLE . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.4.1.2 Stage 2: Fitting the Mixture Copula via MLE . . 126

5.4.2 Goodness-of-Fit Tests . . . . . . . . . . . . . . . . . . . . 128

5.5 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.5.1 Modelling the Marginal Exchange Rate Log-Returns . . . 132

5.5.2 Copula Modelling Results . . . . . . . . . . . . . . . . . . 140

5.6 Pairwise Decomposition of Basket Tail Dependence . . . . . . . . 150

5.6.1 Non-Parametric Tail Dependence Results . . . . . . . . . . 152

5.7 Understanding the Tail Exposure Associated with the Carry Trade

and Its Role in the UIP Puzzle . . . . . . . . . . . . . . . . . . . 154

5.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

Part II Covariance Factor Modelling Contributions 161

6 Part II Overview 163

7 Covariance Forecasting 165

7.1 Univariate Time Series Models . . . . . . . . . . . . . . . . . . . . 165

7.1.1 Univariate ARIMA Model . . . . . . . . . . . . . . . . . . 166

7.1.2 Univariate ARCH Model . . . . . . . . . . . . . . . . . . . 166

7.1.3 Univariate GARCH Model . . . . . . . . . . . . . . . . . . 167

7.2 Multivariate GARCH Framework . . . . . . . . . . . . . . . . . . 169

7.2.1 VEC-GARCH Model . . . . . . . . . . . . . . . . . . . . . 170

7.2.2 BEKK Model . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.2.3 Factor-GARCH Model . . . . . . . . . . . . . . . . . . . . 172

7.2.4 Orthogonal-GARCH Model . . . . . . . . . . . . . . . . . 173

7.2.5 GO-GARCH Model . . . . . . . . . . . . . . . . . . . . . . 174

7.2.6 FF-GARCH Model . . . . . . . . . . . . . . . . . . . . . . 174

23



CONTENTS

7.2.7 CCC Model . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.2.8 DCC Model . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.3 Covariance Factor Models . . . . . . . . . . . . . . . . . . . . . . 177

7.3.1 Standard Factor Model . . . . . . . . . . . . . . . . . . . . 179

7.3.2 Generalised Multi-Factor Model Specification . . . . . . . 180

7.3.3 Generalised Multi-Factor Model: Covariance Regression

Model Estimation via Random-Effects Representation . . . 182

7.4 Covariates and Covariance Forecasting . . . . . . . . . . . . . . . 183

7.4.1 Big Data Time Series Forecasting . . . . . . . . . . . . . . 183

7.4.1.1 Box-Jenkins Method . . . . . . . . . . . . . . . . 184

7.4.1.2 Automatic Covariate Forecasting . . . . . . . . . 185

7.4.1.3 Covariate Forecasting Accuracy . . . . . . . . . . 185

7.4.2 Forecasting Covariance via Factor Models . . . . . . . . . 187

8 Covariance Forecasting Factor Models in

Currency Carry Trades 189

8.1 Research Contribution: Speculative Trading Behaviour and

Dependence Structure of Currency Returns . . . . . . . . . . . . . 189

8.2 Currency Data and Currency Factors Description . . . . . . . . . 190

8.2.1 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . 194

8.3 Exploring Intertemporal Cross-Sectional Volatility-Volume

Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

8.3.1 Informational Content of Speculative Trading Volumes . . 197

8.3.2 Currency Mean Dynamic Decomposition . . . . . . . . . . 198

8.3.3 A Covariance Regression Model Considering

DOL, HMLFX and SPEC Factors . . . . . . . . . . . . . 201

8.4 Skewness of Cross-Sectional Currency Returns: Pre and Post-Crisis

Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

9 Speculative Behaviour and Tail Dependence of

Currency Returns 219

9.1 Extremal Carry Trade Behaviour and Average Currency Volatility 219

24



CONTENTS

9.2 Extremal Carry Trade Behaviour and Currency Speculative Open

Positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Part III Currency Portfolio Optimisation
Contributions 231

10 Part III Overview 233

11 Portfolio Optimisation 235

11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

11.2 Markowitz Mean-Variance Approach . . . . . . . . . . . . . . . . 241

11.3 Risk Based Approaches . . . . . . . . . . . . . . . . . . . . . . . . 248

11.4 Portfolio Weights Sensitivity to Factors . . . . . . . . . . . . . . . 251

11.4.1 Conditional Covariance Sensitivity to Covariates . . . . . . 251

11.4.2 Optimal Markowitz Weights Sensitivity to Covariates . . . 252

12 Investigating Optimal Currency Portfolios via

Generalised Factor Model Covariance Forecasting 253

12.1 Covariance Forecasting Accuracy . . . . . . . . . . . . . . . . . . 253

12.2 Currency Data and Currency Factors

Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

12.2.1 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . 256

12.2.2 Covariate SARIMA Forecast Results . . . . . . . . . . . . 256

12.2.3 Covariance Dynamics and Forecasting Accuracy . . . . . . 260

12.3 Portfolio Performance and Conditioning of

The Covariance Matrix . . . . . . . . . . . . . . . . . . . . . . . . 265

12.4 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 270

12.5 The Carry Trade Portfolio . . . . . . . . . . . . . . . . . . . . . . 273

12.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

25



CONTENTS

Part IV Hybrid Multi-Factor State Space Modelling
Contributions 279

13 Part IV Overview 281

14 Hybrid Multi-Factor Modelling Framework 283

14.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

14.1.1 Gibson-Schwartz Stochastic Convenience Yield Model . . . 284

14.1.2 Schwartz-Smith 2000 (SS2000) Model . . . . . . . . . . . . 285

14.1.3 Equivalence of Schwartz-Smith 2000 Model and Gibson-

Schwartz Stochastic Convenience Yield Model . . . . . . . 287

14.1.4 Extension to Schwartz-Smith 2000 Model: SSX Model . . 289

14.1.5 The Hybrid Multi-Factor (HMF) Model . . . . . . . . . . 290

14.2 Deriving The Futures Price Expression . . . . . . . . . . . . . . . 292

14.3 State-Space Model Formulation . . . . . . . . . . . . . . . . . . . 295

14.4 Filtering and Parameter Estimation

via Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

14.4.1 Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . 297

14.4.2 Maximum Likelihood Parameter Estimation . . . . . . . . 298

14.4.3 Consistently Incorporating Exogenous Explanatory

Covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

15 Investigating Cross-Sectional Dependence in Commodity Prices

via Hybrid Multi-Factor State Space Models 303

15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

15.2 Description of Price Data and Explanatory Covariates . . . . . . . 308

15.2.1 Explanatory Covariates Data . . . . . . . . . . . . . . . . 308

15.2.2 Crude Oil Futures Price Data . . . . . . . . . . . . . . . . 311

15.2.3 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . 313

15.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 316

15.3.1 Relevance of the long term mean reversion . . . . . . . . . 316

15.3.2 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . 322

15.3.3 Impact of Fundamental Variables Upon the Crude Oil

Futures Term Structure . . . . . . . . . . . . . . . . . . . 324

26



CONTENTS

15.3.4 Backwardation Changes Due to Perturbing

Covariates: a Stress Scenario Analysis . . . . . . . . . . . 334

15.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

16 Conclusions and Future Work 339

16.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

16.2 Statistical Modelling and Estimation Contributions . . . . . . . . 339

16.3 Novel Insights into Finance and Econometric Studies . . . . . . . 341

16.4 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . 345

Appendices 346

A Archimedean Copula Derivatives 349

A.1 Multivariate Clayton Copula . . . . . . . . . . . . . . . . . . . . . 349

A.1.1 CC
ρ (u) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

A.1.2 ψ
(d)
ρ : d-th derivative of the Clayton generator . . . . . . . 349

A.1.3 Clayton Copula Density
(

∂dC
∂u1...∂ud

)
. . . . . . . . . . . . . 349

A.2 Multivariate Frank Copula . . . . . . . . . . . . . . . . . . . . . . 350

A.2.1 CF
ρ (u) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

A.2.2 ψ
(d)
ρ : d-th derivative of the Frank generator . . . . . . . . 350

A.2.3 Frank Copula Density
(

∂dC
∂u1...∂ud

)
. . . . . . . . . . . . . . 350

A.3 Multivariate Gumbel Copula . . . . . . . . . . . . . . . . . . . . . 351

A.3.1 CG
ρ (u) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

A.3.2 ψ
(d)
ρ : d-th derivative of the Gumbel generator . . . . . . . 351

A.3.3 Gumbel Copula Density
(

∂dC
∂u1...∂ud

)
. . . . . . . . . . . . . 351

A.4 Multivariate Clayton-Frank-Gumbel Mixture Copula . . . . . . . 352

A.4.1 CCFG
ρ1,ρ2,ρ3

(u) . . . . . . . . . . . . . . . . . . . . . . . . . . . 352

A.4.2 Clayton-Frank-Gumbel Mixture Copula Density . . . . . . 352

B Calculating Confidence Intervals for Covariance Regression 355

C Forward Price Curve Interpolation 357

D Kalman Filter Estimation via Gradient Descent 359

27



CONTENTS

E Sensitivity of Average Backwardation to Parameter Shocks 365

F HMF SSX Results Tables 367

F.1 2011 - 2016 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 368

F.2 2006 - 2011 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 371

F.3 2000 - 2006 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 374

F.4 1995 - 2000 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 377

F.5 1990 - 1995 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 380

28



List of Figures

3.1 Transforming marginal distributions into standard uniform [0,1]

margins. (Source: Meucci [2011]) . . . . . . . . . . . . . . . . . . 59

3.2 Scatterplot of 500 random samples from a Gaussian copula with

ρ = 0.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3 Density plot of Gaussian copula with ρ = 0.3. . . . . . . . . . . . 76

3.4 Scatterplot of 500 random samples from a t-copula with ρ = 0.8,

degrees of freedom = 8. . . . . . . . . . . . . . . . . . . . . . . . . 77

3.5 Density plot of a t-copula with ρ = 0.3, degrees of freedom = 2. . 78

3.6 Scatterplot of 500 random samples from a Clayton copula with ρ = 2. 90

3.7 Density plot of a Clayton copula with ρ = 2. . . . . . . . . . . . . 91

3.8 Scatterplot of 500 random samples from a Frank copula with ρ = −2.

The variables show negative dependence here. . . . . . . . . . . . 91

3.9 Density plot of a Frank copula with ρ = 2. . . . . . . . . . . . . . 92

3.10 Scatterplot of 500 random samples from a Gumbel copula with ρ = 2. 92

3.11 Density plot of a Gumbel copula with ρ = 2. . . . . . . . . . . . . 93

3.12 Contour plot of Clayton copula with Kendall’s τ = 0.8 and copula

parameter ρ = 8. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.13 Contour plot of Clayton copula with Kendall’s τ = 0.95 and copula

parameter ρ = 38. . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1 Basket 5 (highest IR) composition. . . . . . . . . . . . . . . . . . 120

5.2 Basket 1 (lowest IR) composition. . . . . . . . . . . . . . . . . . . 120

5.3 Example 1: Profile likelihood plots for C-F-G mixture model. . . . 129

5.4 Example 2: Profile likelihood plots for C-F-G mixture model. . . . 129

5.5 AIC comparison of C-F-G vs OP.C-OP.F-G for 6 month blocks on

high and low IR baskets. . . . . . . . . . . . . . . . . . . . . . . . 130

29



LIST OF FIGURES

5.6 AIC differences: C-F-G vs OP.C-OP.F-G for 6 month blocks on

high and low IR baskets. . . . . . . . . . . . . . . . . . . . . . . . 131

5.7 µ parameter of log generalised gamma margins using 6 month blocks135

5.8 µ parameter of log generalised gamma margins using 6 month blocks136

5.9 σ parameter of log generalised gamma margins using 6 month blocks137

5.10 σ parameter of log generalised gamma margins using 6 month blocks138

5.11 K parameter of log generalised gamma margins using 6 month blocks139

5.12 λ Mixing proportions of the respective Clayton, Frank and Gumbel

copulae on the high interest rate basket, using 6 month blocks. . . 142

5.13 λ Mixing proportions of the respective Clayton, Frank and Gumbel

copulae on the low interest rate basket, using 6 month blocks. . . 142

5.14 ρ Copula parameters for the Clayton, Frank and Gumbel copulae

on the high interest rate basket, using 6 month blocks. . . . . . . 144

5.15 ρ Copula parameters for the Clayton, Frank and Gumbel copulae

on the low interest rate basket, using 6 month blocks. . . . . . . . 144

5.16 Kendall’s τ for the Clayton, Frank and Gumbel copulae on the

high interest rate basket, using 6 month blocks. . . . . . . . . . . 145

5.17 Kendall’s τ for the Clayton, Frank and Gumbel copulae on the low

interest rate basket, using 6 month blocks. . . . . . . . . . . . . . 145

5.18 λ1|234 : 6 month blocks on high interest rate basket. . . . . . . . . 147

5.19 λ1|234 : 6 month blocks on low interest rate basket. . . . . . . . . 147

5.20 λ12|34 : 6 month blocks on high interest rate basket. . . . . . . . . 148

5.21 λ12|34 : 6 month blocks on low interest rate basket. . . . . . . . . 148

5.22 λ123|4 : 6 month blocks on high interest rate basket. . . . . . . . . 149

5.23 λ123|4 : 6 month blocks on low interest rate basket. . . . . . . . . 149

5.24 Comparison of Average FX volatility and Equity Volatility Index

(VIX) with upper and lower tail dependence of the high interest

rate basket. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.25 Comparison of Average FX volatility and Equity Volatility Index

(VIX) with upper and lower tail dependence of the low interest rate

basket. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

30



LIST OF FIGURES

5.26 Heat map showing the strength of non-parametric tail dependence

between each pair of currencies averaged over the 2008 Credit crisis

period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.27 Heat map showing the strength of non-parametric tail dependence

between each pair of currencies averaged over the last 12 months

(01/02/2013 to 29/01/2014). . . . . . . . . . . . . . . . . . . . . . 154

5.28 Downside exposure adjusted cumulative log returns using upper/lower

tail dependence in the high/low interest rate basket for the CFG

copula and the OpC copula. . . . . . . . . . . . . . . . . . . . . . 156

5.29 Upside exposure adjusted cumulative log returns using lower/upper

tail dependence in the high/low interest rate basket for the CFG

copula and the OpC copula . . . . . . . . . . . . . . . . . . . . . 157

8.1 Loadings of the First Principal Component of Developed Countries

Speculative Percentage. . . . . . . . . . . . . . . . . . . . . . . . . 198

8.2 High interest rate and Low interest rate basket. DOL+HMLFX

vs DOL+HMLFX+SPEC+SPEC×SPEC. 125 week lookback

periods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

8.3 Log Explanatory Power Increase: High IR and Low IR Basket.

DOL+HMLFX vs DOL+HMLFX +SPEC +SPEC ×SPEC.

125 week lookback periods. . . . . . . . . . . . . . . . . . . . . . . 203

8.4 High interest rate basket parameter boxplot: DOL + HMLFX +

SPEC + SPEC × SPEC. . . . . . . . . . . . . . . . . . . . . . . 206

8.5 Low IR Basket Parameter Boxplot: DOL+HMLFX + SPEC +

SPEC × SPEC. . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

8.6 Developed Countries Before July 2007: Skewness vs Interest Rate

Differential. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

8.7 Developed Countries: Skewness vs Interest Rate Differential. . . . 212

8.8 Developed and Developing Countries Before July 2007: Skewness

vs Interest Rate Differential. . . . . . . . . . . . . . . . . . . . . . 213

8.9 Developed and Developing Countries After June 2009: Skewness

vs Interest Rate Differential. . . . . . . . . . . . . . . . . . . . . . 213

31



LIST OF FIGURES

8.10 6-month rolling average individual skewness of high interest rate de-

veloped countries compared to rolling averaged individual skewness

of low interest rate developed countries . . . . . . . . . . . . . . . 214

8.11 6-month rolling average individual skewness of low interest rate

developed countries (namely JPY, CHF, EUR) with upper and

lower confidence intervals. . . . . . . . . . . . . . . . . . . . . . . 214

9.1 6-month rolling upper tail dependence of low interest rate developed

countries compared to net open position of the Swiss franc future

contract. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

9.2 First eigenvector of the developed countries currency returns co-

variance matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

9.3 Second eigenvector of the developed countries currency returns

covariance matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . 226

11.1 Illustrative example: efficient frontier and some key Markowitz

portfolios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

11.2 Illustrative example: bar plot of asset weights for some key Markowitz

portfolios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

12.1 Mean Absolute Scaled Errors (MASE) for Low Interest Rate Basket

Covariate Forecasts. . . . . . . . . . . . . . . . . . . . . . . . . . . 258

12.2 Boxplots of Mean Absolute Scaled Errors (MASE) for Low Interest

Rate Basket Covariate Forecasts. . . . . . . . . . . . . . . . . . . 259

12.3 Mean Absolute Percentage Errors (MAPE) for Low Interest Rate

Basket Covariate Forecasts. . . . . . . . . . . . . . . . . . . . . . 259

12.4 High interest rate basket. Upper panel: Trace of covariance matrix.

Lower panel: Proportion of variance explained by first principal

component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

12.5 Low interest rate basket. Upper panel: Trace of covariance matrix.

Lower panel: Proportion of variance explained by first principal

component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

32



LIST OF FIGURES

12.6 High interest rate basket. Annualised portfolio volatility differ-

ences between forecast covariance matrix and realised bootstrapped

covariance matrix for different covariance forecasting models. . . . 265

12.7 Low interest rate basket. Annualised portfolio volatility differ-

ences between forecast covariance matrix and realised bootstrapped

covariance matrix for different covariance forecasting models. . . . 266

12.8 High interest rate basket. Constrained GMV 12 month rolling

Sharpe ratio comparison. . . . . . . . . . . . . . . . . . . . . . . . 268

12.9 High interest rate basket. Unconstrained GMV 12 month rolling

Sharpe ratio comparison. . . . . . . . . . . . . . . . . . . . . . . . 269

12.10High interest rate basket. 12 month annualised rolling Sharpe ratio.

Comparison of Conditional GFM and Unconditional GFM. . . . . 269

12.11Low interest rate basket. 12 month annualised rolling Sharpe ratio.

Comparison of Conditional GFM and Unconditional GFM. . . . . 270

12.12High interest rate basket. Boxplot of annualised portfolio volatil-

ity differences resulting from one standard deviation individual

perturbation of each covariate for GFM model with GMV weights. 272

12.13Low interest rate basket. Boxplot of annualised portfolio volatil-

ity differences resulting from one standard deviation individual

perturbation of each covariate for GFM model with GMV weights. 272

12.14Carry trade portfolio performance. . . . . . . . . . . . . . . . . . 274

12.15Carry trade portfolio 12 month annualised rolling Sharpe ratio. . . 275

15.1 Standardised time series of the following covariates (using Gelman

[2008] approach): BDI, DXY, Ending Stocks and GSCI Excess

Returns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

15.2 Standardised time series of the following covariates (using Gel-

man [2008] approach): Hedging Pressure, Leverage Ratio, Refinery

Utilization, S&P500 and US Production. . . . . . . . . . . . . . . 312

15.3 Sensitivity of Average Percentage Backwardation to µ, β and γ

during the period 1990 to 1995. . . . . . . . . . . . . . . . . . . . 325

15.4 Sensitivity of Average Percentage Backwardation to µ, β and γ

during the period 1995 to 2000. . . . . . . . . . . . . . . . . . . . 325

33



15.5 Sensitivity of Average Percentage Backwardation to µ, β and γ

during the period 2000-2006. . . . . . . . . . . . . . . . . . . . . . 326

15.6 Sensitivity of Average Percentage Backwardation to µ, β and γ

during the period 2006-2011. . . . . . . . . . . . . . . . . . . . . . 326

15.7 Sensitivity of Average Percentage Backwardation to µ, β and γ

during the period 2011-2016. . . . . . . . . . . . . . . . . . . . . . 327

15.8 Percentage backwardation of the nearest two contracts during the

period 2011-2016. The line is coloured blue when the the backwar-

dation is positive and red when the backwardation is negative (i.e.

contango). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

15.9 Percentage backwardation of the nearest two contracts resulting

from a three standard deviation increase to the covariate value

during the period 2011 to 2016. Here the fitted model links the

covariate to the µ parameter. . . . . . . . . . . . . . . . . . . . . 335

15.10Percentage backwardation of the nearest two contracts resulting

from a three standard deviation increase to the covariate value

during the period 2011 to 2016. Here the fitted model links the

covariate to the β parameter. . . . . . . . . . . . . . . . . . . . . 336

15.11Percentage backwardation of the nearest two contracts resulting

from a three standard deviation increase to the covariate value

during the period 2011 to 2016. Here the fitted model links the

covariate to the γ parameter. . . . . . . . . . . . . . . . . . . . . 336

C.1 Forward Price Curve Interpolation. . . . . . . . . . . . . . . . . . 358

List of Tables

3.1 Generators and inverse Laplace transforms for several copulae from

the Archimedean family . . . . . . . . . . . . . . . . . . . . . . . 85

3.2 Kendall’s tau and tail dependence coefficients. . . . . . . . . . . . 93

34



LIST OF TABLES

3.3 Archimedean copula generator functions, inverse generator func-

tions and generator function d-th derivatives. . . . . . . . . . . . . 103

5.1 Proportion of rejections of the null hypothesis that the sample is

from a log-normal distribution, measured using a k-s test at the

5% level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.2 Median and interquartile ranges of the estimated k parameter. . . 140

5.3 Pairwise non-parametric tail dependence regressed on respective

basket tail dependence for the period 01/02/2013 to 29/01/2014

(standard errors are shown in parentheses) . . . . . . . . . . . . . 155

8.1 Regression of the individual currency returns on the DOL index,

HMLFX index and the SPEC ratio, as well as cross relations

among them. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

8.2 Before July 2007: cross-sectional regression of the skewness on the

interest rates differential for developed and developing countries. . 215

8.3 During credit crisis: cross-sectional regression of the skewness on

the interest rates differential for developed and developing countries.215

8.4 After June 2009: cross-sectional regression of the skewness on the

interest rates differential for developed and developing countries. . 216

9.1 Before July 2007: Regression of the tail dependences time series

(λ̂Hu,t, λ̂
H
l,t,λ̂

L
u,t, λ̂

L
l,t) on the average volatility for developed and

developing countries. . . . . . . . . . . . . . . . . . . . . . . . . . 222

9.2 During credit crisis: Regression of the tail dependences time series

(λ̂Hu,t, λ̂
H
l,t,λ̂

L
u,t, λ̂

L
l,t) on the average volatility for developed and

developing countries. . . . . . . . . . . . . . . . . . . . . . . . . . 222

9.3 After June 2009: Regression of the tail dependences time series (λ̂Hu,t,

λ̂Hl,t,λ̂
L
u,t, λ̂

L
l,t) on the average volatility for developed and developing

countries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

9.4 Regression of the high and low interest rate respective tail depen-

dences on the DOL index, HMLFX index, DOL index volatility,

HMLFX index volatility, DOL and HMLFX indices covariance

and the SPEC ratio as well as cross relations among them. . . . . 228

35



LIST OF TABLES

12.1 Carry trade portfolio risk measures for different covariance forecast-

ing techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

12.2 Carry trade portfolio risk measures for different covariance forecast-

ing techniques (2). . . . . . . . . . . . . . . . . . . . . . . . . . . 276

14.1 The Relationships Between Parameters in the Long-Term/Short-

Term Model and the Stochastic Convenience Model of Gibson and

Schwartz [1990]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

15.1 List of covariates (and their abbreviations) investigated in this

modelling framework. . . . . . . . . . . . . . . . . . . . . . . . . . 310

15.2 Descriptive statistics of WTI futures prices for the period 90-95. . 313

15.3 Descriptive statistics of WTI futures prices for the period 95-00. . 314

15.4 Descriptive statistics of WTI futures prices for the period 00-06. . 314

15.5 Descriptive statistics of WTI futures prices for the period 06-11. . 315

15.6 Descriptive statistics of WTI futures prices for the period 11-16. . 315

15.7 Parameter estimates of Schwartz-Smith model (no covariates). . . 320

15.8 Parameter estimates of Extended Schwartz-Smith (SSX) model (no

covariates). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

15.9 Instantaneous Sensitivity of Average Backwardation. . . . . . . . 324

15.10Equilibrium Sensitivity of Average Backwardation. . . . . . . . . 324

15.11Three Highest AIC Criterion Contributors. . . . . . . . . . . . . . 333

F.1 HMF SSX Model parameter estimates and negative log likelihoods

obtained when incorporating covariates into µ parameter. Data

period 2011 - 2016. . . . . . . . . . . . . . . . . . . . . . . . . . . 368

F.2 HMF SSX Model parameter estimates and negative log likelihoods

obtained when incorporating covariates into β parameter. Data

period 2011 - 2016. . . . . . . . . . . . . . . . . . . . . . . . . . . 369

F.3 HMF SSX Model parameter estimates and negative log likelihoods

obtained when incorporating covariates into γ parameter. Data

period 2011 - 2016. . . . . . . . . . . . . . . . . . . . . . . . . . . 370

36



LIST OF TABLES

F.4 HMF SSX Model parameter estimates and negative log likelihoods

obtained when incorporating covariates into µ parameter. Data

period 2006 - 2011. . . . . . . . . . . . . . . . . . . . . . . . . . . 371

F.5 HMF SSX Model parameter estimates and negative log likelihoods

obtained when incorporating covariates into β parameter. Data

period 2006 - 2011. . . . . . . . . . . . . . . . . . . . . . . . . . . 372

F.6 HMF SSX Model parameter estimates and negative log likelihoods

obtained when incorporating covariates into γ parameter. Data

period 2006 - 2011. . . . . . . . . . . . . . . . . . . . . . . . . . . 373

F.7 HMF SSX Model parameter estimates and negative log likelihoods

obtained when incorporating covariates into µ parameter. Data

period 2000 - 2006. . . . . . . . . . . . . . . . . . . . . . . . . . . 374

F.8 HMF SSX Model parameter estimates and negative log likelihoods

obtained when incorporating covariates into β parameter. Data

period 2000 - 2006. . . . . . . . . . . . . . . . . . . . . . . . . . . 375

F.9 HMF SSX Model parameter estimates and negative log likelihoods

obtained when incorporating covariates into γ parameter. Data

period 2000 - 2006. . . . . . . . . . . . . . . . . . . . . . . . . . . 376

F.10 HMF SSX Model parameter estimates and negative log likelihoods

obtained when incorporating covariates into µ parameter. Data

period 1995 - 2000. . . . . . . . . . . . . . . . . . . . . . . . . . . 377

F.11 HMF SSX Model parameter estimates and negative log likelihoods

obtained when incorporating covariates into β parameter. Data

period 1995 - 2000. . . . . . . . . . . . . . . . . . . . . . . . . . . 378

F.12 HMF SSX Model parameter estimates and negative log likelihoods

obtained when incorporating covariates into γ parameter. Data

period 1995 - 2000. . . . . . . . . . . . . . . . . . . . . . . . . . . 379

F.13 HMF SSX Model parameter estimates and negative log likelihoods

obtained when incorporating covariates into µ parameter. Data

period 1990 - 1995. . . . . . . . . . . . . . . . . . . . . . . . . . . 380

F.14 HMF SSX Model parameter estimates and negative log likelihoods

obtained when incorporating covariates into β parameter. Data

period 1990 - 1995. . . . . . . . . . . . . . . . . . . . . . . . . . . 381

37



LIST OF TABLES

F.15 HMF SSX Model parameter estimates and negative log likelihoods

obtained when incorporating covariates into γ parameter. Data

period 1990 - 1995. . . . . . . . . . . . . . . . . . . . . . . . . . . 382

38



Chapter 1

Introduction

This chapter presents an overview of the thesis. The motivation for researching

the currency carry trade puzzle as well as the modelling of commodity prices is

presented. Previous related work is then discussed. Subsequently, the research

contributions of this thesis are detailed. Finally, the structure of the thesis is

outlined.

1.1 Motivation

The main motivation of this thesis is to develop and investigate novel dependence

modelling techniques in financial applications. In particular, the aim is to under-

stand the key factors driving the dynamic nature of such dependence. This thesis

focuses on two key financial applications: modelling multiple-currency basket

returns and modelling commodity prices.

A key motivation of this thesis is to investigate the well-known forward premium

puzzle and the associated currency carry trade. The currency carry trade is the

investment strategy that involves selling low interest rate currencies in order to

purchase higher interest rate currencies, thus profiting from the interest rate

differentials. Assuming foreign exchange risk is uninhibited and the markets

have rational risk-neutral investors, then one would not expect profits from such

strategies. That is uncovered interest rate parity (UIP); the parity condition in

which exposure to foreign exchange risk, with unanticipated changes in exchange
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rates, should result in an outcome that changes in the exchange rate should offset

the potential to profit from such interest rate differentials. The two primary

assumptions required for interest rate parity are related to capital mobility and

perfect substitutability of domestic and foreign assets. Given foreign exchange

market equilibrium, the interest rate parity condition implies that the expected

return on domestic assets will equal the exchange rate-adjusted expected return

on foreign currency assets. However, it has been shown empirically, that investors

can actually earn arbitrage profits by borrowing in a country with a lower interest

rate, exchanging for foreign currency, and investing in a foreign country with a

higher interest rate, whilst allowing for any losses (or gains) from exchanging back

to their domestic currency at maturity. Therefore trading strategies that aim to

exploit the interest rate differentials can be profitable on average.

The intention of this thesis is therefore to reinterpret the currency carry

trade puzzle in light of heavy tailed marginal models coupled with multivariate

tail dependence features. To achieve this analysis of the multivariate extreme

tail dependence several parametric models are developed and detailed model

comparison is performed.

This research thus demonstrates that tail dependences among specific sets of

currencies provide other justifications to the carry trade excess return and also

allows one to detect construction and unwinding periods of such carry portfolios.

Furthermore, the impact of speculative trader behaviour on currency returns

is investigated: in the mean, the covariance and the joint tails. I explore the

question of whether this information can be utilised to improve the forecasting of

the covariance and hence produce better portfolios.

A second key motivation of this thesis is to investigate and gain significant

insight into commodity futures and spot price dynamics in terms of interpretable

observed factors that influence speculators and hedgers heterogeneously. This

is not attainable with existing modelling approaches. In particular, the HMF

modelling framework proposed in this thesis reconciles two classes of model: the

latent factor stochastic multi-factor s.d.e. models and the alternative class of

observable regression econometric factor models, by doing so in a statistically

consistent manner from interpretation and estimation perspectives.

40



Such models are a genuine combination of the two approaches and do not

presume any prevalence from one approach or the other. The crux of the matter

lies in building a model which allows a one-stage estimation with simultaneous

inference of the latent factors dynamic and the covariates coefficients to overcome

the estimation error associated to the two-stage approach generally proposed in

the literature. In such a two-stage model, typically the latent factor estimates are

first extracted in order to later regress as a function of a set of covariates. This

conditional estimation of the latent factor suffers from several flaws compared to

the conditional estimates proposed in this thesis.

The HMF modelling framework also allows one to consider covariate forecasts

in order to extrapolate values for the futures prices while considering the con-

fidence interval associated to this estimate. This is particularly convenient in

risk management and commodity hedging as one needs to consider not only the

amount to invest but also the uncertainty associated to this measurement.

1.2 Related Work

The currency carry trade is one of the most robust financial puzzles in international

finance and has attracted the attention of academics and practitioners alike for

the past 25 years. Numerous empirical studies Hansen and Hodrick [1980]; Fama

[1984]; Engel [1996]; Lustig and Verdelhan [2007] have previously demonstrated

the excess returns resulting from carry trade strategies.

Such a confounding puzzle has understandably resulted in a vast and varied

literature, in which a number of theories have been proposed to justify the

phenomenon.

Fama [1984] initially proposed a time varying risk premium within the forward

rate relative to the associated spot rate - concluding that, under rational markets,

most of the variation in forward rates was due to the variation in risk premium.

Weitzman [2007] demonstrates through a Bayesian approach that the uncer-

tainty about the variance of the future growth rates combined with a thin-tailed

prior distribution would generate the fat-tailed distribution required to solve the

forward premium puzzle. This could be compared to the argument retained by

Menkhoff et al. [2012a] who demonstrate that high interest rate currencies tend
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to be negatively related to the innovations in global FX volatility, which is consid-

ered as a proxy for unexpected changes in the FX market volatility. Menkhoff

et al. [2012a] show that sorting currencies by their beta with global FX volatility

innovations yields portfolios with large differences in returns, and also similar

portfolios to those obtained when sorting by forward discount. Another risk factor

shown to be significant, although to a much lesser degree, is liquidity risk.

Burnside et al. [2007] presents an alternative model to a pure risk factor

model, in which “adverse selection problems between market makers and traders

rationalizes a negative covariance between the forward premium and changes in

exchange rates”. Here, the authors suggest that the foreign exchange market

should not be considered as a Walrasian market and that market makers face a

worse adverse selection problem when an agent wants to trade against a public

information signal, i.e. to place a contrarian bet as an informed trader.

Another hypothesis, proposed by Farhi and Gabaix [2008], consists of justifying

this puzzle through the inclusion of a mean reverting risk premium. According to

their model a risky country, which is more sensitive to economic extreme events,

represents a high risk of currency depreciation and has thus to propose, in order

to compensate this risk, a higher interest rate. Then, when the risk premium

reverts to the mean, their exchange rate appreciates while they still have a high

interest rate which thus replicates the forward rate premium puzzle.

The causality relation between the interest rate differential and the currency

shocks can be presented the other way around as detailed in Brunnermeier and

Pedersen [2009]. In this paper, the authors assume that the currency carry trade

mechanically attracts investors and more specifically speculators who accordingly

increase the probability of a market crash. Tail events among currencies would

thus be caused by speculators’ need to unwind their positions when they get closer

to funding constraints.

This recurrent statement of a relation between tail events and forward rate

premium Farhi and Gabaix [2008]; Brunnermeier et al. [2008] has led to the

proposal in this thesis of a rigorous measure and estimation of the tail thickness at

the level of the marginal distribution associated to each exchange rate. Moreover,

the question of the link between the currency’s marginal distribution and the

associated interest rate differential leads to the consideration more globally of the
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joint dependence structures between the individual marginal cumulative distribu-

tion function (cdf) tails with respect to their respective interest rate differential.

While in the first two applications of this thesis I focus on the currency exchange

rates market, in the third application of dependence I investigate another very

interesting market which is also crucial for the contemporaneous economies, namely

the oil market.

Although one can obtain a coarse picture of the principal fundamental events

affecting oil price dynamics throughout history, the modelling and the choice of

explanatory variables for oil price dynamics is still fiercely debated in the academic

literature. Several reasons for this have been put forward, among which is the

microeconomic interactions between very different types of agents who intervene

in the market and who are generally classified into two distinct groups labelled

respectively hedgers and speculators. The pre-eminent role they can play in the

price discovery process of the market has raised unanswered questions about the

causality relationship existing between the future prices and the physical or spot

price observed in the real economy. As a matter of fact, several papers have

demonstrated that not just the speculators but also the commodity-index funds

were so influential in the market that the future price was actually leading the

spot price and thus disconnecting the oil price from the fundamentals, such as

those mentioned earlier (Kaufmann and Ullman [2009]; Silvrio and Szklo [2012];

Kilian and Murphy [2014]). Following this strand of the literature, certain authors

(Bessembinder [1992]; Acharya et al. [2013]; Etula [2013]; Adrian et al. [2014])

considered the limits-to-arbitrage as one of the main reasons for the inverted

price discovery process. Through such analyses they were able to argue that

this demonstrated that any market friction limiting the arbitrage capacity of the

financial intermediaries was translating into limits to hedging for the producers

and accordingly impacting the real sphere participants’ behaviour as well as related

variables such as the spot oil prices.

The fact that macro and micro-economic observable variables influence the

determination of market price dynamics by directly influencing the decisions and

behaviour of speculators and hedgers in the market has naturally led to an alter-
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native proposition from academics consisting of modelling the oil price dynamic

through state space models where the log-price can be represented as a combina-

tion of several latent processes, which can then be generically interpreted without

being necessarily related to any fundamental or microeconomical variables (Gibson

and Schwartz [1990]; Schwartz and Smith [2000]; Casassus and Collin-Dufresne

[2005]). Among advocates for this approach, authors notably decomposed the

future prices as a combination of short term and long term latent components

while others have assumed equivalently that the latent process should be associated

to the convenience yield and thus determine the basis level or said differently the

price difference between the spot and the future contract. Kaldor [1939] explains

that the inter-temporal difference between futures and thus between the future

price and the spot price are linked to the cost of storage and also the so-called

convenience yield which embodies the benefits accrued to the owner of the physical

commodity by providing him with a certain flexibility with regards to his reaction

in case of market shocks. Schwartz and Smith [2000] demonstrated through a

change of variable the linear equivalence between modelling the convenience yield

or the dynamic of a long and a short term latent factor in order to model the

futures price curve. Another advantage in considering these models resides in

the ease of financial change of measure to risk neutral formulations that admit

closed form analytical futures prices in terms of stochastic factors assumed to

explain the spot price stochastic unobserved dynamics. From this systematic

model differentiation between macro, micro and latent factors and given also the

fact that the storage cost or the convenience yield are both naturally related

to fundamental elements such as the storage capacity in the market, followed

several articles dissecting the behaviour of the latent processes relative to a set

of fundamental and microeconomic variables (Dempster et al. [2012], Daskalaki

et al. [2014]). On the contrary other academics focused on demonstrating that the

fundamental factors were not marginally contributing to the explanation provided

by the futures prices themselves, and thus the latent processes (Cummins et al.

[2016]; Daskalaki et al. [2014]).
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1.3 Thesis Contributions

Three complementary dependence modelling approaches are developed in this

thesis. The first two approaches address the challenge of modelling the multivariate

distribution of a portfolio of asset returns. The third approach developed concerns

commodity price dependence modelling where the link between maturities through

the term structure of futures prices is considered.

The first approach adopted in this thesis is a statistical framework with a

high degree of sophistication, however its fundamental reasoning and justification

is indeed analogous in nature to the ideas considered when investigating the

“equity risk premium puzzle” coined by Mehra and Prescott [1985] in the late

80’s. The equity risk premium puzzle effectively refers to the fact that demand for

government bonds which have lower returns than stocks still exists and generally

remains high. This poses a puzzle for economists to explain why the magnitude

of the disparity between the returns on each of these asset classes, stocks versus

bonds, known as the equity risk premium, is so great and therefore implies an

implausibly high level of investor risk aversion. In the seminal paper written by

Rietz [1988], the author proposes to explain the “equity risk premium puzzle”,

Mehra and Prescott [1985], by taking into consideration the low but still significant

probability of a joint catastrophic event.

Analogously in this thesis, an exploration is presented of the highly leveraged

arbitrage opportunities in currency carry trades that arise due to violation of the

UIP. However, it is conjectured that if the assessment of the risk associated with

such trading strategies was modified to adequately take into account the potential

for joint catastrophic risk events accounting for the non-trivial probabilities of joint

adverse movements in currency exchange rates, then such strategies may not seem

so profitable relative to the risk borne by the investor. A rigorous probabilistic

model is proposed in order to quantify this phenomenon and potentially detect

when liquidity in FX markets may dry up. This probabilistic measure of depen-

dence can then be very useful for risk management of such portfolios but also for

making more tractable the valuation of structured products or other derivatives

indexed on this specific strategy. To be more specific, one of the principal contri-

butions of this thesis is indeed to model the dependences between exchange rates
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using a flexible family of mixture copulae comprised of Archimedean members.

This probabilistic approach allows the joint distribution of the vectors of random

variables, in this case vectors of exchange rates log-returns in each basket of

currencies, to be expressed as functions of each marginal distribution and the

copula function itself.

Whereas in the literature mentioned earlier, the tail thickness resulting from

the carry trade has been either treated individually for each exchange rate or

through the measurement of distribution moments that may not be adapted to a

proper estimation of the tail dependences. In this thesis, it is proposed instead

to build, on a daily basis, a set of portfolios of currencies with regards to the

interest rate differentials of each currency with the US dollar. Using a mixture

of copula functions, a measure of the tail dependences within each portfolio is

extracted and finally the results are interpreted. Among the outcomes of this

study, it is demonstrated that during the crisis periods, the high interest rate

currencies tend to display very significant upper tail dependence. Accordingly, it

can thus be concluded that the appealing high return profile of a carry portfolio is

not only compensating the tail thickness of each individual component probability

distribution but also the fact that they tend to occur simultaneously and lead to

a portfolio particularly sensitive to the risk of drawdown. Furthermore, it is also

shown that high interest rate currency portfolios can display periods during which

the tail dependence gets inverted demonstrating when periods of construction of

the aforementioned carry positions are being undertaken by investors.

This thesis also explores the impact of speculative trading behaviour on the

dependence structure of currency returns. The ratio of speculative open interest

(net non-commercial positions) to total open interest, termed the SPEC factor,

is shown to provide a good proxy to the behaviour of carry trade investors via a

PCA analysis. A covariance regression modelling approach whereby the influence

of observed covariates on the covariance of the multivariate returns of a basket of

assets is proposed. In particular, the impact of speculative trading behaviour, i.e.

the SPEC factors, on the covariance of carry currencies is investigated. These

SPEC factors are shown to hold several orders of magnitude more explanatory

power than the price index factors, DOL and HMLFX , previously suggested in
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the literature. Furthermore, it is demonstrated that the time series for the DOL

and HMLFX factors are very close to white noise and as such are essentially

unforecastable. The suggested speculative open interest factors are shown to be

amenable to ARIMA model fits and so produce reasonable forecast accuracy.

Thus, time series models for these covariates of interest are built and hence

forecasts of the covariance of a basket of currencies can be obtained. Therefore,

the inherent heteroskedasticity of the covariance of a basket of currencies can be

modelled and forecast whilst maintaining the desirable property of interpretability

of the model. This forecasting ability is then useful for risk management, portfolio

optimisation and trading strategy development.

A sensitivity analysis of the covariance to the factors is also presented allow-

ing the estimation of a confidence interval of the covariance matrix entries as a

function of the marginal distribution of each covariate used for the covariance

regression. In addition, a regression of the tail dependence measures, obtained

from the mixture copula modelling approach, on the SPEC factors illustrates

the influence of carry trade speculative behaviour on the extremal joint currency

returns. The DOL and HMLFX are shown to hold little explanatory power in

the joint tails.

In this thesis, I also investigate financial time series dependence structure in

commodity markets. The dynamic behaviour of the futures price term structure

which combines time series and cross-sectional data has been modelled in this

thesis using a so-called Hybrid Multi-Factor (HMF) model. This state-space

modelling framework is proposed in order to understand the key factors driving

commodity prices. A consistent estimation framework is developed, which builds

on the familiar two-factor model of Schwartz and Smith (2000), to allow for

an investigation of the influence of observable covariates on commodity prices.

Using this novel Hybrid Multi-Factor (HMF) model, it is possible to obtain closed

form futures prices under standard risk neutral pricing formulations, and one can

incorporate state-space model estimation techniques to consistently estimate both

the structural features related to the convenience yield and spot price dynamics

(long and short term stochastic dynamics) and also the structural parameters that

relate to the influence on the spot price and the futures price term structure of the
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observed exogenous covariates. Such models can then be utilised to gain significant

insight into the futures and spot price dynamics in terms of interpretable observed

factors that influence speculators and hedgers differently. This is not attainable

with existing modelling approaches.

The proposed HMF modelling framework reconciles two classes of model:

the latent multi-factor stochastic differential equation (s.d.e.) models and the

alternative class of observable regression econometric factor models, by doing so in

a statistically consistent manner from interpretation and estimation perspectives.

The novel class of stochastic HMF models developed in this thesis allows for

incorporation of exogenous covariate structures in a statistically rigorous manner.

Such models are a genuine combination of the two approaches and do not presume

any prevalence from one approach or the other. The crux of the matter lies in

building a state-space model which allows a one-stage estimation with simultaneous

inference of the latent factors dynamic and the covariates coefficients. In order

to overcome the estimation error associated to the two-stage approach generally

proposed in the literature. In such a two-stage model, typically the latent factor

estimates are first extracted in order to later regress as a function of a set of

covariates. This conditional estimation of the latent factor suffers from several

flaws compared to the conditional estimates proposed in this thesis.

The HMF modelling framework also allows one to consider covariate forecasts

in order to extrapolate values for the futures prices along the term structure

while considering the confidence interval associated to this estimate. This is

particularly convenient in risk management and commodity hedging as one needs

to consider not only the amount to invest but also the uncertainty associated to

this measurement.

1.4 Thesis Structure

This thesis is structured as follows: Part I introduces the copula modelling

framework and its novel application to investigate asymmetric tail dependence

in currency carry trade portfolios. Part II introduces the covariance regression

framework and its novel application to investigate how observable and interpretable

explanatory factors influence the covariance structure of currency returns. Part III
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introduces portfolio optimisation techniques and then utilises the novel covariance

forecasting approach developed in Part II to investigate portfolio optimisation in

currency carry portfolios. Finally, Part IV introduces a novel Hybrid Multi-Factor

(HMF) stochastic differential equation (s.d.e.) framework to model the term

structure dynamic of commodity futures prices.
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Copula Modelling Contributions
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Chapter 2

Part I Overview

In the first part of this thesis, the copula modelling framework and its novel

application to investigate asymmetric tail dependence in currency carry trade

portfolios is introduced.

Chapter 3 reviews the origins and mathematical background of copulae, before

discussing the development of copula modelling in the fields of financial mathe-

matics and insurance. Classical measures of dependence are detailed, followed by

the concept of tail dependence. Then some key parametric statistical models that

directly capture these dependence features are discussed.

The flexible copula modelling framework presented will then be utilised to

investigate one of the most robust puzzles in finance, named the forward premium

puzzle. This puzzle and the associated currency carry trade have received much

attention over recent decades with many theories being proposed to explain

the phenomenon. However, a complete and satisfactory explanation has proven

illusive.

Chapter 4 presents the forward premium puzzle and then reviews the literature

surrounding the puzzle and the associated currency carry trade. The novel

approach of analysing both individual tail heaviness and joint tail dependence is

proposed.

Chapter 5 presents the investigation of the forward premium puzzle using

empirical data. The time-varying dependence structure of currency carry trade

baskets is explored. In particular, the multivariate tail dependence characteristics

of the baskets are analysed and the results discussed.
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Chapter 3

Copula Modelling

In this chapter, the origins and mathematical background of copulae are reviewed,

before discussing the development of copula modelling in the fields of financial

mathematics and insurance. Classical measures of dependence are detailed, followed

by the concept of tail dependence. Then some key parametric statistical models

that directly capture these dependence features are discussed.

3.1 Origins

The explosion of interest in copula modelling over the past few decades can

largely be attributed to their flexibility and usefulness in a wide range of practical

applications, particularly in the world of finance and insurance, see Genest et al.

[2009].

The first mathematical use of the word copula can be traced back to Abel

Sklar’s theorem in 1959, Sklar [1959], in which one-dimensional distribution

functions are joined together by a copula function to form multivariate distribution

functions. However, the roots of copula theory can in fact be traced back further

to Hoeffding’s work on ‘standardised distributions’ on the square [−1
2
, 1

2
]2 in the

1940’s, Hoeffding [1994b,a]. A more detailed history of the origins and development

of copula theory can be found in the introduction of the excellent monograph

Nelsen [2006]. Personal recollections by the founders of the field can be found in

Schweizer [1991] and Sklar [1996].
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So, why are we interested in copulae? As Fisher notes in his article in the

Encyclopedia of Statistical Sciences, Fisher [1997], “Copulas [are] of interest to

statisticians for two main reasons:

1. as a way of studying scale-free measures of dependence.

2. as a starting point for constructing families of bivariate distributions, some-

times with a view to simulation.”

The most natural place to begin this literature review is with Sklar’s introduc-

tion of the copula function in his famous theorem, Sklar [1959].

A copula is specified according to the following definition.

Definition 1. Copula

A d-dimensional copula is a multivariate cumulative distribution function C with

uniform [0, 1] margins, i.e.

C : [0, 1]d → [0, 1], (3–1)

with the following properties:

1. C(1, . . . , 1, ai, 1, . . . , 1) = ai for every i ≤ d, ∀ai in [0, 1];

2. C(a1, . . . , ad) = 0 if ai = 0 for i ∈ 1, . . . , d

3. C is d-increasing.

One of the main attractions for practitioners for the use of copula models is

the separation of a multivariate distribution into its marginal distributions and

the dependence structure between the margins.

It is also interesting to consider an alternative perspective, i.e. the survival

perspective. First the general multivariate survival function is defined, Definition 2,

and then the survival copula is defined as the restriction to the unit hypercube,

see McNeil and Nešlehová [2009, lemma 1].

Definition 2. Multivariate Survival Function

A survival function H of a probability distribution H is a mapping H : Rd 7→ [0, 1]

if and only if it satisfies
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� H (−∞, . . . ,−∞) = 1 and H(x) = 0 if xi = ∞ for at least one index

i ∈ {1, 2, . . . , d}, where x is a d-dimensional vector with components xi;

� H is a right continuous function such that for all x ∈ Rd one has

∀ε > 0, ∃δ > 0, ∀y ≥ x ||y − x||1 < δ ⇒ |H(y)−H(x)| < ε. (3–2)

� H(−x) is quasi-monotone on Rd.

The survival copula is then specified according to the following definition.

Definition 3. Survival Copula

The relationship between a d-dimensional copula C (u1, . . . , ud) and the survival

copula, denoted by Č (u1, . . . , ud) is given by

Č (u1, . . . , ud) = C (1− u1, . . . , 1− um) (3–3)

with

C (u1, . . . , ud) =
d∑
i=1

(−1)i
∑

v(u1,...,ud)∈Z(M−i,M,0)

C (u1, . . . , ud)

 , (3–4)

where Z(A,B, ε) denotes the set
{
v ∈ [0, 1]B|vi ∈ {ui, ε} ,

∑B
i=1 Xε(vi) = A

}
.

Sklar’s theorem (3–5) provides the foundation to the study of copulae by

proving that any multivariate distribution with continuous margins has a unique

copula representation.

Theorem 3.1.1. Sklar’s Theorem (1959)

Consider a d-dimensional cumulative distribution function H with marginals

F1, . . . , Fd. There exists a copula C, s.t.

H(x1, ..., xd) = C(F1(x1), . . . , Fd(xd)) (3–5)

for all xi ∈ (−∞,∞), i ∈ 1, . . . , d. Furthermore, if Fi is continuous for all

i = 1, . . . , d then C is unique; otherwise C is uniquely determined only on RanF1×
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3. COPULA MODELLING

· · ·×RanFd, where RanFi denotes the range of the cumulative distribution function

(cdf) Fi.

Sklar’s theorem can also be re-expressed in terms of survival functions of a

multivariate distribution according to the following result in Theorem 3.1.2; see

discussion in McNeil and Nešlehová [2009, theorem 2.1].

Theorem 3.1.2. Sklar’s Theorem Expressed via Survival Function

Considering a d-dimensional survival function H with marginal distribution

survival functions FXi for i ∈ {1, 2, . . . , d}, then there exists a copula C, called

the survival copula of H such that

H (x) = C
(
FX1 (x1), . . . , FXd (xd)

)
, ∀x ∈ Rd, (3–6)

or conversely one has

C (u) = H
(
F
−1

X1
(u1) , . . . , F

−1

Xd
(ud)

)
, ∀u ∈ D, (3–7)

with D =
{
u ∈ [0, 1]d : u ∈ ranFX1 × . . .× ranFXd

}
. The survival copula C is

uniquely determined on the support D. Conversely, given a copula C and marginal

survival functions FXi for i ∈ {1, 2, . . . , d}, then the multivariate survival function

H is uniquely given by Equation 3–6.

An intuitive pictorial representation of the transformation of marginal dis-

tributions to standard uniform margins can be seen in Figure 3.1, as shown in

Meucci [2011]. Here, it can be seen that using the individual empirical CDFs,

an arbitrary data sample can be transformed to have approximately standard

uniform margins.

There already exists an extensive literature on copulae, with publications

gathering pace over recent years. Excellent textbooks on the topic include Aglio

et al. [1991]; Joe [1997]; Nelsen [2006]. A number of gentle introductions to the

world of copulae are available, such as Frees and Valdez [1998]; Bouyé et al. [2000];

Embrechts et al. [2003]; Schmidt [2006]; Genest and Favre [2007]; Meucci [2011].
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Figure 3.1: Transforming marginal distributions into standard uniform
[0,1] margins. (Source: Meucci [2011])

Remark 3.1.3. In this thesis, copula models are used to study the marginal

behaviour of each currency and then separately to focus on developing hypotheses

regarding the possible dependence structures between the log returns of the forward

exchange rates of the currencies in the portfolios which can be tested through

parametrization of a model via a copula and then a process of model selection.

3.2 Copula Modelling and Its Emergence in

Financial Modelling

The explosion of interest in copulae, beginning in the eighties, was in most part

due to advances in quantitative risk management methodology in the financial

and insurance world. The creation of more complex derivative products and new

guidelines on regulation (see Chapter 1 of Embrechts et al. [2005]) contributed

heavily to the need for risk management developments.

A notable paper from this era is Embrechts et al. [2002], in which the authors
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3. COPULA MODELLING

argue for copula approaches over linear correlation for the modelling of dependence

for risk management. In particular, the authors point out the pitfalls of using

linear correlation in the non-Gaussian world of finance and insurance. Hence,

beyond elliptical multivariate models we have the following fallacies:

� Fallacy 1 : Marginal distributions and correlation determine the joint distri-

bution.

� Fallacy 2 : Given marginal distributions F1 and F2 for X and Y , all linear

correlations between -1 and 1 can be attained through suitable specification

of the joint distribution.

� Fallacy 3 : The worst case VaR (quantile) for a linear portfolio X+Y occurs

when ρ(X, Y ) is maximal, i.e. X and Y are comonotonic.

These fallacies are avoided in this thesis through the use of mixture copulae,

inner and outer power transforms and appropriately heavy-tailed marginal models

to capture the complex non-linear dependence structures inherent in financial

data.

In the context of for instance Fallacy 1 - this mistaken understanding typically

arises from conceptualization of models constructed with intuition from Gaussian

cases, which is the most well known case where this fallacy is correct. In fact, a

key example of such a misinterpretation and its potential influence on the economy

through misinterpretation of the model features arose in Li [2000]. This practically

influential paper utilised a copula modelling framework which was developed on

the topic of credit portfolio default modelling. The author proposed the use of

copulae to specify the joint distribution of survival times (time until default of a

financial instrument) with given marginal distributions (credit curves - giving all

the marginal conditional default probabilities over a number of years). However,

Li presents the Gaussian copula as the industry standard approach of the time

(see Gupton et al. [1997]). It was the use and abuse of this Gaussian copula

by the credit rating agencies (Moody’s, Standard & Poor’s and Finch) and the

derivatives departments of investment banks that allowed the CDS (Credit Default

Swap) market to balloon out to $62 trillion in 2007 from $920 billion in 2001. The

CDO (Collateralised Debt Obligation) market saw a similar explosion, from $275
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billion in 2000 to $4.7 trillion by 2006. Li’s formula came under much criticism at

the time, notably Salmon [2012], for causing the collapse of the global economy.

A more detailed analysis of the development and use of the Gaussian copula in

this context is given in MacKenzie and Spears [2012], showing the unjustified

blame placed on Li. Donnelly and Embrechts [2010] examines the (well-known)

shortcomings of the Gaussian copula - explaining the overly simplistic nature

of the model for credit derivatives. The authors present a clear analysis of the

challenges of applying mathematical models to the constantly changing real world

of finance.

The paper of Schönbucher and Schubert [2001] allows for a much more general

specification of the dependence between default events than previous works. The

modelling framework introduced here is a continuous-time dynamic model, with

defaults and default probabilities evolving consistently within the model. The

Clayton and Gumbel copulae are proposed to model the default dependence,

allowing for more realistic default contagion.

On the topic of portfolio allocation, Patton [2004] explores asymmetries in the

dependence structure of stocks across different market conditions. Patton notes

that “stock returns appear to be more dependent during market downturns than

during market upturns”, hence violating the assumption of elliptically distributed

asset returns. Dependence models that allow for, but do not impose, greater

dependence during bear markets than bull markets are considered. The author

finds substantial evidence that skewness and asymmetric dependence are important

considerations in portfolio allocation. In particular, the portfolios based on the

more flexible copula dependence models outperform both the equally weighted

portfolio and the portfolio based on the bivariate normal model.

Hong et al. [2007] introduces a test for asymmetric dependence and then goes

on to propose a Bayesian framework for modelling asymmetry via a mixture

model of normal and Clayton copulae. The authors conclude that “incorporating

assets’ asymmetric characteristics can add substantial economic value in portfolio

decisions.”

The use of copula modelling approaches has started to emerge across various

asset classes. For example, Wu et al. [2012] propose dynamic copula-based GARCH

models to explore the dependence structure between the oil price and the US
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dollar exchange rate. In addition, an asset allocation strategy is implemented to

evaluate economic value and confirm the efficiency of the copula-based GARCH

models. Gronwald et al. [2011] apply various copulae in order to investigate the

complex dependence structure between EU emission allowance (EUA) futures

returns and those of other commodities, equity and energy indices. The authors

consider time-varying copulae, concluding that the estimated copula parameters

are not constant over time and that in particular the dependence is stronger

during the period of the financial crisis.

Amidst all of this new found excitement for copulae there were some outspoken

critics. Most notably was Mikosch [2006a], who cited a concern that copulae were

being viewed as the solution to all problems in stochastic dependence modelling,

whereas in his view “copulas do not contribute to a better understanding of

multivariate extremes”. There were numerous responses from leaders in the copula

field to Mikosch’s attack, such as Genest and Rémillard [2006]; Embrechts [2006];

Joe [2006]; de Vries and Zhou [2006]; Lindner [2006]; Peng [2006] and Segers [2006]

- leading to a rejoinder by Mikosch, see Mikosch [2006b]. Embrechts [2009] sums

up the responses best in his personal review of copulae shortly after:

“Copulas form a most useful concept for a lot of applied modeling,

they do not yield, however, a panacea for the construction of useful

and well-understood multivariate dfs, and much less for multivariate

stochastic processes. But none of the copula experts makes these

claims.”

It is useful at this point to discuss the pros and cons of the copula modelling

framework.

PROS:

� Separating out the modelling of the marginals and the dependence structure

allows for more flexibility in the complete multivariate model.

� The dependence structure as summarized by a copula is invariant under

increasing and continuous transformations of the marginals.
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� The tail characteristics within the dependence structure can be explic-

itly modelled using well-known and interpretable parametric models, e.g.

Archimedean copulae.

� High dimensional copulae can be reduced to the composition of lower di-

mensional building block copulae, e.g. pair-copula constructions, to create

extremely flexible models of complex dependence structures.

CONS:

� Which copula to choose? Sometimes it is not easy to say which parametric

copula fits a dataset best, since some copulae may provide a better fit near

the center and others near the tails. However, by focusing on models with

suitable characteristics for the application at hand and using goodness-of-fit

tests, e.g. AIC, BIC or CIC, one can overcome this issue.

� As with any statistical model, ignorance on the behalf of practitioners can

lead to dangerous oversimplification and reliance on inappropriate models.

Thus, when applying these models in practice it is of the utmost importance to

carefully consider the assumptions one is making. The key focus in this research is

on combining suitable marginal models, i.e. with the capacity to model skewness

and tail-heaviness flexibly, with a model of the dependence structure that captures

the upper and lower multivariate tail characteristics asymmetrically.

In the context investigated in this thesis, i.e. currency carry trade

portfolios, the application of copula models is a novel approach to

describe the rationale of the forward premium puzzle. The benefits

of such an approach are clear from the pros described above. In or-

der to address the cons of a copula modelling approach, a thorough

goodness-of-fit testing procedure was performed in order to select the

appropriate marginal (time series or static) and copula model for each

data fit. Furthermore, a detailed analysis of the extremal dependence

properties of the copulae was carried out.
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3.3 Classical Measures of Dependence

Measuring the dependence between random variables has long been of interest to

statisticians and practitioners alike. A history of the development of dependence

measures can be found in Mari and Kotz [2001]. It is important to note that,

in general, the dependence structure between two random variables can only be

captured in full by their joint probability distribution, and thus any scalar quantity

extracted from this structure must be viewed as such. Scarsini [1984] gives the

following intuitive definition of dependence:

“Dependence is a matter of association between X and Y along any

measurable function, i.e. the more X and Y tend to cluster around

the graph of a function, either y = f(x) or x = g(y), the more they

are dependent.”

3.3.1 Linear Correlation

The most well-known measure of dependence, Pearson’s Product Moment Corre-

lation Coefficient, was developed by Karl Pearson, see Pearson [1896], building on

Sir Francis Galton’s approach using the median and semi-interquartile range, see

Galton [1889].

Pearson’s correlation coefficient is a measure of how well the two random

variables can be described by a linear function and is defined as follows:

Definition 4. Pearson’s Correlation Coefficient

ρ :=
Cov[X, Y ]√
V ar[X]V ar[Y ]

(3–8)

Hence perfect linear dependence gives ρ = +1 or ρ = −1. The major weakness

of linear correlation is its non-invariance under non-linear monotonic transforma-

tions of the random variables.
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3.3.2 Rank Correlation

Rank correlation measures the relationship between the rankings of variables, i.e

after assigning the labels “first”, “second”, “third”, etc. to different observations

of a particular variable. The coefficient lies in the interval [-1, +1], where +1

indicates the agreement between the two rankings is perfect, i.e. the same; -1

indicates the disagreement between the two rankings is perfect, i.e. one ranking

is the reverse of the other; 0 indicates the rankings are completely independent.

Due to this scale-invariance, rank correlations thus provide an approach for fitting

copulae to data.

The choice of dependence measure is influenced by the type of dependence one

seeks to capture, such as lower left quadrant, upper right quadrant etc. However,

in non-trivial multivariate distributions it isn’t possible to capture all of the

possible combinations of dependence patterns within a single dependence measure.

3.3.2.1 Spearman’s Rho

Charles Spearman introduced the nonparametric measure of dependence, Spear-

man’s rank correlation coefficient, in Spearman [1904]. This measure assesses

how well the dependence between two random variables can be described by a

monotonic function. As such it is equivalent to the Pearson’s correlation coefficient

between the ranked variables, defined as follows:

Definition 5. Spearman’s Rank Correlation Coefficient

ρ :=

∑
i (xi − x̄)(yi − ȳ)√∑
i (xi − x̄)2(yi − ȳ)2

(3–9)

where xi, yi are the ranks.

Spearman’s rank correlation can be directly derived from the copula describing

the dependence between random variables X1 and X2:

Definition 6. Spearman’s Rank Correlation via Copula

ρ(X1, X2) := 12

∫ 1

0

∫ 1

0

(C (u1, u2)− u1u2) du1du2 (3–10)
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In addition, a general multivariate extension of Spearman’s Rank Correlation

is developed for d-dimensional loss random vectors and given below, see details in

Nelsen [2002].

Definition 7. Multivariate Generalized Spearman’s Rank Correlation

via Copula

Consider the d-dimensional copula given by C and the permuted copula Cσ, then the

generalized Spearman’s Rho concordance measure of dependence is given according

to

ρd(C) = αd

(∫
[0,1]d

(C + Cσ) dΠd − 1

2d−1

)
(3–11)

where one has αd = (d+1)2d−1

2d−(d+1)
and Πd is the d-dimensional Independence Copula

as defined below.

Definition 8. Independence Copula

The d-dimensional independence copula is defined as

Πd(u) =
d∏
i=1

ui. (3–12)

3.3.2.2 Kendall’s Tau

Maurice Kendall developed the τ rank correlation coefficient in Kendall [1938],

although Gustav Fechner proposed a similar measure in the context of time series

in 1897, see Kruskal [1958].

Let (X1, Y1) and (X2, Y2) be two independent pairs of random variables from

a joint distribution function F, then Kendall’s rank correlation is given by

Definition 9. Kendall’s Tau

τ := P [(X1 −X2) (Y1 − Y2) > 0]− P [(X1 −X2) (Y1 − Y2) < 0] (3–13)

Similarly, Kendall’s rank correlation can be directly derived from the copula

describing the dependence between random variables X1 and X2:
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Definition 10. Kendall’s Tau via Copula

τ := 4

∫ 1

0

∫ 1

0

C(u1, u2)dC(u1, u2)− 1 (3–14)

Spearman’s ρ and Kendall’s τ share a lot of common properties, however

“Spearman’s ρ is a measure of average quadrant dependence, while Kendall’s τ is a

measure of average likelihood ratio dependence”, see Fredricks and Nelsen [2007].

In layman’s terms it can be seen that Kendall’s τ penalises rank displacements by

the distance of the displacement, whilst Spearman’s ρ penalises by the square of

the distance. Also, as Newson [2002] notes, “confidence intervals for Spearman’s

ρ are less reliable and less interpretable than confidence intervals for Kendall’s

τ -parameters”.

3.3.2.3 Blomqvist’s Beta

Nils Blomqvist developed a measure of concordance in Blomqvist [1950] known as

Blomqvist’s β. This is a quadrant measure that is related to medial correlation

and is defined as follows.

Definition 11. Blomqvist’s Beta

Consider two random variables X1 and X2, then Blomqvist’s beta is given by

ρβ [X1, X2] := Pr [(X1 −med (X1)) (X2 −med (X2)) > 0]

− Pr [(X1 −med (X1)) (X2 −med (X2)) < 0] , (3–15)

where med (Xi) is the median of random variable Xi.

For generalizations of Blomqvist’s beta to higher dimensions, see discussions

in Joe [1990], Nelsen [2002] and Dolati and Úbeda-Flores [2006].

One can also make the following comments regarding the properties of

Blomqvist’s Beta measure of concordance:

� The empirical version ρ̂β of Blomqvist’s beta is a suitably scaled version of

the proportion of points whose components are either both smaller, or both

larger, than their respective sample medians;
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� The computation of ρ̂β involves only O(n) operations, as opposed to O(n2)

for the empirical versions of Kendall’s tau and Spearman’s rho.

In addition, Blomqvist’s Beta can also be specified with regard to a copula as

follows.

Definition 12. Blomqvist’s Beta via Copula

The bivariate Blomqvist’s Beta can be expressed explicitly via the bivariate copula

C according to

β = 4C

(
1

2
,
1

2

)
− 1. (3–16)

Remark 3.3.1. Recently in Genest et al. [2013] the authors proposed the inversion

of this copula based representation of Blomqvist’s Beta to perform explicit parameter

estimation for several copula models.

As with the other popular measures of concordance specified above, there is

also a generalization of Blomqvist’s Beta to multivariate settings, see discussions

in Nelsen [2002].

Definition 13. Generalized Blomqvist’s Beta via Copula

Consider a d-dimensional copula C, then the generalized Blomqvist’s Beta is given

by

βd(C) = αd

(
C(

1

2
, . . . ,

1

2
)− 1

2d

)
, (3–17)

where αd = 2d

2d−1−1

These classical notions of quantifying dependence have been widely considered

in some form in financial modelling, especially simple linear dependence models,

though they are rarely understood in this literature from the perspective of a

copula structure. So it is useful to point out this link when considering ideas of

modelling in financial settings via copulae.

The next section outlines less commonly used notions of extremal dependence

in financial modelling, namely the strong tail dependence, asymptotic joint extreme

dependence measures.
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3.4 Tail Dependence

In order to examine the dependence behaviour in the extremes of multivariate

distributions we use the concept of tail dependence. The bivariate tail dependence

coefficient is defined as the conditional probability that a random variable exceeds

a certain threshold given that the other random variable in the joint distribution

has exceeded this threshold.

Definition 14. Bivariate Tail Dependence

For random variables X1 and X2 with cdfs Fi, i = 1, 2 and copula C. We define

the coefficient of upper tail dependence by:

λu := lim
u↗1

P
(
X2 > F−1

2 (u) |X1 > F−1
1 (u)

)
= lim

u↗1

1− 2u+ C(u, u)

1− u
(3–18)

and similarly we define the coefficient of lower tail dependence by:

λl := lim
u↘0

P
(
X2 ≤ F−1

2 (u) |X1 ≤ F−1
1 (u)

)
= lim

u↘0

C(u, u)

u
(3–19)

One can consider both closed form expressions for this measure of extremal

dependence in terms of copula parameters or non-parametric estimators of these

quantities, which don’t make explicit dependence on a particular parametric

copula family. Both of these approaches are investigated in this thesis.

This concept of bivariate tail dependence has been recently extended to the

multivariate setting by De Luca and Rivieccio [2012]. Now one may accurately

interpret the tail dependence present between sub-vector partitions of the mul-

tivariate random vector with regard to joint tail dependence behaviours. In the

context of the applications I consider in this thesis, this allows us to examine

the probability that any sub-vector of the log return forward exchange rates

for the basket of currencies will exceed a certain threshold given that the log

return forward exchange rates for the remaining currencies in the basket have

exceeded this threshold, in particular thresholds that are placing an interest in

the tails of the multivariate distribution. The interpretation of such results is then

directly relevant to assessing the chance of large adverse movements in multiple

currencies which could potentially increase the risk associated with currency carry
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trade strategies significantly, compared to risk measures which only consider the

marginal behaviour in each individual currency.

Definition 15. Multivariate Tail Dependence

Let X = (X1, ..., Xd)
T be a d-dimensional random vector with marginal distri-

bution functions F1, ..., Fd and copula C. We define the coefficient of multivariate

upper tail dependence by:

λ1,...,h|h+1,...,d
u = lim

ν↗1
P
(
X1 > F−1(ν), . . . , Xh > F−1(ν)|Xh+1 > F−1(ν), . . . , Xd > F−1(ν)

)
= lim
ν↗1

C̄d(1− ν, . . . , 1− ν)

C̄d−h(1− ν, . . . , 1− ν)
(3–20)

where C̄d is the survival copula of a d-dimensional copula C.

Similarly we define the coefficient of multivariate lower tail dependence by:

λ
1,...,h|h+1,...,d
l = lim

ν↘0
P
(
X1 < F−1(ν), . . . , Xh < F−1(ν)|Xh+1 < F−1(ν), . . . , Xd < F−1(ν)

)
= lim
ν↘0

Cd(ν, . . . , ν)

Cd−h(ν, . . . , ν)
(3–21)

Here, d− h is the number of variables conditioned on (from the d considered).

3.4.1 Non-Parametric Estimators

One may also consider a non-parametric approach to estimating the tail de-

pendence. This can be a useful comparison to the tail dependence coefficients

observed using the various parametric copula models. Furthermore, the value

of a d-dimensional Archimedean copula is invariant under permutations of its

arguments, i.e.

C(u1, . . . , ud) = C(uπ(1), . . . , uπ(d)), u1, . . . , ud ∈ [0, 1] (3–22)

for arbitrary bijections π : {1, . . . , d} → {1, . . . , d}.
However, in reality it may not be true, for example that each pair of variables

within the multivariate density has the same upper tail dependence. Thus, it

is informative to analyse the breakdown of the overall tail dependence within a

multivariate density by examining the tail dependence between each of the pairs
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of variables. In order to estimate the non-parametric tail dependence we need to

make use of the empirical copula, which is defined as follows:

Definition 16. Bivariate Empirical Copula

Ĉn (u1, u2) =
1

n

n∑
i=1

1

(
R1i

n
≤ u1,

R2i

n
≤ u2

)
(3–23)

where Rji is the rank of the variable in its marginal dimension that makes up the

pseudo data.

As with any estimated quantity, one may estimate it in a number of different

ways, each with differing estimator statistical properties. The following are the

most widely used non-parametric estimators for extremal tail dependence, see

Dobrić and Schmid [2005]; Schmidt and Stadtmüller [2006]; Cruz et al. [2015].

Definition 17. Non-Parametric Pairwise Estimator of Upper Tail Dependence

(Estimator 1)

λ̂u = 2−min

[
2 ,

log Ĉn
(
n−k
n
, n−k

n

)
log(n−k

n
)

]
k = 1, 2, . . . n− 1, (3–24)

Definition 18. Non-Parametric Pairwise Estimator of Upper Tail Dependence

(Estimator 2)

λ̂u = 2−min

[
2 ,

1− Ĉn
(
n−k
n
, n−k

n

)
1− (n−k

n
)

]
k = 1, 2, . . . n− 1, (3–25)

Definition 19. Non-Parametric Pairwise Estimator of Upper Tail Dependence

(Estimator 3)

λ̂u = 2−min

2 , 2 exp

 1

n

n∑
i=1

ln


√
ln 1

U1,i
ln 1

U2,i

ln
(

1
max{U1,i,U2,i}2

)


 k = 1, 2, . . . n− 1,

(3–26)

Remark 3.4.1. In order to form a robust estimator of the upper tail dependence

a median of the estimates obtained from setting k as the 1st, 2nd, . . . , 20th percentile
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values was used. Similarly, k was set to the 80th, 81st, . . . , 99th percentiles for the

lower tail dependence.

3.4.2 Asymptotic Independence

In the case where the extremes of marginal distributions are asymptotically

independent one would find the tail dependence coefficient to be zero. Thus

applying extreme value models based on non-zero tail dependence to these cases

leads to the over-estimation of probabilities of extreme joint events. In finance this

could result in model risk and over confidence in forecast extremal probabilities of

events. It is therefore important to carefully check the copula models selected for

applications to make sure to avoid as much as possible such situations. One way

to help quantify such an event is to examine this class of distributions at finite

levels, i.e. non-asymptotic, which allows for a more useful measure of extremal

dependence. Coles et al. [1999] defines a new quantity χ̄ as given by equation 3–27.

Definition 20. χ̄ - Measure of Extremal Dependence

χ̄ :=
2 log Pr(U > u)

log Pr(U > u, V > v)
− 1 =

2 log(1− u)

log C̄(u, ν)
− 1 (3–27)

where −1 < χ̄(u) ≤ 1 for all 0 ≤ u ≤ 1.

Hence, χ̄ increases with dependence strength and equals 1 for asymptotically

dependent variables. For Gaussian models of dependence the measure χ̄ is equal

to the correlation, providing a benchmark for interpretation in general models

of dependence. Coles et al. [1999] thus argues that using this new measure in

addition to the tail dependence measure gives a more complete summary of

extremal dependence.

3.5 Decomposing Multivariate Distributions

From the previous sections just presented one can start to see that a statistician

faced with the task of modelling a multivariate distribution has a multitude of

techniques at his disposal. The simplest possible choice one could make is to
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assume all of the random variables are independent and hence only the marginals

need to be modelled and combined to form the multivariate model. Whilst simple,

this approach neglects any dependence between the variables and thus is often a

very poor model.

A multivariate distribution may be decomposed in all manner of ways, for

example via conditional distributions, factor models, tree representations etc.

Barber [2012] is a good resource for exploring the possible methods of decomposing

multivariate distributions.

The copula modelling framework provides an intuitive method of constructing

a multivariate model by carefully considering the marginal models and then the

dependence structure between the random variables in two distinct stages.

In the application considered in this research a mixture of d-dimensional copulae

has been considered to provide a model with asymmetric tail dependence and the

capability of capturing negative dependence between the currencies. Since the

carry portfolios only contain four currencies, this mixture of 4-dimensional copulae

has sufficient flexibility to accurately model the overall dependence structure, and

in particular the upper and lower tails.

In cases of much higher dimensional distributions one may consider the ad-

ditional flexibility offered by copula models known as vine copula models, since

standard multivariate copulae may not always accommodate, with sufficient flexi-

bility and degrees of freedom, dependence structures between pairs of variables.

Vine copulae use bivariate copulae (not necessarily from the same parametric

family) and a nested set of trees to build up the overall dependence structure

more flexibly. Clearly there is a trade-off with the number of parameters here.

Kurowicka and Joe [2011] provide an excellent overview of this burgeoning topic.

Some key papers include Bedford and Cooke [2002]; Berg and Aas [2009]; Aas

et al. [2009].

It is worth noting that one key challenge to be tackled in copula modelling

is the construction of dynamic models that capture the time-varying nature

of dependence in the real world, such as in finance. For example, Dias and

Embrechts [2004] explore the detection of change-points in FX data via a dynamic

copula model analysis. More recently, Patton [2012] proposed a new class of

dynamic copula models for daily asset returns that exploits information from high
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frequency (intra-daily) data. The authors augment the generalized autoregressive

score (GAS) model of Creal et al. [2013] with high frequency measures such as

realized correlation to obtain a “GRAS” model.

3.6 Elliptical Copulae

There is a vast collection of different parametric copulae in the literature, each with

associated dependence features. The monograph Nelsen [2006] provides a detailed

mathematical background of many important copulae. There are many useful

papers reviewing the different families of copulae available to the practitioner,

such as Bouyé et al. [2000]; Schmidt [2006]; Trivedi and Zimmer [2007]; Durante

and Sempi [2010].

Genest and Neslehova [2007] discusses the issues associated with modelling

multivariate distributions with discrete margins, such as in count data. As

discussed in Sklar’s theorem (3–5), the copula representation of a multivariate

distribution is only guaranteed to be unique when the marginal distributions are

continuous. This does not present a problem in this thesis as all of the marginals

considered for this application are continuous.

Amongst the most popular copulae are elliptical copulae and Archimedean

copulae. In general, elliptical copulae arise naturally from their respective elliptical

distributions following Sklar’s theorem. Although elliptical copulae have no closed

form, they have the property that the dependence structure is fully described by

the correlation. An elliptical distribution is defined as follows:

Definition 21. Elliptical Distribution

The density function of an elliptical distribution (if it exists) is given by:

f(x) = |Σ|−
1
2 g
[
(x− µ)TΣ−1(x− µ)

]
, x ∈ Rn (3–28)

where Σ (dispersion) is a symmetric positive semi-definite matrix, µ ∈ Rn (loca-

tion) and g (density generator) is a [0,∞)→ [0,∞) function.
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Figure 3.2: Scatterplot of 500 random samples from a Gaussian copula
with ρ = 0.8.

3.6.1 Gaussian Copula

The Gaussian copula has long been favoured by practitioners due to its simplicity.

The bivariate Gaussian copula is defined as follows:

Definition 22. Bivariate Gaussian Copula

CGaussian(u, v) := Φρ

(
Φ−1(u),Φ−1(v)

)
, (3–29)

where

Φρ(x, y) :=

∫ x

−∞

∫ y

−∞

1

2π
√

1− ρ2
exp

2ρst− s2 − t2

2(1− ρ2)
dsdt

and Φ denotes the standard normal cdf.

A random sample from a Gaussian copula with ρ = 0.8 can be seen in Figure 3.2.

The copula density plot for the Gaussian copula with ρ = 0.3 can be seen in

Figure 3.3. It is important to note the lack of tail dependence in the Gaussian

copula, i.e. in the lower left and upper right corners of the unit square. Hence the

Gaussian copula is a very restrictive model of dependence in the real world, since
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Gaussian Copula, ρ = 0.3
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Figure 3.3: Density plot of Gaussian copula with ρ = 0.3.

it does not allow for variables to become highly concordant in the extremes, e.g.

default contagion.

3.6.2 t-Copula

Student’s t-copula retains much of the simplicity of the Gaussian copula, such as

in simulation and calibration, but also allows for the modelling of tail dependence

between variables. The behaviour of the model at the four corners is quite

different from that of the Gaussian copula, while towards the center they are

more similar, as can be seen in Figure 3.4 and more clearly in the copula density

plot in Figure 3.5 with different parameters. Hence, although having the same

correlation as the Gaussian copula, the extreme events are much more likely under

the t-copula. This copula has often been referred to as the “desert island copula”

by Dr. Paul Embrechts due to its excellent fit to multivariate financial return

data. However, it does not allow for asymmetry in the tails, i.e. differing upper

and lower tail dependence in a portfolio of currencies. The Student’s t-Copula is

defines as:

Definition 23. Student’s t-Copula
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Figure 3.4: Scatterplot of 500 random samples from a t-copula with
ρ = 0.8, degrees of freedom = 8.

Ct(u1, u2; ν, ρ) :=

∫ t−1
ν (u1)

−∞

∫ t−1
ν (u2)

−∞

1

2π
√

1− ρ2

(
1 +

s2 − 2ρst+ t2

ν(1− ρ2)

)− ν+2
2

dsdt

(3–30)

where t−1
ν (ui) denotes the inverse cdf of the standard univariate t-distribution with

ν degrees of freedom.

In practice, the use of a standard t-copula comes under fire since it has only a

single parameter for the degrees of freedom. This may restrict the flexibility in

modelling the tail dependence structure in a multivariate case. The most advanced

solution in the literature in this regard is Luo and Shevchenko [2010], in which

the authors propose a modified grouped t-copula, “where each group consists of

one risk factor only, so that a priori grouping is not required”, i.e. each group has

only one member and an individual degrees of freedom parameter associated with

it.
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t−Copula, ρ = 0.3 and dof = 2
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Figure 3.5: Density plot of a t-copula with ρ = 0.3, degrees of freedom
= 2.

3.7 Archimedean Copulae

Archimedean copulae are not derived from multivariate distributions, but can

be stated explicitly in a simple form. Many Archimedean copulae have been

proposed in the literature, see Nelsen [2006], with many further copulae available

as extensions and combinations of these base copulae. Archimedean copulae are

attractive to researchers and practitioners due to their directly interpretable tail

dependence features and parsimonious representations.

An Archimedean copula is defined as follows:

Definition 24. Archimedean Copula

A d-dimensional copula C is called Archimedean if for some generator ψ it can be

represented as:

C(u) = ψ{ψ−1(u1) + · · ·+ ψ−1(ud)} = ψ{t(u)} ∀u ∈ [0, 1]d (3–31)

where ψ−1 : [0, 1]→ [0,∞] is the inverse generator with ψ−1(0) = inf{t : ψ(t) =

0}.
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Note the shorthand notation t(u) = ψ−1(u1) + · · · + ψ−1(ud) that will be used

throughout this section.

As we will see later, it is necessary to have formulas for computing the copula

densities if one seeks to fit these models using a maximum likelihood approach.

equation 3–32 provides such a formula in a generic form for each member of the

family of Archimedean copulae.

Definition 25. Archimedean Copula Density

McNeil and Nešlehová [2009] prove that an Archimedean copula C admits a density

c if and only if the (d− 1)th derivative of ψ, i.e. ψ(d−1), exists and is absolutely

continuous on (0,∞). When this condition is satisfied, the copula density c is

given by

c(u) =
∂dC(u1, . . . , ud)

∂u1 . . . ∂ud
= ψ(d){t(u)}

d∏
j=1

(ψ−1)′(uj) , u ∈ (0, 1)d (3–32)

Remark 3.7.1. There are many possible copula models that could be considered

in the modelling of the multivariate dependence features of the currency portfolios.

The intention of this analysis was to work with well known models which have well

understood tail dependence features and are relatively parsimonious with regard

to the number of parameters specifying the copula. I obtain flexible dependence

relationships by combining such components into mixture models that allow for a

range of flexible tail dependence relationships to be studied. In particular, I will

focus on the well-known class of Archimedean copulae, as defined in equation 3–31,

since they provide a parsimonious approach that allows for the modelling of various

tail dependence characteristics.

Multivariate tail dependence can also be written in terms of the generator

derivatives as presented in the next subsection.

3.7.1 Multivariate Archimedean Copula Tail Dependence

As discussed in Section 3.4, it is important to be able to accurately interpret the

tail dependence present between sub-vector partitions of the multivariate random
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vector with regard to joint tail dependence behaviours. Below I give the explicit

generalised multivariate expressions for Archimedean copulae, equations 3–33 and

3–34, derived in De Luca and Rivieccio [2012].

Definition 26. Generalized Archimedean Upper Tail Dependence

Let X = (X1, ..., Xd)
T be a d-dimensional random vector with marginal distribution

functions F1, ..., Fd. The coefficient of upper tail dependence is defined as:

λ1,...,h|h+1,...,d
u = lim

ν→1−
P
(
X1 > F−1(ν), ..., Xh > F−1(ν)|Xh+1 > F−1(ν), ..., Xd > F−1(ν)

)
= lim
t→0+

∑d
i=1

((
d
d−i
)
i(−1)i

[
ψ−1

′
(it)
])

∑d−h
i=1

((
d−h
d−h−i

)
i(−1)i [ψ−1′(it)]

)
(3–33)

where ψ−1′ is the derivative of the inverse generator. Here, d− h is the number

of variables conditioned on (from the d considered).

Definition 27. Generalized Archimedean Lower Tail Dependence

Let X = (X1, ..., Xd)
T be a d-dimensional random vector with marginal distribution

functions F1, ..., Fd. The coefficient of lower tail dependence is defined as:

λ
1,...,h|h+1,...,d
l = lim

ν→0+
P
(
X1 < F−1(ν), ..., Xh < F−1(ν)|Xh+1 < F−1(ν), ..., Xd < F−1(ν)

)
= lim
t→∞

d

d− h
ψ−1

′
(dt)

ψ−1′((d− h)t)
(3–34)

where ψ−1′ is the derivative of the inverse generator. Here, d− h is the number

of variables conditioned on (from the d considered).

Remark 3.7.2. Due to the exchangeability property of Archimedean copulae and

the fact that the tail dependence of a mixture copula is equal to the mixture of

the component tail dependences, see Nelsen [2006], one does not need to select

which currencies to condition on for the proposed Clayton-Frank-Gumbel copula.

Therefore the generalised tail dependence (GTD) measures proposed here only

require the selection of the number of conditioning variables, i.e. h = 1 or

h = 2 . . . or h = d − 1. Furthermore, the choice of the number of conditioning

variables h merely scales the resultant tail dependence measure. Therefore the

analysis that follows in the thesis is robust to the choice of h. In this light, the

choice of h = 1 adopted here seems a reasonable approach as it reflects the limiting
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probability of one currency having an extreme move beyond a threshold given that

the remaining currencies in the basket have an extreme move beyond this threshold.

In Ames et al. [2015c] the authors also investigated robust non-parametric pairwise

tail dependence estimators. In this paper, the authors analysed the contribution of

each pair of currencies in the basket to the overall model based tail dependence

estimate.

Since the distribution function of an Archimedean copula is specified by

a special function ψ(.) called the generator and indeed the multivariate tail

dependence can be written in terms of the generator, the next section will first

study the mathematical properties that such functions must obey in order to

generate a valid copula model.

Then in section Section 3.7.5 I will present examples of models where a

particular parametric function is selected for ψ to produce a sub-family of the

Archimedean copula family. The choices I consider will also have known properties

regarding their linear, rank and extremal tail dependence features in terms of the

parametric copula model parameters.

3.7.2 Archimedean Copula Generators

It was shown in the Ph.D. thesis of Ling [1964] that the generator ψ will produce

a bivariate copula distribution if and only if it is a convex function. Then in

Kimberling [1974] it was shown that in order for the generator ψ to generate any

Archimedean copula distribution in any dimension d then it must be a completely

monotonic function; see Theorem 3.7.3.

Theorem 3.7.3. Completely Monotone Generators and Existence of

Archimedean Copulae

If a generator ψ that is a mapping ψ : [0,∞] 7→ [0, 1] is continuous and strictly

decreasing such that ψ(0) = 1 and ψ(∞) = 0, that is, ψ ∈ C∞ (0,∞), i.e. infinitely

differentiable, and one has that (−1)kψ(k)(x) ≥ 1 for k = 1, . . . then this class of

generators can create Archimedean copulae models in any dimension. This class

of completely monotone generators for Archimedean copula in any dimension are

denoted by ψ∞.
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It is useful to note the following relevant properties of completely monotone

functions in Lemma 3.7.4 see, for instance, discussion in Hofert [2010a].

Lemma 3.7.4. Properties of Completely Monotone Functions

A completely monotone function satisfies the following properties:

� Closure under multiplication and positive affine transformations (i.e., linear

additive combinations with positive coefficients);

� If a function f is a Laplace–Stieltjes transform, then the function fα is

completely monotone for any power α ∈ (0,∞) if and only if the derivative

(− ln f)′ is completely monotone;

� If a function f is completely monotone and a second function g is non-

negative with its first derivative g′ completely monotone, then the composite

function f ◦ g is a completely monotone function;

� If a function f is non-negative and its derivative f ′ is completely monotone,

then the reciprocal of the function f given by 1/f is a completely monotone

function;

� If a function f is continuous on [0,∞], satisfying dk

dxk
f(x) ≥ 0 for any

integer k ∈ J and x ∈ (0,∞) and a function g is completely monotone, then

the composite function f ◦ g is a completely monotone function.

The requirement for complete monotonicity is only necessary to create a

copula of arbitrary dimension, so this was then further relaxed for d-variate

Archimedean copula in further studies to include only the positivity of derivatives

for k = 1, 2, . . . , d for a d-variate Archimedean copula; see discussion in McNeil

and Nešlehová [2009], where it was shown that one only requires the necessary

and sufficient conditions on the generator function to be a d-monotone function

as given in Definition 28 in order to create Archimedean copula models up to

dimension d.

Definition 28. D-Monotone Functions

A real function g(·) is d-monotone in a range (a, b) for a, b ∈ R and d ≥ 2 if
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it is differentiable on this range up to order d− 2 and the derivatives satisfy the

condition that

(−1)kg(k)(x) ≥ 0, k = 0, 1, . . . , d− 2 (3–35)

for any x ∈ (a, b) and (−1)d−2g(d−2) is non-increasing and convex in (a, b).

One can then conclude that a function ψ is said to generate an Archimedean

copula if it satisfies the following properties.

Definition 29. Archimedean Generator

An Archimedean generator is a continuous, decreasing function ψ : [0,∞]→ [0, 1]

that satisfies the following conditions:

1. ψ : [0,∞) 7→ [0, 1] with ψ(0) = 1 and limt→∞ ψ(t) = 0;

2. ψ is a continuous function;

3. ψ−1 is given by ψ−1(t) = inf {u : ψ(u) ≤ t};

4. ψ is strictly decreasing on [0, inf {t : ψ(t) = 0}] = [0, ψ−1(0)].

McNeil and Nešlehová [2009] discuss the class of generators, denoted by ψ∞,

which represent all the generators for Archimedean copulae models that produce

valid copula distributions in any dimension, that is, those that are completely

monotone functions. In this context, they note two representations of such

generators: the first based on the Bernstein–Widder theorem and the Laplace

transform; and the second based on the Williamson d-transform. I discuss these

two representations in the following subsections.

3.7.3 Archimedean Copula Generators and the Laplace

Transform of a Non-Negative Random Variable

In understanding the first representation for the completely monotone generator,

it will be instructive to first recall the theorem of Bernstein–Widder; see, for

instance, a proof in Pollard et al. [1944] or Feller [1971]. This theorem links a

completely monotone function to a Laplace transform representation.

83



3. COPULA MODELLING

Theorem 3.7.5. Bernstein–Widder Theorem

Consider a real function f(x) such that it satisfies

f(0) = f(0+), (−1)kf (k)(x) ≥ 0, x ∈ (0,∞),∀k = 0, 1, . . . . (3–36)

Then the function f(x) admits the following representation as a Laplace transform

f(x) =

∞∫
0

exp(−xt)dα(t) (3–37)

for x ≥ 0 and α(t) an increasing and bounded function.

For an Archimedean generator ψ, one can then use this result to link the

existence of distributions in all dimensions to the range of complete monotonicity

of the generator, see Proposition 3.7.6.

Proposition 3.7.6. Complete Monotonicity and Generator Support

A generator ψ for an Archimedean copula belongs to the class of generators ψ∞

if and only if it is completely monotone on [0,∞).

Remark 3.7.7. One can see from the combination of Theorem 3.7.5 and Propo-

sition 3.7.6 that a generator ψ of an Archimedean copula is completely monotone

only when it is formed from the Laplace transform of a non-negative random

variable Z. It can then be shown that the resulting Archimedean copula for such a

generator ψ ⊂ ψ∞ in d-dimensions is given by the survival copula coming from

the survival function, which is expressed via the generator of the l1-norm (||.||1)

according to

H (x1, x2, . . . , xd) = ψ (||max (x,0) ||1)

= E [exp (−||max (x,0) ||1Z)]

= E

[
exp

(
−Z

d∑
i=1

max (xi, 0)

)]
, (3–38)

which corresponds to a survival function of a random vector X = 1
Z
E with E

a vector of i.i.d. exponential random variables that are independent of Z; see

discussion in McNeil and Nešlehová [2009].
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Table 3.1: Generators and inverse Laplace transforms for several copu-
lae from the Archimedean family

Family ρ Range Generator ψ(x; ρ) Distribution of L−1[ψ]

Ali–Mikhail–Haq [0, 1) 1−ρ
exp(x)−ρ (1− ρ)ρk−1, k ∈ J

Clayton (0,∞) (1 + x)−1/ρ Γ(1/ρ, 1)

Frank (0,∞) −1
ρ

ln (e−x(e−ρ − 1) + 1) (1−e−ρ)k

kρ
, k ∈ J

Gumbel [1,∞) exp
(
−x1/ρ

)
S 1
ρ

(
1, cos

(
π
2ρ

)ρ
, 0;S1

)
Joe [1,∞) 1− (1− e−x)

1
ρ (−1)k+1 (1/ρ)!

k!(1/ρ−k)!
, k ∈ J.

Note: Sα(β, γ, δ;S1) is the univariate α-stable distribution with S1 parametrization
of Nolan.

One important result of this representation is the ability to simulate exactly

Archimedean copula random variates, as discussed in Marshall and Olkin [1988].

Algorithm 1 Simulation from Archimedean Copula via Laplace Transform

1. Sample a random variable V ∼ F , where the distribution F is given by the
inverse Laplace transform of the generator ψ such that F = L−1 [ψ];

2. Sample d i.i.d. draws from a uniform distribution Ui ∼ Uniform(0, 1) for
i ∈ {1, 2, . . . , d};

3. Construct via transformation the d-variate random vector U = (U1, . . . , Ud),
which is drawn from the Archimedean copula characterized by generator ψ
given by

Xi = ψ

(
− 1

V
ln (Ui)

)
, i ∈ {1, 2, . . . , d} . (3–39)

The results in Table 3.1 from Hofert [2010b, table 1] demonstrate examples of

popular Archimedean copula models for which closed form distributions of such

inverse Laplace transforms of the generator are known.

As noted in Hofert [2010b], it is then a trivial consequence to obtain other

Archimedean copula model simulation schemes based on, for instance, those

presented in Table 3.1 via exponential tilting results presented in Theorem 3.7.8.
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Theorem 3.7.8. Exponential Tilting of Generator Inverse Laplace

Transforms

Consider an Archimedean copula generator ψ in the family of completely monotone

Archimedean generators ψ ∈ ψ∞ with a known distribution for the inverse Laplace

transform given by F = L−1 [ψ]. Then, define a new generator ψ̃(x) in terms of

ψ(x) according to

ψ̃(x) =
ψ(x+ h; ρ)

ψ(h; ρ)
, ∀x ∈ [0,∞]. (3–40)

Then the following holds:

� ψ̃(x) is completely monotone on x ∈ [0,∞] and ψ̃(0) = 1;

� The distribution of the inverse Laplace transform for the new generator

F̃ = L−1
[
ψ̃(x)

]
is given in terms of the distribution F by

F̃ (x) =
1

ψ(h)

F (0) +

x∫
0

exp(−hu)dF (u)

 , x ∈ [0,∞). (3–41)

� If the distribution F admits a density f , the F̃ admits the exponential tilted

density given by

f̃(x) =
1

ψ(h)
exp(−hx)f(x), x ∈ [0,∞). (3–42)

3.7.4 Archimedean Copula Generators, l1-Norm Symmet-

ric Distributions and the Williamson Transform

The second representation developed in McNeil and Nešlehová [2009], which

facilitates the simulation exactly of Archimedean copula random variates, utilizes

the fact that the random vector discussed in Remark 3.7.7 given by X = 1
Z
E can

be re-represented by utilizing the fact that if one transforms the vector of i.i.d.
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exponential random variables according to

Sd =
E

||E||1
, (3–43)

then Sd will be distributed according to a Uniform distribution on the d-dimensional

simplex given by the space Sd

Sd =
{
x ∈ Rd

+ : ||x||1 = 1
}
. (3–44)

In addition, since Sd and Z are independent, then one can write the random

vector X = RSd with random variable R given by R = 1
Z
||E||1. The implications

of this result for the transformed distribution indicates that the random vector

X admits a representation in terms of a mixture of Uniform distributions on

simplices.

The significance of this result is that although only completely monotone

Archimedean generators will admit representations as survival copulae of random

vectors following a particular frailty model, it is clear from the aforementioned

result that Archimedean generators which are only d-monotone will produce

representations as survival copulae of random vectors with l1-norm symmet-

ric distributions. As observed in McNeil and Nešlehová [2009], in the case of

completely monotone generators of Archimedean copulae one could form a link

between the Laplace transform of a particular frailty model and the generator

via the Bernstein–Widder theorem. In the case of the d-monotone (not com-

pletely monotone) generator functions, one can form an analogous link between

d-variate Archimedean copulae and the l1-norm symmetric distributions via a spe-

cial class of Mellin–Stieltjes integral transforms known as Williamson transforms;

see Definition 30 and Williamson et al. [1956] and McNeil and Nešlehová [2009,

proposition 3.1].

Definition 30. Williamson d-Transforms

The Williamson transform of a positive random variable X with distribution F
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is a real function on [0,∞) given for any integer d ≥ 2 by

f(x) = Wd [FX(x)] =

∫
(x,∞)

(
1− x

t

)d−1

dF (t) =

E
[(

1− x
X

)d−1

+

]
, if x > 0

1− F (0), if x = 0.

(3–45)

The Williamson d-transform Wd will consist of real functions f on [0,∞) that

are d-monotone on [0,∞) and satisfy boundary conditions that limx→∞ f(x) = 0

and f(0) = p for p ∈ [0, 1]. Furthermore, any non-negative random variable’s

distribution function can be uniquely defined by its Williamson d-transform f =

Wd [FX(x)] such that FX(x) = W−1
d [f(x)] with the inverse given by

FX(x) = W−1
d [f(x)] = 1−

d−2∑
k=0

(−1)kxkf (k)(x)

k!
− (−1)d−1xd−1f

(d−1)
+ (x)

(d− 1)!
. (3–46)

Remark 3.7.9. It was therefore observed in McNeil and Nešlehová [2009] that

the d-monotone Archimedean copula generators ψ will consist of Williamson d-

Transforms of distribution functions F from non-negative loss random variables

that satisfy F (0) = 0.

In addition, in Williamson et al. [1956], the result in Proposition 3.7.10

completes the link between l1-norm symmetric distributions and Archimedean

copulae; see McNeil and Nešlehová [2009].

Proposition 3.7.10. l1-Norm Symmetric Distributions and Williamson

d-Transforms

Consider the d-dimensional random vector X with representation as a l1-norm

symmetric distribution X
d
= RSd with radial distribution FR. Then one has the

following relationship between the multivariate survival function of X and the

Williamson d-transform:

� H(x) is given by

H(x) = Wd [FR (||max (x,0) ||1)] + FR(0)I [x < 0] , x ∈ Rd. (3–47)
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If in addition FR(0) = 0, then X has an Archimedean survival copula with

generator given by ψ = Wd [FR(r)];

� The density X exists if and only if R has a density, which is given with

regard to the density of R denoted fR(r) by

h (||x||1) = Γ(d)||x||1−dfR (||x||1) . (3–48)

� If Pr [X = 0] = 0, then one has that R
d
= ||X||1 and Sd

d
= X/||X||1.

An important result of this simplectic representation is the ability to simulate

exactly Archimedean copula random variates, as discussed in McNeil and Nešlehová

[2009] and shown in Section 3.7.4.

Algorithm 2 Simulation from Archimedean Copula via Williamson d-Transform

1. Sample a random variable R ∼ FR where the distribution FR is given by the
inverse Williamson d-transform of the generator ψ such that FR = W−1

d [ψ],
which is given by

FR(x) = W−1
d [f(x)] = 1−

d−2∑
k=0

(−1)kxkψ(k)(x)

k!
− (−1)d−1xd−1ψ

(d−1)
+ (x)

(d− 1)!
.

(3–49)

2. Sample independently of R the random vector Sd given by transformation
of d i.i.d. exponential random variates with Ei ∼ Exp(1) such that

Sd
d
=

(
E1∑d
i=1Ei

, . . . ,
Ed∑d
i=1Ei

)
. (3–50)

3. Construct via transformation the d-variate random vector U = (U1, . . . , Ud),
which is drawn from the Archimedean copula characterized by generator ψ
given by

Ui = ψ

(
R

Ei∑d
i=1Ei

)
, i ∈ {1, 2, . . . , d} . (3–51)
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Figure 3.6: Scatterplot of 500 random samples from a Clayton copula
with ρ = 2.

3.7.5 One-parameter Archimedean Members

In this section, I describe three of the one parameter multivariate Archimedean

family copula models which have become popular model choices and are widely

used for estimation. This is primarily due to there directly interpretable features. I

select these three component members, the Clayton, Frank and Gumbel models, for

the mixture models since they each contain differing tail dependence characteristics.

Clayton provides lower tail dependence, as seen in the random sample in

Figure 3.6 and the copula density plot in Figure 3.7. The Gumbel copula provides

upper tail dependence, as seen in the random sample in Figure 3.10 and the copula

density plot in Figure 3.11. The Frank copula also provides dependence in the

unit cube with elliptical contours with semi-major axis oriented at either π/4 or

3π/4 depending on the sign of the copula parameter in the estimation. Therefore

the Frank model component will allow one to capture parsimoniously potential

negative dependence relationships between the currencies in the portfolio under

study, as seen in Figure 3.8 and the copula density plot in Figure 3.9.

Formulas for these copulae, as well as their respective generators, inverse
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Clayton Copula, ρ = 2
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Figure 3.7: Density plot of a Clayton copula with ρ = 2.
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Figure 3.8: Scatterplot of 500 random samples from a Frank copula
with ρ = −2. The variables show negative dependence here.
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Frank Copula, ρ = −2

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

0.5

1

1.5

2

u1u2

Figure 3.9: Density plot of a Frank copula with ρ = 2.
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Figure 3.10: Scatterplot of 500 random samples from a Gumbel copula
with ρ = 2.
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Gumbel Copula, ρ = 2
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Figure 3.11: Density plot of a Gumbel copula with ρ = 2.

generators and the d-th derivatives of their generators (required for the density

evaluation) are given in Table 3.3. The explicit formulas for the d-th derivatives

for all of the copulae in Table 3.3 were derived in Hofert et al. [2012].

The exact non-linear transformations between the copula parameter ρ and

Kendall’s rank correlation τ for the Clayton, Frank and Gumbel copulae can be

seen in Table 3.2.

Table 3.2: Kendall’s tau and tail dependence coefficients.

Family τ λL λU

Clayton ρ
ρ+2

2−
1
ρ 0

Frank 1 + 4D1
1

(ρ)−1
ρ

0 0

Gumbel (ρ−1)
ρ

0 2− 2
1
ρ

1D1 =
∫ ρ
0

t
exp(t)−1dt/ρ is the Debye function of order one.

93



3. COPULA MODELLING

Clayton Copula, = = 0.8

u[1,]
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

u
[2

,]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20

40

60

80

100

120

140

160

180

200

Figure 3.12: Contour plot of Clayton copula with Kendall’s τ = 0.8
and copula parameter ρ = 8.

Figures 3.12 and 3.13 illustrate the non-linear relationship between the Clayton

copula parameter and the Kendall’s Tau measure of dependence. Figure 3.12

shows a contour plot for a Clayton copula with ρ = 8 and thus τ = 0.8, whereas

Figure 3.13 shows a contour plot for a Clayton copula with ρ = 38 and thus

τ = 0.95. For such a large increase in the copula parameter there is a much

smaller increase in Kendall’s Tau and also the observable dependence between

the variables, as shown by the contour plots, is more similar than perhaps one

would expect.

3.7.6 Archimax Copulae

Recently there has been a growing interest in developing archimedean copula

models with distortion features, based on the works of Genest and Rivest [2001]

and Morillas [2005] which explore ways of distorting a given copula to obtain a

new copula with additional features. For instance, they explored the multivariate

probability integral transform and its application in distorting existing copula

models to obtain new copula models.
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Clayton Copula, = = 0.95
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Figure 3.13: Contour plot of Clayton copula with Kendall’s τ = 0.95
and copula parameter ρ = 38.

For instance in Morillas [2005] they study under what conditions the following

distortion copula transform produces a valid copula where g(·) is assumed to be a

strictly increasing and continuous function from [0, 1] to [0, 1] such that

Cg (u1, . . . , ud) = g−1 (C (g(u1), . . . , g(ud))) (3–52)

is a valid distorted copula.

Definition 31. Tilted and Distorted Copulae

Define the function g to be some distortion function, such that g : [0, 1] 7→ [0, 1]

and is defined according to

g(t) = exp[−ϕ(t)], (3–53)

where ϕ is for instance an Archimedean generator function. Now denote C as a

base copula that is to be distorted to create a new copula, then

Cg(u1, ..., ud) = g−1 (C(g(u1), , g(ud))) (3–54)
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is a copula known as the distortion of C.

Several examples of bivariate and multivariate distorted copula models have

begun to be studied. Though the current emphasis has focused on their specifica-

tion and little is know about their properties such as tail dependence features and

other concordance measure features they may exhibit.

Here I consider two examples based on ideas developed in Charpentier et al.

[2014]. I begin with a bivariate archimax copula given by a parametric model of

the distributional form

Cφ,A (u1, u2) = ϕ

[{
ϕ−1 (u1) + ϕ−1 (u2)

}
A

{
ϕ−1 (u1)

ϕ−1 (u1) + ϕ−1 (u2)

}]
(3–55)

where A : [0, 1]→ [1/2, 1] and ϕ : [0,∞)→ [0, 1] such that

1. A is convex and for all t ∈ [0, 1] one has max(t, 1− t) ≤ A(t) ≤ 1.

2. ϕ is convex, decreasing and such that ϕ (0) = 1 and limx→∞ ϕ (x) = 0 with

convention that ϕ−1 (0) = inf {x ≥ 0 : ϕ (x) = 0}.

Two special cases arise from this model:

� If A = 1 one recovers the well known family of Archimedean copula depen-

dence models.

� If ϕ (t) = exp(−t) then one recovers the extreme-value copula.

As in Capéraà et al. [2000], I utilise in this study the choice of function

A(t) =
{
t1/α + (1− t)1/α

}α
Aα
{

t1/α

t1/α + (1− t)1/α

}
. (3–56)

where A(·) is the Pickands EVT dependence function given by

A(t) = 1−min {βt, α(1− t)} (3–57)

for some parameters α, β ∈ [0, 1].
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Then I consider a d-variate distortion copula in the Archimax family, examples

of such extensions include the works of Bacigál and Mesiar [2012], Mesiar and

StupňAnová [2013] and Charpentier et al. [2014]. One possible version of such a

d-dimensional Archimax copula is defined through the use of a distortion function

based on the stable tail function that must satisfy the properties in Definition 32,

see details in Charpentier et al. [2014]. In general a multivariate stable tail function

is obtained via the multivariate Generalized Extreme Value distribution G via

logG(x1, . . . , xd) = µ([0,∞)[0,x]),∀x ∈ Rd
+ (3–58)

such that G is the limiting distribution (max domain of attraction) of the

normalized component wise maxima of

Xn:n = (max {X1,i} , . . . ,max {Xd,i}) (3–59)

and then the stable tail function is obtained via measure µ or distribution G

according to the following

l(x1, . . . , xd) = µ([0,∞)[0,x−1]),∀x ∈ Rd
+ (3–60)

− logG(x1, . . . , xd) = l (− logG1(x1), . . . ,− logGd(xd)) (3–61)

Definition 32. Stable Tail Function l

A function l : [0,∞)d 7→ [0,∞) is a d-dimensional stable tail dependence function

if and only if it satisfies the following properties:

1. function l is homogeneous of degree λ = 1 which means that

l(λx1, . . . , λxd) = λl(x1, . . . , xd), ∀λ ∈ [0,∞). (3–62)

2. The function l must produce for all x1, . . . , xd ∈ [0,∞) that

Gl(x1, . . . , xd) = [max {0, 1− l(x1, . . . , xd)}]d−1 (3–63)

defines a d-dimensional survival function with B(1, d− 1) margins.

An example of such a stable tail function involves the transformation of a
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d-variate extreme value copula CEV T given by

l(x1, x2, . . . , xd) = − ln
{
CEV T (exp(−x1), exp(−x2), . . . , exp(−xd))

}
(3–64)

and we have for instance the Gumbel extreme-value copula (symmetric logistic

model) producing for parameter θ ≥ 1 the function

lθ(x1, x2, . . . , xd) =
(
xθ1 + . . .+ xθd

)1/θ
. (3–65)

One can then combine this with an Archimedean generator ϕ(x) of an

Archimedean copula to produce the resulting family of d-dimensional Archimax

copula, given by

Cϕ,l(u1, . . . , ud)− ϕ ◦ l
(
ϕ−1(u1), ϕ−1(u2), . . . , ϕ−1(ud)

)
. (3–66)

where ◦ is the composite function.

One can use this type of representation to develop the d-dimensional extension

of the bivariate example above, for instance using the Archimax copula structure

of [Charpentier et al., 2014, Corollary 6.3], which is defined as follows:

Cl∗,A∗ (u1, u2, . . . , ud) = exp

[
A∗ (t1, . . . , td−1)

d∑
i=1

ln(ui)

]
(3–67)

where A∗ is given by the function

A∗ = lα

(
t
1/α
1 , . . . , 1−

d−1∑
k=1

t
1/α
k

)
(3–68)

where tk = | ln(uk)|/
{∑d

i=1 ln(ui)
}

.

In the next two subsections, I focus on a special class of copula distortion as

specified by inner and outer power transforms.
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3.7.7 Two-parameter Archimedean Members via Outer

Power Transforms

In this section, I consider more flexible generalizations of the single parameter

Archimedean members discussed above. To achieve these generalizations I consider

the outer-power transforms of the Clayton, Frank and Gumbel members, which is

based on a result in Feller [1971].

Definition 33. Outer Power Copula

The copula family generated by ψ̃(t) = ψ(t
1
β ) is called an outer power family,

where β ∈ [1,∞) and ψ ∈ Ψ∞ (the class of completely monotone Archimedean

generators).

The proof of this follows from Feller [1971], i.e. the composition of a completely

monotone function with a non-negative function that has a completely monotone

derivative is again completely monotone. Such copula model transforms were also

studied in Nelsen [1997], where they are referred to as a beta family associated

with the inverse generator ψ−1.

As has been noted above, in performing the estimation of these transformed

copula models via likelihood based inference it will be of great benefit to be

capable of performing evaluation pointwise of the copula densities. In the case of

the outer power transformed models, this will require the utilization of a specific

multivariate chain rule result widely known as the Faà di Bruno’s Formula, see

Faa di Bruno [1857] and discussions in for example Constantine and Savits [1996]

and Roman [1980]. To understand how such a result is required consider the

following remark.

Remark 3.7.11. The generator derivatives for the outer power transforms can be

calculated using the base generator derivatives and the following multi-dimensional

extension to the chain rule for the outer power versions. The densities for the

outer power copulae in Table 3.3 can thus be calculated using equation 3–32.

Before stating Faà di Bruno’s Formula for differentiation of multivariate

composite functions via a generalized chain rule, it will be convenient notationally
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to present such results with respect to Bell polynomials. Therefore we recall the

definition of such polynomials below, which are widely used in combinatorics

analysis, see Mihoubi [2008] for details.

Definition 34. Bell Polynomial

The Bell polynomial with arguments n and k is given by

Bn,k(x1, x2, . . . , xn−k+1) =
∑ n!

j1!j2! · · · jn−k+1!

(x1
1!

)j1 (x2
2!

)j2
· · ·
(

xn−k+1

(n− k + 1)!

)jn−k+1

(3–69)

where the sum is taken over all sequences j1, j2, jn−k+1 of non-negative integers

such that j1 + j2 + · · · = k and j1 + 2j2 + 3j3 + · · · = n.

These polynomials are then utilised to simplify the expressions for the differen-

tiation of multivariate composite functions in Faà di Bruno’s Formula as detailed

next.

Faà di Bruno’s Formula: Riordan [1946]

If f and g are functions with a sufficient number of derivatives, then

dn

dxn
f(g(x)) =

n∑
k=0

f (k)(g(x)) ·Bn,k

(
g′(x), g′′(x), ..., gn−k+1(x)

)
(3–70)

where Bn,k are the Bell polynomials, defined above.

3.7.8 Two-parameter Archimedean Members via Inner

Power Transforms

I now consider the inner-power transforms of the Clayton, Frank and Gumbel

copulae. The inner power copula is defined as follows.

Definition 35. Inner Power Copula

The copula family generated by ψ̃(t) = ψ
1
α (t) is called an inner power family,

where α ∈ (0,∞) and ψ ∈ Ψ∞ (the class of completely monotone Archimedean

generators).
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Inner power transforms produce a family of generators associated with the

base generator, e.g. the Clayton generator is the inner power transform of the

base generator ψ(t) = (1 + t)−1. The lower tail dependence of the transformed

copula is λ
1/α
L , whilst the upper tail dependence remains unchanged.

Inner power copula model transforms were also studied in Nelsen [1997], where

they are referred to as an alpha family associated with the inverse generator ψ−1.

3.7.9 Mixtures of Archimedean Copulae

In order to provide flexibility to the possible dependence features available for the

currency portfolios, I decided to utilize mixtures of copula models. The advantage

of this approach is that I can consider asymmetric dependence relationships in

the upper tails and the lower tails in the multivariate model. In addition I can

perform a type of model selection purely by incorporating into the estimation the

mixture weights associated with each dependence hypothesis. That is the data

can be utilised to decide the strength of each dependence feature as interpreted

directly through the estimated mixture weight attributed to the feature encoded

in the particular mixture component from the Archimedean family.

In particular I have noted that mixture copulae can be used to model asym-

metric tail dependence, i.e. by combining the one-parameter or two-parameter

families discussed above or indeed by any combination of copulae. This is possible

since a linear convex combination of 2 copulae is itself a copula, see discussions

on this result in Nelsen [2006].

Definition 36. Mixture Copula

A mixture copula is a linear weighted combination of copulae of the form:

CM(u; Θ) =
N∑
i=1

λiCi(u; θi) (3–71)

where 0 ≤ λi ≤ 1 ∀i = 1, ..., N and
∑N

i=1 λi = 1

Thus we can combine a copula with lower tail dependence, a copula with

positive or negative dependence and a copula with upper tail dependence to
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produce a more flexible copula capable of modelling the multivariate log returns

of forward exchange rates of a basket of currencies. For this reason in this analysis

I will use the Clayton-Frank-Gumbel (C-F-G) mixture model. In addition to the

C-F-G mixture model I will also investigate a mixture of outer power versions of

the base copula Clayton, Frank and Gumbel.

Remark 3.7.12. We note that the tail dependence of a mixture copula can

be obtained as the linear weighted combination of the tail dependence of each

component in the mixture weighted by the appropriate mixture weight, as discussed

in for example Nelsen [2006] and Peters et al. [2014]
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Table 3.3: Archimedean copula generator functions, inverse generator functions and generator function
d-th derivatives.

Family ψ ψ−1 (−1)dψ(d)

Clayton (1 + t)−
1
ρ (s−ρ − 1)

Γ(d+ 1
ρ)

Γ( 1
ρ)

(1 + t)−(d+ 1
ρ)

OP-Clayton
(

1 + t
1
β

)− 1
ρ

(s−ρ − 1)β

∑d
k=1

1
aGdk( 1

β
)

Γ(k+ 1
ρ)

Γ( 1
ρ)

(
1+t

1
β

)−(k+ 1
ρ)(

t
1
β

)k
td

Frank −1
ρ

ln [1− e−t(1− e−ρ)] − ln e−sρ−1
e−ρ−1

1
ρ

2Li−(d−1){(1− e−ρ)e−t}

OP-Frank −1
ρ

ln

[
1− e−t

1
β

(1− e−ρ)
] [

− ln e−sρ−1
e−ρ−1

]β ∑d
k=1 a

G
dk(

1
β ) 1

ρ
Li−(k−1)

{
(1−e−ρ)e−t

1
β

}(
t

1
β

)k
td

Gumbel e−t
1
ρ

(− ln s)ρ ψρ(t)

td
3PG

d, 1
ρ

(
t

1
ρ

)

OP-Gumbel e−t
1
βρ

(− ln s)ρβ

∑d
k=1 a

G
dk(

1
β )

ψρ

(
t

1
β

)

t
k
β

PG
k, 1ρ

(
t

1
ρβ

)(
t

1
β

)k
td

Remark 3.7.13. The densities for the one-parameter copulae in Table 3.3 can be calculated using equation 3–32.

For details of the results contained in this table see Hofert et al. [2012].

1aGdk( 1
ρ ) = d!

k!

∑k
i=1

(
k
i

)(
i/ρ
d

)
(−1)d−i , k ∈ 1, ..., d

2Lis(z) =
∑∞
k=1

zk

ks

3PG
d, 1ρ

(
t

1
ρ

)
=
∑d
k=1 a

G
dk

(
1
ρ

)
(t

1
ρ )k
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3.8 Estimation Methods for Copulae

Given a family of copula models there are a number of possible approaches available

to estimate the parameters. Charpentier et al. [2007] provide a nice overview

of the theoretical and practical issues that need to be considered when faced

with such a task. Here, I will first present the maximum likelihood estimation

(MLE) approach, which is commonly used in the literature. Then the expectation-

maximisation (EM) algorithm will be discussed as an alternative approach for the

mixture copula.

3.8.1 Maximum Likelihood Estimation

Maximum likelihood estimation is based on the following theory. Given realizations

ui, i ∈ {1, . . . , n}, of a random sample Ui, i ∈ {1, . . . , n}, from the copula C, the

likelihood is defined as follows:

L(θ;u1, . . . ,un) =
n∏
i=1

cθ(ui) (3–72)

The log likelihood is thus defined as:

l(θ;u1, . . . ,un) =
n∑
i=1

l(θ;ui) = log cθ(ui), (3–73)

which in the case of archimedean copulae is given by

log cθ(ui) = log
(
(−1)dψθ(d)(tθ(u))

)
+

d∑
j=1

log(−(ψθ)
′(uij)). (3–74)

where t(u) = ψ−1(u1) + · · ·+ ψ−1(ud).

The maximum likelihood estimator θ̂n = θ̂n(u1, . . . ,un) can thus be found by

solving the optimization problem

θ̂n = argmax
θ∈Θ

l(θ;u1, . . . ,un). (3–75)

where the optimization is typically done numerically.
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Assuming the derivatives to exist, the score function is defined as

sθ(u) = ∇l(θ;u) =

(
∂

∂θ1

l(θ;u), . . . ,
∂

∂θp
l(θ;u)

)T
(3–76)

and the Fisher information is

I(θ) = Eθ
[
sθ(U)sθ(U)T

]
= Eθ

[(
∂

∂θi
l(θ;u)

∂

∂θj
l(θ;u)

)
i,j∈{1,...,p}

]
(3–77)

for U ∼ C.

Under regularity conditions (see for example [Serfling, 2009, pp. 144]), the

following results hold.

Theorem 3.8.1. (Strong) Consistency of Maximum Likelihood

Estimators

θ̂n = θ̂n(U1, . . . ,Un)
P−−→
a.s.

θ0 as n→∞. (3–78)

Theorem 3.8.2. Asymptotic Normality of Maximum Likelihood

Estimators

√
n I(θ0)1/2(θ̂n − θ0)

d−→ N(0, Ip), (3–79)

where Ip denotes the identity matrix in Rp×p.

3.8.2 Expectation-Maximisation

In order to estimate the parameters in a mixture copula model it is interesting to

also consider the expectation algorithm, as introduced in Dempster et al. [1977]

and correctly proven to converge in Wu [1983]. In the case of a mixture copula

model the mixture weights λj are assumed to be latent unobserved variables. Thus

a two stage iteration procedure can be applied as follows:

The framework of copula-based finite mixture models utilising the expectation-

maximisation algorithm is explored in Kosmidis and Karlis [2014]. The authors

show that the use of copulae in model-based clustering offers two direct advantages

over current methods: i) the appropriate choice of copulae provides the ability
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Algorithm 3 EM Algorithm for Mixture Copulae

1. Initialise the copula parameters θ(0) and the copula weights λ
(0)
j

(j = 1, . . . , k).

2. Iterate until some convergence criterion is satisfied:

(a) E-step: Calculate

w
(l+1)
ij =

λ
(l)
j cj(ui;θ

(l)
j )∑k

j=1 λ
(l)
j cj(ui;θ

(l)
j )

(i = 1, . . . , n; j = 1, . . . , k) .

(b) M-step 1: Set λ
(l+1)
j =

∑n
i=1w

(l+1)
ij /n (j = 1, . . . , k).

(c) M-step 2: Maximise w.r.t θ

θ(l+1) = argmax
θ

n∑
i=1

log
k∑
j=1

w
(l+1)
ij {cj(ui;θj)} ,

to obtain a range of exotic shapes for the clusters, and ii) the explicit choice of

marginal distributions for the clusters allows the modelling of multivariate data

of various modes (either discrete or continuous) in a natural way.
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Chapter 4

Currency Carry Trade Literature

Review

In this chapter, the forward premium puzzle is presented and the literature sur-

rounding the puzzle and the associated currency carry trade is reviewed. The novel

approach of analysing both individual tail thickness and joint tail dependence, as

proposed in this thesis, is then discussed.

4.1 The Forward Premium Puzzle

This phenomenon introduced initially by Hansen and Hodrick [1980, 1983]; Fama

[1984]; Engel [1984] is directly linked to the arbitrage relation existing between

the spot and the forward prices of a given currency, namely the Covered Interest

Parity. This relation states that the price of a forward rate can be expressed

according to the relationship:

F T
t = e(rt−rft )(T−t)St (4–1)

where F T
t and St denote respectively the forward and the spot prices at time t.

While rt and rft represent respectively the local risk free rate1 and the foreign

risk free rate. I denote by T the maturity of the forward contract considered.

1I mean by local risk free rate the interest rate prevailing in the reference country which
would be for instance the dollar for an American investor.

107



4. CURRENCY CARRY TRADE LITERATURE REVIEW

It is worth emphasizing that under the absence of an arbitrage hypothesis, this

relation is directly resulting from the replication of the forward contract payoff

using a self financed strategy. Moreover, it has been demonstrated empirically the

validity of this arbitrage relation in the currency market Juhl et al. [2006]; Akram

et al. [2008] when we consider daily data. The highly unusual period following the

onset of the financial crisis in August 2007 saw large deviations from CIP due to

the funding constraints of arbitrageurs and uncertainty about counterparty risk,

see Coffey et al. [2009] for a thorough analysis of this period, though this was an

exceptional case and typically CIP holds. In this thesis the associated concept of

the Uncovered Interest Rate Parity (UIP) condition is investigated.

Definition 4.1.1. Uncovered Interest Parity (UIP)

The uncovered interest parity states that under the historical probability dis-

tribution the expected change in the currency spot rates equals the differential of

interest rates such that:

E

[
ST
St

∣∣∣∣Ft] = e(rt,T−r
f
t,T )(T−t)

where Ft is the filtration associated to the stochastic process St. Furthermore, if

one assumes that the covered interest parity described in (equation 4–1) is holding,

which is commonly admitted in the literature for daily data (Juhl et al. [2006];

Akram et al. [2008]), one can then rewrite the previous relation accordingly:

E

[
ST
St

∣∣∣∣Ft] =
F T
t

St

which means that according to the UIP, and admitting that the CIP holds, if until

the forward contract’s maturity date the associated spot rate varies on average more

or less than its initial difference with the forward contract’s price, an abnormal

profit can be captured and the UIP condition is violated.

4.2 Currency Carry Trade

Numerous empirical studies (Hansen and Hodrick [1980]; Fama [1984]; Engel [1996];

Backus et al. [2001]; Lustig and Verdelhan [2007]; Brunnermeier et al. [2008];
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Burnside et al. [2011]; Christiansen et al. [2011]; Lustig et al. [2011]; Menkhoff

et al. [2012a]; Ames et al. [2015c]) have previously demonstrated that investors

can actually earn arbitrage profits by borrowing in a country with a lower interest

rate, exchanging for foreign currency, and investing in a foreign country with a

higher interest rate, whilst allowing for any losses (or gains) from exchanging back

to their domestic currency at maturity. Therefore, trading strategies that aim to

exploit the interest rate differentials can be profitable on average. This is notably

the case for the currency carry trade which is thus the simple investment strategy

of selling a low interest rate currency forward and then buying a high interest

rate currency forward. The idea is that the interest rate returns will outweigh any

potential adverse moves in the exchange rate. Historically the Japanese yen and

Swiss franc have been used as “funding currencies”, since they have maintained

very low interest rates for a long period. The currencies of developing nations,

such as the South African rand and Brazilian real have been typically used as

“investment currencies”. Whilst this sounds like an easy money making strategy

there is of course a downside risk. This risk comes in the form of currency crashes

in periods of high global FX volatility and liquidity shortages. A prime example

of this is the sharp yen carry trade reversal in 2007.

Remark 4.2.1. In addition to the currency carry trade studied in this thesis, nu-

merous other high volume trading strategies are performed by speculative investors

in practice. In particular, time series momentum trading strategies, involving

buying assets with high recent returns and selling assets with low recent returns,

have been shown to be very profitable investment strategies, see Jegadeesh and

Titman [1993, 2001]; Moskowitz et al. [2012]; Menkhoff et al. [2012b]; Baltas and

Kosowski [2013, 2015]; Baltas [2015]. Understanding the dependence structure of

asset returns is of key importance in optimising the asset weights and portfolio

rebalancing. Furthermore, in Baltas [2016] a seasonality-adjusted trend-following

strategy, which actively incorporates seasonality signals by switching off long and

short positions, is shown to constitute a significant improvement over the basic

strategy.
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4.3 A Review of the Literature

If the UIP relationship held, then there should indeed not be on average any yield

difference between a risk-free investment in a reference currency and a risk-free

investment in another currency after converting it back to the reference currency.

Accordingly, the depreciation of a currency relative to another should be equal to

the risk free interest rates differential between them. However, Hansen and Hodrick

[1980, 1983]; Fama [1984] among other recent articles Lustig and Verdelhan [2007];

Lustig et al. [2011]; Menkhoff et al. [2012a], demonstrate that this relation is not

observed empirically in markets data and that the “currency carry trade” strategy

discussed above takes advantage of this market irregularity.

Over the last few decades there have been many theories proposed for the

justification of this phenomenon. Fama [1984] initially proposed a time varying risk

premium within the forward rate relative to the associated spot rate - concluding

that, under rational markets, most of the variation in forward rates was due to

the variation in risk premium.

Weitzman [2007] demonstrates through a Bayesian approach that the uncer-

tainty about the variance of the future growth rates combined with a thin-tailed

prior distribution would generate the fat-tailed distribution required to solve the

forward premium puzzle. This could be compared to the argument retained by

Menkhoff et al. [2012a] who demonstrate that high interest rate currencies tend to

be negatively related to the innovations in global FX volatility, which is considered

as a proxy for unexpected changes in the FX market volatility. Menkhoff et al.

[2012a] show that sorting currencies by respect to their beta with (or sensitivity to)

global FX volatility innovations yields portfolios with large differences in returns,

and also similar portfolios to those obtained when sorting by forward discount,

i.e. forward price minus spot price. Another risk factor shown to be significant,

although to a much lesser degree, is liquidity risk. These findings are supported

by Shehadeh et al. [2016], who analyse the relationship between currency carry

return and volatility and liquidity risk factors. Namely, the global FX volatility,

VIX, the global FX bid-ask spread and TED spread. Furthermore, Orlov [2016]

empirically examines the effect of equity market illiquidity on the excess returns

of currency carry and momentum trading strategies.
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Burnside et al. [2007] present an alternative model to a pure risk factor

model, in which “adverse selection problems between market makers and traders

rationalizes a negative covariance between the forward premium and changes in

exchange rates”. Here, the authors suggest that the foreign exchange market

should not be considered as a Walrasian market and that market makers face a

worse adverse selection problem when an agent wants to trade against a public

information signal, i.e. to place a contrarian bet as an informed trader.

Another hypothesis, proposed by Farhi and Gabaix [2008], consists of justifying

this puzzle through the inclusion of a mean reverting risk premium. According to

their model a risky country, which is more sensitive to economic extreme events,

represents a high risk of currency depreciation and has thus to propose, in order

to compensate this risk, a higher interest rate. Then, when the risk premium

reverts to the mean, their exchange rate appreciates while they still have a high

interest rate which thus replicates the forward rate premium puzzle.

The causality relation between the interest rate differential and the currency

shocks can be presented the other way around as detailed in Brunnermeier and

Pedersen [2009]. In this paper, the authors indeed assume that the currency

carry trade mechanically attracts investors and more specifically speculators

who accordingly increase the probability of a market crash. Tail events among

currencies would thus be caused by speculators’ need to unwind their positions

when they get closer to funding constraints.

This recurrent statement of a relation between tail events and forward rate

premium (Farhi and Gabaix [2008]; Brunnermeier et al. [2008]) has led to the

proposal in this thesis of a rigorous measure and estimation of the tail thickness at

the level of the marginal distribution associated to each exchange rate. Moreover,

the question of the link between the currency’s marginal distribution and the

associated interest rates differential leads to the consideration more globally

of the joint dependence structures between the individual marginal cumulative

distribution function (cdf) tails with respect to their respective interest rate

differential.

Ready et al. [2017] introduce a simple two-country model that captures the

asymmetry between commodity exporting (higher interest rate) countries and

commodity consuming (lower interest rate) countries. In the model, persistent
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changes in trade costs arise from low frequency movements in shipping capacity,

leading to endogenous time-varying dynamics in global market segmentation.

Burnside et al. [2011] try to explain the positive average returns of the carry

trade via a “peso problem”, i.e. the effects on inference caused by low-probability

events that do not occur in the sample. The authors find that a peso event is

characterized by modest negative payoffs to an unhedged carry trade and a large

value of the stochastic discount factor, when compared to a strategy that employs

currency options to protect an investor from the downside risk associated with

large, adverse movements in exchange rates.

Lempérière et al. [2017] introduce a new measure of skewness, which overcomes

the issue of the classically defined skewness, i.e. the third cumulant of the

distribution of returns, which is that a few extreme events can completely dominate

the empirical determination. The authors conclude that for a wide spectrum of

“risk premia” strategies, skewness rather than volatility is a determinant of returns.

The hypothesis that skewness and crash risk explains carry returns is challenged

by Bekaert and Panayotov [2016], who introduce the concept of “good” and “bad”

carry trades constructed from G-10 currencies. The good trades exhibit higher

Sharpe ratios and sometimes positive return skewness, in contrast to the bad

trades that have both substantially lower Sharpe ratios and highly negative return

skewness.

Daniel et al. [2014] provide an analysis on the risks of currency carry trades

that differs from the conventional wisdom in the literature. The authors find

that the three Fama-French equity market risk factors do significantly explain

the returns to an equally weighted carry trade that has no direct exposure to

the dollar. Also they find that carry trade strategies with alternative weighting

schemes are not fully priced by the HMLFX risk factor proposed by Lustig et al.

[2011]. In addition, the authors argue that the time varying dollar exposure of

the carry trade is at the core of the carry trade puzzle. Finally, they find that the

exposure of carry trades to downside market risk is not statistically significantly

different from the unconditional exposure.
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Chapter 5

Investigating Multivariate Tail

Dependence in Currency Carry

Trade Portfolios via Copula

Models

In this chapter, the forward premium puzzle is investigated using empirical data.

The time-varying dependence structure of currency carry trade baskets is explored.

In particular, the multivariate tail dependence characteristics of the baskets are

analysed and the results discussed.

5.1 Research Contribution: Tail Dependence and

Forward Premium Puzzle

The approach adopted in this chapter is a statistical framework with a high

degree of sophistication that I developed in order to accommodate the Forward

premium puzzle, which is indeed analogous in nature to the ideas considered when

investigating the “equity risk premium puzzle” coined by Mehra and Prescott

[1985] in the late 80’s. The equity risk premium puzzle effectively refers to the
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fact that demand for government bonds which have lower returns than stocks still

exists and generally remains high. This poses a puzzle for economists to explain

why the magnitude of the disparity between the returns on each of these asset

classes, stocks versus bonds, known as the equity risk premium, is so great and

therefore implies an implausibly high level of investor risk aversion. In the seminal

paper written by Rietz [1988], the author proposes to explain the “equity risk

premium puzzle” Mehra and Prescott [1985] by taking into consideration the low

but still significant probability of a joint catastrophic event.

Analogously in this thesis, an exploration is presented of the highly leveraged

arbitrage opportunities in currency carry trades that arise due to violation of the

UIP. However, it is conjectured that if the assessment of the risk associated with

such trading strategies was modified to adequately take into account the potential

for joint catastrophic risk events accounting for the non-trivial probabilities of joint

adverse movements in currency exchange rates, then such strategies may not seem

so profitable relative to the risk borne by the investor. A rigorous probabilistic

model is proposed in order to quantify this phenomenon and potentially detect

when liquidity in FX markets may dry up and thus simultaneously impact a whole

set of currencies. This probabilistic measure of dependence can then be very

useful for risk management of such portfolios but also for making more tractable

the valuation of structured products or other derivatives indexed on this specific

strategy. To be more specific, one of the contributions of this thesis is indeed to

model the dependences between exchange rates using a flexible family of mixture

copulae comprised of Archimedean members. This probabilistic approach allows

the joint distribution of the vectors of random variables, in this case vectors

of exchange rates log-returns in each basket of currencies, to be expressed as

functions of each marginal distribution and the copula function itself.

In the literature mentioned earlier, the tail thickness resulting from the carry

trade has been either treated individually for each exchange rate or through

the measurement of distribution moments that may not be adapted to a proper

estimation of the tail dependences. In this thesis, it is proposed instead to build,

on a daily basis, a set of portfolios of currencies with regards to the interest

rate differentials of each currency with the US dollar. Using a mixture of copula

functions, a measure of the tail dependences within the high interest rate and
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low interest rate baskets is extracted and finally the results are interpreted.

Among the outcomes of this study, it is demonstrated that during the crisis

periods, the high interest rate currencies tend to display very significant upper

tail dependence. Accordingly, it can thus be concluded that the appealing high

return profile of a carry portfolio is not only compensating the tail thickness of

each individual component probability distribution but also the fact that they

tend to occur simultaneously and lead to a portfolio particularly sensitive to the

risk of drawdown. Furthermore, it is also shown that high interest rate currency

portfolios can display periods during which the tail dependence gets inverted

demonstrating when periods of construction of the aforementioned carry positions

are being undertaken by investors.

5.2 Data Description and Portfolio Construction

In this section, I describe the set of data used for this empirical study and describe

the macro-economic specificities associated to some of the currencies I considered.

Furthermore, I present the method I retained in this thesis to build the portfolios

that are combined to build a carry trade position.

5.2.1 Data Description

I consider for this empirical analysis a set of 20 currency exchange rates relative

to the USD. I indeed considered the point of view of an American investor as this

is generally the hypothesis retained in the literature Brunnermeier et al. [2008];

Menkhoff et al. [2012a]. However the same analysis could be carried out from

any other investor standpoint as the phenomenon I will describe does not only

depend on a specific currency but more on two sets of currencies. These sets of

currencies correspond to the high interest rate currencies which are used to obtain

the highest return (named the “investment currencies”) and the low interest rate

currencies which allow for borrowing at a low cost the amount of money necessary

for this investment (named the “financing currencies”).

The currency data for this analysis was obtained from Bloomberg. The time

series analysed ranges from 04/01/2000 to 02/01/2013 and comprises the following
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currencies: Euro (EUR), Turkish lira (TRY), Japanese yen (JPY), British pound

sterling (GBP), Australian dollar (AUD), Canadian dollar (CAD), Norwegian

krone (NOK), Swiss franc (CHF), Swedish krona (SEK), Mexican peso (MXN),

Polish zloty (PLN), Malaysian ringgit (MYR), Singaporean dollar (SGD), Indian

rupee (INR), South African rand (ZAR), New Zealand dollar (NZD), Thai baht

(THB), South Korean won (KRW), Taiwanese dollar (TWD), Brazilian real (BRL).

I have been provided, on a daily basis, with the settlement prices for each currency

exchange rate as well as the simultaneous price for the associated 1 month forward

contract. Due to differing market closing days, e.g. national holidays, there was

missing data for a couple of currencies and for a small number of days. For missing

prices, the previous day’s closing prices were retained.

The reason why I based this analysis upon a constant maturity 1 month forward

is twofold. Firstly, I do not try in this investigation to replicate as realistically as

possible a currency carry trade portfolio to see if there is a recurrently high average

return. The main inconvenience of such analysis comes from the loss of data

points. As a matter of fact, to build a carry portfolio, the position has to be held

until the maturity of the forward contract which leads in this case to retain only

one point for each month. However, in this case I have at my disposal one point

per day which makes this analysis of individual tails and their interdependences

more robust. Secondly, tail behaviour of monthly data is naturally different from

the tail behaviour of daily data, one reason for this difference is that individual

currencies can display a mean reversion in the mid-term and thus reduce the

amplitude of the movement.

Among the currencies under scrutiny, some of them have displayed very large

variations in the last decade mainly for macro-economic reasons. Therefore, I

considered it insightful to mention some of the most meaningful. The Brazilian

real displays in its time series two important periods of shocks, the first in 2001

and the second in 2002. Naturally the first of them was due to the terrorist

attacks against the world trade center in September. However the Brazilian real

has been also impacted by the market’s concerns of a contagion after the rumours

of default of the Argentinian government. The second shock on the Brazilian

real in 2002 was related to the potential election of the Workers’ Party leader

Luiz Inacio Lula da Silva which prompted concern he might spark a default by
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overspending to meet promises of spurring growth and employment. In 2001, the

South African rand slumped 29% after the events of September 11 2001 and the

market’s concern of a global recession and a slump in commodity prices to which

the South African economy is particularly exposed to. As a third example of

a shock in an instrumental currency in a carry trade strategy one can note the

30% daily loss of the Turkish lira on the 22nd of February 2001. This was due

to Turkey’s decision to abandon the defence of their currency in order to reduce

the cost of financing lira-denominated debt. It is worth mentioning that I did

not remove these data points from the time series given that different events may

have impacted the other exchange rates at a different time but this analysis does

not focus only on the tail events associated to a particular currency but more on

the events impacting simultaneously a set of currencies.

5.2.2 Data Preparation

In order to perform the empirical analyses considered in this chapter a substantial

amount of effort and time was invested into collecting, cleaning and preparing the

data. In particular, the following key steps were performed:

1. Collect daily currency spot price data: closing price, bid and ask price.

2. Collect daily currency forward price data - at maturities of one week, two

weeks, three weeks and 1 month: closing price, bid and ask price.

3. Pre-process the price data to deal with missing data, i.e. if data is missing

copy previous day’s price.

4. Match one month forward contracts with closing spot price on the correct

date of delivery for the contract.

5. Calculate the forward premium (interest rate proxy) as the difference between

the forward price and the spot price.

5.2.3 Currency Portfolio Construction

As described earlier, the currency carry trade results from the differential of

interest rates prevailing in different countries. By borrowing a certain amount of
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money in low interest rate countries and investing it in high interest rate countries,

a recurrent profit can be generated given that the UIP condition is on average not

satisfied. In order to differentiate the “financing currencies” from the “investment

currencies”, I start by classifying each currency relative to its differential of risk

free rate with the US dollar. The following basic explanation of the high interest

rates and low interest rates can be noted. In general countries that are considered

‘safe’ can borrow at a lower interest rate, which may explain why historically

the US dollar or Swiss franc interest rates were low (Gourinchas and Rey [2007])

while the Turkish lira rates were historically high as this country is not considered

as financially secure. Dimic et al. [2016] explores the risk profile of individual

currency carry trades, finding that carry trade profitability depends on a country’s

political risk, supporting the risk-based view on forward bias.

Moreover I demonstrated in expression (4.1.1) that the differential of interest

rates between two countries can be estimated through the ratio of the forward

contract price and the spot price. It is worth mentioning that Juhl et al. [2006]

demonstrate this relationship to hold empirically on a daily basis but not necessarily

on an intraday basis. Accordingly, instead of considering the differential of risk

free rates between the reference and the foreign countries, I build the respective

baskets of currencies with respect to the ratio of the forward and the spot prices

for each currency. On a daily basis I compute this ratio for each currency and

then build five portfolios of four currencies each. The first portfolio gathers the

four currencies with the highest positive differential of interest rate with the US

dollar. The selected currencies over the period 04/01/2000 to 02/01/2013 for the

high interest rate basket are displayed in Figure 5.1. These currencies are thus

representing the “investment” currencies, through which one invests the money

to benefit from the currency carry trade. The last portfolio will gather the four

currencies with the highest negative differential (or at least the lowest differential)

of interest rate. As with the high interest rate basket, I also display the low

interest interest rate currency selections in Figure 5.2. These currencies are thus

representing the “financing” currencies, through which one borrows the money to

build the currency carry trade.

It can be noted here that during the period investigated in this analysis there is

a strong presence of emerging markets currencies, e.g. Brazilian real and Turkish
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lira, in the long basket whereas the short basket is dominated by developed market

currencies. A discussion of the effects of this asymmetry can be seen in Bekaert

and Panayotov [2016].

Conditionally to this classification I investigate then the joint distribution of

each group of currencies to understand the impact of the currency carry trade,

embodied by the differential of interest rates, on currencies returns. In this analysis

I concentrate on the high interest rate basket (investment currencies) and the

low interest rate basket (funding currencies), since typically when implementing

a carry trade strategy one would go short the low basket and go long the high

basket.
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Figure 5.1: Basket 5 (highest IR) composition.
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Figure 5.2: Basket 1 (lowest IR) composition.
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5.3 Interpreting Tail Dependence as Financial

Risk Exposure in Carry Trade Portfolios

In order to fully understand the tail risks of joint exchange rate movements present

when one invests in a carry trade strategy it is important to look at both the

downside extremal tail exposure and the upside extremal tail exposure within the

funding and investment baskets that comprise the carry portfolio. The downside

tail exposure can be seen as the crash risk of the basket, i.e. the risk that one

will suffer large joint losses from each of the currencies in the basket. These losses

would be the result of joint appreciations of the currencies one is short (meaning

the currencies that one has sold) in the low interest rate basket and/or joint

depreciations of the currencies one is long (meaning the currencies that one has

bought) in the high interest rate basket.

Definition 37. Downside Tail Risk Exposure in Carry Trade Portfolios

Consider the funding currency (short) basket with n-exchange rates relative

to base currency, on day t, with currency log-returns (X
(1)
t , X

(2)
t , . . . , X

(n)
t ). Then

the downside tail exposure risk for the carry trade will be defined as the conditional

probability of adverse currency movements in the short basket, corresponding to

its upper tail dependence, given by

λ(i)
u (u) := Pr

(
X

(i)
t > F−1

i (u)|X(1)
t > F−1

1 (u), . . . , X
(i−1)
t > F−1

i−1(u),

X
(i+1)
t > F−1

i+1(u), . . . , X
(n)
t > F−1

n (u)
)

(5–1)

for a currency of interest i ∈ {1, 2, . . . , n}.

The downside tail exposure for the investment (long) basket with n currencies

will be defined as the conditional probability of adverse currency movement in the

long basket, given by

λ
(i)
l (u) := Pr

(
X

(i)
t < F−1

i (u)|X(1)
t < F−1

1 (u), . . . , X
(i−1)
t < F−1

i−1(u),

X
(i+1)
t < F−1

i+1(u), . . . , X
(n)
t < F−1

n (u)
)
. (5–2)

In general then a basket’s upside or downside risk exposure would be quantified
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by the probability of a loss (or gain) arising from an appreciation or depreciation

jointly of magnitude u and the dollar cost associated to a given loss/gain of this

magnitude. The standard approach in economics would be to associate say a

linear cost function in u to such a probability of loss to get say the downside risk

exposure in dollars according to E(u) = Cu(FX(i)
t

(u)) × λu(u), which will be a

function of the level u. As λu becomes independent of the marginals, i.e. as u→ 0

or u→ 1, C also becomes independent of the marginals.

Conversely, the upside tail exposure contributes to profitable returns in the

carry trade strategy when extreme movements are in favour of the carry position

held. These would correspond to precisely the probabilities discussed above applied

in the opposite direction. That is the upside risk exposure in the funding (short)

basket is given by Equation (5–2) and the upside risk exposure in the investment

(long) basket is given by Equation (5–1). That is the upside tail exposure of the

carry trade strategy is defined to be the risk that one will earn large joint profits

from each of the currencies in the basket. These profits would be the result of

joint depreciations of the currencies one is short in the low interest rate basket

and/or joint appreciations of the currencies one is long in the high interest rate

basket.

Remark 5.3.1. In a basket with n currencies, n ≥ 2, if one considers capturing

the upside and downside financial risk exposures from a model based calculation of

these extreme probabilities then if the parametric model is exchangeable, such as

an Archimedean copula, then swapping currency i in Equation (5–1) and Equation

(5–2) with another currency from the basket, say j will not alter the downside or

upside risk exposures. This exchangeability property can be visualised intuitively by

considering the symmetry with respect to the diagonal in the two-dimensional case,

and hence the plot is invariant under a switch of axes. If they are not exchangeable

then one can consider upside and downside risks for each individual currency in

the carry trade portfolio.

These tail upside and downside exposures of the carry trade strategy can be

considered as features that show that even though average profits may be made

from the violation of UIP, it comes at significant tail exposure.

The notion of the dependence behaviour in the extremes of the multivariate

distribution can be formalised through the concept of tail dependence, i.e. the
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limiting behaviour of Equations (5–1) and (5–2), as u ↑ 1 and u ↓ 0 asymptotically.

The interpretation of such quantities is then directly relevant to assessing the

chance of large adverse movements in multiple currencies which could potentially

increase the risk associated with currency carry trade strategies significantly,

compared to risk measures which only consider the marginal behaviour in each

individual currency. Under certain statistical dependence models these extreme

upside and downside tail exposures can be obtained analytically. Here, I develop

flexible copula mixture models that have such properties.

5.4 Likelihood Based Estimation of the Mixture

Copula Models

Let me begin this section with a discussion on the choices I make for the marginal

distributions for each of the currencies specified in the baskets constructed for

the high interest rate differentials and also the baskets for the low interest rate

differentials.

In modelling parametrically the marginal features of the log return forward

exchange rates, I wanted flexibility to capture a broad range of skew-kurtosis

relationships as well as potential for sub-exponential heavy tailed features. In

addition, I wished to keep the models to a selection which is efficient to perform

inference and easily interpretable. I therefore considered a first analysis utilizing

log-normal distributions for the monthly forward exchange rate returns, which

would be equivalent to specification of a Normality assumption on the distribution

for the log return forward exchange rates. This model is given by the following

parametric density, for a random variable X ∼ F (x;µ, σ), in Equation 5–3 below.

fX(x;µ, σ) =
1

x
√

2πσ2
exp

(
−(lnx− µ)2

2σ2

)
(5–3)

with the shape parameter σ2 > 0 and the log-scale parameter µ ∈ R and the

support x ∈ (0,∞).

I found when analysing the goodness-of-fit for this log-normal model on each

of the assets in the 20 currencies considered, over both 6 month and 1 year sliding
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windows, that the fit of the log-normal model would be systematically rejected as

a suitable model for a couple of currencies. In the majority of cases over these

sliding windows (locally stationary time series) the log-normal model was more

than adequate. However, since some of the currencies that were rejecting this

fit were appearing regularly in the high interest rate baskets I also decided to

consider a more flexible three parameter model for the marginal distributions

given by the Log-Generalized-Gamma distribution (l.g.g.d.), see details in Consul

and Jain [1971] and Lawless [1980].

The l.g.g.d. is a parametric model based on the generalized gamma distribution

which is highly utilized in lifetime modelling and survival analysis. The density

for the generalized gamma distribution and the l.g.g.d are given respectively by

Equations 5–4 and 5–5.

fX(x; k, α, β) =
β

Γ(k)

xβk−1

αβk
exp

(
−
(x
α

)β)
(5–4)

with parameter ranges k > 0, α > 0 and β > 0 and a support of x ∈ (0,∞). Then

the log transformed g.g.d. random variable Y = lnX is given by the density of

the l.g.g.d. as follows.

fY (y; k, u, b) =
1

bΓ(k)
exp

[
k

(
y − u
b

)
− exp

(
y − u
b

)]
(5–5)

with u = log(α), b = β−1 and the support of the l.g.g.d. distribution is y ∈ R.

This more flexible three parameter model is particularly interesting in the

context of the marginal modelling considered here since the log-normal model

is nested within the g.g.d. family as a limiting case. In addition the g.g.d. also

includes the exponential model (β = k = 1), the Weibul distribution with (k = 1)

and the Gamma distribution with (β = 1). Next I discuss how one can perform

inference for the multivariate currency basket models using these marginal models

and the mixture copula discussed previously.
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5.4.1 Two Stages: Inference For the Margins

The inference function for margins (IFM) technique introduced in Joe [2005]

provides a computationally faster method for estimating parameters than Full

Maximum Likelihood, i.e. simultaneously maximising all model parameters and

produces in many cases a more stable likelihood estimation procedure. An

alternative approach to copula model parameter estimation that is popular in

the literature is known as the Maximum Partial Likelihood Estimator (MPLE)

detailed in Genest et al. [1995].

The procedure I adopt for likelihood based estimation is the two stage esti-

mation known as Inference on the Margins which is studied with regard to the

asymptotic relative efficiency of the two-stage estimation procedure compared

with maximum likelihood estimation in Joe [2005] and in Hafner and Manner

[2010]. It can be shown that the IFM estimator is consistent under weak reg-

ularity conditions. However, it is not fully efficient for the copula parameters.

Nevertheless, it is widely used for its ease of implementation and efficiency in

large data settings such as the models I consider in this study.

To complete this discussion on general IFM, before providing the MLE esti-

mation expressions, it can be first noted that in this study copula models are

fit to the high interest rate (IR) basket and the low IR basket updated for each

day in the period 04/01/2000 to 02/01/2013 using log return forward exchange

rates at one month maturities for data covering both the previous 6 months and

previous year as a sliding window analysis on each trading day in this period.

Next I discuss briefly the marginal MLE estimations for the log-normal and the

l.g.g.d. models.

5.4.1.1 Stage 1: Fitting the Marginal Distributions via MLE

In the first step I fit the marginal distributions to either the log-normal model or

the l.g.g.d model. In the case of the log-normal model this is achieved effortlessly
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since one may utilise the well-known analytic expressions for the MLE estimates:

µ̂j =
1

n

∑
j

log (xj)

σ̂j =

√
1

n

∑
j

log (xj)
2 − µ̂2

j

(5–6)

In the case of the l.g.g.d. distribution the estimation for the three model parameters

can be significantly more challenging due to the fact that a wide range of model

parameters, especially for k can produce similar resulting density shapes, see

discussions in Lawless [1980]. To overcome this complication and to make the

estimation efficient it is proposed to utilise a combination of profile likelihood

methods over a grid of values for k and perform profile likelihood based MLE

estimation for each value of k, then for the other two parameters b and u. The

differentiation of the profile likelihood for a given value of k produces the system

of two equations given by

exp(µ̃) =

[
1

n

n∑
i=1

exp

(
yi

σ̃
√
k

)]σ̃√k
∑n

i=1 yi exp
(

yi
σ̃
√
k

)
∑n

i=1 exp
(

yi
σ̃
√
k

) − y − σ̃√
k

= 0

(5–7)

with n the number of observations, yi = log xi and the parameter transformations

σ̃ = b√
k

and µ̃ = u + b ln k. The second equation is solved directly via a simple

root search for the estimation of σ̃ and then substitution into the first equation

provides the estimation of µ̃. Note, for each value of k selected in the grid, one

gets the pair of parameter estimates µ̃ and σ̃, which can then be plugged back

into the profile likelihood to make it purely a function of k, with the estimator for

k then selected as the one with the maximum likelihood score.

5.4.1.2 Stage 2: Fitting the Mixture Copula via MLE

In order to fit the Clayton-Frank-Gumbel (C-F-G) model the copulae parameters

(ρClayton, ρFrank, ρGumbel) and the copulae mixture parameters (λClayton, λFrank,
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λGumbel) are estimated using maximum likelihood on the data after conditioning

on the selected marginal distribution models and their corresponding estimated

parameters obtained in Stage 1. These models are utilised to transform the data

using the cdf function with the mle parameters (µ̂ and σ̂) if the log-normal model

is used or (k̂, û and b̂) if the l.g.g.d is considered.

Therefore, in this second stage of MLE estimation one aims to estimate

either the one parameter mixture of C-F-G components with parameters θ =

(ρClayton, ρFrank, ρGumbel, λClayton, λFrank, λGumbel) or the two parameter mixture

of outer power transformed mixture components, i.e. Outer power Clayton -

Outer power Frank - Gumbel (OC-OF-G) components with parameters θ =

(ρClayton, ρFrank, ρGumbel, λClayton, λFrank, λGumbel, βClayton, βFrank). It can be noted

that in fact an Outer power Gumbel copula is equivalent to a standard Gumbel

copula but with a superfluous additional parameter. Therefore, I use a standard

Gumbel parameter here. This is achieved in each case by the conditional maximum

likelihood. To achieve this one needs to maximise the log likelihood expressions

for the mixture copula models, which in this framework are given generically by

the following function for which one needs to find the mode,

l(θ) =

n∑
i=1

log cC−F−G(F1(Xi1; µ̂1, σ̂1), . . . , Fd(Xid; µ̂d, σ̂d)) +

n∑
i=1

d∑
j=1

log fj(Xij ; µ̂j , σ̂j) (5–8)

with respect to the parameter vector θ.

For example in the case of the Clayton-Frank-Gumbel mixture copula one

needs to maximise on the log-scale the following expression.

l(θ) =
n∑
i=1

log
[
λC ∗

(
cCρC (F1 (Xi1; µ̂1, σ̂1) . . . , Fd (Xid; µ̂d, σ̂d))

)
+ λF ∗

(
cFρF (F1 (Xi1; µ̂1, σ̂1) . . . , Fd (Xid; µ̂d, σ̂d))

)
+ λG ∗

(
cGρG (F1 (Xi1; µ̂1, σ̂1) . . . , Fd (Xid; µ̂d, σ̂d))

) ] (5–9)

This optimization is achieved via a gradient descent iterative algorithm which was

found to be quite robust given the likelihood surfaces considered in these models

with the real data. To illustrate this point, at this stage it is instructive to present
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some examples of the shapes of the profile likelihoods that are being optimized

over for some of the important copula model parameters in the C-F-G mixture

example for a 6 month window of data randomly selected from the data set for

both the high interest rate basket and the low interest rate basket. Two example

plots of the profile likelihood for the 6-dimensional optimisation space for two

different example days can be seen in Figures 5.3 and 5.4. From the contour plots

here it can be seen that gradient descent could be expected to perform well and

hence converge to a global optimal solution. Thorough testing of the gradient

descent algorithm with multiple starting parameter values showed that this was

indeed the case for the data considered in this chapter.

5.4.2 Goodness-of-Fit Tests

In this section I briefly comment on the model selection aspects of the analysis

I undertook. As mentioned I first undertook a process of fitting the marginal

log-normal model to all of the 20 currencies considered in the analysis over a

sliding window of 6 months and 1 year. For each of these fits I then performed

a formal hypothesis test in which I postulated that the null distribution is the

log-normal model and then look for evidence in the data to reject this hypothesis

at a level of significance of 5%. To undertake this test I considered the standard

Kolmogorov-Smirnov (KS) test. As I will present in the results I found strong

evidence to reject the null systematically for a few important developing countries’

marginal models, hence I also undertook estimation of the l.g.g.d. models for all of

the 20 currencies. I am particularly interested in this case in the optimal choice of

the model parameter k which as it asymptotically gets large k →∞ will produce a

log-normal model. I found as expected the estimated model fits were significantly

improved when fitting the l.g.g.d. models for the cases in which the log-normal

was rejected by the K-S test. In addition the estimated k parameter in the periods

of rejection of the log-normal hypothesis were estimated at values significantly

lower than the upper bound in the search space. I assessed the optimal choice

of marginal model between the log-normal and the l.g.g.d. models then via a

standard information criterion based on the Akaike Information Criterion (AIC).

In terms of the selection of the copula mixture models, between the mixture
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Figure 5.3: Example 1: Profile likelihood plots for C-F-G mixture
model.
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Figure 5.4: Example 2: Profile likelihood plots for C-F-G mixture
model.
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Figure 5.5: AIC comparison of C-F-G vs OP.C-OP.F-G for 6 month
blocks on high and low IR baskets.

of one parameter C-F-G model versus the two parameter mixtures of OC-OF-G

models, I again used a scoring via the AIC. It can be noted that there are also

alternative information criterion developed for copula models to assess the joint

suitability of the copula model incorporating both the marginal and the joint

copula structure which are modifications of the AIC, adjusting the penalty term for

the approach adopted in the estimation, see for example the Copula-Information-

Criterion (CIC) in Grønneberg [2010] for details. The results are presented for

this comparison in Figure 5.5 in the top panel for the high interest rate basket

and in Figure 5.5 in the lower panel for the low interest rate basket, over time

based on the 6 month sliding window.

To further analyse this comparison of optimal copula mixtures I plot the AIC

differentials for each of the currency baskets in Figure 5.6. Figures 5.5 and 5.6

show it is not unreasonable to consider the C-F-G model for this analysis, since

the mean difference between the two AIC scores for the models is 2.05 in favour

of the C-F-G. However, it can be noted that the OP.C-OP.F-G model seems to fit
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Figure 5.6: AIC differences: C-F-G vs OP.C-OP.F-G for 6 month
blocks on high and low IR baskets.

better during crisis periods.

5.5 Results and Analysis

In this section, I present a detailed analysis of the estimation of the marginal

distributional models and the mixture copula models for both the high interest

rate basket and the low interest rate basket. Firstly, I investigate the properties of

the marginal distributions of the exchange rate log-returns for the 20 currencies.

I then interpret the time-varying dependence characteristics of the fitted copula

models to the high interest rate basket and the low interest rate basket across the

period 04/01/2000 to 02/01/2013. Note, all results presented below are for the

case in which I considered a 6 month sliding window, since results for the 1 year

sliding window were similar in nature and so are omitted.
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5.5.1 Modelling the Marginal Exchange Rate Log-Returns

In order to model the marginal exchange rate log-returns I first fit log-normal

models to each of the 20 currencies considered in the analysis, updating the fits

for every trading day in the period 04/01/2000 to 02/01/2013 based on the 6

months sliding window. The log-normal model was selected due to the fact it has a

positive support, represents a range of skew-kurtosis characteristics and can display

sub-exponential tail features (i.e. heavy tailed features) should such attributes be

present in the data. I assessed the quality of the fits for each currency using a

standard Kolmogorov-Smirnov goodness-of-fit test, at the 5% significance level. A

summary of the results of this analysis are presented in Table 5.1 which shows the

proportion of rejections of the null hypothesis, that the marginal distribution is

log-normal for each of the currencies on a given 6 months block of trading days.

One learns from this analysis that the majority of the currencies demonstrate

reasonable marginal distribution fits under a log-normal family, however there are

a few notable exceptions. Specifically the Turkish lira, Brazilian real, Malaysian

ringgit, Indian rupee, Thai baht, South Korean won and Taiwanese dollar demon-

strated sustained periods in the analysis in which the log-normal model would be

unsuitable to capture the features of the time series adequately. This is significant

in this analysis since these currencies actually correspond to the currencies that

have a strong presence in the high interest rate baskets, as seen in Figure 5.1.

Therefore, they will play an important role in the multivariate analysis of the

currency carry trade. As such, it is important to accurately model the features

of each of these particular currencies’ marginal distributions, before undertaking

the multivariate mixture copula analysis, I proposed to generalize the marginal

model analysis to a more flexible three parameter family of models given by the

log generalized gamma distribution, as discussed in Section 5.4.

The log-generalised gamma distribution (l.g.g.d.) should improve the fit for all

currencies since it allows for more flexibility in the tails of the distribution and a

wider range of skew-kurtosis relationships when compared to the log-normal model

family. In addition, as noted in Section 5.4, for those currencies in which the

log-normal model was a suitable fit, then they will still obtain such distributional

characteristics since the log-normal model is a limiting case of the l.g.g.d. as k
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tends to infinity. Hence, the log-normal model for the currencies that were a good

fit can still be incorporated.

The maximum likelihood parameters (µ̂, σ̂, k̂) of the fitted l.g.g.d. margins

for each of the currencies can be seen in Figures 5.7 to 5.11. These plots demon-

strate the time varying attributes of the marginal distributions for each currency,

illustrating interesting changes in tail behaviour and skewness-kurtosis charac-

teristics over time, especially in heightened periods of volatility in some of these

currencies. In particular, there are three standout periods (2003, 2009 and 2012)

of heightened µ and σ parameter values across most of the currencies. Hence,

during these periods the exchange rate log-returns may demonstrate heavier tails,

and increased volatility in the parameter estimates. In addition, it is observed

that a few important currencies for the currency carry trade analysis demonstrate

sustained differences in their marginal distribution attributes relative to the other

currencies. An important example of this is the µ estimates in Figures 5.7 and 5.8

for the TRY, the NZD and the BRL. Similar significant differences between these

particular currencies and the rest of the currencies are observed in the estimates

of σ in Figures 5.9 and 5.10.

As the value of the parameter k in the l.g.g.d. gets large I expect the log-normal

fit to be a suitable model structure for the marginal distributions. As illustrated

in the K-S test results certain currencies systematically did not have a suitable

fit with the log-normal model. Examples of this are clear when one considers

the estimates of k in Figure 5.11 and Table 5.2, which contains the median and

interquartile ranges of the estimated k parameter. Again systematically smaller

values for the estimate of k in the TRY and the BRL are observed. The periods of

time during which the currencies display non log-normal behaviour can clearly be

seen in Figure 5.11. The most prominent example being the Turkish lira (orange),

which shows consistently low values of k. As noted in Section 5.4, for small values

of k ≈ 1 one obtains Weibull like tail behaviour and in addition, in the cases when

σ ≈ 1 jointly with small values of k, I expect the light tailed exponential models

to be suitable. As a consequence of this analysis and comparison of AIC results

I proceeded with the joint estimation utilising the l.g.g.d. marginal models for

every currency.

A noticeable period for the Turkish lira is early in 2001 during which low values
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of the parameter k clearly provides evidence of heavy tail log-returns distribution

for this specific currency. As mentioned earlier in this investigation the Turkish

government’s decision in February 2001 to stop draining reserves to bolster its

currency led the same day to a 30% devaluation of the Turkish lira relative to the

dollar.

Table 5.1: Proportion of rejections of the null hypothesis that the
sample is from a log-normal distribution, measured using a k-s test at
the 5% level.

Block length EUR TRY JPY GBP AUD CAD NOK CHF SEK MXN

6 month 0.001 0.198 0.043 0.000 0.023 0.000 0.000 0.031 0.012 0.032

Year 0.000 0.553 0.107 0.007 0.120 0.018 0.006 0.084 0.018 0.128

Block length PLN MYR SGD INR ZAR NZD THB KRW TWD BRL

6 month 0.018 0.494 0.000 0.234 0.025 0.012 0.221 0.130 0.192 0.086

Year 0.094 0.651 0.071 0.549 0.124 0.113 0.504 0.350 0.381 0.403
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Figure 5.7: µ parameter of log generalised gamma margins using 6
month blocks
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Figure 5.8: µ parameter of log generalised gamma margins using 6
month blocks
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Figure 5.9: σ parameter of log generalised gamma margins using 6
month blocks

137



5. INVESTIGATING MULTIVARIATE TAIL DEPENDENCE IN
CURRENCY CARRY TRADE PORTFOLIOS VIA COPULA
MODELS

2002 2004 2006 2008 2010 2012

day

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

 parameter of log generalised gamma of marginal distributions
 for 6 month blocks

PLN

MYR

SGD

INR

ZAR

2002 2004 2006 2008 2010 2012

day

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

 parameter of log generalised gamma of marginal distributions
 for 6 month blocks

NZD

THB

KRW

TWD

BRL

Figure 5.10: σ parameter of log generalised gamma margins using 6
month blocks
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Figure 5.11: K parameter of log generalised gamma margins using 6
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Table 5.2: Median and interquartile ranges of the estimated k parame-
ter.

EUR TRY JPY GBP AUD CAD NOK CHF SEK MXN

Median 136.4 9.1 136.4 136.4 55.3 136.4 136.4 136.4 136.4 47.6

IQR 31.3 43.9 101.1 19.0 124.1 72.1 106.0 0.0 95.4 124.1

PLN MYR SGD INR ZAR NZD THB KRW TWD BRL

Median 74.7 136.4 136.4 40.9 30.3 55.3 136.4 22.4 136.4 64.3

IQR 119.8 132.1 127.3 133.2 125.8 117.1 132.7 130.6 122.1 130.6

5.5.2 Copula Modelling Results

I now utilised each of the l.g.g.d. marginal distribution fits for a given day’s set of

currencies in the high interest rate and low interest rate baskets to analyse the

joint multivariate features. To achieve this for each of the currencies, the exchange

rate log-return data was transformed via the l.g.g.d. marginal model’s distribution

function to uniform [0, 1] margins. Then the mixture Clayton-Frank-Gumbel

copula (denoted C-F-G ) and the outer-power versions were fitted each day to

a sliding window of 6 months and one year log-returns data for both the high

interest rate and low interest rate baskets. Below the time-varying parameters of

the maximum likelihood fits of this mixture C-F-G copula model will be examined.

Furthermore, the results for the outer-power transform cases did not demonstrate

discernible differences from the base C-F-G model and so were excluded. This can

be seen from the figures displaying the AIC for each of these models (Figures 5.5

and 5.6).

In this analysis there are several attributes to be considered for the mixture

copula model, such as the relevant copula structures for the high and low interest
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rate baskets and how these copula dependence structures may change over time. In

addition, there is the strength of the tail dependence in each currency basket and

how this changes over time, especially in periods of heightened market volatility.

The first of these attributes I will consider to be a structure analysis studying

the relevant forms of dependence in the currency baskets and the second of these

attributes that I shall study will be the strength of dependence present in the

currency baskets, given the particular copula structures in the mixture.

Therefore I first consider the structural components of the multivariate copula

model. To achieve this, I begin with a form of model selection in a mixture context,

in which I consider the estimated relative contributions of each of the copula

components (and their associated dependence features) to the joint relationship in

the high and low interest rate currency baskets over time. This is reflected in the

estimated mixture component weights, which can be seen in Figures 5.12 and 5.13

for the high interest rate basket and low interest rate basket respectively. The λ

values show the relevance of each of the component copulae to the data. Thus a

small λ value indicates the lack of a need for that particular copula component in

order to model the associated 6 months or one year block of data. In contrast,

for example a λ value for the Gumbel component very close to 1 indicates the

block of data could be well modelled by a Gumbel copula alone. Hence, these

plots convey the time varying significance of hypotheses about the presence of

upper and lower tail dependence in each of the baskets over time. Examining

these plots shows that in general the Clayton mixture weight tends to be lower

when the Gumbel mixture weight is higher. It can also be seen that the Frank

copula is systematically present in the mixture. In addition, there are periods

which are dominated by one of the structural component copulae. That is, there

is an asymmetric tendency for the presence of particular copula components over

time when comparing the high and low interest rate baskets. The implications of

this will be discussed in further detail in the discussions.

In terms of the second attribute, the strength of the copula dependence, I

analyse this in several ways. Firstly through an analysis of the estimation copula

parameter components over time, then through an analysis of the transformation

of these copula parameters to rank correlations and finally through an analysis of

the multivariate strength of the mixture copula tail dependence over time.
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Figure 5.12: λ Mixing proportions of the respective Clayton, Frank
and Gumbel copulae on the high interest rate basket, using 6 month
blocks.
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Figure 5.13: λ Mixing proportions of the respective Clayton, Frank
and Gumbel copulae on the low interest rate basket, using 6 month
blocks.
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The individual component copula parameters can be seen in Figures 5.14

and 5.15 for the high interest rate basket and low interest rate basket respectively.

The strength of the copula parameters in the baskets shows a large degree of

variance during the period 04/01/2000 to 02/01/2013. One interesting observation

is the very large spikes in the Gumbel copula parameter observed for the high

interest rate basket from 2006 to 2007 and again in 2009. This was significant as

it also corresponds to periods in which the Gumbel copula mixture weight was

non-trivial.

The measure of concordance as captured by Kendall’s tau is decomposed

in this analysis according to each of the mixture components, scaled by the

mixture weights λ, and can be seen in Figure 5.16 for the high interest rate basket

and Figure 5.17 for the low interest rate basket. These plots provide a more

intuitive picture of the time-varying contributions of the individual copulae to the

dependence structure present in each of the baskets. Interestingly, one sees that

the rank correlation contribution from the Frank copula indicates the presence of

negative as well as positive rank correlations. In addition, as discussed with the

mixture weights, there is perhaps some asymmetry present between the high and

low interest rate baskets over time.

Perhaps the most interesting and revealing representation of the tail dependence

characteristics of the currency baskets can be seen in Figures 5.18 to 5.23. Here

it can be seen that there are indeed periods of heightened upper and lower tail

dependence in the high interest rate basket. There is a noticeable increase in

upper tail dependence at times of global FX volatility. Specifically, during late

2007, i.e. the global financial crisis, there is a sharp peak in upper tail dependence.

Preceding this, there is an extended period of heightened lower tail dependence

from 2004 to 2007, which could tie in with the building of the leveraged carry

trade portfolio positions.

In understanding this analysis it is important to note that Figures 5.18 and 5.19

show the probability that one currency in the high interest rate basket or low

interest rate basket respectively (which contain four or five currencies depending

on the data availability during that time period) will have a move above/below a

certain extreme threshold given that the other remaining currencies in the basket

have had a move beyond this threshold. Then in Figures 5.20 and 5.21 I show the
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Figure 5.14: ρ Copula parameters for the Clayton, Frank and Gumbel
copulae on the high interest rate basket, using 6 month blocks.
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Figure 5.15: ρ Copula parameters for the Clayton, Frank and Gumbel
copulae on the low interest rate basket, using 6 month blocks.
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Figure 5.16: Kendall’s τ for the Clayton, Frank and Gumbel copulae
on the high interest rate basket, using 6 month blocks.
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Figure 5.17: Kendall’s τ for the Clayton, Frank and Gumbel copulae
on the low interest rate basket, using 6 month blocks.
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probability that two currencies in the basket will have a move above/below such

an extreme threshold given that the other two currencies have had a move beyond

this threshold. Finally, in Figures 5.22 and 5.23 I show the probability that three

currencies in the basket will have a move above/below a certain threshold given

that the remaining currency has had a move beyond this threshold.

To illustrate the relationship between heightened periods of significant upper

and lower tail dependence features over time and to motivate the clear asymmetry

present in the upper and lower tail dependence features between the high and

low interest rate baskets over time I consider a further analysis. In particular, I

compare in Figures 5.24 and 5.25 the tail dependence plotted against the daily

average FX volatility (as calculated in Menkhoff et al. [2012a] on a monthly basis)

and given by:

σFXt =
∑
k∈Kt

(
|rkt |
Kt

)
(5–10)

where |rkt | is the absolute daily log return of currency k on day t, and Kt denotes

the number of available currencies on day t.

In addition, in these figures I plot the VIX volatility index for the high interest

rate basket and the low interest rate basket respectively for the period under

investigation. The VIX is a popular measure of the implied volatility of S&P 500

index options - often referred to as the fear index. As such it is one measure of

the market’s expectations of stock market volatility over the next 30 days. It

can clearly be seen here that in the high interest rate basket there are upper

tail dependence peaks at times when there is increased stock market volatility,

particularly post-crisis. However, I would not expect the two to match exactly

since the VIX is not a direct measure of global FX volatility, but US equities

volatility. Thus it can be concluded that investors’ risk aversion clearly plays an

important role in the tail behaviour of high interest rate currencies and more

importantly in their dependence structure. This statement can also be associated

to the globalization of financial markets and the resulting increase of the contagion

risk between countries. This conclusion corroborates some of the recent results in

the literature with regards to the skewness and the kurtosis features characterizing

the currency carry trade portfolios, see Farhi and Gabaix [2008]; Brunnermeier
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Figure 5.18: λ1|234 : 6 month blocks on high interest rate basket.
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Figure 5.19: λ1|234 : 6 month blocks on low interest rate basket.
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Figure 5.20: λ12|34 : 6 month blocks on high interest rate basket.
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Figure 5.21: λ12|34 : 6 month blocks on low interest rate basket.

148



2002 2004 2006 2008 2010 2012
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Upper tail dependence

λ U

λ1,2,3|4 : Tail dependence for 6 month blocks on high IR basket

2002 2004 2006 2008 2010 2012
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Lower tail dependence

λ L

Figure 5.22: λ123|4 : 6 month blocks on high interest rate basket.
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Figure 5.23: λ123|4 : 6 month blocks on low interest rate basket.
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et al. [2008]; Menkhoff et al. [2012a].

The black lines plotted in Figures 5.24 and 5.25 furthermore display the mean

tail dependence before and after August 2007 (which corresponds to the beginning

of the global financial crisis). The data shows a large increase in upper tail

dependence in the high interest rate basket after the crisis, as well as a smaller

decrease in lower tail dependence. Interestingly there is very little difference in

the mean tail dependence before and after the crisis for the low interest rate

basket. The carry trade portfolios were particularly impacted by the sub-prime

crisis as most of these currency positions were implemented and held by financial

institutions which faced sudden difficulties to finance the leverage of their positions.

Furthermore, another interesting point that can be made from the analysis of these

two figures is the higher level of lower tail dependence before the financing crisis,

especially between 2004 and 2007. The fact that during this three year period the

VIX index was noticeably and continuously decreasing it is possible to imagine

that this increase of the lower tail dependence results from lower risk aversion and

the resulting tendency of investors to accordingly increase their leverage on risky

positions, such as currency carry trades.

5.6 Pairwise Decomposition of Basket Tail

Dependence

In the above analysis of model based parametric upper and lower tail dependence

I focus on the joint extreme deviations in both the highest and the lowest interest

rates currencies baskets. It is also informative to understand which pairs of

currencies within a given currency basket contribute significantly to the downside

or upside risks of the overall currency basket. In the class of Archimedean

based mixtures considered in this thesis, the feature of exchangeability precludes

decompositions of the total basket downside and upside risks into individual

currency specific components. Here, I perform a decomposition of the risks within

a basket, e.g. the downside risk of the funding basket, into contributions from each

pair of currencies in the basket. This is achieved via a simple linear projection

onto particular subsets of currencies in the portfolio that are of interest, which
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Figure 5.24: Comparison of Average FX volatility and Equity Volatility
Index (VIX) with upper and lower tail dependence of the high interest
rate basket.
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Figure 5.25: Comparison of Average FX volatility and Equity Volatility
Index (VIX) with upper and lower tail dependence of the low interest
rate basket.
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leads for example to the following expression:

E
[
λ̂i|1,2,...,i−1,i+1,...,n
u

∣∣∣ λ̂2|1
u , λ̂3|1

u , λ̂3|2
u , . . . , λ̂n|n−1

u

]
= α0 +

n∑
i 6=j

αijλ̂
i|j
u , (5–11)

where λ̂
i|j
u is the pairwise non-parametric tail dependence between currency i

and currency j, and λ̂
i|1,2,...,i−1,i+1,...,n
u is a random variable since it is based on

parameters of the mixture copula model which are themselves functions of the data

and therefore random variables. Since the value of the tail dependence is bounded,

i.e. 0 ≤ λ̂
i|j
u ≤ 1, this regression could be performed via a generalised linear model

(glm) with a logit link function. However, in the empirical investigation here it

was found that the restriction wasn’t an issue. Such a simple linear projection will

then allow one to interpret directly the marginal linear contributions to the upside

or downside risk exposure of the basket obtained from the model, according to

particular pairs of currencies in the basket by considering the coefficients αij, i.e.

the projection weights. To perform this analysis it is necessary to obtain estimates

of the pairwise tail dependences in the upside and downside risk exposures λ̂
i|j
u

and λ̂
i|j
l for each pair of currencies i, j ∈ {1, 2, . . . , n}. I obtain this through a

non-parametric (model-free) estimator as discussed in Chapter 3. In particular, I

will focus on the estimator presented in equation 3–24.

5.6.1 Non-Parametric Tail Dependence Results

In order to examine the contribution of each pair of currencies to the overall n-

dimensional basket tail dependence I calculated the corresponding non-parametric

pairwise tail dependences for each pair of currencies. In Figure 5.26 the average

upper and lower non-parametric tail dependence for each pair of currencies during

the 2008 Credit crisis can be seen, with the 3 currencies most frequently in the

high interest rate and the low interest rate baskets labelled accordingly. The

lower triangle represents the non-parametric pairwise lower tail dependence and

the upper triangle represents the non-parametric pairwise upper tail dependence.

Similarly, in Figure 5.27 the pairwise non-parametric tail dependences averaged

over the last 12 months (01/02/2013 to 29/01/2014) can be seen. Comparing this

heat map to the heat map during the Credit crisis (Figure 5.26) it can be seen
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Figure 5.26: Heat map showing the strength of non-parametric tail
dependence between each pair of currencies averaged over the 2008
Credit crisis period. Lower tail dependence is shown in the lower
triangle and upper tail dependence is shown in the upper triangle.
The 3 currencies most frequently in the high interest rate and the low
interest rate baskets are labelled.

that in general there are lower values of tail dependence amongst the currency

pairs.

Remark 5.6.1. If one was trying to optimise their currency portfolio with respect

to the tail risk exposures, i.e. to minimise negative tail risk exposure and maximise

positive tail risk exposure, then one would sell short currencies with high upper

tail dependence and low lower tail dependence whilst buying currencies with low

upper tail dependence and high lower tail dependence.

I then performed linear regression of the pairwise non-parametric tail depen-

dence on the respective basket tail dependence for the period 01/02/2013 to

29/01/2014 for the days on which the 3 currencies all appeared in the basket

(224 out of 250 for the lower interest rate basket and 223 out of 250 for the high

interest rate basket). The regression coefficients and R2 values can be seen in

Table 5.3. This can be interpreted as the relative contribution of each of the 3

currency pairs to the overall basket tail dependence. It can be noted that for the

low interest rate lower tail dependence and for the high interest rate upper tail
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Figure 5.27: Heat map showing the strength of non-parametric tail
dependence between each pair of currencies averaged over the last 12
months (01/02/2013 to 29/01/2014). Lower tail dependence is shown
in the lower triangle and upper tail dependence is shown in the upper
triangle. The 3 currencies most frequently in the high interest rate
and the low interest rate baskets are labelled.

dependence there is a significant degree of cointegration between the currency

pair covariates and hence it may be possible to use a single covariate due to the

presence of a common stochastic trend.

5.7 Understanding the Tail Exposure Associated

with the Carry Trade and Its Role in the

UIP Puzzle

As was discussed in Section 5.3, the tail exposures associated with a currency carry

trade strategy can be broken down into the upside and downside tail exposures

within each of the long and short carry trade baskets. In order to assess the

potential impact of these tail exposures on portfolio returns it is interesting to

explore a risk adjustment approach. The downside relative exposure adjusted

returns are obtained by multiplying the monthly portfolio returns by one minus
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Table 5.3: Pairwise non-parametric tail dependence regressed on respec-
tive basket tail dependence for the period 01/02/2013 to 29/01/2014
(standard errors are shown in parentheses). The 3 currencies most
frequently in the respective baskets are used as independent variables.

Low IR Basket Constant CHF JPY CZK CHF CZK JPY R2

Upper TD 0.22 (0.01) 0.02 (0.03) 0.18 (0.02) 0.38 (0.05) 0.57

Lower TD 0.71 (0.17) -0.62 (0.25) -0.38 (0.26) 0.23 (0.32) 0.28

High IR Basket Constant EGP INR UAH EGP UAH INR R2

Upper TD 0.07 (0.01) -0.06 (0.33) 0.59 (0.08) 2.37 (0.42) 0.40

Lower TD 0.10 (0.02) 0.56 (0.05) 0.44 (0.08) -0.40 (0.07) 0.44

the upper and the lower tail dependence values calculated using a lookback period

of six months, i.e. there is no forward looking bias here, present respectively in

the high interest rate basket and the low interest rate basket at the corresponding

dates. This adjustment leads to higher discount of the returns associated to

the high interest rates basket when the upper tail dependence of this basket is

more important and conversely for the low interest rate basket and the related

lower tail dependence. The upside relative exposure adjusted returns are obtained

by multiplying the monthly portfolio returns by one plus the lower and upper

tail dependence present respectively in the high interest rate basket and the low

interest rate basket at the corresponding dates. Note that I refer to these as

relative exposure adjustments only for the tail exposures since I do not quantify a

market price per unit of tail risk. However, this is still informative as it shows

a decomposition of the relative exposures from the long and short baskets with

regard to extreme events.

As can be seen in Figure 5.28, the relative adjustment to the absolute cumu-

lative returns for each type of downside exposure is greatest for the low interest
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Figure 5.28: Cumulative log returns of the carry trade portfolio (HML
= High interest rate basket Minus Low interest rate basket). Down-
side exposure adjusted cumulative log returns using upper/lower tail
dependence in the high/low interest rate basket for the CFG copula
and the OpC copula are shown for comparison.

rate basket, except under the OpC model, but this is due to the very poor fit of

this model to baskets containing more than 2 currencies, which thus transfers to

financial risk exposures. This is interesting because intuitively one would expect

the high interest rate basket to be the largest source of tail exposure. However, one

should be careful when interpreting this plot, since it is the extremal tail exposure.

The analysis may change if one considered the intermediate tail risk exposure,

where the marginal effects become significant. Similarly, Figure 5.29 shows the

relative adjustment to the absolute cumulative returns for each type of upside

exposure is greatest for the low interest rate basket. The same interpretation

as for the downside relative exposure adjustments can be made here for upside

relative exposure adjustments.

5.8 Conclusions

In this part of the thesis, I have investigated one of the most robust puzzles in

international finance, namely the currency carry trade. This market phenomenon

is particularly interesting from a theoretical standpoint as well as for the under-
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Figure 5.29: Cumulative log returns of the carry trade portfolio (HML
= High interest rate basket Minus Low interest rate basket). Upside
exposure adjusted cumulative log returns using lower/upper tail de-
pendence in the high/low interest rate basket for the CFG copula and
the OpC copula are shown for comparison.

standing of financial market mechanisms. It has been demonstrated empirically

that the currency markets were violating a fundamental relation in finance con-

necting the currency exchange rates and the interest rates associated with two

different countries.

The main contribution of this part of the thesis has been to propose a rigorous

statistical modelling approach, which captures the specific statistical features of

both the individual currency log-return distributions as well as the joint features

such as the dependence structures prevailing between all the exchange rates.

In achieving this goal, I first assessed the marginal statistical features of each

of the 20 currencies on an assumed locally stationary sliding window of six months,

over all the trading days in the period 04/01/2000 to 02/01/2013. I found that a

simple log-normal marginal distribution would not produce a suitable statistical fit

for some of the key currencies that are regularly present in the high interest rate

basket throughout this period. As detailed in the results section this was notably

the case in unstable economies such as developing countries (for instance Turkey,

Brazil or South Africa) where political stability or default risk create sudden and

violent adjustments to their currency exchange rates with other countries. It can

be noted that these currencies are still of direct significance to the study of global
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currency carry trade strategies since according to the modern portfolio theory

this intrinsic country specific risk borne by an investor in these currencies can be

diversified and mitigated by adding to the considered portfolio other currencies

which depend themselves on different sources of intrinsic country specific risk.

This would effectively establish a diversified portfolio of currencies violating the

UIP hypothesis and would thus provide a very attractive average return for a very

limited risk which has been the conclusion of several recent empirical studies in

the finance literature.

The conclusion of this is that in this analysis these currencies are not excluded

from the high interest rate basket analysis, even though they may demonstrate

attributes resulting primarily from significant changes in their countries political

and financial structure. One can also consider a restricted set of only developed

market currencies, e.g. G10 currencies, as is the case in Part II of this thesis

due to the open interest rate data being limited to only a subset of developed

market currencies. As a result I needed to obtain more flexible marginal models to

capture the features of these currencies more adequately. Consequently I modelled

each currency exchange rate return marginally via a flexible three parameter

parametric model which offers a wide range of skew-kurtosis relationships as

well as the possibility of light exponential tails and heavier sub-exponential tail

behaviours such as the log-normal member. The parametric family of distributions

I selected for this purpose was the log-generalized gamma distribution.

Having modelled the marginal attributes of the high and low interest rate

currency baskets over time adequately, the main emphasis was then to assess the

multivariate dependence features of the currency baskets. In particular how this

may change over time within a given basket, where I was particularly interested

in the effect of the composition of the basket over time, and the response of the

multivariate dependence features of the modelled basket and how it may respond

in periods of heightened market volatility versus more stable periods. In addition

to this within basket temporal analysis, from the perspective of undertaking a

currency carry trade strategy, one would need to consider the relative relationships

between the temporal dependence features of the high interest rate and low interest

rate currency baskets. I demonstrate several interesting features from the model

fits relating to asymmetries between the high and low interest rate baskets over
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time, especially during periods of high volatility in global markets. One way I

ascertained such periods was through a comparison of the VIX versus features

of the multivariate dependence relationships I modelled. Importantly I found

substantial evidence to support arguments for time varying behaviours in the

structural dependence hypotheses posed about the currency baskets, as captured

by the relevant contributing copula components to the multivariate mixture model.

In addition, substantial evidence was found for significant upper and lower tail

dependences features in both the high and low interest rate baskets, which again

displayed interesting asymmetries between both baskets over time.

The financial interpretation of the significance of these findings is related to

the fact that it demonstrates that historically average rewards from a currency

carry trade portfolio can be exposed to a significant risk of large losses arising

from joint adverse movements in the currencies that would typically comprise the

high and low interest rate baskets that an investor would go long and short on

when trading. Hence, I conclude that our second contribution to the literature has

been to rigorously demonstrate that such assertions relating to the profitability

of the currency carry trade (based on Sharpe ratio for instance) are failing to

appropriately take into consideration an important component of the risk which

characterizes these types of portfolios of currencies named carry trade portfolios.

I conclude that indeed the copula theory employed in this thesis allows me to

demonstrate statistically that beyond the intrinsic risk associated to high interest

rate countries (which are generally paying higher interest rates to compensate

for a higher risk) typically studied in the literature from a marginal perspective,

another source of risk plays an important role. This second source of risk is related

to the dependence structures linking these high interest rate currencies, more

specifically the significant tail dependence features observed in this model analysis.

Through an Archimedean copulae mixture model the significant presence of tail

dependence among high interest rate currencies is shown. This tail dependence

could have dramatic consequences on the carry trade portfolio’s risk profile when

appropriately accounted for in risk reward analysis. As a matter of fact, the

tail dependence directly influences the diversification of the assets during stress

periods and thus reduces the appealing convergence property stated by the modern

portfolio theory.
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In other words, this copula based probabilistic modelling approach allows me

to demonstrate that besides the intrinsic risk associated to each particular high

interest rate currency, another factor constitutes a determining source of risk

which turns out to be the level of risk aversion prevailing in the market. It was

demonstrated in this analysis that both upper and lower tail dependence features

displayed significant association and asymmetries with each other between the

high and low interest rate baskets during periods of relative financial stability

versus periods of heightened market volatility.

These tail dependence features in the high interest rate basket were significantly

increasing during crisis periods leading to an increased amount of risk associated

with utilising such currency baskets (which were no longer diversified due to the

presence of significant tail dependence features) in a carry trade. That being said,

a rational portfolio manager’s natural risk aversion tells them that they should

receive an additional remuneration in order to offset any additional sources of risk

associated to an investment. Therefore, to properly assess the profitability of the

currency carry trade, such tail dependence features should be incorporated into

the analysis of such risk-rewards when developing a trading strategy. To conclude,

this investigation rigorously tempers the too often claimed attractiveness of the

currency carry trade and provides to investors a risk management tool in order to

control and monitor the risk contained in such positions.
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Chapter 6

Part II Overview

In the second part of this thesis, the focus shifts away from the multivariate tail

dependence modelling approaches presented in Part I, in which currencies are given

equal weights in the portfolio (as is sometimes the case in the asset management

industry). In order to provide a risk management solution, in which currency

weights are considered, a covariance regression framework is introduced and its

novel application to investigate how observable and interpretable explanatory

factors influence the covariance structure of currency returns is presented.

Chapter 7 reviews the techniques available in the literature for modelling and

forecasting covariance. The multivariate GARCH modelling approach and its

many extensions are presented along with a discussion of the advantages and

disadvantages of the various models. Then an approach that facilitates the in-

corporation of observable factors into the conditional covariance of the standard

factor model is introduced, thus allowing for heteroskedastic unconditional co-

variance. Furthermore, a method by which the covariance factor models can be

utilised in combination with time series models for the factors in order to forecast

heteroskedastic covariance in an interpretable manner is detailed

Chapter 8 investigates how the behaviour of speculative traders impacts the

dependence structure of currency carry trade baskets. Speculative trading volume

factors are introduced into the covariance factor models presented in Chapter 7

allowing one to forecast portfolio covariance and thus perform risk based asset

allocation in currency carry trades.
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Chapter 7

Covariance Forecasting

In this chapter, the techniques available in the literature for modelling and forecast-

ing covariance are reviewed. Accurate covariance forecasts are of key importance

in providing a robust risk management approach to currency weight allocation

in carry trade portfolios. The ARIMA models considered for the explanatory

covariates are first presented. Building on this model, the multivariate GARCH

modelling approach and its many extensions are presented along with a discussion

of the advantages and disadvantages of the various models. Then an approach that

facilitates the incorporation of observable factors into the conditional covariance

of the standard factor model is introduced, thus allowing for heteroskedastic uncon-

ditional covariance. Furthermore, a method by which the covariance factor models

can be utilised in combination with time series models for the factors in order to

forecast covariance is detailed.

7.1 Univariate Time Series Models

In this section, the univariate autoregressive integrated moving average (ARIMA)

models considered for modelling and forecasting the explanatory covariates are

first presented. Following this, the extension to consider time-varying volatility in

the form of ARCH models and furthermore the generalisation to GARCH models

is detailed. This univariate GARCH model then forms the base of the multivariate

models discussed in Section 7.2.
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7.1.1 Univariate ARIMA Model

Autoregressive moving average models were introduced in the thesis of Peter

Whittle, see Whittle [1951]. These models became popular following the work

of Box and Jenkins, see Box et al. [2015]. An ARIMA model expresses the

conditional mean of a time series Yt as a function of both past observations and

past innovations. Here Yt is the time series resulting from first differencing the

time series, Xt, d times.

Definition 38. ARIMA(p,d,q) Model

Yt = (1− L)dXt (7–1)

Yt = c+ εt +

p∑
i=1

φiYt−i +

q∑
j=1

θjεt−j (7–2)

where φ1, . . . , φp, θ1, . . . , θq are parameters, c is a constant, εt is a white noise

process, and L is the lag operator, i.e. LXt = Xt−1.

While the ARIMA model is a popular time series model in practice due to

its parsimony, it is assumed that the error process is homoskedastic over time.

However, it is a stylized fact that financial time series data contain heteroskedastic

error processes.

7.1.2 Univariate ARCH Model

The ARIMA time series models for the mean are extended in the seminal paper

of Engle [1982] to produce autoregressive conditional heteroskedastic (ARCH)

models, which allow for time-varying volatility. These models assume the variance

of the current error term is a function of the squares of the previous error terms.

ARCH models are commonly employed in modelling financial time series that

exhibit time-varying volatility clustering.

Definition 39. ARCH(q) Model

εt = σtzt (7–3)
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σ2
t = α0 +

q∑
i=1

αiε
2
t−i (7–4)

where zt is a strong white noise process, α0 > 0, αi ≥ 0 and i > 0.

7.1.3 Univariate GARCH Model

An extension of the ARCH model to allow past conditional variances to appear in

the current conditional variance equation is proposed in Bollerslev [1986]. These

generalized autoregressive conditional heteroskedastic (GARCH) models assume

an ARMA model for the error covariance and thus allow a more flexible lag

structure and in many cases permit a more parsimonious model.

Definition 40. GARCH(p,q) Model

εt = σtzt (7–5)

σ2
t = α0 +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j (7–6)

where zt is a strong white noise process, α0 > 0, αi ≥ 0, βj ≥ 0 and i > 0.

An introduction to ARCH and GARCH Models can be found in Engle [2001].

Furthermore, a comprehensive overview of these models can be seen in the book,

Brooks [2014].

Following the introduction of the GARCH model there have been many

extensions proposed in the literature:

1. Non-linear GARCH (NGARCH) Engle and Ng [1993] allows negative returns

to increase future volatility by a larger amount than positive returns of the

same magnitude.

2. Integrated GARCH (IGARCH) Engle and Bollerslev [1986] is a restricted

version of the GARCH model, where the persistent parameters sum up to

one, and imports a unit root in the GARCH process.
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3. Exponential GARCH (EGARCH) Nelson [1991] models the log of the vari-

ance.

4. GARCH-in-mean (GARCH-M) Engle et al. [1987] incorporates the effect of

the volatility of the series on the mean.

5. Quadratic GARCH (QGARCH) Sentana [1995] models asymmetric effects

of positive and negative shocks.

6. Glosten-Jagannathan-Runkle GARCH (GJR-GARCH) Glosten et al. [1993]

allows for differing effects of negative and positive shocks, taking into account

the leverage phenomenon.

7. Threshold GARCH (TGARCH) Zakoian [1994] which is similar to the

GJR-GARCH model but instead models the standard deviation.

8. Family Garch (fGARCH) Hentschel [1995] is an omnibus model that nests a

variety of other popular symmetric and asymmetric GARCH models.

9. Continuous-time Garch (COGARCH) Klüppelberg et al. [2004] is a continuous-

time generalization of the discrete-time GARCH(1,1) process.

For synopses of GARCH model extensions in the univariate setting see Bollerslev

et al. [1994]; Hentschel [1995]; Palm [1996]; Shephard [1996].

Remark 7.1.1. The Exponentially Weighted Moving Average (EWMA) model is a

simple practical alternative to fitting a GARCH model (in fact it is a GARCH(1,1)

model with no long-run average volatility term). However, the subjective speci-

fication of λ, the volatility persistence parameter, is required. The RiskMetrics

approach, see J. P. Morgan [1996], uses the EWMA model with λ = 0.94 for daily

data and λ = 0.97 for weekly data.

Definition 41. EWMA Model

σ2
t = (1− λ)r2

t−1 + λσ2
t−1 (7–7)

where 0 ≤ λ ≤ 1.
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7.2 Multivariate GARCH Framework

In this section, the key flavours of multivariate GARCH models will be introduced

along with a discussion of the assumptions necessary and the advantages and

disadvantages of the various models. For a comprehensive survey of multivariate

GARCH models see Bauwens et al. [2006]; Silvennoinen and Teräsvirta [2009].

The multivariate extension of the GARCH framework is as follows: Consider

a vector stochastic process yt of dimension N × 1 conditioned on the sigma field

Ft−1. Let θ ∈ Rd denote a finite vector of parameters associated with the mean

and covariance of the process. Here, Ht(θ) represents the conditional covariance

matrix at time t. Both Ht(θ) and µt(θ) depend on the unknown parameter

vector θ, which can in most cases be split into two disjoint parts. Hereafter, for

readability Ht(θ) will be denoted by Ht and µt(θ) will be denoted by µt.

yt = µt + εt , (7–8)

where µt is the conditional mean vector and

εt = H
1/2
t zt , (7–9)

where H
1/2
t is a N × N positive definite matrix and zt is a N × 1 random

vector such that:

E(zt) = 0 (7–10)

and Var(zt) = IN , (7–11)

where IN is the identity matrix of order N.

Thus it can be seen that:

Var(yt|Ft−1) = Vart−1(yt) = Var(εt) (7–12)

= H
1/2
t Vart−1(zt)(H

1/2
t )′ (7–13)

where Ft−1 is the natural filtration of yt−1.

In extending the GARCH framework to the multivariate level and hence
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facilitating the modelling of the time-varying covariances of variables a number

of issues come into consideration. The following are important characteristics of

such a model:

� flexibility to capture the dynamics of conditional variances and covariances;

� parsimony to allow robust estimation and interpretation;

� positive definiteness of the covariance matrix.

The literature consists of a wide range of proposed multivariate GARCH

models due in part to the difficulty in combining these characteristics. A summary

of some key MGARCH models follows below. The VEC model proposed by

Bollerslev et al. [1988] was the first GARCH model and is the root of the very

prolific literature about multivariate GARCH.

7.2.1 VEC-GARCH Model

The Vectorised GARCH (VEC) model, see Bollerslev et al. [1988], presents the

most general extension of the univariate GARCH model in that each element of

Ht is a linear function of the lagged squared errors and cross-products of errors

and lagged values of the elements of Ht.

Definition 42. VEC(p,q) Model

vech(Ht) = c+

q∑
i=1

Aivech(εt−iε
′
t−i) +

p∑
j=1

Bjvech(Ht−j) (7–14)

where vech(·) is an operator that stacks the columns of the lower triangular

part of its argument square matrix, c is an N(N + 1)/2× 1 vector, and Ai and

Bj are N(N + 1)/2×N(N + 1)/2 parameter matrices.

As mentioned above, the VEC model is the most general MGARCH model

and thus is very flexible. However, to ensure the positive definiteness of Ht a

set of restrictive sufficient conditions must be satisfied, see Gouriéroux [2012] for

details. Furthermore, the number of model parameters is very large unless N is
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small, e.g. for a VEC(1,1) model of a 5 dimensional time series the number of

parameters, Np, is given by (p+ q)(N(N + 1)/2)2 +N(N + 1)/2 = 465.

In addition the estimation of the parameters in the VEC model is computation-

ally demanding since Ht needs to be inverted for every t in the likelihood at each

iteration. The likelihood function of such a large number of parameters becomes

very flat, and so convergence problems can be a serious issue in the optimisation

routine.

Thus it is clear that some simplifying assumptions and structure has to be

enforced on the covariance matrix. A quite severe restriction is considered in

Bollerslev et al. [1988] in which the parameter matrices Ai and Bj are diagonal

matrices. This model contains (p + q + 1)N(N + 1)/2, e.g. for a Diagonal-

VEC(1,1) model of a 5 dimensional time series the number of parameters is equal

to 45. However, this model allows no interaction between the different conditional

variances and covariances.

7.2.2 BEKK Model

Due to the difficulty of ensuring the positive definiteness of Ht without imposing

strong restrictions on the parameters, Engle and Kroner [1995] introduced a

new approach, named the Baba, Engle, Kraft and Kroner (BEKK) Model, that

provides positive definiteness by construction.

Definition 43. BEKK(p,q,K) Model

Ht = CC′ +

q∑
i=1

K∑
k=1

A′kiεt−iε
′
t−iAki +

p∑
j=1

K∑
k=1

B′kjHt−jBkj (7–15)

where C, Ai and Bj are N ×N parameter matrices. The summation limit K

determines the generality of the process. Note C is lower triangular to ensure the

positive definiteness of Ht.

Whenever K > 1 there is an identification problem since there are several

possible parameterizations that yield the same representation of the model, see

Engle and Kroner [1995] for details. Estimation of a BEKK model is also com-

putationally expensive due to a number of matrix inversions. The number of
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parameters in the BEKK model is still quite substantial, e.g. for a BEKK(1,1,1)

model of a 5 dimensional time series the number of parameters, Np, is given by

(p+ q)KN2 +N(N + 1)/2 = 65.

Remark 7.2.1. Since VEC models and BEKK models contain such a high number

of unknown parameters, even after imposing restrictions, they are rarely used for

N > 3. In the literature this issue has been notably addressed by imposing a

common dynamic structure on the elements of Ht via factor models or orthogonal

models.

7.2.3 Factor-GARCH Model

In order to address the curse of dimensionality issue a factor based approach was

proposed in Engle et al. [1990]. Here, the authors assume that the observations

are generated by a small number of factors that are conditionally heteroskedastic

and have a GARCH structure.

Definition 44. Factor GARCH Model

Ht = Ω +
K∑
k=1

ωkω
′
kfk,t (7–16)

where Ω is an N × N positive semi-definite matrix, ωk, k = 1, . . . K, are

linearly independent N × 1 vectors of factor weights, and fk,t are the factors. It is

assumed that these factors have a first-order GARCH structure:

fk,t = ξk + αk(γ
′
kε

2
t−1) + βkfk,t−1 (7–17)

where ξk, αk, and βk are scalars and γk is an N × 1 vector of weights.

A two-step estimation procedure using maximum likelihood is described in

Engle et al. [1990]. This approach is shown to be consistent but not efficient.

Remark 7.2.2. The factor GARCH model makes the restriction that the factors

are first order GARCH processes, which means that if multiple correlated factors

are incorporated then a multivariate GARCH model is required. All factor GARCH

models can be written as special BEKK models. This has prompted the proposal

of orthogonal factor GARCH models.
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7.2.4 Orthogonal-GARCH Model

The Orthogonal GARCH (O-GARCH) model is introduced in Alexander and

Chibumba [1997] to allow the conditional covariance matrix to be generated by a

small number of orthogonal univariate GARCH factors.

Definition 45. Orthogonal GARCH(1,1,m) Model

V −1/2εt = ut = Λmft (7–18)

where V = diag(v1, . . . , vN), with vi the population variance of εit, and Λm is

a matrix of dimension N ×m given by:

Λm = Pmdiag(l
1/2
1 , . . . , l1/2m ) (7–19)

l1 ≥ . . . ≥ lm > 0 being the m largest eigenvalues of the population correlation

matrix of ut, and Pm the N × m matrix of associated (mutually orthogonal)

eigenvectors. The vector ft = (f1,t, . . . , fmt)
′ is a random process such that the

conditional expectation, Et−1, and conditional variance, Vart−1, at time t− 1 are

as follows:

Et−1(ft) = 0 (7–20)

Vart−1(ft) = Σt = diag(σ2
f1t
, . . . , σ2

fmt) (7–21)

σ2
f1t

= (1− αi − βi) + αif
2
i,t−1 + βiσ

2
fi,t−1

i = 1, . . . ,m (7–22)

Thus,

Ht = Vart−1(εt) = V 1/2VtV
1/2 (7–23)

where

Vt = Vart−1(ut) = ΛmΣtΛ
′
m (7–24)

The parameters of the model are V , Λm and the parameters of the GARCH

factors (αi’s and βi’s). Hence the number of parameters is N(N +5)/2 (if m = N).

However, in practice V and Λm are replaced by their sample counterparts, and m

is chosen by principal component analysis applied to the standardized residuals
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ût. A primer on the Orthogonal GARCH model can be seen in Alexander [2000].

It is important to note that the conditional variance matrix has reduced rank (if

m < N), which may be a problem for applications and for diagnostic tests which

depend on the inverse of Ht.

7.2.5 GO-GARCH Model

Van der Weide [2002] relax the assumption of orthogonality by only assuming the

matrix Λ is square and invertible. Thus producing the following generalisation of

the O-GARCH model:

Definition 46. Generalised Orthogonal GARCH(1,1) Model

The implied conditional correlation matrix of εt can be expressed as:

Rt = J−1
t VtJ

−1
t (7–25)

where Jt = (VtIm)1/2, Vt = ΛΣtΛ
′ and Σt := V ar(εt)

The singular value decomposition of the matrix Λ is used as a parametrization,

i.e. Λ = PL1/2U , where the matrix U is orthogonal, and P and L are the

eigenvector and eigenvalue matrices. Note that the O-GARCH model (when

m = N) corresponds to the particular choice U = IN .

In order to estimate the model Van der Weide [2002] first replace P and L

by their sample counterparts and then the remaining parameters, i.e. U are

estimated together with the parameters of the GARCH factors in a second step.

Remark 7.2.3. Lanne and Saikkonen [2007] also propose a Generalised Orthogo-

nal Factor model, which allows some of the factors to be homoskedastic.

7.2.6 FF-GARCH Model

A Full Factor GARCH model is introduced in Vrontos et al. [2003], in which the

W matrix is restricted to be triangular.
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Definition 47. FF-GARCH Model

Ht = WΣtW
′ (7–26)

where W is a N ×N triangular parameter matrix with ones on the diagonal and

the matrix Σt = diag(σ2
1,t, . . . , σ

2
N,t) where σ2

i,t is the conditional variance of the

i-th factor, i.e. the i-th element of W−1εt, which can be separately defined as any

univariate GARCH model.

Furthermore, the parameters in W are estimated directly using conditional

information only.

Remark 7.2.4. Dellaportas and Vrontos [2007] propose a class of multivariate

threshold GARCH models to capture volatility asymmetries in financial time series.

The approach is based on the idea of a binary tree where every terminal node

parametrizes a (local) multivariate GARCH model for a specific partition of the

data. Giannikis et al. [2008] introduce a class of flexible threshold normal mixture

GARCH models to accommodate the stylized facts that appear in many financial

time series. The authors develop a Bayesian stochastic method for the analysis of

the proposed model allowing for automatic model determination and estimation of

the thresholds and their unknown number.

Zhang and Chan [2009] introduce three factor GARCH models in the frame-

work of GO-GARCH and furthermore present a convenient two-step method for

estimating these models. The three models are as follows:

1. Independent-factor GARCH model, which exploits factors that are statisti-

cally as independent as possible, as measured by mutual information.

2. Best-factor GARCH model, which contains factors that have the largest

autocorrelation in their squared values, such that their volatilities could be

forecast well by univariate GARCH.

3. Conditional-decorrelation GARCH model, in which the factors are as condi-

tionally as uncorrelated as possible.
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Factor-DCC models are then proposed as an extension to the factor GARCH

models with dynamic conditional correlation (DCC) modelling the remaining

conditional correlations between factors.

7.2.7 CCC Model

A more parsimonious approach to multivariate GARCH modelling can be attained

by separately modelling the individual conditional variances and then the condi-

tional correlation matrix. This results in a non-linear combination of univariate

GARCH models.

The Constant Conditional Correlation (CCC) model, introduced in Bollerslev

[1990], considers the conditional correlation matrix to be time-invariant. Thus

the conditional covariance matrix can be expressed as follows:

Definition 48. Constant Conditional Correlation (CCC) Model

Ht = DtR̃Dt (7–27)

where Dt = diag(h
1/2
11,t, . . . , h

1/2
NN,t), hii,t can be defined as any univariate GARCH

model and the correlation between the returns is assumed to be constant over time

and given by matrix R̃. Note that the R̃ is used here to distinguish between the

usage of R in the next section to denote returns.

The CCC model contains N(N + 5)/2 parameters. Ht is positive definite if

and only if all the N conditional variances are positive and R̃ is positive definite.

The unconditional covariances are difficult to calculate because of the non-linearity

in equation 7–27.

7.2.8 DCC Model

Under the DCC model proposed by Engle [2002]; Christodoulakis and Satchell

[2002]; Tse and Tsui [2002] the correlation is specified to be dynamically evolving

in time. According to the model of Engle [2002] the conditional covariance matrix

is specified as follows:
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Definition 49. Dynamic Conditional Correlation (DCC) Model

Ht = DtR̃tDt (7–28)

where Dt = diag(h
1/2
11,t, . . . , h

1/2
NN,t), hii,t can be defined as any univariate GARCH

model and the dynamic of the conditional correlation is expressed according to the

relationship:

R̃t = diag(q
−1/2
11,t , . . . , q

−1/2
NN,t)Qtdiag(q

−1/2
11,t , . . . , q

−1/2
NN,t) (7–29)

where the N ×N symmetric positive definite matrix Qt = (qij,t) is given by:

Qt = (1− α− β)Q̄+ αut−1u
T
t−1 + βQt−1 (7–30)

with uit = εit/
√
hii,t. Q̄ is the N ×N unconditional variance matrix of ut, and α

and β are non-negative scalar parameters satisfying α + β < 1.

The elements of Q̄ can be estimated jointly with the other model parameters

or can be set to the sample estimate to reduce the number of parameters and

hence simplify the procedure.

The DCC model has been extensively studied in the literature, see Engle and

Colacito [2006]; Aielli [2013], and is a popular proposal to model the conditional

variances and correlations. An interesting paper on the properties of the DCC

model is Caporin and McAleer [2013]. Extensions to the DCC model are the

asymmetric conditional correlation model of Cappiello et al. [2006], the consistent

DCC of Aielli [2013] and the sequential DCC model of Palandri [2009].

7.3 Covariance Factor Models

The broad financial literature on asset price dynamics has proposed various

solutions to model the expected returns and the covariance between financial

assets. While the multivariate GARCH models cope with a salient feature of

financial asset prices, namely the heteroskedasticity of the variance and covariance

of returns, they do not provide a direct interpretation of the factors intervening in

the dynamic of the drift and the conditional variance or covariance. For instance,
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7. COVARIANCE FORECASTING

the GO-GARCH model proposed by Van der Weide [2002] or Lanne and Saikkonen

[2007] relies upon latent independent, but not necessarily orthogonal, covariates

which are not directly economically interpretable after going through the factor

construction. The Factor GARCH model of Engle et al. [1990] does not allow for

the incorporation of multiple interpretable non-independent factors, e.g. observed

economic variables, without creating a multivariate GARCH model on the factors

(and hence having to deal with the many issues associated with this).

In this section I will first present the standard multi-factor model and then

introduce a class of generalised factor models (GFM) based around an explicit

covariance regression model, first devised in the statistics literature in Hoff and

Niu [2012]. This GFM model has the highly desirable property of being able to

naturally incorporate interpretable covariates into the covariance dynamic. Thus,

interpretable covariance forecasts can be achieved by modelling and forecasting

these covariates. Furthermore, I will then give a detailed presentation of the

estimation procedure considered for this model via a random-effects representation

and expectation maximization (EM) algorithm that is numerically robust and

efficient to implement in this context.

I first define two sets of information filtration, which will be used in this

modelling framework:

Definition 50. Natural Filtration

Let Ft denote the natural filtration of the observed portfolio vector valued returns,

i.e. in the t-th window it would correspond to the observed σ-algebra generated by

the asset returns, Rt:

Ft = σ (Rt,Rt−1, . . . ,Rt−T ) (7–31)

obtained looking over a sliding window of length T .

The second filtration I will define is based on exogenous independent explana-

tory variables or factors Xt and will be denoted by Gt.

Definition 51. Natural Covariate Filtration

This filtration is the natural filtration of the observed covariates vector values, i.e.
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in the t-th window it would correspond to the observed σ-algebra generated by

Gt = σ (Xt,Xt−1, . . . ,Xt−T ) . (7–32)

It is important to distinguish these two information sets as they will produce

different ways of studying and constructing the portfolio.

Furthermore, when talking about population versus sample realizations of

different model estimators it will also be useful to define the extended filtration

G̃t:

Definition 52. Extended Covariate Filtration

G̃t = ∪ti=1Gi (7–33)

i.e. all of the covariate information up until time t.

7.3.1 Standard Factor Model

In standard Multi-factor models, see Green and Hollifield [1992], Chan et al. [1999],

the error terms ε̃t are assumed to be independent, identically distributed and impor-

tantly having a homoskedastic covariance over time, i.e.

ε̃t
iid∼ WN(0, diag(σ2

1, . . . , σ
2
N)) for some zero mean homoskedastic white noise

driving vector, typically selected to be a multivariate normal distribution. The

multi-factor model can be expressed as the standard multi-variate linear regression

model displayed below:

Rt = α+ βXt + ε̃t , (7–34)

where N := number of assets and K := number of covariates,

Rt := N-dimensional vector of log asset returns at week t,

α := N-dimensional vector constant,

β := N-by-K-dimensional matrix of mean covariate loadings,

Xt := K-dimensional vector of covariate values at week t,

ε̃t
iid∼ N(0, diag(σ2

1, . . . , σ
2
N)) are the N-dimensional errors at week t,
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Extensions of such models sometimes incorporate lagged dependent variables,

such as in multivariate (Autoregressive Distributed Lag) ARDL models, cointe-

gration Error correction (ECM) models and more recently translation invariant

copula models, in which the vector valued innovation error distribution is specified

through marginals and a copula structure which may also be dynamic itself, see

Hafner and Manner [2010]; Salvatierra and Patton [2015]. Under the simple

version of this multi-factor model in Equation 7–34 the unconditional covariance

matrix (population estimator) is easily obtained according to the following terms:

Cov(Rt|Ft ∪ G̃t) = βCov(Xt|G̃t)βT + diag(σ2
1, . . . , σ

2
N) . (7–35)

One can think of this unconditional, in the sense of filtration Gt, as being a

population based realisation. Then there is the conditional covariance matrix

given the covariates values Xt according to the expression:

Cov(Rt|Ft) = diag(σ2
1, . . . , σ

2
N) . (7–36)

This conditional covariance is to be understood in the sense of the conditioning on

the realization of the exogenous covariates realized values and not the population

variability. It can be seen from these two covariance specifications that this

standard multi-factor model of the returns Rt indeed assumes that these random

vectors are independent and homoskedastic given the covariates Xt.

7.3.2 Generalised Multi-Factor Model Specification

The covariance regression model introduced in Ames et al. [2015b] and termed

the Generalised Multi-Factor model is developed below to extend the traditional

Multi-Factor model by allowing the factors to appear in the covariance of the

idiosyncratic error terms and thus produce a more flexible model that is capable of

capturing heteroskedasticity in the error terms and hence in both the unconditional

and conditional covariance matrices. Furthermore, I will demonstrate how this

model can be fit using an Expectation-Maximisation (EM) algorithm utilising a

reformulation of the covariance regression structure under a specifically designed

random-effects representation to produce a closed form E-step and a least squares
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solution for the M-step, as will be discussed in Section 7.3.3.

In order to capture the heteroskedastic effects of the covariates on the covariance

of the returns, Rt, the following model is proposed:

Rt = α+ βXt + et , (7–37)

where N := is the number of assets,

K := is the number of covariates,

Rt := is the N-dimensional asset log returns,

α := is the N-dimensional constant,

β := is the N-by-K-dimensional matrix of mean covariate loadings,

Xt := is the K-dimensional vector of covariate values,

et
i.i.d.∼ N(0,CXtX

T
t C

T + Ψ) are the N-dimensional errors,

C := is the N-by-K matrix of covariate loadings,

Ψ := is the N-by-N baseline covariance of the errors et.

It is trivial to derive the unconditional covariance matrix as follows:

Cov(Rt|Ft ∪ G̃t) = βCov(Xt|G̃t)βT +CE(XtX
T
t |G̃t)CT + Ψ , (7–38)

where in this case the observed factors Xt are also assumed to be random vectors

and therefore to admit a covariance structure that is locally stationary. The

conditional covariance matrix, given the factors, of this multi-factor model is as

follows:

Cov(Rt|Ft ∪ Gt) = CXtX
T
t C

T + Ψ , (7–39)

where the conditional covariance will be specified according to two terms, the

baseline covariance structure Ψ that is present throughout all time, and a separate

symmetric strictly positive definite covariance component that captures the rela-

tionship between the factors and the heteroskedasticity in the returns over time.

From this it can be seen that the heteroskedasticity in the conditional covariance

is given by the covariance of the error terms et. One can note here that the

difference between equation 7–38 and equation 7–39 is due to the conditioning of

the covariance on the covariate values Xt only over the lookback period L.
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7.3.3 Generalised Multi-Factor Model: Covariance

Regression Model Estimation via Random-Effects

Representation

To perform estimation it is convenient to formulate the covariance regression

model as a special type of random-effects model, see Hoff and Niu [2012], for

observed data R1, . . .RT (N -dimensional returns of length T ).

Rt = α + βXt + γt ×CXt + εt ,

E[εt] = 0 , Cov(εt) = Ψ ,

E[γt] = 0 , V ar[γt] = 1 , E[γt × εt] = 0.

(7–40)

Step 1: Mean De-trending of Returns.

The first step is to perform the mean-regression, via in this case a standard

linear regression model. This will produce zero-mean residuals êt, given by

êt = Rt − α̂− β̂Xt, where β̂ is the vector of mean regression loading estimates

and the covariate vector is denoted by Xt.

Step 2: Covariance Regression of Mean-Detrended Returns.

Next, perform the covariance regression of these residuals on the factors, using

the random-effects representation:

êt = γt ×CXt + εt ,

E[εt] = 0 , Cov(εt) = Ψ ,

E[γt] = 0 , V ar[γt] = 1 , E[γt × εt] = 0. (7–41)

The resulting covariance matrix for êt = Rt− α̂−βXt, conditional on Xt is then

given by,

ΣXt
:= E[êtê

T
t |Xt]

= E[γ2
tCXtX

T
t C

T + γt(CXtε
T
t + εtX

T
t C

T ) + εtε
T
t |Xt]

= CXtX
T
t C

T + Ψ. (7–42)
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This random-effects model allows maximum likelihood parameter estimation of the

coefficients, C and Ψ, to be performed via the Expectation Maximization (EM)

algorithm. I proceed by iteratively maximising the complete data log-likelihood of

Ê = ê1, . . . , êT denoted l(C,Ψ) = log p(Ê|C,Ψ,X,γ), which is obtained from

the multivariate normal density given by:

−2l(C,Ψ) =TN log(2π) + T log|Ψ|+
T∑
t=1

(êt − γtCXt)
TΨ−1(êt − γtCXt). (7–43)

Note that the conditional distribution of the random effects given the data and

covariates is then conveniently given by a normal distribution in each element

according to {γt|Ê,X,Ψ,C} = N(mt, vt) with mean mt = vt(ê
T
t Ψ−1CXt) and

variance vt = (1 + XT
t C

TΨ−1CXt)
−1. The advantage of this random effects

specification of the covariance regression is that taking the conditional expectation

of the complete data log likelihood, with respect to the conditional distribution

of the random effect parameters γt, one obtains a closed form expression for the

Expectation E-step. In addition, expressions for the maximization step (m-step)

are also attainable in closed form, see details in Hoff and Niu [2012].

7.4 Covariates and Covariance Forecasting

In this section, I present the method utilised to obtain forecasts of the returns

covariance matrix under the Generalised Multi-Factor Model (GFM) framework

that was developed in Section 7.3.2. In order to obtain forecasts of the covariance

the covariates vector Xt needs to be forecast.

7.4.1 Big Data Time Series Forecasting

The traditional approach to modelling and forecasting a given time series is the

well known Box-Jenkins method, see Box et al. [2015]. However, this can be

prohibitively time consuming if there are many time series to model and forecast,

which can be the case for sliding window analyses for example. The Box-Jenkins
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method is outlined below, followed by an automatic approach in order to overcome

this big data issue.

7.4.1.1 Box-Jenkins Method

The Box-Jenkins methodology, see Box et al. [2015], is a five-step process for

identifying, selecting, and assessing autoregressive integrated moving average

(ARIMA) models for time series data. The steps are as follows:

Algorithm 4 Box-Jenkins methodology

1. Establish the stationarity of the time series and if there is any significant
seasonality that needs to be modelled. If the series is not stationary, succes-
sively difference the series to attain stationarity. The sample autocorrelation
function (ACF) and partial autocorrelation function (PACF) of a stationary
series decay exponentially (or cut off completely after a few lags).

2. Identify a (stationary) conditional mean model for the data. The sample
ACF and PACF functions can help with this selection. For an autoregressive
(AR) process, the sample ACF decays gradually, but the sample PACF cuts
off after a few lags. Conversely, for a moving average (MA) process, the
sample ACF cuts off after a few lags, but the sample PACF decays gradually.
If both the ACF and PACF decay gradually, consider an ARMA model.

3. Specify the model, and estimate the model parameters via maximum likeli-
hood estimation or non-linear least-squares estimation.

4. Check the goodness-of-fit of the proposed model. Residuals should be uncor-
related, homoskedastic, and normally distributed with constant mean and
variance. Plotting the mean and variance of residuals over time and perform-
ing a Ljung-Box test or plotting autocorrelation and partial autocorrelation
of the residuals are helpful to identify misspecification. If the residuals are
not normally distributed, a Student’s t distribution can be considered for
the innovations. Return to step one if the model is inadequate.

5. After choosing a model and checking its fit and in-sample and out-of-sample
forecasting ability the model can be used to forecast or generate Monte
Carlo simulations over a future time horizon.
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7.4.1.2 Automatic Covariate Forecasting

In order to obtain forecasts of the covariance of the returns, following the GFM

model in equation 7–39, the covariates Xt must be forecast. If the number of time

series to be modelled is large it will be important to consider an automatic proce-

dure. Here, I present the Hyndman-Khandakar algorithm for automatic seasonal

autoregressive integrated moving average (SARIMA) modelling as implemented in

the auto.arima function in the R forecast package Hyndman [2015], see Hyndman

and Khandakar [2008] for details.

The outline of the algorithm to fit the ARIMA model to each covariate time

series is as follows:

Remark 7.4.1. Such an automated procedure for model selection is particularly

relevant in the context of the modelling in this thesis, since in Chapter 8 I carry

out a sliding window analysis. I have K time series to be fit for every sliding

window and there is one sliding window for each trading day over the entire length

of data analysed. This is equivalent to 270× (15 + 11) total number of models to

be fit. Thus, with this many models I need an automatic and efficient procedure.

7.4.1.3 Covariate Forecasting Accuracy

To assess the suitability of a fitted ARIMA model it is important to analyse the

accuracy of the forecasts. A well known measure of forecast accuracy is the Mean

Absolute Percentage Error (MAPE) criterion.

Definition 53. Mean Absolute Percentage Error (MAPE)

MAPEτ = 100× 1

τ

τ∑
t=1

(
|Xt − X̂t|
|Xt|

)
(7–44)

where the numerator is the forecast error at time t.

In addition to the MAPE criterion I also consider the Mean absolute scaled

error (MASE) as given in Definition 54 and introduced in Hyndman and Koehler

[2006]. The MASE measure scales the error based on the in-sample MAE from

the näıve (random walk) forecast method and thus allows the comparison of time

series on different scales and is also robust to values close to zero.
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Algorithm 5 Automatic ARIMA model selection

1. The number of differences d is determined using repeated Kwiatkowski-
Phillips-Schmidt-Shin KPSS hypothesis tests. This is a family of hypothesis
tests for a time series that is assumed to be represented as the linear
combination of a deterministic trend, a random walk, and a stationary error.
Then the test statistic is formed from the Lagrange multiplier test of the
hypothesis that the random walk has zero variance. Such a test is capable
of testing both the unit root hypothesis and the stationarity hypothesis.

2. The values of p and q are then chosen by minimizing the AICc after differ-
encing the data d times. Rather than considering every possible combination
of p and q, the algorithm uses a stepwise search to traverse the model space.

(a) The best model (with smallest AICc) is selected from the following
four:

ARIMA(2,d,2), ARIMA(0,d,0), ARIMA(1,d,0), ARIMA(0,d,1).

If d = 0 then the constant c is included;
if d ≥ 1 then the constant c is set to zero. This is called the “current
model”.

(b) Variations on the current model are considered:

i. vary p and/or q from the current model by ±1;

ii. include/exclude c from the current model.

The best model considered so far (either the current model, or one of
these variations) becomes the new current model.

(c) Repeat Step 2(b) until no lower AICc can be found.
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Definition 54. Mean Absolute Scaled Error (MASE)

MASEτ =
1

τ

τ∑
t=1

(
|ẽt|

1
n−1

∑n
i=2 |Xi −Xi−1|

)
(7–45)

where the numerator ẽt is the forecast error at time t, defined as the actual value

(Xt) minus the forecast value (X̂t) for that period, i.e. ẽt = Xt − X̂t, and the

denominator is the average in-sample forecast error over n data points of the

one-step näıve (random walk) forecast method, which uses the actual value from

the prior period as the forecast, i.e. X̂t = Xt−1.

Remark 7.4.2. It is interesting to note that when the time series under consid-

eration is very close to being white noise then the MASE measure will be close to

1 and thus can potentially mislead the statistician into thinking the model is useful

for forecasting.

7.4.2 Forecasting Covariance via Factor Models

Given forecasts of the covariate time series, the τ -step ahead unconditional

covariance matrix can be forecast via the following procedure:

Algorithm 6 Covariance forecasting utilising GFM model and covariates forecasts

1. Fit Generalised Multi-Factor Model to the data period [t − L : t] via the
method in Section 7.3.3 to obtain parameter estimates β̂, Ψ̂ and Ĉ. L is
the lookback period: for example L = 125 data points.

2. Forecast τ -step ahead covariate values, X̂t+τ for each covariate individually,
as described by the SARIMA forecasting method in Hyndman and Khandakar
[2008].

3. The τ -step ahead covariance matrix is calculated as:
Ĉov(Rt+τ |t|Ft ∪ G̃t) = β̂Cov(X̂t+τ |t|G̃t)β̂T + ĈE(X̂t+τ |tX̂

T
t+τ |t|G̃t)ĈT + Ψ̂ .

4. The τ -step ahead conditional covariance matrix forecast is given by:

Ĉov(Rt+τ |t|X̂t+τ |t,Ft ∪ Gt) = ĈX̂t+τ |tX̂
T
t+τ |tĈ

T + Ψ̂ .
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In the next chapter, I contribute to the currency multivariate dynamic mod-

elling literature through the application of the proposed GFM model to currency

covariance modelling. In doing so I propose to include a set of covariates which

combine factors commonly found in currency modelling and other factors relating

to speculative trading volumes.
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Chapter 8

Covariance Forecasting Factor

Models in Currency Carry Trades

In this chapter, I will investigate how the behaviour of speculative traders impacts

the dependence structure of currency carry trade baskets. Speculative trading

volume factors are introduced into the covariance factor models presented in

Chapter 7 allowing one to forecast portfolio covariance and thus perform risk

based asset allocation in currency carry trades. Furthermore, the impact of this

speculator behaviour on the tail dependence of carry trade baskets is analysed.

8.1 Research Contribution: Speculative Trad-

ing Behaviour and Dependence Structure of

Currency Returns

This chapter explores the impact of speculative trading behaviour on the depen-

dence structure of currency returns. The ratio of speculative open interest (net

non-commercial positions) to total open interest, termed the SPEC factor, is

shown to provide a good proxy to the behaviour of carry trade investors via a

PCA analysis.

A covariance regression modelling approach whereby the influence of observed

covariates on the covariance of the multivariate returns of a basket of assets is
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CURRENCY CARRY TRADES

proposed. In particular, the impact of speculative trading behaviour, i.e. the

SPEC factors, on the covariance of carry currencies is investigated. These SPEC

factors are shown to hold several orders of magnitude more explanatory power

than the price index factors, DOL and HMLFX , previously suggested in the

literature. Furthermore, it is demonstrated that the time series for the DOL

and HMLFX factors are very close to white noise and as such are essentially

unforecastable. The suggested speculative open interest factors are shown to be

amenable to ARIMA model fits and so produce reasonable forecast accuracy.

Thus, time series models for these covariates of interest are built and hence

forecasts of the covariance of a basket of currencies can be obtained. Therefore,

the inherent heteroskedasticity of the covariance of a basket of currencies can be

modelled and forecast whilst maintaining the desirable property of interpretability

of the model. As shown in this thesis, this forecasting ability is then useful for

risk management, portfolio optimisation and trading strategy development.

A sensitivity analysis of the covariance to the factors is also presented allowing

the estimation of a confidence interval of the covariance matrix entries as a function

of the marginal distribution of each covariate used for the covariance regression. In

addition, a regression of the tail dependence measures, obtained from the mixture

copula modelling approach, on the SPEC factors illustrates the influence of carry

trade speculative behaviour on the extremal joint currency returns. The DOL

and HMLFX are shown to hold little explanatory power in the joint tails.

8.2 Currency Data and Currency Factors

Description

Here, I consider two sets of currency baskets typically associated with a currency

carry trade strategy. One portfolio consisting of a long basket and a second

portfolio consisting of a short basket. The long basket contains four major

“investment” currencies, namely United Kingdom (GBP), Australia (AUD), Canada

(CAD) and New Zealand (NZD), while the short basket contains three major

“funding” currencies, namely Euro (EUR), Japan (JPY) and Switzerland (CHF).

These baskets were chosen to replicate the pre-2009 NBER recession study carried
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out in Brunnermeier et al. [2008], and hence to highlight that the skewness

relationships presented by the authors are found to be substantially different post-

2009 NBER recession. In addition, the limited availability of the open interest

rate data to only 7 developed market currencies didn’t allow for the use of the

same baskets considered in Part I of this thesis. I have considered daily settlement

prices for each currency exchange rate as well as the daily settlement price for

the associated 1 month forward contract in order to derive the weekly carry trade

mark-to-market returns, Rt. The daily time series analysed were obtained from

Bloomberg and range from 04/01/1999 to 29/01/2014. As I am working on the

trading volume based covariance modelling I choose 1st April 1999, i.e. the date

of the introduction of the Euro, as the starting date of the sample.

For the explanatory factors in the currency analysis I consider a range of

different factors that I motivate in this section from an economic perspective as

well as a quantitative perspective. In a similar vein to the famous three stock-

market factors and the two bond-market factors proposed by Fama and French

[1993] to explain bonds and equities returns, Lustig et al. [2011] propose a factor

decomposition of the currencies returns. Such models are built upon one of the

cornerstones of financial theory which is the risk premium. These yields implicitly

stored within asset returns would thus be received by investors willing to bear

the associated sources of risk. Lustig et al. [2011] demonstrate with the help of a

principal component analysis that two linearly independent factors could explain

most of the variability in the cross section of the international exchange rates. The

first factor would correspond to a level factor, named “dollar risk factor” or DOL,

which is essentially the average relative value change of a foreign currency basket

against the dollar1. The second factor embodies the market induced risk premium

associated to the currencies with the highest differential of interest rates relative

to the others and is accordingly named in the literature the High-Minus-Low risk

factor or HMLFX .

Definition 55. Dollar (DOL) Factor

1When an American investor is considered. However it is asserted in the same article that
similar results are obtained when we retain the Japanese, British or Swiss investor’s point of
view.
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The DOL factor is defined as:

DOL =
1

N

N∑
i=1

Ri , (8–1)

where Ri is the log return of currency i and N is the total number of currencies.

Definition 56. High-Minus-Low (HMLFX) Factor

The HMLFX factor is defined as:

HMLFX =
1

P

P∑
j=1

Rj −
1

Q

Q∑
k=1

Rk , (8–2)

where Rj is the log return of currency j in the high interest rate basket, Rk is

the log return of currency k in the low interest rate basket, and P and Q are the

number of currencies in the high interest rate basket and the low interest rate

basket respectively.

Lustig et al. [2011] show that over time higher interest rate currencies have

a tendency to load more on the latter than low interest rate currencies. The

explanatory power of the HMLFX factor is indeed significant when characterizing

the intertemporal presence of the cross-sectional variation on average exchange

rates among high and low interest rate currencies. This last statement justifies

the inclusion of these market risk premium in the set of factors retained for

the covariance regression model. Moreover, I also take into consideration the

respective factor’s volatility σDOL, σHML as well as the covariance between the

factors σDOL,HML.

Ames et al. [2015a] recently demonstrated that on top of these price-based data

sets another set of covariates is significant in explaining the joint dynamic between

currencies. This additional set of covariates encompasses all the speculative net

positions held by the non-commercial investors in the futures market. Leaning on

a very rich academic literature, the relation between assets variance or covariance

and trading volume has been recurrently demonstrated by academics. Among the

seminal papers in this domain George E. Tauchen [1983] proposed the theoretical

foundations with the Mixture-of-Distributions Hypothesis (MDH), which has been
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extended to the multivariate case recently by He and Velu [2014]. A parallel can

be drawn between this branch of the literature and the empirical works concerning

the influence of the speculative volumes upon financial assets joint and marginal

dynamics Brunnermeier et al. [2008]; Brunnermeier and Pedersen [2009]; Anzuini

and Fornari [2012]; Hutchison and Sushko [2013]; Fong [2013]; Ames et al. [2015a].

Therefore, I augment the price-based covariance regression model with speculative

volume information provided in a weekly report published by the CFTC, see

CFTC [2015]. In doing so, I assume the financial inflows and outflows resulting

from the adjustments of the speculative long or short positions generate and

thus could help explain dependences between international exchange rates, as

demonstrated in Ames et al. [2015a]. This approach allows the market trading

volumes resulting from the adjustments of the speculative long or short positions

to be utilised to help explain the dependences between international exchange

rates, as demonstrated in Ames et al. [2015a]. The weekly report provides the

Commitments of Traders: showing the open positions, long and short, on the

currency future contracts traded on the Chicago Mercantile Exchange and breaks

them down into commercial, non-commercial and non-reportable positions. The

group of the non-commercial investors, i.e. the category of speculative traders,

are not holding the futures positions until expiry and will in general be more

nimble and prone to build carry positions in the market. On the contrary, the

commercial traders are using the futures market to hedge an existing exposure on

the underlying asset, see Galati et al. [2007]; Fong [2013].

I will use the ratio of the net non-commercial futures position to the total

open interest as a proxy of the speculative currency carry trade position for each

currency. I will refer to this as the SPEC ratio. This SPEC factor is suggested

as a good proxy for carry trade activity in a number of recent publications (see

Galati et al. [2007]; Brunnermeier et al. [2008]; Cecchetti et al. [2010]; Anzuini

and Fornari [2012]; Hutchison and Sushko [2013]; Fong [2013]).

Definition 57. Speculative Open Interest (SPEC) Ratio

The SPEC ratio for currency i is defined as:

SPECi =
net non-commercial futures positioni

total open interesti
(8–3)

193



8. COVARIANCE FORECASTING FACTOR MODELS IN
CURRENCY CARRY TRADES

where i = 1, . . . , N and N is the number of currencies.

Remark 8.2.1. Note that the volume data provided by the CFTC for the Norwe-

gian Krone are not long enough for a robust analysis. Thus it was necessary to

exclude this currency from the analysis. I indeed retained for the volume analysis

a period of time which spans 20/06/2006 to 29/01/20141. The starting point

corresponds to the date when the New Zealand Dollar (NZD) contract started

to be liquid enough to be included in the analysis2. Furthermore, given that the

CFTC data needed to run the regression analyses are available on a weekly basis,

I build the corresponding weekly carry returns based on the daily settlement prices

available.

It is important to note that currencies are more heavily traded via Over-the-

Counter (OTC) forward contracts rather than futures contracts. However, this

forward trading volume data is not available. The PCA analysis presented in

Section 8.3.1 is therefore key as it demonstrates the informational content, in

terms of carry trade behaviour, of the futures trading volume data.

8.2.1 Data Preparation

In order to perform the empirical analyses considered in this chapter a substantial

amount of effort and time was invested into collecting, cleaning and preparing the

data. In particular, the following key steps were performed:

1. Collect daily currency spot price data: closing price, bid and ask price.

2. Collect daily currency forward price data - at maturities of one week, two

weeks, three weeks and 1 month: closing price, bid and ask price.

3. Pre-process the price data to deal with missing data, i.e. if data is missing

copy previous day’s price.

1Since the 20th of June 2006 the Commitments of Traders report provides the commercial
and non-commercial positions for the following currencies against the dollar: AUD, CAD, CHF,
EUR, GBP, JPY, NZD.

2Before this date the NZD contract open interest was mostly equal to zero, which means
that no positions were open during this time on the future markets, thus justifying the exclusion
from the volume analysis the data until this date.
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4. Match one month forward contracts with closing spot price on the correct

date of delivery for the contract.

5. Calculate the forward premium (interest rate proxy).

6. Collect currency futures price open interest data: broken down into net com-

mercial (hedgers) and net non-commercial futures positions (speculators).

7. Match open interest rate data to synchronous currency price data.

8.3 Exploring Intertemporal Cross-Sectional

Volatility-Volume Relations

There has been a growing interest in the literature to study the effects of various

macroeconomic and microeconomic factors on the mean and volatility dynamics

of individual currency exchange rates. For instance, in Christiansen et al. [2012]

the authors study the return volatility of exchange rates with respect to different

functions of macroeconomic variables such as: equity market variables and risk

factors such as the dividend price ratio, the earnings price ratio, equity market

returns for leverage effects, Fama and French [1993] risk factors; interest rates,

spreads and bond market factors such as T-bill rates, term spreads and other

factors related to term structure forward rates discussed in Cochrane and Piazzesi

[2002]; foreign exchange rate variables and risk factors such as the average forward

discount for capturing counter cyclical FX risk premia, the DOL risk factor and the

HMLFX carry factors of Lustig and Verdelhan [2007]; Lustig et al. [2011]; liquidity

and credit risk factors such as yield spreads between BAA and AAA rated bonds

(i.e. default spreads), TED spreads for LIBOR rate and T-Bill rates discussed in

funding liquidity in Brunnermeier et al. [2008] as well as aggregate measures of

bid-ask spreads in foreign exchange markets such as those discussed in Menkhoff

et al. [2012a]; and macro-economic variables. In this study of Christiansen et al.

[2012] they concentrate on explaining carefully individual exchange rates through

Bayesian model averaging, however they neglect to study the joint relationships

between multiple exchange rates and the influence of the proposed factors.
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In this analysis, the intention is to generalize these types of studies to investigate

joint behaviours in multiple exchange rates and focus on a few important factors

principally related to the exchange rate market dynamics. In particular, I highlight

the importance of factors based on speculative order flows in influencing the joint

appreciation and depreciation dynamics of baskets of multiple exchange rates.

This is interesting since there is mounting evidence that speculative order flows

in the markets have a substantial impact on the dynamics of certain financial

assets. An extended literature is documenting the empirical relation between

the trading activity and its impact upon the asset drift (Hong and Yogo [2012];

Singleton [2013]) or price innovations relative to a benchmark (Henderson et al.

[2014]) or even the volatility (Gallant et al. [1992]; Ané and Geman [2000]) of a

given asset. The challenge with such findings is that speculator behaviours consist

of an evolutionary process, which is naturally a function of the current market

conditions, but also of the economic environment, which could be more or less

prone to the growth of speculative inflows, for instance to satisfy the hedging

needs from the non-financial sphere.

Following this literature trend I set out to demonstrate the existence of a

dual relation between high and low interest rate differential currency baskets and

the associated dependences, by comparing them with the amount of speculative

inflows and outflows on the available funding and investing currency futures. While

numerous authors have emphasized the relation between the volume traded on a

specific asset and its volatility (Gallant et al. [1992]; Ané and Geman [2000]), I

propose hereafter to focus more particularly on the speculative flows which allows

one to broaden the analysis and in so doing investigate the relation between the

non-commercial traders net positions, commonly considered as speculators, and

the dependence between financial assets. Hence, it is assumed that setting up a

carry position in the currency market will synchronously impact all the currency

prices and thus result in higher price dependences and consequently a less sparse

returns covariance matrix. While several articles, such as Hasbrouck and Seppi

[2001]; Bernhardt and Taub [2008]; He and Velu [2014] investigate the relation

between the volume commonalities and the price commonalities none of them have

focused on the speculative volumes, nor have they studied the currency markets.

Moreover, the analysis presented in this thesis contributes to the literature as
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I propose in this section a new approach, namely the covariance regression, to

study this relation between volume and asset prices, while in the following section

I will investigate this relation for extremal return commonalities.

Through different price and volume based factors I thus explore in the next

section the effect of the speculator behaviour on the first two moments of the

cross-sectional currency returns. Firstly, I study the informational content of the

speculative volume time series. I then present a mean regression of the individual

currency returns followed by a covariance regression of the multivariate basket

returns given the explanatory factors.

8.3.1 Informational Content of Speculative Trading Vol-

umes

Before proceeding with the volume-volatility analysis it is important to justify

the use of the CFTC non-commercial open positions as a proxy of the carry

trade speculative positions. As a matter of fact, these time series provided by

the CFTC do not distinguish the open positions resulting from the carry trade

or the other potential motivations for the speculator. For instance, the open

position will definitely be impacted by the setting up of a dollar position or a

relative value trade between the European currencies and the others. In order

to discern the common factors impacting the individual currencies percentage of

non-commercial traders among futures open positions I run a principal component

analysis on the net speculative positions published by the CFTC. It is found

that 49.5% of the variance associated to this set of currencies is explained by

the first principal component. Moreover, the currency loadings associated to this

first factor are interestingly (almost) monotonically decreasing according to their

respective average differential of interest rates with the US Dollar. It can also

be observed that the associated eigenvector (see Figure 8.1) displays a positive

sign for the principal financing currencies such as JPY and CHF whereas the

investing currencies, such as NZD and AUD show a negative relation with the

first component. These results confirm that a large part of the net speculative

positions in futures is directly following from the carry trade strategy.
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Figure 8.1: Loadings of the First Principal Component of Developed
Countries Speculative Percentage. The bars (left axis) represent the
loadings values on the speculative percentages first principal component
while the grey diamonds (right axis) depicts the level of interest rate
differential with the 1 month US interest rates.

8.3.2 Currency Mean Dynamic Decomposition

In order to understand, relative to the price based information flows, that the

speculative trading volumes are distinctly influencing the international exchange

rates, I first assess in this section if the cross-sectional ratios of speculator net

positions on the market open interest, i.e. SPEC ratios, have a significant impact

on the mean dynamic of individual currencies once I have accounted for the

variability explained by the common price based FX market factors described in

Lustig and Verdelhan [2007], namely the dollar factor DOL and the carry high

minus low factor HMLFX .

To achieve the analysis of the currency conditional mean dynamic, I consider

a regression of each of the individual currency returns time series, for currencies

utilised in the carry trade, onto explanatory risk factors given by the time series

of the covariates DOL and HMLFX , as well as the ratios of the net speculative

position relative to open interest, i.e. SPEC ratios, for all the available currencies.

As mentioned earlier, this regression is performed on weekly data, considering the

period spanning from 20/06/2006 to 29/01/2014 and excluding as a consequence
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the Norwegian krone from the analysis. It can be seen in Table 8.1 that even

though speculative volumes seem to contribute to the variability of a couple of

currency returns, it turns out that their contribution to the explanatory power of

the regression model remains ancillary. Indeed it is observed that the adjusted R2 is

very marginally improved once we include the speculative open interest covariates.

This statement leads to the conclusion that the dollar and the high minus low

factors proposed by Lustig and Verdelhan [2007] clearly prevail over the speculative

volumes variables as far as the mean dynamic of the cross-sectional currency returns

is concerned. This assertion corroborates the microeconomic literature regarding

the variability-volume theory, wherein it has been demonstrated that volumes

traded in equity markets mainly relate to the variance of the very same equities

and not their price or even their return dynamics.
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AUD CAD CHF EUR GBP JPY NZD

Constant 0.0000 0.0020 -0.0008 -0.0009 0.0009 0.0011 -0.0007

(0.256) (0.376) (0.444) (0.975) (0.061) (0.348) (0.546)

DOL -0.5099∗∗ -0.3130∗∗ -0.3466∗∗ -0.3834∗∗ -0.3187∗∗ -0.0585∗∗ -0.5225∗∗

(0.000) (0.004) (0.000) (0.000) (0.000) (0.000) (0.000)

HMLFX 0.3087∗∗ 0.2028∗∗ -0.5919∗∗ -0.2876∗∗ -0.1095∗∗ -0.5727∗∗ 0.3142∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

AUDSPEC -0.0014 0.0019 -0.0027 0.0022 -0.0002 0.0013 0.0004

(0.264) (0.586) (0.921) (0.424) (0.366) (0.115) (0.826)

CADSPEC 0.0009 -0.0056 -0.0014 0.0003 0.0015∗∗ 0.0006 0.0018

(0.863) (0.761) (0.337) (0.514) (0.006) (0.403) (0.295)

CHF SPEC 0.0004 0.0047 0.0003 -0.0011 -0.0022 0.0017 -0.0014

(0.561) (0.471) (0.387) (0.794) (0.065) (0.882) (0.471)

EURSPEC -0.0013 -0.0021 -0.0001∗∗ -0.0007 0.0056 -0.0022 0.0002

(0.756) (0.478) (0.032) (0.496) (0.390) (0.963) (0.939)

GBP SPEC 0.0013 0.0055 0.0012 -0.0037 -0.0041∗∗ 0.0038 -0.0007

(0.065) (0.169) (0.128) (0.493) (0.024) (0.514) (0.769)

JPY SPEC -0.0041 -0.0012∗∗ 0.0018∗∗ 0.0006∗∗ 0.0054 -0.0052 0.0010

(0.765) (0.031) (0.022) (0.005) (0.505) (0.331) (0.577)

NZDSPEC 0.0004 -0.0026 0.004 0.0011 -0.0011 -0.0049∗∗ -0.0008

(0.561) (0.088) (0.590) (0.805) (0.272) (0.045) (0.712)

R2 (DOL, HMLFX) 92% 68% 80% 81% 60% 57% 90%

R2 (DOL, HMLFX , SPEC) 92% 69% 81% 81% 61% 59% 90%

Table 8.1: Regression of the individual currency returns on the DOL index, HMLFX index and the SPEC ratio (the

ratio of each currency future speculative net position to the total future open interest, as provided by the CFTC), as well as

cross relations among them. The open interest data provided by the CFTC as well as the computed DOL and HMLFX

indexes are weekly data. The period of time considered for this analysis spans from 20th June 2006 to 29th January 2014

and corresponds to the longest available overlapping sample for all the currencies considered. Numbers in parentheses show

Newey and West (1987) HAC p-values. All the possible cross effects among the currencies are not significantly contributing

to the regression (HAC p-value below 5%)
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8.3.3 A Covariance Regression Model Considering

DOL, HMLFX and SPEC Factors

In the previous section I considered regression on the mean structure looking

at whether the market price factor DOL, carry factor HMLFX and speculative

volume factors SPEC provided statistically significant explanatory power in

describing the trend in the returns dynamic of individual currencies and currency

baskets constructed from ordering of interest rate differentials. In this section, I

extend these mean-regressions of carry trade basket returns to study how these

factors load directly on the regression against the covariance structure of the assets

in the currency baskets. This will reveal the proportion of covariance, between

the currencies in each basket, that can be explained by the DOL, HMLFX and

SPEC factors. I will investigate two sets of covariates for each of the high and low

interest rate baskets. Firstly, I will examine the power of the DOL and HMLFX

factors in explaining the covariance. Secondly I will analyse what explanatory

power is contributed by the SPEC factors and the first order cross terms between

the SPEC factors. The first order cross terms are included in the model to allow

interactions between the speculative trading behaviour across pairs of currencies,

as multiple currencies are utilised to construct the baskets.

To perform this study I formulate the covariance regression model as a special

type of random-effects model, as described in Chapter 7 of this thesis (see Hoff

and Niu [2012]), for the observed asset returns data y1, . . .yT (d-dimensional

high or low interest rate basket weekly log returns for a time block of length T ).

The interest in utilising this covariance regression model here is to examine the

contribution of the explanatory factors to the conditional covariance matrix of

the currency log returns relative to the associated interest rate differentials, and

thus the basket each currency belongs to.

The summary measure described in Equation 8–4 shows the proportion of

covariation in the covariance regression attributed to these factors relative to the

total second order explanatory power of the covariance regression on each 125

week sliding window. This measure focuses on the covariance explained when Xt
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takes its median value, denoted X(0.5).

Non-Baseline Variance % = 100×
trace(CX(0.5)X

T
(0.5)C

T )

trace(CX(0.5)X
T
(0.5)C

T ) + trace(Ψ)
(8–4)

where C is the matrix of covariate loadings and Xt is the vector of covariate

values.

Figure 8.2 shows this result for both the high interest rate basket and the

low interest rate basket. It can be seen that the explanatory power of the

two factors, DOL and HMLFX , is time-varying, but that there is very little

power in explaining the linear second order co-movements of currencies in either

the high or low interest rate baskets as captured by the covariance structure

intertemporally. This observation further strengthens the hypothesis that one

must look at co-currency movements using flexible models that capture appropriate

concordance/discordance relationships such as tail dependence, as explored in

Chapter 5 and also later in this chapter. The large increase in explanatory power

obtained by using the full DOL+HMLFX + SPEC + SPEC × SPEC model

over the two factor DOL+HMLFX model can be seen for both the high interest

rate basket and the low interest rate basket in Figure 8.3. Here, I plot the log

of the ratio of the percentage explanatory power of the full model divided by

the percentage explanatory power of the two factor DOL+HMLFX model. It

is observed that the explanatory power of the model incorporating the SPEC

factors and its crosses is several orders of magnitude greater than the two factor

DOL+HMLFX model.

It is worth highlighting that for each sliding window I estimate the regression

relationships with covariate vector xt = [1, x1,t, . . . , xq,t] given by the factors

discussed and the resulting covariance matrix parameter vectors defined by row

vectors of the (d × q) matrix C1, which is given by {c1, . . . , cd} vectors, which

1Here the dimensions of the matrix C are linked to the portfolio considered. In the high
interest rate basket covariance regression, I analyse the de-trended returns variability of GBP,
AUD, CAD and NZD relative to 12 covariates (which are the DOL, the HMLFX , the four
associated currency SPEC factors and six cross SPEC×SPEC factors) which leads to (4×12)
matrix C. Likewise, in the low interest rate basket the dimensions of C are (3× 8) as I focus on
the variability of EUR, JPY and CHF relative to 8 covariates (which are the DOL, the HMLFX ,
the three associated currency SPEC factors and three cross SPEC × SPEC factors).
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then result in the regression models for each element j of the covariance matrix of

the currency basket return residuals et = yt − βxt being given by:

Var [et,j|xt] = Ψj,j + cjxtx
T
t c

T
j

= Ψj,j +

q∑
s=1

cj,sxs,tx
T
s,tc

T
j,s , (8–5)

Cov [(et,j, et,k)|xt] = Ψj,k + cjxtx
T
t c

T
k

= Ψj,k +

q∑
s=1

cj,sxs,tx
T
s,tc

T
k,s. (8–6)

This estimation is performed on a weekly sliding window, whereby for each

sliding window period point estimators are obtained for the C matrix parameters.

Therefore as the window slides different realizations are obtained based on the data

fits for the estimated parameter relationships. I summarise these by constructing

box plots of the parameter estimates for the full model containingDOL+HMLFX+

SPEC +SPEC ×SPEC covariates for both the high interest rate basket, which

can be seen in Figure 8.4, and also for the low interest basket which is provided in

Figure 8.5. In addition, for each sliding window the statistical significance of the

estimated coefficient can be tested, where the null hypothesis would be that the

parameter is zero versus an alternative that it is non-zero. A description of the

test statistic is provided in Appendix B. The results of the test on each sliding

window are indicated by adjusting the width of each box so that it is equal to the

proportion of the sliding windows for which this parameter was significant, i.e.

its confidence intervals did not cross zero. The baseline width of the box, i.e. if

the parameter was significant on every sliding window, is given by the horizontal

distance between two adjacent box midpoints. For details of the calculation of

the confidence intervals for the parameters see Appendix B and more generally

Hoff and Niu [2012].

To aid in the interpretation of this analysis I partition the results for the C

matrix parameter estimation according to the loadings on each currency for a
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given factor, for instance in the high interest rate analysis there are four currencies

considered. Thus for each factor in Figure 8.4, such as DOL,HMLFX , SPEC

and SPEC × SPEC, as separated by the vertical red dotted lines and labelled

at the top of the plot, there are four boxes, one for each of the time-evolving

parameter estimate loadings for each currency in the order GBP, AUD, CAD and

NZD. Similarly, the low interest rate basket contains three boxes per factor since

only EUR, JPY and CHF are contained in this basket.
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Figure 8.4: High interest rate basket parameter boxplot: DOL+HMLFX + SPEC + SPEC × SPEC.
125 week lookback periods. The 4 currencies in the high interest rate basket are ordered as (GBP; AUD;
CAD; NZD). The width of each box is equal to the proportion of the sliding windows for which this
parameter was significant, i.e. 95% confidence intervals not crossing zero. The baseline width of the box,
i.e. if the parameter was significant on every sliding window, is given by the horizontal distance between
two adjacent box midpoints.
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Figure 8.5: Low interest rate basket parameter boxplot: DOL+HMLFX + SPEC + SPEC × SPEC.
125 week lookback periods. The 3 currencies in the low interest rate basket are ordered as (EUR; JPY;
CHF). The width of each box is equal to the proportion of the sliding windows for which this parameter
was significant, i.e. 95% confidence intervals not crossing zero. The baseline width of the box, i.e. if
the parameter was significant on every sliding window, is given by the horizontal distance between two
adjacent box midpoints.
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These factor loadings can be interpreted as the proportion of change one

would expect in the covariance relationships between each currency in the basket

given a unit change in the factor. The utility of the covariance regression model

lies in the additional variability Cxix
T
i CT, which is randomly added to the

baseline variability, Ψ, of the de-trended data. Thus, for the low interest rate

basket the set of vectors {cCHF, cJPY, cEUR} associated to each currency should

be interpreted as how the additional variability or heteroskedasticity manifests

across the covariates. In other words the components of each vector, for instance

cCHF= [cCHF,DOL, cCHF,HMLFX
, . . . ], correspond to the sensitivities of the Swiss

franc de-trended returns variability to the set of factors {DOL,HMLFX , . . . }.
Thus, a high norm of the vector cCHF should accordingly be associated with a

high heteroskedasticity in the Swiss franc de-trended returns. Another interesting

aspect of this analysis is the cross analysis of the vectors {cCHF, cJPY, cEUR},
since the pair of significantly different from zero vectors {cCHF, cJPY} means that

the Swiss franc and the Japanese yen become more correlated when their variances

increase. It is possible to augment this analysis and interpret the highly significant

pairs of vector components {cCHF,DOL, cJPY,DOL} and {cCHF,HMLFX , cJPY,HMLFX}
as the significant effect of the DOL and HMLFX factors upon the covariance

between the Swiss franc and the Japanese yen. Said differently, when the DOL and

the HMLFX factors change, the covariance of the Swiss franc and the Japanese

yen consequently increases. Furthermore, features can be seen which indicate that

for the joint currency covariance structure the DOL factor is significant on all three

currencies, but loads more substantially on the variance of the EUR compared to

the JPY and CHF, indicating the heightened sensitivity of the volatility of the

EUR to the DOL factor than the other currencies. This last reasoning from the

covariance regression is particularly relevant for the analysis of the impact of the

speculative positions under consideration in this thesis.

In Figure 8.5, the width of the boxes associated to the Swiss franc speculative

interest covariate shows a significant increase in the covariance between the Swiss

franc and the Japanese yen returns when the speculative interests on the Swiss

franc increase. Whereas the width of the boxes associated to the Euro speculative

covariate show that when the Euro speculative interests increase, a significant

increase of the correlation between the Euro and the Swiss franc is noticeable.
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These results demonstrate that speculator interventions on low interest rate

currencies systematically influence the covariances among these currencies and

that volume based information provides complementary indications about asset

price dynamics and dependences.

Likewise, it is apparent in the high interest rate basket results that the DOL

and the HMLFX factors load significantly on the covariance relationships for the

GBP, more substantially than any of the relationships for the other currencies in

this basket. This is especially the case for theHMLFX factor and in the majority of

cases they are statistically significant loadings at 5% significance. Moreover, there

seems to be an asymmetry in the factor loadings for the speculative open interest

of one currency exchange on another currency exchange. For instance, whilst

the impact of the speculative open interest of the GBP SPEC is predominantly

significant in all fits for the GBP, AUD and CAD exchange rates (not for the

NZD), it can be seen that this speculative open interest factor loads much more

substantially historically on the CAD than it does on the AUD or GBP. Conversely,

an asymmetry arises in the speculative open interest on the CAD since the most

dominant loading of this speculative open interest is on the GBP, CAD and NZD

with the majority of fitted time periods being statistically significant.

Another very interesting point worth noting from this covariance regression

is the relation between the GBP variance and the speculative volumes. It can

be observed that for each SPEC covariate the average width of the first box,

which corresponds to the statistical significance of each covariate effect upon the

GBP variance, is conspicuously higher than for the other currencies. Finally,

the last two covariate results displayed in Figure 8.4 shed light on: the relation

existing between the AUD and NZD speculator inflows correlation; the covariance

between the GBP and NZD exchange rates; the synchronicity relation between

the CAD and NZD speculator inflows; and the correlation between GBP, AUD

and NZD exchange rates. These interesting outcomes substantiate the assertion

in this thesis about the impact of the speculative open interest changes upon the

individual variability and the dependence structure among the high interest rate

currencies as well as the low interest rate currencies.
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8.4 Skewness of Cross-Sectional Currency

Returns: Pre and Post-Crisis Analysis

Standard linear measurements of association or concordance fail to provide any

measurement of the asymmetric extreme relations exhibited by exchange rates.

Here, I extend the approach proposed in Brunnermeier et al. [2008], where the

authors compare the individual skewnesses of a set of currencies once they have

been ranked as a function of their interest rate differential, to include more recent

data. I present a similar chart to that of the authors representing the skewness and

interest rate differentials1 for developed countries, but I also extend the analysis by

considering a combination of developed and developing countries2. Furthermore, I

divided the data sample into three distinct periods, before, during and after the

2008 financial crisis, i.e. 29th July 1999 to 30 June 2007; 1st July 2007 to 30th

June 2009; and 1st July 2009 to 29th January 2014.

It can be observed that whatever the basket of exchange rates under scrutiny,

(Figures 8.6 and 8.7 or Figures 8.8 and 8.9), between 01/01/1999 and 29/01/2014

the skewnesses of the highest interest rate countries were clearly positive, which

means that the depreciations of these currencies were asymmetrically more im-

portant than their appreciations. Likewise it can be observed that the currencies

with the lowest interest rate differentials display a negative skewness, which shows

a significant asymmetry with higher interest rate differential currencies. That

being said, Figures 8.7 and 8.9, as well as the associated Tables 8.2 to 8.4 show

1Please note that in the analysis presented in this thesis the data used corresponds to the
inverse of the exchange rates considered in the article of Brunnermeier et al. [2008]. Indeed the
amount of foreign currency per unit of dollar is utilised, whereas Brunnermeier et al. [2008]
consider the amount of dollars per foreign currency. Thus, a decrease in the exchange rates
means in my case a depreciation of the dollar relative to the foreign currency, while an increase
in the exchange rate represents an appreciation of the dollar. The slope of the regression of
the skewness on the interest rate differentials is accordingly of opposite sign in the analysis
presented in this thesis. It should also be noted that a regression of X on Y will not have the
exact same inverse relationship that 1/X would have on Y .

2To choose these currencies, I consider all the developed and developing currencies available
and look at the average interest rates differential with the US local interest rates over time
periods spanning from 01/01/1999 to the 29/01/2014 and then rank them. I retain the five
currencies that are most often present among the five highest interest rates differentials (namely
TRY, BRL, ZAR, INR, MXN) and the five currencies that are most often present among the
five lowest interest rates differentials (namely JPY, TWD, CHF, SGD, EUR).
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contradictory information between 30/06/2009 (which corresponds to the end

of the most recent recession according to the NBER statistics1) and 29/01/2014

given that both the high and the low interest rate currency marginal distributions

are suggesting a positive skewness over this period of time. One can also note

that the six-month period at the beginning of 2012 could potentially have a

substantial effect on these regression estimates. During the crisis period, see

Table 8.3, the explanatory power of the interest rate differential in the regression is

substantially lower for both the developed countries regression and the developed

and developing countries regression. In addition, when considering the developed

countries alone the regression is not statistically significant. The evolution of the

rolling high and low interest rate exchange rates cross-sectional average skewness

across time (Figure 8.10) confirms this finding and shows that since the end of the

financial crisis a different average asymmetry dynamic of the respective currency

marginal distributions has prevailed. It seems indeed that the cross-sectional

average skewness of the two sets of currencies are, over the past five years, showing

noticeable synchronicity, which was not necessarily the case formerly. Furthermore,

as can be seen in Figure 8.11, the low interest rate basket components recently

display significant positive skewness, which reflects the European debt crisis and

the monetary policy decisions made by the Japanese and Swiss central banks

during this period.

Thus, as far as the speculator impact on market prices is concerned, the

linear cross-sectional relation between marginal skewness and the interest rates

differential pointed out by Brunnermeier et al. [2008] seems to be non-stationary

over time and thus puts into question the cross-sectional relation between carry

trade speculative flows and the currency dynamics described in the same article.

Here, I argue that even though a peculiar event could marginally impact a specific

currency, the construction of the carry trade portfolio by speculators should on the

contrary simultaneously affect several currencies as a function of the associated

interest rate differential. That being said, such confined events can still impact

the carry trade performance and thus lead to position unwinding, which should

1The National Bureau of Economic Research dates economic recessions in the USA, by
defining them as a persistent decline in several economic variables such as real GDP, real income,
employment, industrial production, and wholesale-retail sales. For more information you can
access these data on the NBER’s website (http://www.nber.org/cycles.html).
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Figure 8.6: Developed Countries Before July 2007: Skewness vs Interest
Rate Differential. Before July 2007.
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Figure 8.7: Developed Countries: Skewness vs Interest Rate Differential.
After June 2009.
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Figure 8.10: 6-month rolling average individual skewness of high inter-
est rate developed countries (averaged over each individual currency:
GBP, AUD, CAD, NOK, NZD) compared to rolling average individual
skewness of low interest rate developed countries (averaged over each
individual currency: JPY, CHF, EUR).
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lower confidence intervals.
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Before Crisis (29-Jul-1999 / 30-Jun-2007)

Developed Developed and
Countries Developing Countries

Intersect 0.044 -0.337
Slope 7.911 26.23
R2 0.847 0.7856

t-stat 5.773 6.902
P-value 0.001 1.01× 10−4

Table 8.2: Before July 2007: cross-sectional regression of the skewness
on the interest rates differential for developed (AUD, CAD, JPY, NZD,
NOK, CHF, GBP and EUR) and developing countries (SGD, TWD,
INR, MXN, ZAR, BRL and TRY).

Before Crisis (01-July-2007 / 30-June-2009)

Developed Developed and
Countries Developing Countries

Intersect 0.026 -0.109
Slope 7.370 8.948
R2 0.295 0.456

t-stat 1.587 3.285
P-value 0.163 0.005

Table 8.3: During credit crisis: cross-sectional regression of the skewness
on the interest rates differential for developed (AUD, CAD, JPY, NZD,
NOK, CHF, GBP and EUR) and developing countries (SGD, TWD,
INR, MXN, ZAR, BRL and TRY).
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After Crisis (01-Jul-2009 / 29- Jan-2014)

Developed Developed and
Countries Developing Countries

Intersect 0.524 0.482
Slope -14.018 -3.853
R2 0.151 0.082

t-stat -1.034 -0.843
P-value 0.341 0.424

Table 8.4: After June 2009: cross-sectional regression of the skewness
on the interest rates differential for developed (AUD, CAD, JPY, NZD,
NOK, CHF, GBP and EUR) and developing countries (SGD, TWD,
INR, MXN, ZAR, BRL and TRY).

again simultaneously impact the currencies composing the carry portfolio. Said

differently, the features of the marginal distributions, such as the individual

skewnesses retained by Brunnermeier et al. [2008], are not necessarily taking into

account the joint distribution characteristics, such as high and low interest rate

tail dependences. Furthermore, I assert that by selling the funding currencies

and buying the investing currencies, speculators should asymmetrically influence

the upper and lower extremal currency joint behaviour. In such a context, the

dynamic of the respective upper and lower tail dependences characterizing the

high and the low interest rate currency baskets are investigated in this thesis. To

ensure that the speculative flows influence the extreme joint behaviour of the

exchange rates it is necessary to first understand how theoretically the building

and the unwinding of a dynamic carry trade strategy is impacting the high and

low interest rate currencies. As detailed in Chapter 4, in order to benefit from the

UIP violations a speculator will buy the high interest rate currencies while selling

the low interest rate currencies relative to a reference currency, which here is the

US dollar. As a result, when the international exchange rates system receives

speculative inflows it should be possible to perceive an increase of the low interest

rates basket upper tail dependence (evidence of significant sales of the basket

currencies against the US dollar) while the high interest rates currencies will

simultaneously display an increasing lower tail dependence (evidence of significant

purchases of the basket currencies against the US dollar). It is assumed that at
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the same time no carry trade position will be unwound, which is represented by a

low upper tail dependence within the high interest rate basket combined with the

converse in the funding basket, i.e. a low lower tail dependence of the low interest

rates currencies. Conversely, when the international exchange rates system faces

speculative outflows, high interest currencies will be simultaneously sold in order

to buy low interest rate currencies closing existing carry trade positions. It is

assumed that no reverse carry trade positions are permitted in this economy, even

though this would not dampen the conclusions. The outcome of this financial

operation is naturally an increase of the high interest rate basket upper tail

dependence and simultaneously an increase of the low interest rate lower tail

dependence. Provided that investors are closing their positions I assume that no

carry trade inflows are taking place at this point, hence it should be possible to

observe a decrease of the high interest rate basket lower tail dependence as well

as a decrease of the low interest rate upper tail dependence or at least observe

low levels for these two dependence measures.

In this chapter the covariance regression model proposed in Chapter 7 has

been utilised to investigate the effect of covariates, including speculative trading

volumes, on the covariance structure. In addition, the skewness of the cross-

sectional currency returns has been explored. In the next chapter, this analysis

is extended to further understand the relationship between speculator behaviour

and the dependence of currency returns via the average volatility and the tail

dependences.
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Chapter 9

Speculative Behaviour and Tail

Dependence of Currency Returns

In this section, I focus mainly on the interpretation of the copula mixture estimation

of exchange rate time series ranked relative to their respective level of local interest

rate. The mixture copula parameters estimated provide, through the combination

of the copula mixture components (Definition 36) and the associated upper or

lower tail dependence expressions (Equations (3–33) and (3–34)), a parametric

estimation of the upper or lower tail dependences, which quantify the level of

upper or lower extremal dependence among the high interest rate and low interest

rate sets of currencies. More precisely, the resulting estimation of the respective

upper and lower tail dependences characterizing each basket of currencies reveals

the complex non-linear relations existing between currencies, which remain totally

imperceptible when one only considers either marginal characteristics of individual

exchange rates or any linear central measure of dependence, such as covariance or

correlation.

9.1 Extremal Carry Trade Behaviour and

Average Currency Volatility

The financial literature about the carry trade states that carry positions will be

sensitive to the risk aversion and the level of volatility in the foreign exchange
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markets (Brunnermeier et al. [2008]; Farhi and Gabaix [2008]; Clarida et al. [2009];

Menkhoff et al. [2012a]). Therefore it could be postulated that speculators tend to

close their carry positions when the foreign exchange market volatility is increasing

or at a high level (embodying an increasing uncertainty and thus investor risk

aversion), whereas they will build their carry positions when the foreign exchange

market volatility is decreasing or at a low level. This first assumption about

speculator behaviour improves the ability to detect the potential relation between

tail dependence and the propensity of a speculator to build or unwind carry

trades. According to the investigation on the respective basket average skewness

presented in Section 8.4, I split the data set into three very distinct sub-periods.

Firstly, I estimate the low and high interest rate basket tail dependences on the

pre-financial crisis period, which runs from 01/01/1999 to 30/06/2007. Secondly,

I estimate on the during crisis period, which runs from 01/07/2007 to 30/06/2009.

Finally, I estimate on the post-financial crisis period, which runs from 01/07/2009

to 29/01/2014. Then, I individually regress the tail dependence time series upon

the average foreign exchange market volatility as shown in Equation 9–1.

λ̂ij,t = βi,jσFXt + εij,t , i = {H,L} , j = {u, l}. (9–1)

where σFXt = 1
N

∑N
n=1 |rn,t| and rn,t is the log return of currency n on day t. The i

index here corresponds to the high interest rate basket or low interest rate basket.

The j index corresponds to the upper tail dependence or lower tail dependence

measure. Since the value of the tail dependence is bounded, i.e. 0 ≤ λ̂ij,t ≤ 1, this

regression could be performed via a generalised linear model (glm) with a logit

link function. However, it was found that in the empirical investigation there

were no incidences of boundary problems with the estimated values of λ̂ij,t, i.e.

the estimated values were not limited by the hard constraints of [0, 1].

The results of this regression before the crisis in Table 9.1 demonstrate that

the high interest rate lower tail dependence is negatively sensitive to the average

volatility of foreign exchange markets, except for the developing countries. Likewise,

the upper tail dependence of the low interest rate basket displays a negative

significant relation with the average volatility in currency markets. Contrary to

this, the low interest rate lower tail dependence is positively reacting to market
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volatility. Note that during the pre-crisis period the high interest rate upper tail

dependence regression coefficients were less significant, which could be explained

by the fact that a large part of this sample was characterized by a low volatility

environment during which the carry trade strategies performed very well (see

Lustig and Verdelhan [2007]). This is a well-known time of heightened carry

trade construction, hence the most important sensitivities to consider during this

period were the low interest rate upper tail dependence and the high interest

rate lower tail dependences. During the crisis, see Table 9.2, the regression

relationships are mixed for the low interest rate countries. However, for the high

interest rate countries (both developed and developing) one can see that the upper

tail dependence and the average FX volatility is negatively related, which one

would expect during this period. Now turning to the post-crisis period, shown

in Table 9.3, it can be observed that in such a high volatility environment the

high interest rate upper tail dependence is significantly positively related to the

market volatility and the high interest rate lower tail dependence is conversely

significantly negatively affected by volatility changes (except for the developing

countries, but this is not statistically significant). These results validate the

proposed model and the associated hypothesis about the impact of carry trade

speculative flows upon the extreme joint behaviour of international exchange rates

relative to their level of short-term interest rates. It is also particularly interesting

to notice that during the post-financial crisis the low interest rate upper and

lower tail dependences remain significantly sensitive to the level of volatility in

the foreign exchange markets and thus, according to the hypothesis, to the carry

trade flows. This statistical stability has to be weighed against the switching

behaviour of the average skewness identified in the previous chapter.

9.2 Extremal Carry Trade Behaviour and

Currency Speculative Open Positions

To validate the assertion about the influence of carry trade speculative flows on

currency extremal joint behaviour, I propose in this second model to consider the

same covariates as for the covariance regression model in Section 8.3.3, namely
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Before Crisis
(29-Jul-1999 / 30-Jun-2007)

Upper TD Lower TD
Low Int. Rates -2.914 1.539

Developed Countries (0.000) (0.000)

High Int. Rates 0.651 -1.147
Developed Countries (0.377) (0.047)

High Int. Rates -1.012 2.107
All Countries (0.061) (0.000)

Table 9.1: Before July 2007: Regression of the high interest rate upper
and lower tail dependences time series (λ̂Hu,t, λ̂

H
l,t) and the low interest

rate upper and lower tail dependences time series (λ̂Lu,t, λ̂
L
l,t) on the

average volatility for developed (AUD, CAD, JPY, NZD, NOK, CHF,
GBP and EUR) and developing countries (SGD, TWD, INR, MXN,
ZAR, BRL and TRY).

During Crisis
(01-Jul-2007 / 30-Jun-2009)

Upper TD Lower TD
Low Int. Rates -0.508 -1.400

Developed Countries (0.008) (0.000)

High Int. Rates 1.101 -0.901
Developed Countries (0.019) (0.011)

High Int. Rates 1.245 -0.120
All Countries (0.003) (0.727)

Table 9.2: During credit crisis: Regression of the high interest rate
upper and lower tail dependences time series (λ̂Hu,t, λ̂

H
l,t) and the low

interest rate upper and lower tail dependences time series (λ̂Lu,t, λ̂
L
l,t)

on the average volatility for developed (AUD, CAD, JPY, NZD, NOK,
CHF, GBP and EUR) and developing countries (SGD, TWD, INR,
MXN, ZAR, BRL and TRY).
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After Crisis
(01-Jul-2009 / 29-Jan-2014)

Upper TD Lower TD
Low Int. Rates -1.771 2.067

Developed Countries (0.000) (0.000)

High Int. Rates 0.657 -1.344
Developed Countries (0.094) (0.000)

High Int. Rates 2.279 0.231
All Countries (0.000) (0.565)

Table 9.3: After June 2009: Regression of the high interest rate upper
and lower tail dependences time series (λ̂Hu,t, λ̂

H
l,t) and the low interest

rate upper and lower tail dependences time series (λ̂Lu,t, λ̂
L
l,t) on the

average volatility for developed (AUD, CAD, JPY, NZD, NOK, CHF,
GBP and EUR) and developing countries (SGD, TWD, INR, MXN,
ZAR, BRL and TRY).

the DOL and the HMLFX factors combined with the SPEC factor. It was

observed in Section 8.3.3 of Chapter 8 that speculative positions in the markets

have a substantial impact on the covariance dynamics of international exchange

rates. To complete this analysis I demonstrate in this section the existence of the

previously stated dual relation between on one hand the high and low interest rate

currency baskets upper and lower tail dependences, and on the other hand the size

of the speculative positions associated to these funding and investing currencies

futures. In this section, the empirical study consists thus in investigating the

relation between the non-commercial traders net position (long − short) and the

extreme environment dependence measure, namely the tail dependence. The base

idea is to assume that while speculators set up or unwind a carry position in the

currency market, this will synchronously impact all the currency prices increasing

accordingly certain tail dependences among high and low interest rates currencies.

Furthermore, a synchronous change in the net open position of the speculators

should be observable. As a first example, it can be seen from Figure 9.1 that

there is a negative relationship between the net position of speculators on the

Swiss franc (one of the main financing currencies) and the upper tail dependence

223



9. SPECULATIVE BEHAVIOUR AND TAIL DEPENDENCE OF
CURRENCY RETURNS

00 01 02 03 04 05 06 07 08 09 10 11 12 13
−1

−0.5

0

0.5

1

1.5

Date

Va
lu

e

 

 

FX Average Volatility

Upper Tail Dependence of Low IR Currencies

CHF Speculative Open Interest

Carry Trade Construction Period

CHF Pegged to Euro

Figure 9.1: 6-month rolling upper tail dependence of low interest
rate developed countries (namely JPY, CHF, EUR) compared to net
open position of the Swiss franc future contract traded on the CME.
The black line corresponds to the average 6-month rolling historical
volatility computed from the low interest rate basket.

associated to the low interest rates basket. Since 1999 the Swiss franc has indeed

always been one of the lowest interest rate currency relative to the US Dollar and

thus always used by the speculator as a financing currency.

In order to verify this assertion I model the four tail dependences as a function

of the SPEC factor, i.e. the ratio of the non-commercial net positions at the end

of each week divided by the total number of futures contracts still open in the

market at the end of each week. This will then act as a factor to help explain how

much of the currency extremal dependence can be explained by the speculative

positions. The first problem to deal with is the homogeneous impact that the

dollar can have on the common behaviour of the currency open positions.

When the dollar index, defined as a basket of currencies against the dollar,

increases the tail dependences could potentially be modified too. To extract the

linear effects associated to this component I follow the analysis carried out in

Lustig and Verdelhan [2007], who demonstrated the effect of the dollar index

through a principal component analysis in which they interpret the first principle

component as the dollar index.
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Figure 9.2: Loadings of the First Principal Component of Developed
Countries Currency Returns.

To achieve this, I first extend the monthly PCA analysis of Lustig and Verdelhan

[2007] to a daily frequency, motivating the construction of daily DOL and HMLFX

factors, which I then use to compute the weekly factors. To construct these factors

at the daily frequency, it is necessary to calculate the daily carry returns via an

interpolation on the 1 month forward curve using the following market price data:

overnight rate, one week rate, two week rate, three week rate and the one month

rate. The details of this interpolation procedure can be seen in Appendix C,

along with an example of an interpolated curve for one particular day. From this

interpolated forward curve it is possible to construct a daily time series of carry

returns for each of the 7 currencies via a mark to market of the forward contract

that would be held if one was continuously rolling one month forward contracts

at the end of each month, as in Lustig and Verdelhan [2007]. These individual

currency carry returns can then be used to compute the covariance matrix that is

used for the principal component analysis.

Instead of applying the principal component analysis to a set of portfolios,

I used directly the seven currencies for which the CFTC open interest data

is available. Figure 9.2 shows that the daily analysis replicates the results of

Lustig and Verdelhan [2007], where all the currencies are negatively impacted by
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Figure 9.3: Loadings of the Second Principal Component of Developed
Countries Currency Returns. The bars (left axis) represent the load-
ings values on the returns second principal component while the grey
diamonds (right axis) depicts the level of interest rate differential with
the one month US interest rate.

the first component (see Figure 9.2) which represents the dollar effect (DOL),

whereas the second component is (almost) monotonically increasing with the

rate differential (see Figure 9.2), which is analysed as the high minus low effect

(HMLFX). It is found that over 76% of the variation of the daily carry returns

can be explained in the first two principal components. It is worth emphasizing

that these two projections of the currency returns to linear combinations of the

currency returns with the largest unconditional variances are not necessarily

related to the conditional variance model described in Section 8.3 of Chapter 8.

In the remainder of this section I consider the tail dependence regression and thus

use the first two principal components time series (since the PCA analysis is run

on a sliding window basis) as independent variables for the regression to cancel

out the effect of these two price effects related to DOL and HMLFX .

More formally, I perform linear regression on the upper and lower tail de-

pendences of the high and the low interest rate sets of currencies (respectively

λ̂Hu , λ̂
H
l , λ̂

L
u , λ̂

L
l ) using three models. The first model contains only the DOL and

HMLFX factors as well as their volatilities and covariance. The second model
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includes the SPEC factors1. Finally the third model further allows the cross

terms between the SPEC factors:

λ̂ij,t = αi,j + βi,jDOLDOLt + βi,jHMLFX
HMLFXt︸ ︷︷ ︸

Dollar and Carry Factors

+ βi,jσDOLtσDOLt + βi,jσHMLFXt

σHMLFXt
+ βi,jCovDOLt,HMLFXt

CovDOLt,HMLFXt︸ ︷︷ ︸
Dollar and Carry Factor Volatilities and Covariance

+
N∑
k=1

βi,jk SPEC
k
t︸ ︷︷ ︸

Speculative Volume Factors

+
N∑
k=1

∑
l>k

βi,jk,lSPEC
k
t × SPEC l

t︸ ︷︷ ︸
Speculative Volume Cross Terms

+ εi,jt , (9–2)

where i = {H,L} and j = {u, l}.

1Utilising ∆SPEC as the covariate was investigated but found to not hold as much explana-
tory power in the covariance regression modelling framework utilised here.
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λ̂Hu λ̂Lu λ̂Hl λ̂Ll

Constant 0.096 0.057 0.080 0.370 0.337 0.270 0.350 0.433 0.339 0.121 0.086 0.178
(0.122) (0.435) (0.268) (0.000)∗∗ (0.000)∗∗ (0.000)∗∗ (0.000)∗∗ (0.000)∗∗ (0.000)∗∗ (0.045)∗ (0.190) (0.012)∗∗

DOL 0.083 -0.023 -0.162 -0.319 -0.264 -0.107 0.143 0.134 0.014 0.249 -0.006 -0.061
(0.707) (0.913) (0.317) (0.089) (0.079) (0.418) (0.321) (0.390) (0.920) (0.223) (0.972) (0.707)

HMLFX 0.303 0.030 -0.032 -0.205 0.056 -0.172 -0.020 0.135 -0.058 0.410 0.155 -0.041
(0.380) (0.922) (0.921) (0.445) (0.807) (0.398) (0.945) (0.609) (0.785) (0.227) (0.590) (0.859)

σDOL -8.696 -2.343 0.625 -8.733 -7.866 -8.883 3.166 -0.335 1.640 -2.268 -1.606 2.691
(0.051) (0.553) (0.863) (0.000)∗∗ (0.001)∗∗ (0.000)∗∗ (0.324) (0.920) (0.503) (0.609) (0.664) (0.510)

σHMLFX 26.700 23.177 16.159 -8.918 -10.300 4.468 -0.246 -1.715 -2.267 31.495 31.478 16.269
(0.003)∗∗ (0.009)∗∗ (0.058) (0.098) (0.186) (0.516) (0.976) (0.869) (0.794) (0.001)∗∗ (0.000)∗∗ (0.065)

σDOL,HMLFX -258.50 -13.83 -201.89 -1088.66 -958.77 -710.73 577.01 239.62 333.00 1103.72 868.16 776.10
(0.488) (0.966) (0.576) (0.000)∗∗ (0.000)∗∗ (0.004)∗∗ (0.072) (0.378) (0.173) (0.008)∗∗ (0.007)∗∗ (0.023)∗

AUDSPEC -0.129 -0.173 0.089 -0.049 0.083 0.272 -0.083 -0.105
(0.017)∗ (0.059) (0.052) (0.403) (0.066) (0.000)∗∗ (0.154) (0.160)

CADSPEC 0.126 0.281 0.025 -0.017 -0.053 0.114 0.054 -0.013
(0.008)∗∗ (0.011)∗ (0.663) (0.804) (0.160) (0.204) (0.236) (0.899)

CHF SPEC -0.023 -0.014 -0.136 -0.130 0.173 0.036 0.186 0.219
(0.679) (0.900) (0.002)∗∗ (0.028)∗ (0.000)∗∗ (0.687) (0.001)∗∗ (0.027)∗

EURSPEC 0.154 0.232 0.129 0.149 -0.084 -0.109 0.002 -0.031
(0.014)∗ (0.042)∗ (0.012)∗ (0.049)∗ (0.101) (0.125) (0.975) (0.812)

GBP SPEC 0.046 0.133 -0.162 0.035 -0.070 -0.290 -0.011 -0.124
(0.404) (0.203) (0.004)∗∗ (0.637) (0.214) (0.006)∗∗ (0.855) (0.214)

JPY SPEC -0.023 -0.053 -0.040 0.016 -0.128 -0.137 -0.054 -0.109
(0.631) (0.534) (0.370) (0.771) (0.002)∗∗ (0.009)∗∗ (0.278) (0.084)

NZDSPEC 0.008 -0.020 -0.027 -0.064 -0.104 0.025 0.122 0.129
(0.878) (0.745) (0.379) (0.141) (0.007)∗∗ (0.675) (0.017)∗ (0.024)∗

CROSS SPEC Cross1 Cross2 Cross3 Cross4

R2 14.5% 27.1% 39.4% 15.6% 30.9% 53.7% 5.2% 23.6% 46.0% 11.7% 31.7% 48.5%

Table 9.4: Regression of the high and low interest rate respective tail dependences on the DOL index, HMLFX index, DOL index volatility, HMLFX index

volatility, DOL and HMLFX indices covariance and the SPEC ratio (the ratio of each currency future speculative net positions to the total future open interest, as

provided by the CFTC) as well as cross relations among them. The open interest data provided by the CFTC as well as the computed DOL and HMLFX indexes are

weekly data while the respective tail dependence measurement corresponds to the average value over each week. The period of time considered for this analysis spans

from June 20th 2006 to January 28th 2014 and corresponds to the longest overlapping sample for all the currencies considered and available. Numbers in parentheses

show Newey and West [1987] HAC p-values. Cross1 corresponds to all the possible cross effects among which the following are statistically significant (below 5%):

AUD/EUR, EUR/GBP, EUR/NZD. For Cross2 the following cross effects are statistically significant (below 5%): AUD/JPY, CAD/EUR, EUR/GBP. For Cross3 the

following cross effects are statistically significant (below 5%): AUD/GBP, EUR/GBP, GBP/JPY. For Cross4 the following statistically crosses effects are statistically

significant (below 5%): AUD/EUR, AUD/GBP, CHF/EUR, EUR/JPY, JPY/NZD.
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The first observation to make on the results displayed in Table 9.4 is that

the speculator activity contributes significantly to the explanatory power of the

tail dependences regression whereas the DOL and HMLFX factor variances and

covariance do not systematically explain with significance this currency extremal

joint behaviour. Furthermore, it should also be highlighted that the adjusted R2

is noticeably increased once the variables related to the speculator positions in

the market are included.

From the graphical analysis of the Swiss franc speculative open interests, seen

in Figure 9.1, and Table 9.4 it can be seen that this common financing currency is

significantly related to the upper and the lower tail dependences of the low interest

rates basket and that the sign associated is also corroborating the hypothesis of

this thesis. As a matter of fact, when the Swiss franc is primarily sold by the

speculators, who are building their carry portfolio, the upper tail dependence

of the low interest rate currencies is increasing, as seen in Figure 9.1 during

the known carry trade construction period of 2004 to 2007. Conversely, when

the Swiss franc is primarily bought by the speculators, who are unwinding their

carry portfolio, the lower tail dependence of the low interest rates basket tends to

increase.

Interestingly enough, the Australian dollar is playing exactly the same role for

the high interest rate basket. This typical investing currency is indeed significantly

contributing to the upper and the lower tail dependences of the high interest rate

basket. Furthermore, the two signs associated to the regression coefficients of

the Australian currency (as seen in columns 8 and 9 of the AUDSPEC row of

Table 9.4) also validate the theory proposed in this thesis, since the purchase of

the Australian dollar, following from the construction of a carry trade position by

speculators is leading to an increase in the lower tail dependence among the high

interest rate currencies. On the contrary, when speculators sell the Australian

currency in order to reduce their carry trade exposure an increase in the upper

tail dependence among the high interest rate currencies is observed (as seen in

columns 2 and 3 of the AUDSPEC row of Table 9.4). Finally, it can also be

seen that the speculator positions on the Euro, the British pound and the New

Zealand dollar have informative power about the extremal joint behaviour of the

international exchange rates.
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Currency Portfolio Optimisation
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Chapter 10

Part III Overview

In the third part of this thesis, portfolio optimisation techniques are introduced

and then the novel covariance forecasting approach developed in Part II is utilised

in order to investigate portfolio optimisation in currency carry portfolios. The

complementary “upstream” and “downstream” approaches associated with the

challenges of portfolio optimisation are considered.

Chapter 11 reviews the literature on portfolio optimisation. To begin, the tra-

ditional Markowitz mean-variance approach to portfolio optimisation is introduced

and then the more recently popular risk-based portfolio allocation techniques are

presented. Furthermore, the sensitivity of the portfolio weights to the covariance

factors introduced in Part II is discussed.

Chapter 12 explores the utility of the proposed GFM model in covariance

forecasting and portfolio optimisation. In particular, the added performance of

incorporating the SPEC factors into the model for the covariance is analysed. The

details of the procedure followed for the comparison of the covariance forecasting

models is explained and finally the resulting performance of the proposed approach

is discussed.
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Chapter 11

Portfolio Optimisation

In this chapter, the literature on portfolio optimisation is reviewed. To begin,

the traditional Markowitz mean-variance approach to portfolio optimisation is

introduced and then the more recently popular risk-based portfolio allocation

techniques are presented. Furthermore, the sensitivity of the portfolio weights to

the covariance factors introduced in Part II is discussed.

11.1 Introduction

The advent of modern portfolio theory, with the seminal mean-variance model

proposed by Markowitz [1952], forged new frontiers for a large area of finance

literature and contributed to significant developments within the asset management

industry. Nevertheless, the performance of such models and more importantly the

validity of the accompanying statistical assumptions underpinning the application

of such models to portfolio selection has been questioned. This is due to widely

documented observed inconsistencies in the model assumptions and the practical

applications. This has resulted in numerous interrogations about the practical

implementation of this seminal model and subsequent model extensions to the

original framework to address such issues.

The task of portfolio allocation can be divided into four stylized non-independent

stages as follows:

1. Statistical model estimation and model selection of the portfolio constituent
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multivariate return processes historically.

2. Some form of forecasting under the estimated model selected.

3. Selection and estimation of a risk measure on which to measure performance

of the portfolio.

4. An optimization criterion upon which to perform portfolio allocation based

on the portfolio forecast risk measure.

Under the classical mean-variance based models several challenging model

prerequisites for such a framework arise. Most notably these include the estimation

of essential but unknown parameters such as each portfolio component’s drift and

diffusion terms as well as the dependence structure between them, as measured

often through correlation and covariance relationships, but sometimes also through

other concordance measures such as tail dependence. When such statistical models

are then utilized for stage two, the forecasting, and subsequently stages three

and four in the portfolio selection, it is important to study the influence of

the model assumptions, the model choice, the model estimation and the model

forecast accuracy on the performance of the portfolio allocation method in stages

three and four. In this regard, several works have undertaken analysis of such

considerations in terms of considering the sensitivity of the mean-variance optimal

portfolio behaviour, examples can be found in both the academic and practitioners’

literature, see Jobson and Korkie [1981]; Frost and Savarino [1988]; Michaud [1989];

Chopra and Ziemba [1993]; Broadie [1993]. For instance it has been shown that

the basic mean-variance quadratic program happens to be highly sensitive to

models that fail to account for heteroskedascity in the covariance, and such models

have been shown to be equivalent to a re-expression of the estimation problem as

a measurement error maximization program, further highlighting the importance

of this covariance modelling feature, see Michaud [1989]; Nawrocki [1996].

Several of these studies have demonstrated that indeed one of the most im-

portant features to capture in the real portfolio data returns is in fact the trend

structure of the portfolio returns, but perhaps even more importantly the het-

eroskedastic nature of the portfolio covariance structure over time. Whilst trend is

widely considered to be notoriously difficult and unpredictable even with the most
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carefully developed models, the heteroskedastic nature of the covariance structure

is considered to be more reliably predictable and amenable to model development.

Not only have these features been shown to be important model components to

capture accurately in stages one and two of the process, but in addition since the

portfolio allocation and subsequently portfolio performance in terms of returns

and risk performance is highly sensitive to the ability of the model to correctly

capture these dynamic features over time, they also directly affect stages three

and four.

Therefore, several approaches have subsequently been developed in the aca-

demic literature to address these problems and generally they can be split into two

categories. The categorisation depends on which aspect of the four stages they

modify to try to address the above identified issues, particularly on heteroskedas-

ticity of the portfolio covariance: i.e. at the modelling stage, the forecasting

stage, the risk measure specification stage or in the portfolio optimization program

objective function in stage four.

Stages one and two are referred to as “Upstream” approaches, which focus on:

1. Improving the model development and forecasting framework, i.e. the input

estimation that produces the risk measure of the portfolio and acts as input

to portfolio optimization.

2. Reducing the noise on the input sources.

Stages three and four are referred to as “Downstream” approaches. These

approaches consider the input noise as an inexorable feature of financial market

data and accordingly focus on:

4. The risk measure.

5. Adjusting the optimization program through reformulation of the loss func-

tion or through refinement of optimization constraints in order to restrain the

estimator bias and its effect upon the optimal portfolio allocation solution.

In summary, one could make more robust model estimations and forecasts

and utilise existing portfolio allocation methods, or alternatively one can make
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more resilient and constrained portfolio allocation methods to account for weaker

models in stages one and two.

From the quantitative finance perspective, it has been more popular in the

academic literature to address the challenges highlighted through refinement

of the upstream aspects. In this context there exists an abundant literature

wherein three different approaches are particularly worth discussing in the context

of this thesis. Firstly, factor models (Green and Hollifield [1992]; Chan et al.

[1999] or more recently Santos and Moura [2014]) have been proposed in which

the potential portfolio assets have their conditional covariance matrix and drift

modelled based on considerations of a constructed value-weighted market index.

This is akin to the approach adopted in single factor models such as Sharpe [1963]

or the augmented multi-factors models devised by Fama and French [1993] or

Carhart [1997]. In the same vein the latent factor models instead promote a

transformation and dimension reduction approach based on constructing factors

that are orthogonal and typically obtained based on principle component analysis

(PCA) based decompositions. This is achieved at the expense of the economic

interpretation that would have been offered by the non-transformed factors, see

Han [2006]; Zhang and Chan [2009].

The second approach in the literature to tackle issues with the upstream

modelling involves development of models that attempt to capture the portfolio

assets price time series heteroskedasticity through time series model structures.

Typically this includes the modelling of correlation and volatility time variability

under some variant of a multivariate GARCH model such as the widely considered

class of Dynamic Conditional Correlation (DCC) models, see Engle [2002]; Engle

and Colacito [2006]; Aielli [2013], where the heteroskedasticity is only temporal

and does not depend on economic factors. The class of DCC models has been

a focus in the literature since they calculate the covariance between the asset

returns as a function of their past volatility and the correlations between them.

The relationship between the DCC models and GARCH models means that a

DCC model typically utilises recent past information in the estimation of the

present correlation between series, thereby implicitly filtering or down weighting

historical returns over some horizon. Such models involve the estimation of

the covariance matrix which can be made either directly, as in the vectorised

238



GARCH (VEC) formulations developed in Bollerslev [1990] and the diagonal

VEC (DVEC) and restricted VEC (often called BEKK) models, see Engle and

Kroner [1995], or indirectly using conditional correlations as in CCC, DCC or

STCC (Smooth Transition Conditional Correlations) models. Then there are

also dimension reduction based versions of such models such as the orthogonal

GARCH (O-GARCH) proposed by Alexander [2000], which develops the model

as linear combinations of uncorrelated factors. In this manner it is akin to the

approach of principal component analysis dimension reduction. However, it has

been observed that in cases in which the portfolio returns are weakly correlated,

or the portfolio components have similar unconditional variance, then it is likely

that problems in the estimation of O-GARCH will occur and manifest typically in

numerical instability of the fits and forecasts and therefore of the overall portfolio

allocation framework that results. Consequently, this O-GARCH framework was

further refined to the generalised version GO-GARCH of Van der Weide [2002].

In addition to these classes of DCC models there are also models known as time

varying correlation (TVS) models, see Christodoulakis and Satchell [2002].

Finally, the third approach involves Bayesian methods, which have been

proposed to reduce the variance of the input estimator. The technique of shrinkage

was originally applied to the mean parameter estimation by Jorion [1985, 1986] and

then subsequently extended by incorporating qualitative inputs with the Black-

Litterman model, see Black and Litterman [1991]. This approach was extended to

the covariance matrix by Ledoit and Wolf [2003] and more recently to the inverse

of the same covariance matrix by Kourtis et al. [2012]. This technique optimally

combines two existing estimators, such as the sample estimator (respectively for

the expected value or the covariance matrix) and for instance a factor model based

estimator. More recently Garlappi et al. [2006]; Boyle et al. [2012]; Branger et al.

[2013] utilise a multi-prior model to take account of the investor’s aversion to

ambiguity or model mis-specifications in the optimal portfolio.

From the “downstream” viewpoint, but not so far from the aforementioned

Bayesian approach, another stream of literature focuses on the optimization

program objective function and constraint specifications. Often termed robust

portfolio theory, it proposes to deal with the upstream input estimator’s lack

of precision or noise by an extreme value of the portfolio variance minimization
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given a preset uncertainty around inputs, which could take the shape of percentile

based intervals (Tutuncu and Koenig [2004]) or ellipsoidal sets (Goldfarb and

Iyengar [2003]). Close to this concept, another determining contribution has been

to irrevocably admit the presence of noise within the inputs and as a consequence

to constrain voluntarily and pragmatically the portfolio weights in order to limit

the uncertainty hanging over the portfolio risk exposure, see Frost and Savarino

[1988]; Jagannathan and Ma [2003] and more recently DeMiguel et al. [2009a].

Interestingly enough, it has been demonstrated that these last two methods can be

reformulated using Bayesian shrinkage of the covariance matrix, see Scherer [2007];

DeMiguel et al. [2009a]. It is clear to see that whatever the angle considered, both

noise-reduction alternatives are closely related.

In this context, the contribution to modern portfolio theory literature presented

in this thesis contains multiple aspects:

� A novel “upstream” model is proposed for the portfolio optimization inputs

at the crossroads of the time series and multi-factor models.

� Considering a conditional mean and covariance regression model the het-

eroskedastic component of the covariance is expressed as a function of a

set of economically relevant and known factors, which are also potentially

intervening in the drift dynamic.

� Furthermore, the influence of heteroskedasticity within the covariance matrix

upon the efficient frontier and the optimal mean-variance portfolio weights

is demonstrated.

� A stress testing framework is developed based on the GFM model to assess

the most influential factors in the portfolio allocation and hence the resulting

performance.

Whilst there are vast individual literatures on portfolio optimisation and the

currency carry trade, there are relatively few papers addressing the challenge of

portfolio optimisation in currency carry trades. Barroso and Santa-Clara [2015]

test the relevance of technical and fundamental variables in forming currency

portfolios. In addition to the carry strategy the authors combine momentum
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and reversal in order to optimise portfolio performance. The resulting optimal

portfolio is found to outperform the carry trade and other naive benchmarks in

an extensive 16 year out-of-sample test. Its returns are not explained by risk

and are valuable to diversified investors holding stocks and bonds. Exposure to

currencies increases the Sharpe ratio of diversified portfolios by 0.5 on average,

while reducing crash risk. Furthermore, the authors argue that currency returns

are an anomaly which is gradually being corrected as hedge fund capital increases.

Daniel et al. [2014] examine carry trade returns formed from the G10 currencies.

The authors find that performance attributes depend on the base currency and that

dynamically spread-weighting and risk-rebalancing positions improves performance.

it is demonstrated that equity, bond, FX, volatility, and downside equity risks

cannot explain profitability. Dollar-neutral carry trades are shown to exhibit

insignificant abnormal returns, while the dollar exposure part of the carry trade

earns significant abnormal returns with little skewness. Downside equity market

betas of the constructed carry trades are found to be not significantly different from

unconditional betas, while hedging with options reduces but does not eliminate

abnormal returns. Furthermore, the distributions of drawdowns and maximum

losses from daily data indicate the importance of time-varying autocorrelation in

determining the negative skewness of longer horizon returns.

Ackermann et al. [2016] demonstrate that the key difference between the

currency markets setting and the equity markets setting is that in currency markets

interest rates provide a predictor of future returns that is free of estimation error,

which permits the application of mean-variance analysis. The authors show that

over the last 26 years, a mean-variance efficient portfolio constructed in this fashion

has a Sharpe ratio of 0.91, versus only 0.15 for the equally weighted portfolio.

11.2 Markowitz Mean-Variance Approach

The traditional mean-variance optimization approach proposed by Markowitz

[1952] is a framework for portfolio allocation that maximises the expected return

for a given level of risk, defined as variance. The key insight in this seminal paper

is that an asset’s risk and return should not be assessed individually, but by how

it contributes to a portfolio’s overall risk and return. Thus an investor can reduce
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their portfolio risk simply by holding combinations of instruments that are not

perfectly positively correlated.

The general closed-form Markowitz framework for calculating the optimal

portfolio weights in the unconstrained case, i.e. when weights w are allowed to be

negative, is presented below. The idea here is that an investor specifies a target

level of portfolio volatility and then calculates the asset weights so as to achieve

the maximum level of portfolio return, i.e. an efficient portfolio. Markowitz [1952]

showed that there is an equivalent dual problem in which an investor specifies

a target level of portfolio return and then calculates the asset weights so as to

achieve the minimum level of portfolio volatility (standard deviation). In practice,

in order to find efficient portfolios of risky assets the dual problem in equation 11–1

is most often solved due to computational efficiency.

Definition 58. Markowitz Mean-Variance Optimisation

An investor seeks to solve the following unconstrained optimisation problem:

min
w

σ2
p,w = wTΣw s.t. (11–1)

µp = wTµ = µp,0 and wT1 = 1 .

where w are the weights of the assets in the portfolio, Σ is the associated covariance

matrix, µ is the mean returns vector, µp is the portfolio return, σ2
p,w is the portfolio

variance, and 1 is a vector of ones.

To solve the unconstrained minimization problem equation 11–1, first it is

necessary to form the Lagrangian function

L(w, λ1, λ2) = wTΣw + λ1(wTµ− µp,0) + λ2(wT1− 1) . (11–2)

The first order conditions (FOCs) for a minimum are thus the linear equations

∂L(w, λ1, λ2)

∂w
= 2Σw + λ1µ+ λ21 = 0 , (11–3)

∂L(w, λ1, λ2)

∂λ1

= wTµ− µp,0 = 0 , (11–4)

242



∂L(w, λ1, λ2)

∂λ2

= wT1− 1 = 0 . (11–5)

The system of linear equations can be represented using matrix algebra as2Σ µ 1

µT 0 0

1T 0 0


wλ1

λ2

 =

 0

µp,0

1

 ,

or

Azw = b0 , (11–6)

where

A =

2Σ µ 1

µT 0 0

1T 0 0

 , zw =

wλ1

λ2

 and b0 =

 0

µp,0

1

 . (11–7)

The solution for zw is then

zw = A−1b0 . (11–8)

Note that the first d elements of zw are the optimal portfolio weights w =

(w1, . . . , wd) for the minimum variance portfolio with expected return µp,w = µp,0.

If µp,0 is greater than or equal to the expected return on the global minimum

variance portfolio then w is an efficient portfolio.

Remark 11.2.1 (Long basket and short basket constraint). In the currency carry

trade portfolio examples studied in Chapter 12 of this thesis it will be necessary

to constrain the weights of the currencies to be positive in the long basket and

negative in the short basket in order to enforce the long/short nature of the strategy.

For this constrained case, there is no closed form solution available, however a

quadratic programming approach can be utilised. See Boyd and Vandenberghe

[2004]; Palomar and Eldar [2010] for detailed references.
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One particular choice of portfolio weights that is of key interest is the portfolio

with the smallest possible volatility, i.e. the global minimum variance portfolio.

Definition 59. Global Minimum Variance Portfolio

The unconstrained Global Minimum Variance (GMV) portfolio satisfies the

following minimisation problem:

min
w

σ2
p,w = wTΣw s.t. wT1 = 1 . (11–9)

which has the solution

w?
GMV =

Σ−11

1TΣ−11
(11–10)

where w are the weights of the assets in the portfolio, Σ is the associated covariance

matrix, and σ2
p,w is the portfolio variance.

However, if the weights are constrained to be positive (w > 0) then there no

longer exists a closed form solution. A simple quadratic programming approach

can be applied in this case.

The GMV portfolio does not take the expected returns of the assets into

consideration, but seeks to minimise portfolio volatility and as such provides an

anchor at the leftmost end point of the efficient frontier.

Definition 60. Efficient Portfolio Frontier

The efficient portfolio frontier is a graph of µp versus σp values for the set

of efficient portfolios generated by solving equation 11–1 for all possible target

expected return levels µp,0 above the expected return on the global minimum variance

portfolio. This is equivalent to solving the following minimisation problem, where

q ≥ 0 is a “risk tolerance” parameter (q = 0 results in the Global Minimum

Variance (GMV) portfolio):

min
w
wTΣw − q × µTw s.t. (11–11)

µp = wTµ = µp,0 and wT1 = 1 .

where w are the weights of the assets in the portfolio, Σ is the associated covariance

matrix, µ is the mean returns vector, µp is the portfolio return, σ2
p,w is the portfolio
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variance.

The efficient frontier therefore provides an infinite number of potential port-

folios, all of which are optimal in the sense that there exists no other portfolio

with a higher expected return for equal or less risk (here defined as portfolio

volatility). Among this collection of available portfolios it will be interesting to

focus on a number of particular points on the frontier in addition to the GMV

portfolio. Firstly, the Markowitz portfolio with the maximum Sharpe ratio is of

key importance in traditional portfolio optimisation.

Definition 61. Sharpe Ratio

The Sharpe ratio is defined as the portfolio mean divided by the portfolio

volatility, i.e.

Sharpe Ratio =
µp
σp

(11–12)

where µp is the portfolio mean, and σp is the portfolio volatility.

Definition 62. Maximum Sharpe Ratio (MSR) Portfolio

The Maximum Sharpe Portfolio (Tangency Portfolio) is a portfolio on the

efficient frontier at the point where the line drawn from the point (0, risk-free rate)

is tangent to the efficient frontier. The risk-free rate is the rate of return earned

on an asset assumed to have zero risk, e.g. a short dated treasury bill.

Max Sharpe Ratio = max
w

wTµ√
wTΣw

(11–13)

which in the unconstrained case has the solution

w?
MSR =

Σµ−1

1TΣµ−1
(11–14)

Remark 11.2.2. In the general case, finding the Maximum Sharpe Portfolio

requires a non-linear solver since the Sharpe Ratio is a non-linear function of

w. However, as long as all constraints are homogeneous of degree 0, i.e. if w is

multiplied by a number the constraint is unchanged, a quadratic solver can be used

to find the Maximum Sharpe Portfolio weights.
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11. PORTFOLIO OPTIMISATION

Secondly, it will also be interesting to explore the concept of the most diversified

portfolio, introduced by Choueifaty and Coignard [2008] as a risk based approach,

but here I will further restrict the optimisation to the set of portfolios on the

efficient frontier. Choueifaty et al. [2013] provides an interesting discussion of the

properties of the diversification ratio and most diversified portfolio and indeed

the intuition behind it.

Definition 63. Diversification Ratio

The diversification ratio is the ratio of the weighted average of the asset

volatilities divided by the portfolio volatility, i.e.

Diversification Ratio =
wTdiag(Σ)√

wTΣw
(11–15)

Definition 64. Most Diversified Efficient (MDE) Portfolio

The Most Diversified Efficient Portfolio is the portfolio lying on the efficient

frontier which maximises the diversification ratio, i.e. the MDE portfolio is a

constrained version of the well known Most Diversified Portfolio (MDP).

w?
MDE = argmax

w

wTdiag(Σ)√
wTΣw

s.t. w?
MDE is efficient. (11–16)

The solution to this optimisation problem can be found by numerically evalu-

ating the diversification ratio over a grid of portfolios along the efficient fronter,

and selecting the portfolio with the maximum diversification ratio.

An example plot of an efficient frontier can be seen in Figure 11.1. The trade-

off between risk and return can be observed in the various portfolios plotted. At

the leftmost point on the efficient frontier one can observe the constrained GMV

portfolio, whereas on the rightmost end point one can observe the portfolio with

100% allocation to Asset 4. Furthermore, the asset weights for the three example

portfolio allocation methods can be seen in Figure 11.2. It can be seen here that

only the constrained MDE portfolio actually allocates some weight to each of

the assets, i.e. the constrained GMV portfolio and the constrained Markowitz

Maximum Sharpe portfolio concentrates the allocation into only three assets.

Remark 11.2.3. In practice, investors can utilise the pragmatic approach of

requiring a minimum holding in each of the assets considered for the portfolio.
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This can alleviate problems with portfolios becoming too concentrated in a small

number of particular assets.

11.3 Risk Based Approaches

It is known that the mean-variance portfolio optimisation approach can be highly

sensitive to the input parameters, and in particular to the expected returns, see

Merton [1980]. Therefore, risk-based techniques have arisen as an alternative,

see Roncalli [2013]. In focusing on just the risk of the portfolio the investor is

admitting that he has no useful knowledge of expected returns, and thus effectively

assuming that all potential assets under consideration have equal expected returns.

Of course it is possible to go further in this direction and assume no knowledge

of asset covariances. In this case an investor can use equal asset weights. Indeed

DeMiguel et al. [2009b] present empirical evidence to suggest that the gain from

optimal diversification is more than offset by estimation error when considering

various weighting schemes versus the equal weight approach.

Definition 65. Equal Weight (EW) Portfolio

The equal weight portfolio is simply defined as:

w?EW =
1

N
(11–17)

where N is the number of assets in the portfolio.

Arguably the next simplest approach to asset weighting is achieved by weighting

each asset based on its relative volatility, thus it is assumed each pair of assets

has an equal correlation. Here, I refer to this as näıve risk parity, see Anderson

et al. [2012]; Asness et al. [2012].

Definition 66. Näıve Risk Parity (NRP) Portfolio

The näıve risk parity portfolio is simply defined as:

w?NRP (i) =
1

σi
∑N

j=1
1
σj

(11–18)

where N is the number of assets in the portfolio and σi is the volatility of asset i.
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A key contribution to the risk-based portfolio literature is provided by the

Equal Risk Contribution (ERC) approach of Maillard et al. [2010]. The aim of

this approach is to find the portfolio in which each asset contributes equally to

the total portfolio volatility.

Definition 67. Equal Risk Contribution (ERC) Portfolio

The optimal asset weights are defined as:

w?ERC = {w ∈ [0, 1]N :
∑

wi = 1, wi×∂wiσ(w) = wj×∂wjσ(w) ∀i, j} (11–19)

where ∂wiσ(w) = ∂σ(w)
∂wi

are the marginal risk contributions, i.e. the impact of

an infinitesimal increase in an asset’s weight on the total portfolio volatility, and

σ(w) =
√
wTΣw is the portfolio variance.

Note that ∂wiσ(w) ∝ (Σw)i, where (Σw)i denotes the i-th row of the vector

issued from the product of Σ with w. This reduces the optimisation problem to

the following:

w?ERC = {w ∈ [0, 1]N :
∑

wi = 1, wi × (Σw)i = wj × (Σw)j ∀i, j} (11–20)

In order to find the optimal weights a Sequential Quadratic Programming

(SQP) algorithm can be applied to solve the following problem (see details in

Maillard et al. [2010] or Chaves et al. [2012] for alternative algorithms):

w?ERC = argmin f(w) s.t. 1Tw = 1 and 0 ≥ w ≤ 1. (11–21)

where

f(w) =
N∑
i=1

N∑
j=1

(wi(Σw)i)− wj(Σw)j)
2 (11–22)

Note that the existence of the ERC portfolio is ensured only when the condition

f(w?) = 0 is verified, i.e. wi(Σw)i − wj(Σw)j for all i, j. Thus, it can be seen

that the program minimises the variance of the rescaled risk contributions. For

alternative solutions see Lee [2011]; Kaya and Lee [2012]; Baltas and Kosowski

[2015].

A more general approach to risk-based portfolio construction can be seen in
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11. PORTFOLIO OPTIMISATION

Jurczenko et al. [2015]. The authors show that all risk-based approaches can be

mapped on a plane defined with only two parameters. The first parameter is

a regularization parameter which implies differences in sensitivity to covariance

estimates. Thus the GMV portfolio, which is highly sensitive to the covariance

matrix, and the EW portfolio, which is totally independent from it, represent both

extremes of the spectrum. The ERC portfolio lies in between, i.e. it is sensitive

to risk parameters but less so than the GMV portfolio.

The second parameter gives the tolerance for individual total risks. The GMV

portfolio, which is the most averse to risk, is at one end of the spectrum. At

the other end of the spectrum is what the authors term ‘the Most Concentrated

(MC) portfolio’, which is only invested in the riskiest asset. The Most Diversified

(MD) portfolio lies in between, being more diversified than the MC portfolio but

less focused on individual total risks than the GMV portfolio. Implicitly, the

correlation is the definitive input for the MD portfolio.

Definition 68. Generalized Risk Based Portfolio

The optimal weights for any risk-based portfolio can thus be found by solving

the following minimisation problem with the two parameters γ and δ:

w? = argminD(f(wi; γ, δ)) s.t. 1Tw = 1. (11–23)

where

f(wi; γ, δ) =
wγi
σδi
×MRCi (11–24)

where γ ≥ 0 and δ ≥ 0 are the two key parameters that define the plane of all

risk based portfolios. D(.) is a dispersion matrix and MRCi is the marginal risk

contribution of asset i.

This general optimisation problem can be solved using a number of meth-

ods with various strengths and weaknesses, for example via a Newton-Raphson

algorithm (see Maillard et al. [2010]).

An interesting approach is presented in Stefanovits et al. [2014] where the

authors introduce a measure of model risk and then show that under the assumption

of known constraints and unbiased estimators, optimal portfolios are on average

negatively affected by model risk. The analytical results in the paper show that
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mean-variance optimization is seriously compromised by model uncertainty, in

particular, for non-Gaussian data and small sample sizes. In order to mitigate

these shortcomings, a method is proposed in which the sample covariance matrix

is adjusted in order to reduce model risk.

11.4 Portfolio Weights Sensitivity to Factors

In this section, I provide expressions for the sensitivity of the conditional covariance

and the optimal Markowitz portfolio weights to the explanatory exogenous factors

that make up the filtration Gt introduced in Chapter 7. These sensitivity results

can be utilised to study the stress testing of the portfolio to variations in the

factors. This gives an indication of the robustness of portfolio performance to

variations in the driving factors and also an indication of the influence that such

model based reactivity will have on risk based performance.

11.4.1 Conditional Covariance Sensitivity to Covariates

To begin, the sensitivity of the conditional covariance of the portfolio under the

GFM model to each factor in the model is derived as follows:

ΣXt = E[ete
T
t |Ft ∪ Gt]

= Ψ +BXtX
T
t B

T .
(11–25)

Cov(em, en|Ft ∪ Gt) = Σm,n
Xt

= Ψm,n + (Bm,:Xt)× (Bn,:Xt) , (11–26)

where m = 1, . . . , d, n = 1, . . . , d and d is the number of assets in the portfolio.

Differentiating ΣXt w.r.t covariate Xk,t gives:

∂Σm,n
Xt

∂Xk,t

= (Bm,k × (Bn,:Xt)) + (Bn,k × (Bm,:Xt)) . (11–27)

These results can be utilised to study the influence that each factor has on the

portfolio allocation and performance in the SFM and GFM frameworks. In

addition these results can be used to study the effect of the factors on the forecast

covariance performance.
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11.4.2 Optimal Markowitz Weights Sensitivity to Covari-

ates

Having obtained the sensitivity of the conditional covariance of the portfolio under

the GFM model to each factor in the model, this can now be extended to study

the sensitivity of the allocation weights selected for the portfolio to the factors.

∂zw
∂Xk,t

=

(
∂A−1

∂Xk,t

× b0

)
+

(
∂b0

∂Xk,t

×A−1

)
︸ ︷︷ ︸

=0, since b0 doesn’t depend on Xk,t

=

(
−A−1 ∂A

∂Xk,t

A−1

)
b0

=

−A−1

2 ((Bn,:Xt)Bm,k + (Bm,:Xt)Bn,k) β:,k 0

βT:,k 0 0

0 0 0

A−1

 b0 .

(11–28)

In the next chapter, the portfolio optimisation techniques presented above

will be utilised to analyse the accuracy and the associated performance of the

covariance models introduced in Part II.
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Chapter 12

Investigating Optimal Currency

Portfolios via Generalised

Factor Model Covariance

Forecasting

In this chapter, the utility of the proposed GFM model in covariance forecasting

and portfolio optimisation is explored. In particular, the added performance of

incorporating the SPEC factors into the model for the covariance is analysed. The

details of the procedure followed for the comparison of the covariance forecasting

models is explained and finally the resulting performance of the proposed approach

is discussed.

12.1 Covariance Forecasting Accuracy

In order to compare the accuracy of the covariance forecasts following from the

heteroskedastic Generalised Multi-Factor model (GFM) with those generated

through the Standard Multi-Factor model (SFM) and the DCC model I consider

a set of allocation approaches which are unevenly impacted by the input sources

of uncertainty. These include: the variability and information content of the

conditioning filtrations in the model estimation; the variability of the forecasts of
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the conditional and unconditional covariance matrices for the portfolio under each

model; the sensitivity of the model estimation; and the stress of the model relative

to variability in the explanatory factors in the filtration Gt in each window. I will

present different comparative results to study each of these factors both in terms

of the allocation and in terms of portfolio performance.

I will first consider two naive methods, which are the equal weighted method

studied recently by DeMiguel et al. [2009b] as well as the näıve risk parity

approach (Asness et al. [2012]; Anderson et al. [2012]) where it is assumed that the

correlations across all pairs of assets are equal such that only the variances should

be considered for the risk parity allocation. The former is naturally insensitive to

the input mismeasurement while the latter is impacted by poor forecasts of the

asset volatilities.

In addition to these I also consider the classical approach of the mean-variance

optimization program proposed by Markowitz [1952]. The prerequisites for this

method are expected value and covariance assessments. This method is as a

consequence highly sensitive to the measurement error affecting the expected value

and to a lower extent the covariance forecasts errors (Jobson and Korkie [1981];

Frost and Savarino [1988]; Michaud [1989]; Chopra and Ziemba [1993]; Broadie

[1993]; Nawrocki [1996]). I then complete this analysis with several other risk

based approaches to portfolio allocation that have been more recently proposed.

In this regard I focus on the portfolio allocation methods displaying more or less

sensitivity to the covariance measurement error. Among them I implemented the

equal risk contribution (ERC) approach proposed by Maillard et al. [2010], the

minimum variance portfolio proposed by Haugen and Baker [1991], as well as the

maximum diversification devised by Choueifaty and Coignard [2008]. Interestingly,

it has been recently pointed out by Jurczenko et al. [2015] that the measurement

error on the covariance used as input is particularly influencing the optimal

weights calculated through these techniques. This effect is more pronounced for

a minimum variance portfolio, which amounts to the Markowitz mean-variance

model but with equal expected returns for all the portfolio components, than for

the ERC model1.

1Please refer to Jurczenko et al. [2015] for a more detailed review.
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12.2 Currency Data and Currency Factors

Description

The dataset considered in this chapter is as in Chapter 8 of this thesis. For

readability, this is briefly recapped here. I consider two sets of currency baskets

typically associated with a currency carry trade strategy. One portfolio consisting

of a long basket and a second portfolio consisting of a short basket. The long

basket contains four major “investment” currencies, namely United Kingdom

(GBP), Australia (AUD), Canada (CAD) and New Zealand (NZD), while the short

basket contains three major “funding” currencies, as in Brunnermeier et al. [2008],

namely Euro (EUR), Japan (JPY) and Switzerland (CHF). I have considered daily

settlement prices for each currency exchange rate as well as the daily settlement

price for the associated 1 month forward contract in order to derive the weekly

carry trade mark-to-market returns, Rt. The daily time series analysed were

obtained from Bloomberg and range from 04/01/1999 to 29/01/2014. As I am

working on the trading volume based covariance modelling I chose 1st April 1999,

i.e. the date of the introduction of the Euro, as the starting date of the sample.

For the explanatory factors in the currency analysis I consider a range of

different factors that I motivate in this section from an economic perspective as

well as a quantitative perspective. In a similar vein to the famous three stock-

market factors and the two bond-market factors proposed by Fama and French

[1993] to explain bonds and equities returns, Lustig et al. [2011] propose a factor

decomposition of the currencies returns. Such models are built upon one of the

cornerstones of financial theory which is the risk premium. These yields implicitly

stored within asset returns would thus be received by investors willing to bear

the associated sources of risk. Lustig et al. [2011] demonstrate with the help of a

principal component analysis that two linearly independent factors could explain

most of the variability in the cross section of the international exchange rates. The

first factor would correspond to a level factor, named “dollar risk factor” or DOL,

which is essentially the average relative value change of a foreign currency basket
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against the dollar1. The second factor embodies the market induced risk premium

associated to the currencies with the highest differential of interest rates relative

to the others and is accordingly named in the literature the High-Minus-Low risk

factor or HMLFX .

12.2.1 Data Preparation

In order to perform the empirical analyses considered in this chapter a substantial

amount of effort and time was invested into collecting, cleaning and preparing the

data. In particular, the following key steps were performed:

1. Collect daily currency spot price data: closing price, bid and ask price.

2. Collect daily currency forward price data - at maturities of one week, two

weeks, three weeks and 1 month: closing price, bid and ask price.

3. Pre-process the price data to deal with missing data, i.e. if data is missing

copy previous day’s price.

4. Match one month forward contracts with closing spot price on the correct

date of delivery for the contract.

5. Calculate the forward premium (interest rate proxy).

6. Collect currency futures price open interest data: broken down into net com-

mercial (hedgers) and net non-commercial futures positions (speculators).

7. Match open interest rate data to synchronous currency price data.

12.2.2 Covariate SARIMA Forecast Results

Before analysing the covariance forecasts it is important to examine the accuracy

of the SARIMA forecasting models for the individual covariates. Here, I utilise

the MASE and the MAPE measures, as discussed in Section 7.4.1.3 of Chapter 7.

1When an American investor is considered. However it is asserted in the same article that
similar results are obtained when we retain the Japanese, British or Swiss investors point of
view.
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The MASE forecast accuracy results, shown as a time series in Figure 12.1

and as a boxplot summary in Figure 12.2, suggest that on average all of the

models constructed from the ARIMA automated fitting procedure described in

Section 7.4.1.2 of Chapter 7 behave as expected. The covariates with non-trivial

ARIMA model structures produce reasonably accurate forecast performance over

the one month forecast horizon, which is required for the applications to carry

trade strategies considered in this thesis.

It is important to note that the DOL and HMLFX covariates are risk premia

and therefore shouldn’t be expected to be forecastable, since otherwise there is no

risk to be compensated for. Indeed these covariates seem to be generated from

models that are close to white noise and hence the näıve in-sample forecasting

method in these cases can be very poor. Thus, looking at the boxplot summary

of the Mean Absolute Percentage Error (MAPE) forecast accuracy results in

Figure 12.3 it can be seen that the DOL and HMLFX have median MAPEs of

100%, i.e. often these covariates are forecasted as zero.

If instead of just considering DOL and HMLFX , additional covariates are

considered based on the volatility in these factors and there covariance, then the

fitted models for the factors σDOL, σHML and CovDOL,HML demonstrate a much

more accurate forecast performance: having median MAPEs of 11%, 12% and 21%

respectively. The accuracy of the forecast performance in these covariates is even

more accurate outside the period of poor forecast performance corresponding to

the 2008 Financial Crisis, which is not unexpected. Furthermore, the SPEC and

cross SPEC covariates for the low interest rate currencies have median MAPEs

of 38%, 56%, 50%, 70%, 60% and 78% respectively. The speculative volume

covariates for the high interest rate currencies show similar forecasting accuracy.

An important contribution of the studies in this section is to demonstrate a

feature not previously discussed in the literature on carry trade portfolio analysis

that will have practical significance in the actual carry trade portfolio construction.

In previous studies, as described in Section 8.3.2 of Chapter 7, the factors known

as DOL and HMLFX were shown to have strong explanatory power of the carry

trade portfolio returns when studied from an in-sample analysis via PCA. However,

as demonstrated in this section, this has not carried forward to good forecast

performance for the models fitted for these DOL and HMLFX factors. The
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Figure 12.1: Mean Absolute Scaled Errors (MASE) for Low Interest
Rate Basket Covariate Forecasts.

reason for this is explained by the fact that the models fit to these factors tend

to demonstrate that they behave historically in a similar manner to white-noise

which naturally therefore results in high forecast errors under the MAPE criterion.

In fact these findings further strengthen the arguments presented in this thesis

that one must include other explanatory factors such as the speculative open

interest volume covariates into the currency carry trade portfolio descriptions.

These factors were found to have both good in-sample explanatory power in the

covariance regression structures as well as good out-of-sample forecast performance

under the ARIMA models selected for these factors. This means that such factors

can be both significant in interpreting inter-temporal variation in carry returns

as well as instrumental in improving covariance model forecasts in the proposed

GFM model and therefore may contribute to improving the portfolio performance

that results from such a model. I will investigate this second aspect further in the

studies contained in the remaining sections.
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est Rate Basket Covariate Forecasts.
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12.2.3 Covariance Dynamics and Forecasting Accuracy

This section aims to study two important aspects of the models that have been

described for the portfolio returns. The first is how the stage 1 and stage 2 model

forecast covariance structures described in Section 8.3.3 of Chapter 7 for the

SFM, GFM and DCC models behave under the different conditional assumptions

with respect to the previously defined filtrations Ft, Gt and G̃t. In particular, I

demonstrate that each model’s forecast covariance produces significantly differ-

ent behaviours over time in both the information content captured and more

importantly in the reactivity of the covariance model forecasts to inter-temporal

variation in the information content contained in the filtrations Ft and G̃t. The

second aspect of this analysis is to assess the downstream portfolio performance of

the covariance regression models as a result of the propagation of the forecasts of

the covariates/currency factors and the resulting covariance forecasts when used in

the portfolio allocation, as described in Section 7.4 of Chapter 7. Performing these

studies can be achieved in a number of different ways. The approach presented

below is based on a similar type of analysis performed in Engle and Colacito

[2006].

The first study highlights the distinctive features and benefits of using the

proposed GFM model versus the SFM and DCC models. Demonstration of the

differences in the second order modelled information content is achieved through

analysis of the forecast covariance matrix. Here, two measures are used: the trace

to study the variation and reactivity of each model forecast to marginal volatility

fluctuations; and the maximum eigenvalue of the covariance matrix forecasts over

time to summarise additional second order covariance structure in off-diagonal

dependence structure information content captured by each model and to observe

its reactivity over time.

The second set of studies performed considers the accuracy of the forecast

covariance models as measured through the portfolio ex-post performances. For

sake of comparison between all models, and to remove the influence that the mean

prediction of returns plays on the portfolio selection, the global minimum variance

(GMV) portfolio allocation framework is considered to undertake the studies in

this section. This is largely due to the widely acknowledged fact that forecasting
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the mean return can be highly challenging, whereas one may expect much better

performance when considering the second order information in the volatility and

covariance, see discussions on this in Chapter 11.

Furthermore, this second aspect of the study of accuracy of the model forecasts,

as measured through the global minimum variance portfolio performances, is based

around the type of analysis performed in Engle and Colacito [2006], modified for

the context of the models in this thesis. This required the use of a bootstrap

procedure, over each sliding window, in order to obtain a time series of estimators

of the realized portfolio performance variance (population portfolio volatility). I

will denote this time series of estimators as the “ex-post” portfolio volatility that

the different models will be trying to achieve with their portfolios constructed

from the different covariance forecast structures in a global minimum variance

allocation framework. The bootstrap procedure takes 21 days (one trading

month) of out-of-sample daily carry returns, selects a random start day uniformly

between 1 and 16 and then calculates the one week portfolio volatility from the

selected weights of the model and the sums of the next 5 days synchronised daily

carry returns for each currency. I draw 1000 bootstrap replicate samples and

then calculate the covariance of these bootstrapped weekly portfolio volatilities.

The ex-post portfolio volatility obtained is compared to each of the forecasts

and resultant global minimum variance portfolios constructed using each of the

forecast covariance models for the SFM, GFM and DCC. However, as noted

in Chapter 7 there are several variants of these models which contain different

sources of conditional information. For instance some versions of these models

have information coming from filtrations Ft, Gt and G̃t, depending on whether

they contain factors and whether they are population based estimations such

as for the SFM and GFM models in Equations (7–35) and (7–38) respectively,

or locally adapted conditional estimations as in the SFM and GFM models in

Equations (7–36) and (7–39) respectively. In the context considered here, Ft

contains the currency returns over a lookback period of length T until time t− 1,

Gt contains the covariate information over a lookback period of length T until

time t, and G̃t contains all of the historical covariate information up until time t.

To interpret the comparison between the “ex-post” portfolio volatility and each

of the SFM, GFM and DCC model forecast results a great deal of care is required.
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I shall undertake this comparison under the following statistical assumptions: I

assume that the population based covariance estimate for the model factors, that

are constructed from the filtration G̃t, form an unbiased and consistent estimator

of a stationary population based covariance. Furthermore, since the filtration G̃t

is comprised of a time series of length tT whereas the filtration Ft is of length

T for each sliding window in t, I will assume that for comparison purposes the

contribution to the unconditional covariance, for the SFM and GFM models in

Equations (7–35) and (7–38) respectively is approximately “exact”. To be more

precise, I assume the convergence rate of the second order moments of Xt, which

are constructed based on G̃t, are a function of tT and as such, I will assume that as

T and t go to infinity, asymptotically only the leading contribution is observed to

the portfolio volatility from the SFM and GFM unconditional covariance models,

which is arising from local (in the current t-th sliding window) variability due to

the filtration Ft. In this sense it is then possible to compare the models for the

SFM and GFM, which are based on Ft ∪ G̃t with the version of the DCC model

which is based only on Ft. If this were not the case, the results are still valid but

direct comparison between model performance would be less obvious.

An alternative approach would be to extend the bootstrap procedure to also

sample multiple realisations of the factors Xt that make up the filtration G̃t. These

sampled bootstrap replicates could then be used to numerically average out the

variability due to the realisation of the factors attributed to the terms such as

Cov(Xt|G̃t) and E(XtX
T
t |G̃t) in the SFM and GFM models when considering the

unconditional covariance, in order to isolate the influence on portfolio volatility

attributed to Ft.

It is demonstrated that a key difference among the set of models described

earlier lies in the conditioning filtrations considered. Furthermore, another distin-

guishing feature involves the choice of conditional variance and covariance dynamic

considered, which means in this case either heteroskedastic or homoskedastic mod-

els in the SFM, GFM and DCC models.

In the following, the differences in reactivity among the set of covariance

models under scrutiny is emphasised and it is demonstrated that not only does

the conditional dynamic of the dependence structure have a role to play, but in

addition the filtration utilised in constructing the portfolio variance also has an

262



important role to play in determining how fast each estimator can adapt to abrupt

changes of environment. Therefore, it is interesting to then study whether if a

particular model is found to be more reactive to the local environment, as will

be shown with a version of the GFM model, does this necessarily translate into

better portfolio performance and in what sense?

To this end, I distinguish the reactivity for each model in adjusting the average

conditional variances behaviour for the associated marginal distributions and the

dependence structures behaviour for the multivariate component. It can be seen

in the upper panels of Figures 12.4 and 12.5 that the traces of the covariance

matrices resulting from the GFM model are more reactive than those generated

by the SFM model or the historical covariance matrix model even though the

amplitude of the adjustment stayed restrained with respect to the DCC. It should

be noted here that there is a trade-off between being reactive enough to capture

changes in covariance and the trading costs associated with increasing portfolio

turnover. While the trace embodies the average variability of the matrix diagonal

elements, i.e. the vector of asset variances, the relative importance of the first

eigenvalue displays on the contrary a higher reactivity and absolute amplitude

of adjustment for the GFM model as shown by the lower panels of Figures 12.4

and 12.5.

These two study results lead to the conclusion that the DCC model accompa-

nied by the marginal GARCH dynamics tend to be particularly sensitive to the

changes occurring at the marginal volatility level whereas the GFM model is more

sensitive to the changes occurring at the asset dependence level. Said differently,

the heteroskedasticity seems to be more influential at the covariance level of the

GFM model generated covariance matrices while the DCC generated matrices

react more significantly to the variance heteroskedasticity component.

As discussed, to further the comparison between the GFM and the DCC models

I propose to assess the forecasting accuracy of the two models by comparing the

difference between the model based volatility forecast for the next month and

the bootstrapped realized volatility of the optimal portfolio over the same period.

This graph should indicate the accuracy with which each model anticipates the

joint and marginal behaviours of the assets composing the portfolio. As shown

in Figures 12.6 and 12.7 the accuracy of the two methods is quite similar and
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Figure 12.4: High interest rate basket. Upper panel: Trace of covari-
ance matrix.
Lower panel: Proportion of variance explained by first principal com-
ponent.

Date09 10 11 12 13

L
o

g
 T

ra
ce

10-5

10-4

10-3

10-2
Log Trace of Forecasted (Conditional) Covariance Matrix vs Trace of Realised Covariance Matrix

Realised Covariance
GFM Forecast Covariance
SFM Forecast Covariance
DCC Forecast Covariance
GFM Forecast Conditional Covariance
SFM Forecast Conditional Covariance

Date
09 10 11 12 13

6
1 P

ro
p

o
rt

io
n

 o
f 

T
o

ta
l V

ar
ia

n
ce

  

0.2

0.4

0.6

0.8

1

6
1
 Proportion of Total Variance of Forecasted (Conditional) Covariance Matrix vs

 6
1
 Proportion of Total Variance of Realised Covariance Matrix                  

Realised Covariance
GFM Forecast Covariance
SFM Forecast Covariance
DCC Forecast Covariance
GFM Forecast Conditional Covariance
SFM Forecast Conditional Covariance

Figure 12.5: Low interest rate basket. Upper panel: Trace of covariance
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Lower panel: Proportion of variance explained by first principal com-
ponent.
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Figure 12.6: High interest rate basket. Annualised portfolio volatil-
ity differences between forecast covariance matrix and realised boot-
strapped covariance matrix for different covariance forecasting models.

remains within the +/−15% annualised portfolio volatility bounds. This shows

that the GFM and the DCC, while depending on different filtrations and thus

leading to different estimator sensitivity to innovations in the data process, still

display quite similar accuracy in forecasting the future covariance matrices.

12.3 Portfolio Performance and Conditioning of

The Covariance Matrix

In this section, I explore the influence played by portfolio optimisation methods

that consider portfolio weight constraints versus those that are unconstrained.

It was shown in the innovative paper of Jagannathan and Ma [2003] that such

constraints can result in a form of regularization or shrinkage effect implicitly

induced on the portfolio variance through the optimization routine and not

directly through the stage one or stage two statistical model estimations. This is

particularly interesting to consider in the context of the models studied in this

thesis for the SFM, GFM and DCC covariance forecast models.
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Figure 12.7: Low interest rate basket. Annualised portfolio volatility dif-
ferences between forecast covariance matrix and realised bootstrapped
covariance matrix for different covariance forecasting models.

Therefore, I investigate the consequences of the weight constraints upon the

characteristics of the global minimum variance portfolio. As mentioned earlier,

the carry trade strategy presumes that an investor is long the high interest rate

currencies while financing this position through short positions on the low interest

rate currencies. This implies that the weights are constrained to be positive

in the high interest rate currencies basket optimization program, whereas the

weights are enforced to be negative in the low interest rates currencies basket. As

a result of this supposedly slight modification of the global minimum variance

optimization program the input covariance is accordingly affected, and more

precisely an implicit form of shrinkage occurs on the matrix. For instance, it

can be seen that the objective function for the global minimum variance will

contain, in the resulting constrained Lagrangian, a form of ‘penalty’ term given

by (λ1T − 1λT ), where λ corresponds to the Lagrange multipliers column vector

for the non-negativity constraints, see details in Jagannathan and Ma [2003].

Furthermore, Jagannathan and Ma [2003] argues that such an ex-post alteration

of the input covariance matrix used for the portfolio optimization naturally lowers
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the contribution of any estimator improvement technique. That is, it regularizes

to some extent the resulting contribution one may obtain by trying to improve

the model forecast performance in stages one and two of the upstream model

improvements. More precisely, it can be shown that the explicit ‘penalty’ term

that results from the weight constraint takes the form of λi + λj which acts to

reduce the joint covariance between the returns for currency i and currency j.

While Jagannathan and Ma [2003] demonstrate that the ex-post average

return and volatility associated to a set of global minimum variance portfolios

optimized with various sample estimators of the covariance matrix are almost

indistinguishable once the positivity constraint is affixed, the plot of the 12-month

rolling Sharpe ratios for the various estimators analysed in this thesis goes in the

same direction. Indeed it can be noticed that the risk return profiles associated

to the global minimum variance portfolios built on various estimators are barely

distinguishable when the positivity constraint is enforced, as shown in Figure 12.8.

Contrary to this, the unconstrained results, plotted in Figure 12.9, show that

the differences among estimators are clearly noticeable on a rolling window basis

when these constraints are not imposed. It is important to emphasise that as a

result of this statement, the carry trade optimal portfolio, being constrained on

the sign of the positions for the high and the low interest rates basket, is likely to

be largely independent of the covariance estimator choice.

This is true as far as the filtrations G̃t or Ft are considered. However, the

GFM family of models explored in this thesis also enables the conditioning of

the covariance estimator upon a different combination of filtrations such as the

union of the data and covariates sample filtrations, Gt and Ft, according to the

equation 7–39 derived earlier. Thus, while the DCC, the GFM unconditional

covariance matrix and the SFM unconditional covariance matrix models are based

respectively upon the following filtrations Ft, (Ft ∪ G̃t)and (Ft ∪ G̃t), alternatively

the GFM conditional covariance matrix is instead conditioned upon the sample

filtration (Ft∪Gt), which respectively contain the currency returns over a lookback

period of length T until time t− 1, and the covariate information over a lookback

period of length T until time t. As such this conditional covariance model thus

allows different high and low interest rates currency optimal portfolios to be

constructed, which will represent in a sense the non-diagonal heteroskedastic
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Figure 12.8: High interest rate basket. Constrained GMV 12 month
rolling Sharpe ratio comparison.

component of the diffusion and the dependence structure characterised separately

from the related high and low interest rates sets of currencies. The conditioning of

this covariance on the covariate values over only the most recent lookback period

allows for a measure which is more reactive to recent changes in macroeconomic

variables. If a comparison is performed between the 12-month rolling Sharpe ratio

of the constrained minimum variance portfolio based on the GFM conditional

covariance matrix with the unconditional GFM and the conditional DCC models,

all of them being conditioned on different filtrations or combinations of filtrations,

the former strikingly stands out from the two others.

Figures 12.10 and 12.11 display a substantially different behaviour of the

rolling Sharpe ratio for the portfolios based on the GFM conditional covariance

matrix even though the non-negativity constraint is affixed to the global minimum

variance optimization program. It can also be observed that the combination

of the GFM conditional minimum variance optimal long positions on the high

interest rates currencies and the GFM conditional minimum variance optimal

short positions on the low interest rates currencies basket leads to a noticeable

improvement of the strategy Sharpe ratio as demonstrated in Section 12.5.
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Figure 12.11: Low interest rate basket. 12 month annualised rolling
Sharpe ratio. Comparison of Conditional GFM and Unconditional
GFM.

12.4 Sensitivity Analysis

In this section, I study the sensitivity of the global minimum variance portfolio

obtained using the GFM models based on both the unconditional and conditional

covariance models, formed from filtrations Ft ∪ G̃t and Ft ∪ Gt respectively. Then

to perform this study I systematically vary each individual covariate, one-by-

one, from the set of currency factors considered in Section 8.2. The amount

of variation considered was to increase and decrease each factor systematically

by their inter-quartile ranges, i.e. the quantiles of 25% and 75% respectively.

These new perturbed factor values on each day were then fed into the estimated

covariance regression model for each sliding window and the global minimum

variance portfolio re-estimated. I then summarise the behaviour through portfolio

based metrics of the perturbation effect of each covariate. This makes it possible

to study which covariates are most influential in driving the portfolio performance

and which covariates are likely to result in the largest sensitivity of results. Such

an analysis is easily undertaken due to the specific model structure developed in

this thesis for the GFM structure where the covariates enter explicitly into the
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covariance matrix.

This enlightening robustness analysis allows one to estimate a confidence

interval of the covariance matrix entries as a function of the marginal distribution

of each covariate used for the covariance regression. The formula in equation 11–27,

derived earlier, is thus plugged into the optimization program for various percentile

values of each covariate to subsequently determine the effect of a given variation

of the independent variables upon the ex-post variance of the GFM unconditional

minimum variance portfolio. Figures 12.12 and 12.13 show that some covariate

changes can lead to a larger effect on the structure of dependence among assets

and their respective marginal features leading accordingly to a large modification

of the optimal portfolio volatility. As an example, it can be seen in Figure 12.12

that the GBP speculative open interest has a larger impact on the variance of

the global minimum variance portfolio while the uncertainty over the DOL factor

has a more limited impact. This limited informative content of the DOL and

HMLFX factors should be added to the limited forecasting quality highlighted

earlier. Furthermore, it can be globally noticed that the global minimum variance

portfolio volatility for high interest rates currencies is less sensitive to the price

based information represented by the DOL and HMLFX factors as well as their

respective volatility and the covariance between them. This is in contrast to the

speculative volume based data, for which changes lead to larger modifications

of the high interest rates global minimum variance portfolio ex-post volatility.

This statement demonstrates the interest of understanding and investigating the

relation existing between the speculative volumes and the dependence structure

among financial assets or at least currency crosses. Another interesting point these

two graphs reveal is the asymmetric effect that an increase of certain covariates can

have upon the optimal portfolio relative to a decrease of the very same covariates.

This phenomenon looms from the inversion of the covariance matrix which will

give different results for a positive or a negative modification of a given covariance

matrix entry.
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Boxplots of Annualised Portfolio Volatility Differences for 1 STD Individual Covariate Stress Test

Figure 12.12: High interest rate basket. Boxplot of annualised portfolio
volatility differences resulting from one standard deviation individual
perturbation of each covariate for GFM model with GMV weights.
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Figure 12.13: Low interest rate basket. Boxplot of annualised portfolio
volatility differences resulting from one standard deviation individual
perturbation of each covariate for GFM model with GMV weights.
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12.5 The Carry Trade Portfolio

This section is devoted to the performance analysis of the combination of the

optimal high interest rates currencies basket and the optimal low interest rates

currencies basket considering different covariance estimators under the SFM, GFM

and DCC models. It is important to stress the fact that this could not to be

considered as the optimal carry trade portfolio as I split the optimization into two

optimisation subprograms conditionally on different sets of filtrations G
high
t , Fhigh

t

and Glow
t , Flow

t , associated to the high and the low interest rates basket models

respectively. It is worth mentioning that this two-step procedure was motivated

by the noticeably different dependence structure behaviours for the high and

the low baskets, as demonstrated in previous studies in Ames et al. [2015a,c].

Considering the carry trade portfolio configuration, I focus in this section on

the constrained version of the global minimum variance optimiser for the high

and the low interest rates currency portfolios. As expected, the non-negativity

(equivalently the non-positivity) weight constraint for the high interest rates basket

(the low interest rates currencies basket) results in a very similar 12-month rolling

Sharpe for the DCC, the GFM unconditional and the SFM unconditional estimator.

Nevertheless, in Figures 12.14 and 12.15 the difference of behaviour of the carry

trade portfolio optimised using the GFM conditional estimator is observable.

With the exception of the second half of 2013 this portfolio has always shown a

significantly higher Sharpe ratio on a 12-month rolling basis, which demonstrates

the robustness of the improvement. During this period the conditional information

contained in the GFM covariance regression models utilising the DOL, HMLFX

and the associated volatilities and covariance resulted in a markedly different

weighting allocation under the GMV approach. Furthermore, Tables 12.1 and 12.2

underpin this argument and shows a noticeable improvement of the Sharpe ratio

but without deteriorating the Calmar ratio, which estimates the extreme risk

associated (measured by the sample maximum drawdown) to a given strategy

relative to its average annualised returns. In addition, the downside volatility is

not penalizing the GFM conditional estimator, as demonstrated by the Sortino

ratio. Thus, it may be concluded from this analysis that the conditional covariance

estimator developed in this thesis under the GFM model family is clearly displaying
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Figure 12.14: Carry trade portfolio performance. I re-optimise the
portfolios on a monthly basis using an annual portfolio volatility target
of 15% and hence scale the monthly returns according to the expected
portfolio volatility for each method. I assume that we initially capitalise
the strategy to the value of the unleveraged baskets.

interesting properties: such as its lower sensitivity to the shrinkage effect resulting

from the weight constraints and also on the resulting improvements of the global

minimum variance portfolio risk and return profile.
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Figure 12.15: Carry trade portfolio 12 month annualised rolling Sharpe
ratio. The Sharpe ratio is defined as return divided by volatility.

Table 12.1: Carry trade portfolio risk measures for different covariance
forecasting techniques. The Sharpe ratio is defined as return divided
by volatility. The Sortino ratio is the return divided by downside
volatility. The Omega ratio is the probability weighted ratio of gains
versus losses for some threshold return target (we use 0). Max DD is
the maximum decline from historical peak.

Risk Measure GFM Cond. GFM Cond. (No SPEC)

Sharpe 0.31 0.27
Sortino 0.43 0.38
Omega 1.87 1.78

Max DD 31.71 28.82
Calmar 0.15 0.15
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Table 12.2: Carry trade portfolio risk measures for different covariance
forecasting techniques (2). Here, the GFM is the unconditional model.
The Sharpe ratio is defined as return divided by volatility. The Sortino
ratio is the return divided by downside volatility. The Omega ratio is
the probability weighted ratio of gains versus losses for some threshold
return target (we use 0). Max DD is the maximum decline from
historical peak.

Risk Measure GFM SFM DCC

Sharpe 0.11 0.11 0.21
Sortino 0.14 0.14 0.30
Omega 1.27 1.28 1.58

Max DD 30.3 30.04 31.50
Calmar 0.05 0.05 0.10

12.6 Conclusions

The Standard Multi-Factor model (SFM) family discussed in this thesis has been

widely used in the finance and econometrics literature primarily because of the

readily available economic interpretation it offers when linking exogenous factors

to the portfolio returns. In addition it is efficient with regard to estimation due to

its model based parsimony. However, the standard form of this multi-factor model

is known to fail to account for an important feature displayed by financial assets

real data returns, which is the heteroskedastic nature of the assets covariance

structure over time. In this thesis, a Generalised version of the Multi-Factor model,

the GFM family of models, is developed. The main purpose of this extension is

to address the short-comings offered under the SFM family whilst preserving the

direct interpretation of factors in the model and their influence on explaining the

portfolio returns. By introducing such a model it has been demonstrated that it is

possible to fill this gap by proposing a generalized version of the multi-factor model

which incorporates the factors into the covariance of the idiosyncratic error term

and hence allows for heteroskedastic unconditional and conditional covariance

based model structures. I show that the GFM model is directly interpretable in

terms of how it depends on the assets return filtration but also on the σ-algebra

generated by the covariates or selected explanatory factors. The use of the GFM
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model in applications involving portfolio allocation requires the ability to easily

and efficiently forecast the future value of the covariance matrix assuming the

stationarity of the trend and the covariance regression parameters. The GFM

model developed makes it possible to devise and estimate robust forecasting models

for the set of independent variables selected. This is demonstrated in numerous

different studies on the forecast performance of the GFM family of models as well

as the performance of the optimal portfolios under a global minimum variance

portfolio allocation framework.

Another contribution of this thesis involves the selection of meaningful econo-

metric factors that have both explanatory power in-sample as well as good forecast

performance when used to develop a portfolio covariance forecast. I demonstrate

that in the currency portfolio studies performed, whilst two well known factors

studied in the literature, the DOL and HMLFX , are providing strong in-sample

explanatory power, their out-of-sample forecast performance is very poor. It is

important to note that the DOL and HMLFX covariates are risk premia and

therefore shouldn’t be expected to be forecastable, since otherwise there is no

risk to be compensated for. This makes them difficult to utilise in portfolio

selection frameworks which require the forecast portfolio trend and covariance.

In this thesis, I have obtained additional volume based explanatory factors that

admit both strong in-sample explanatory power as well as providing reasonable

forecasting performance, making them directly useful in the portfolio allocation

problem. Furthermore, the factors considered are directly interpretable and it

is possible to relate there attributes to an established literature in economics,

relating returns to volume and liquidity of an asset, see Ames et al. [2015a].

This established relation between the speculative positions and the asset returns

dependence structure means it is possible to better capture the heteroskedasticity

prevailing in the asset returns, notably in high volatility environment. Through

this empirical application to the currency market I demonstrated that the con-

ditional formulation of the covariance proposed outperforms, on a risk-return

basis, several widely implemented models, such as the DCC or the single factor

models, even though non-negativity and non-positivity constraints are necessarily

appended to the high and low interest rates baskets optimization in order to build

self-financing portfolios.
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Chapter 13

Part IV Overview

The previous three parts of this thesis have focused on currencies, in particular

dependence modelling and optimisation of multiple-currency baskets in the cur-

rency carry trade strategy. However, it can be noted that many of the currencies

typically utilised in the high interest rate basket of the carry trade are heavily

linked to commodity prices, see Ready et al. [2017]. These currencies are known

as ‘commodity currencies’. There is a growing strand of literature surrounding

this link between commodity price fluctuations and currencies price dependences.

Therefore, it is important to understand the dynamics of commodity prices in

order to further understand the dependence dynamics in currencies. In the fourth

part of this thesis, a novel Hybrid Multi-Factor Stochastic Differential Equation

framework is introduced. This state-space modelling framework is utilised to

investigate the influence of observable exogenous covariates on the behaviour of

commodity prices.

Chapter 14 introduces the traditional approaches utilised in the literature to

model commodity prices and then details the proposed novel Hybrid Multi-Factor

(HMF) state-space modelling framework. The flaws inherent in the traditional

two-stage approaches to analysing the influence of covariates on commodity prices

are discussed. Furthermore, the benefits of the HMF framework are presented.

Chapter 15 utilises the novel Hybrid Multi-Factor (HMF) model developed

in Chapter 14 to investigate commodity futures and spot price dynamics in

terms of interpretable observable factors that influence speculators and hedgers

heterogeneously. In particular, the focus is on understanding the macroeconomic
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and microeconomic factors influencing the behaviour of oil prices.

282



Chapter 14

Hybrid Multi-Factor Modelling

Framework

In this chapter, the traditional approaches utilised in the literature to model

commodity prices will be introduced and then the novel Hybrid Multi-Factor

(HMF) state-space modelling framework proposed in this thesis will be detailed.

14.1 Model

In this section, I describe the Hybrid Multi-Factor (HMF) SDE model, which is

a genuine, statistically robust and consistent approach to incorporation of both

stochastic latent factor interpretation of unobserved spot price dynamics from

futures panel dynamics as well as the incorporation of important influential and

informative explanatory covariates that are observed in the global macro and micro

economy and commodity markets. Furthermore, it enables one to differentiate the

impact that certain observable exogenous macro, micro and fundamental variables

can have upon the dynamic of this commodity and how significant they can be in

explaining the short term and the long term dynamic of a given commodity market.

This HMF model is particularly interesting for regression analysis as it avoids

the common two-stage regression generally proposed in the literature (Dempster

et al. [2012], Prokopczuk and Wu [2013]) with extraction of the latent factors and

then the regression upon the independent variables chosen by the econometricians.
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Detailed discussions of the inconsistency of such two stage approaches from a

statistical estimation, model selection and testing as well as forecasting perspective

can be found in Ames et al. [2016].

The estimation and inference in the proposed joint HMF stochastic models still

allow convenient, robust and statistically optimal state space modelling estimation

procedures to be adopted on closed form risk neutral analytic futures price

dynamics without the violation of inconsistent statistical modelling assumptions.

The inference of this model consists of a one block estimation of the parameters,

thus avoiding any misspecification of the residuals dynamic as pointed out in Ames

et al. [2016]. The other appeal of this approach lies in the capacity of separating

the impact of a given covariate on the various parameters of a latent factor

dynamic. In this thesis, I investigate the short term/long term model proposed

by Schwartz and Smith [2000] and analyse the impact of several macroeconomic

as well as microeconomic variables upon the respective stochastic latent factors

dynamics. Furthermore and as will be demonstrated, this model also allows one

to incorporate different features observed in the market such as the correlation

between the spot price and the stochastic convenience yield as proposed in Casassus

and Collin-Dufresne [2005] but also the inventory and scarcity effects upon the

commodity price dynamic.

14.1.1 Gibson-Schwartz Stochastic Convenience Yield Model

Here, the model introduced in Gibson and Schwartz [1990] is reviewed, with

the notation as adopted in Schwartz [1997]. This stochastic convenience yield

model and its extensions to include a third latent factor are very popular in the

literature as it allows one to model the convenience yield as one of the latent

factors. Hence it is straightforward to perform regressions of observable covariates,

such as inventories and production, on the filtered convenience yield factor, as

presented in Dempster et al. [2012]; Prokopczuk and Wu [2013].

The real world dynamics of the two-factor stochastic convenience yield model

of Gibson and Schwartz [1990] are expressed as follows:
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Definition 14.1.1. Gibson-Schwartz 1990 (GS90) Model

Xt = lnSt (14–1)

dXt = (µ− δt −
1

2
σ2

1)dt+ σ1dZ
1
t (14–2)

dδt = κ(α− δt)dt+ σ2dZ
2
t (14–3)

where E
[
dZ1

t dZ
2
t

]
= ρdt (14–4)

where St is the spot price at time t, µ is the equilibrium spot price level, δt is the

convenience yield, α is the equilibrium level of the convenience yield, κ is the speed

of mean reversion of the convenience yield, σ2
1 and σ2

2 are the volatilities of the

brownian increments of the log spot price and the convenience yield respectively,

and dZ1
t and dZ2

t are increments of standard Brownian motion.

The risk-neutral formulation of this model can be obtained in the standard

fashion (adjusting the drift terms) as:

Xt = lnSt (14–5)

dXt = (r − δt −
1

2
σ2

1)dt+ σ1dZ̃
1
t (14–6)

dδt = κ(α− λ− δt)dt+ σ2dZ̃
2
t (14–7)

where E
[
dZ1

t dZ
2
t

]
= ρdt and r is the risk-free rate. (14–8)

Prokopczuk and Wu [2013] employ a third latent factor to model the stochastic

interest rate. Dempster et al. [2012] allow the third latent factor to act as a

medium term factor in order to capture business cycles, net oil demand and

trading variables. Thus an affine combination of two of the factors combine to

model the convenience yield.

14.1.2 Schwartz-Smith 2000 (SS2000) Model

The two factor long-term/short-term model introduced in Schwartz and Smith

[2000] is equivalent to the Gibson and Schwartz [1990] model, as shown in Sec-

tion 14.1.3, but also comes with a number of advantages, as described in Schwartz
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and Smith [2000]: “While many find the notion of convenience yields elusive, the

idea of stochastically evolving short-term deviations and equilibrium prices seems

more natural and intuitive. Moreover, these factors are more“orthogonal” in their

dynamics, which leads to analytic results that are more transparent and allow us

to simplify the analysis of many long-term investments.”

The real world dynamics of the two-factor long-term/short-term model of

Schwartz and Smith [2000] are expressed as follows:

Definition 14.1.2. Schwartz-Smith 2000 (SS2000) Model

Real Process:

Xt = ln(St) = χt + ξt (14–9)

dχt = −βχtdt+ σχdZ
χ
t (14–10)

dξt = µξdt+ σξdZ
ξ
t (14–11)

E
[
dZχ

t dZ
ξ
t

]
= ρχξdt (14–12)

where St is the spot price at time t, χt is the short term dynamics latent factor,

ξt is the long term dynamics latent factor, β is the short term mean reversion

parameter, µξ is the long term equilibrium parameter, σ2
χ and σ2

ξ are the volatil-

ities of the brownian increments, and dZχ
t and dZξ

t are increments of standard

Brownian motion.

The risk-neutral formulation of this model can be obtained in the standard

fashion (adjusting the drift terms) as:

Risk-Neutral Process:

dχt = (−βχt − λχ)dt+ σχdZ̃
χ
t (14–13)
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dξt = (µξ − λξ)dt+ σξdZ̃
ξ
t (14–14)

where St is the spot price at time t, χt is the short term dynamics latent factor,

ξ is the long term dynamics latent factor, and dZχ
t and dZξ

t are increments of

standard Brownian motion.

14.1.3 Equivalence of Schwartz-Smith 2000 Model and

Gibson-Schwartz Stochastic Convenience Yield Model

The equivalence between the Schwartz-Smith 2000 model and Gibson-Schwartz

stochastic convenience yield model is shown in Table 14.1. The factors in each

model can be represented as linear combinations of the factors in the other model.

287



1
4
.

H
Y

B
R

ID
M

U
L
T

I-F
A

C
T

O
R

M
O

D
E

L
L

IN
G

F
R

A
M

E
W

O
R

K

Table 14.1: The Relationships Between Parameters in the Long-Term/Short-Term Model and the Stochastic
Convenience Model of Gibson and Schwartz [1990].

Long-Term/Short-Term Model Parameter

Symbol Description Definition in Terms of Stochastic Convenience Yield Model

β Short-term mean-reversion rate κ

σχ Short-term volatility σ2/κ

dZχ Short-term process increments dZ2

µξ Equilibrium drift rate µ− α− 1
2
σ2

1

σξ Equilibrium volatility (σ2
1 + σ2

2/κ
2 − 2ρσ1σ2/κ)1/2

dZξ Equilibrium process increments (σ1dZ1 − (σ2/κ)dZ2)(σ2
1 + σ2

2/κ
2 − 2ρσ1σ2/κ)−1/2

ρξχ Correlation in increments (ρσ1 − σ2/κ)(σ2
1 + σ2

2/κ
2 − 2ρσ1σ2/κ)−1/2

λχ Short-term risk premium λ/κ

λξ Equilibrium risk premium µ− r − λ/κ
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14.1.4 Extension to Schwartz-Smith 2000 Model: SSX

Model

The Schwartz and Smith [2000] model can be extended to allow for mean reversion

in the long term drift component, which is desirable since it is a stylized fact that

commodity prices mean revert in the long term. Such a feature is first introduced

in Peters et al. [2013] Section 3.1 and Binkowski et al. [2009], although here I

study this feature in significantly more detail in the novel class of HMF model

structures introduced in this chapter. In particular, Chapter 15 demonstrates

the statistically significant gain in model fit such an extended Schwartz-Smith

2000 (hereafter abbreviated as SS2000) model presents when used to explain

inter-temporal variation in oil futures prices.

Definition 14.1.3. Schwartz-Smith 2000 Extended (SSX) Model

The real world and risk-neutral dynamics of the Schwartz-Smith 2000 Extended

(hereafter abbreviated as SSX) model can be expressed as follows:

Real Process

Xt = ln(St) = χt + ξt (14–15)

dχt = −βχtdt+ σχdZ
χ
t (14–16)

dξt = (µξ − γξt)dt+ σξdZ
ξ
t (14–17)

E
[
dZχ

t dZ
ξ
t

]
= ρχξdt (14–18)

where St is the spot price at time t, χt is the short term dynamics latent factor,

ξt is the long term dynamics latent factor, β is the short term mean reversion

parameter, µξ is the long term equilibrium parameter, γ is the long term mean

reversion parameter, σ2
χ and σ2

ξ are the volatilities of the brownian increments,

and dZχ
t and dZξ

t are increments of standard Brownian motion.
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Risk-Neutral Process

dchit = (−βχt − λχ)dt+ σχdZ̃
χ
t (14–19)

dξt = (µξ − λξ − γξt)dt+ σξdZ̃
ξ
t (14–20)

where E[dZ̃t
χ
, dZ̃t

ξ
] = ρχξdt and it is assumed that there are constant, deter-

ministic unknown risk premia for compensation of the drift in the short-term and

long-term dynamics of the latent stochastic spot price. Such assumptions on risk

premia are standard in the literature and are mostly made for convenience to aid

in derivation of a closed form expression for the futures prices.

Remark 14.1.4. One can note that so far these models are purely stochastic

(mathematical) models, in that the factors utilised to explain the futures curve

dynamics are stylized latent stochastic processes and not constructed based on in-

dependent observable covariates that not only stochastically explain cross-sectional

and serial correlation and stochastic variations in the observed futures panels,

but also lead to greater economic insight and interpretability of the models. At

present, the current literature tries to achieve this extended goal of interpretability

of these latent factor models with exogenous covariates added in an ad hoc, non-

statistically consistent two stage set of procedures. Ames et al. [2016] explains in

more detail some of the challenges with such two stage procedures. In the following

sections, I explain how to consistently perform calibration and estimation of a

Hybrid Multi-Factor stochastic differential equation (s.d.e.) model that structurally

incorporates exogenous covariates as explanatory factors, whilst admitting efficient

and statistically consistent estimation procedures.

14.1.5 The Hybrid Multi-Factor (HMF) Model

The Hybrid Multi-Factor (hereafter abbreviated as HMF) is referred to as a hybrid

model since it combines the latent factor modelling approach and the observable

factor linear regression modelling approach into a model which allows for consistent

estimation. The model structure presented below allows for several nested sub-

classes of model to be developed, which includes linear regression predictors for
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incorporation of exogenous covariates through a link function to the stochastic

latent spot price dynamic factors. The link function relating the linear predictors

to the latent s.d.e. model factors can be achieved in a number of structurally

interpretable approaches in the drift function and the volatility function, effectively

allowing one to develop generalised diffusion dynamics for the multi-factor s.d.e.

commodity model whilst still incorporating a closed form analytic risk neutral

futures price. This can be achieved in the long term equilibrium price and the

rates of mean reversion in the short and long term latent spot dynamics, with

structurally different effects as well as differing interpretation. Furthermore, the

latent factors in this model can be easily incorporated in a statistically consistent

manner with lagged exogenous covariates, instantaneous effects and even forward

looking, smoothing based information models.

Definition 14.1.5. Hybrid Multi-Factor (HMF) Model

Xt = ln(St) = χt + ξt (14–21)

dχt = − βt︸︷︷︸
ψc1+

J∑
j=1

K′∑
k=−K

ψ1,jmt+k,j

χtdt+ σχdZ
χ
t (14–22)

dξt = ( µξ,t︸︷︷︸
ψc2+

J∑
j=1

K′∑
k=−K

ψ2,jmt+k,j

− γt︸︷︷︸
ψc3+

J∑
j=1

K′∑
k=−K

ψ3,jmt+k,j

ξt)dt+ σξdZ
ξ
t (14–23)

E
[
dZχ

t dZ
ξ
t

]
= ρχξdt (14–24)

where mt,j is the value of the observable covariate j at time t, J is the number

of covariates considered, and K and K ′ determine the time period over which the

covariates are summed.

Remark 14.1.6. In this modelling framework, mt,j is assumed to be observable

and known (or more formally, that mt,j is part of the filtration). It is not necessary

to have knowledge of the process of mt,j, since it is sufficient to be able to observe
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the value at any point t required. However, in reality mt,j is partially observed and

thus some form of approximation is necessary at fixed time points. There are 3

approaches that can be considered:

1. Estimate mt,j as a fixed quantity, i.e. assume constant over time.

2. Utilise lagged values of the time series mt,j.

3. Fit a time series model to the covariate mt,j in order to forecast future

values.

The empirical investigation presented in Chapter 15 adopts the first and second ap-

proaches. Furthermore, initial explorations of the third approach were undertaken,

but are not contained in this thesis.

14.2 Deriving The Futures Price Expression

One can derive the futures price, Ft,T , for the HMF model using the Backward-

Kolmogorov equation (BKE):

Ft,T = Ẽ[ST |St] = Ẽ[eχT+ξT |χt, ξt] (14–25)

BKE:

∂p

∂t
+

1

2
σ2
χ

∂2p

∂χ2
t

+
1

2
σ2
ξ

∂2p

∂ξ2
t

+ (−βtχt − λχ)
∂p

∂χt

+ (µξ,t − λξ − γtξt)
∂p

∂ξt
+ ρχξσχσξ

∂2p

∂χt∂ξt
= 0 (14–26)

subject to boundary condition p(XT,T |Xt, t = T ) = δ̃(XT −Xt).

Multiplying by eXT and then integrating w.r.t. XT allows one to express each

term in the pde with respect to the futures price:
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∂F

∂t
+

1

2
σ2
χ

∂2F

∂χ2
t

+
1

2
σ2
ξ

∂2F

∂ξ2
t

+ (−βtχt − λχ)
∂F

∂χt

+ (µξ,t − λξ − γtξt)
∂F

∂ξt
+ ρχξσχσξ

∂2F

∂χt∂ξt
= 0 (14–27)

subject to boundary condition F (XT , T |Xt, t) = eXT .

Assume the solution of this backward Kolmogorov equation has an exponential

affine form:

Ft,T = eB0,t(τ)+B1,t(τ)χt+B2,t(τ)ξt , (14–28)

where τ = T − t.

Now, since F (t = T, T ) = eXT we have B0,t(0) = 0, B1,t(0) = 1, B2,t(0) = 1.

Substituting this expression for the futures price into the BKE:

Ft,T

[∂B0,t(τ)

∂t
+
∂B1,t(τ)

∂t
χt +

∂B2,t(τ)

∂t
ξt

]
+

1

2
σ2
χB

2
1,t(τ)Ft,T

+
1

2
σ2
ξB

2
2,t(τ)Ft,T + (−βtχt − λχ)B1,t(τ)Ft,T

+ (µξ,t − λξ − γtξt)B2,t(τ)Ft,T + ρχξσχσξB1,t(τ)B2,t(τ)Ft,T = 0 (14–29)

Note ∂τ = −∂t.

− Ft,T
[∂B0,t(τ)

∂τ
+
∂B1,t(τ)

∂τ
χt +

∂B2,t(τ)

∂τ
ξt

]
+

1

2
σ2
χB

2
1,t(τ)Ft,T

+
1

2
σ2
ξB

2
2,t(τ)Ft,T + (−βtχt − λχ)B1,t(τ)Ft,T

+ (µξ,t − λξ − γtξt)B2,t(τ)Ft,T + ρχξσχσξB1,t(τ)B2,t(τ)Ft,T = 0 (14–30)
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Dividing by Ft,T and re-arranging gives:

∂B0,t(τ)

∂τ
+
∂B1,t(τ)

∂τ
χt +

∂B2,t(τ)

∂τ
ξt =

1

2
σ2
χB

2
1,t(τ) +

1

2
σ2
ξB

2
2,t(τ)

+ (−βtχt − λχ)B1,t(τ)

+ (µξ,t − λξ − γtξt)B2,t(τ)

+ ρχξσχσξB1,t(τ)B2,t(τ) (14–31)

One now has a system of 3 ODEs:

dB1,t(τ)

dτ
χt = −βtχtB1,t(τ) =⇒ dB1,t(τ)

dτ
= −βtB1,t(τ) (14–32)

dB2,t(τ)

dτ
ξt = −γtξtB2,t(τ) =⇒ dB2,t(τ)

dτ
= −γtB2,t(τ) (14–33)

dB0,t(τ)

dτ
=

1

2
σ2
χB

2
1,t(τ) +

1

2
σ2
ξB

2
2,t(τ)− λχB1,t(τ)

+ (µξ,t − λξ)B2,t(τ) + ρχξσχσξB1,t(τ)B2,t(τ) (14–34)

with initial conditions: B1,t(0) = 1, B2,t(0) = 1, B0,t(0) = 0.

Solving this system of ODEs one obtains:

B1,t(τ) = e−
∫
βtdτ (14–35)

B2,t(τ) = e−
∫
γtdτ (14–36)
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B0,t(τ) =

∫ [1

2
σ2
χB

2
1,t(τ) +

1

2
σ2
ξB

2
2,t(τ)− λχB1,t(τ)

+ (µξ,t − λξ)B2,t(τ) + ρχξσχσξB1,t(τ)B2,t(τ)
]
dτ (14–37)

B0,t(τ) =

∫ [1

2
σ2
χe
−2
∫
βtdτ +

1

2
σ2
ξe
−2
∫
γtdτ − λχe−

∫
βtdτ

+ (µξ,t − λξ)e−
∫
γtdτ + ρχξσχσξe

−
∫
βtdτe−

∫
γtdτ
]
dτ (14–38)

Using B0,t(0) = 0 we see:

B0,t(τ) =−
σ2
χ

4βt
(e−2

∫
βtdτ − 1)−

σ2
ξ

4γt
(e−2

∫
γtdτ − 1) +

λχ
βt

(e−
∫
βtdτ − 1)

− 1

γt
(µξ,t − λξ)(e−

∫
γtdτ − 1)− ρχξσχσξ

(βt + γt)
(e−

∫
(βt+γt)dτ − 1) (14–39)

Thus one can express the futures price as

Ft,T = eB0,t(τ)+B1,t(τ)χt+B2,t(τ)ξt (14–40)

and hence one has the following expression for the log futures price

lnFt,T = e−
∫
βtdτχt + e−

∫
γtdτξt +B0,t(τ). (14–41)

14.3 State-Space Model Formulation

Having derived the futures price for the HMF model above, the state-space model

is now formulated in terms of a measurement equation and transition equation as

follows.

Measurement Equation:

Let yt(τ) = lnFt(τ) and τi = Ti − t, where Ti, i = 1, . . . , N are the maturities
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of the contract available at time t.


yt(τ1)

yt(τ2)
...

yt(τN)

 =


e−

∫
βtdτ1 e−

∫
γtdτ1

e−
∫
βtdτ2 e−

∫
γtdτ2

...
...

e−
∫
βtdτN e−

∫
γtdτN


[
χt

ξt

]
+


B0,t(τ1)

B0,t(τ2)
...

B0,t(τN)

+


εt(τ1)

εt(τ2)
...

εt(τN)

 (14–42)

yt(τ) = Λt(τ)ft +B0,t(τ) + εt(τ) (14–43)

where εt(τ) is the observation error at time t of contract with maturity τ .

Note: when using futures data Λt(τ) changes with time, since each day the

time to maturity reduces by one day for each contract until expiry. However, in

the practical application considered in Chapter 15 I interpolate a fixed maturity

futures curve at each time step and so Λt(τ) is in fact constant.

Transition Equation:

[
χt

ξt

]
=

[
0

µξ,t∆t

]
+

[
e−

∫
βtdτ 0

0 e−
∫
γtdτ

][
χt−1

ξt−1

]
+

[
ηχt

ηξt

]
(14–44)

ft = ct + Atft−1 + ηt (14–45)

with the error terms following a white noise (WN) distribution given by

[
ηt

εt

]
∼ WN

([0

0

]
,

[
Q 0

0 H

])
(14–46)

where

Q =

[
σ2
χ

1−e−2
∫
βtdτ

2βt
ρχξσχσξ

1−e−
∫

(βt+γt)dτ

βt+γt

ρχξσχσξ
1−e−

∫
(βt+γt)dτ

βt+γt
σ2
ξ

1−e−2
∫
γtdτ

2γt

]
(14–47)
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H =


s1 0 0 . . . 0

0 s2 0 . . . 0
...

...
...

...
...

0 0 0 0 sN

 (14–48)

and

Λt(τ) =


e−

∫
βtdτ1 e−

∫
γtdτ1

e−
∫
βtdτ2 e−

∫
γtdτ2

...
...

e−
∫
βtdτN e−

∫
γtdτN

 (14–49)

ft =

[
χt

ξt

]
ct =

[
0

µξ,t∆t

]
At =

[
e−

∫
βtdτ 0

0 e−
∫
γtdτ

]
(14–50)

14.4 Filtering and Parameter Estimation

via Kalman Filter

Due to the way that the HMF model has been developed it is still possible to

obtain optimal estimation of both the latent stochastic factors as well as all static

model parameters in a statistically consistent manner via computationally efficient

and widely utilised methods based on Kalman filtering followed by marginal

likelihood estimation under recursive least squares estimation methods, which

provide the best linear unbiased estimators of the model parameters and latent

states, see discussions in Peters et al. [2013] as well as Schwartz and Smith [2000].

14.4.1 Kalman Filter

The Kalman filter component is introduced in this section. The filter equations can

be split into a prediction step and a correction step. The prediction step consists

of projecting the current state to obtain an a priori estimation of the latent factor

which is then corrected during the update step, once the new measurement is

taken into account.
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Prediction stage:

f̂t|t−1 = ct + Atf̂t−1|t−1 (14–51)

Pt|t−1 = AtPt−1|t−1A
T
t +Q

Update stage:

f̂t|t = f̂t|t−1 +Kt(yt − Λtf̂t|t−1 −B0,t(τ))

Pt|t = Pt|t−1 −KtΛtPt|t−1 (14–52)

where the weighting function Kt is named the Kalman Gain and is equal to:

Kt = Pt|t−1ΛT
t (ΛtPt|t−1ΛT

t +H)−1 (14–53)

The function Kt will place more or less weight on the prediction error.

14.4.2 Maximum Likelihood Parameter Estimation

To derive the maximum likelihood estimation one starts from the prediction error:

vt = yt − ŷt|t−1 = yt − Λtf̂t|t−1 −B0,t(τ) (14–54)

while the variance of this prediction error can be written as:

Wt = V ar(vt) = H + ΛtPt|t−1ΛT
t (14–55)

Then, since the prediction error is assumed to be Gaussian one has:

yt|yt|t−1 ∼ N(Λtf̂t|t−1 +B0,t(τ),Wt) (14–56)

Based on this conditional distribution, one can now compute the log-likelihood

function of Θ = {βt, σχ, λχ, µξ, σξ, γt, λξ, ρχξ, s1, . . . , sN} by computing the joint
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density of yt|yt|t−1, t = 1, 2, . . . , T .

l(Θ) = −NT
2
log(2π)− 1

2

T∑
t=1

log|Wt| −
1

2

T∑
t=1

vTt W
−1
t vt (14–57)

This log likelihood function can then be maximised using an optimisation algo-

rithm, for example the interior-point algorithm implementation in the MATLAB

fmincon function.

14.4.3 Consistently Incorporating Exogenous Explanatory

Covariates

To understand the interest of directly incorporating the exogenous covariates

in the latent factors dynamic and the challenge that arises with the calibration

in a two stage process I first present the current practice being adopted in the

literature in works such as Dempster et al. [2012] and Prokopczuk and Wu [2013].

From the Kalman filter the optimally estimated state for long and short term

latent stochastic factors (or convenience yield formulation) is obtained at each

time t according to the estimator:

E
[
ft|θ̂(s1), f̂t−1|t−1,Ft

]
= ĉ(s1) + Â(s1)f̂t−1|t−1 (14–58)

where Ft is the filtration generated by the futures panels {F1,F2, . . . ,Ft} with the

observed futures prices on day t given by random vector Ft = (Ft,1, . . . , Ft,pt). Note

the number of contracts pt may change over time depending on which contracts

are observable and have sufficient traded volumes for incorporation in the model.

θ̂(s1) denotes the static model parameters estimated at stage 1. Moreover these

expectations are estimated via the Kalman filter as f̂t|t

(
θ̂(s1)

)
.

Then in papers such as Dempster et al. [2012] and Prokopczuk and Wu [2013]

these estimated states are used to perform simple multiple linear regressions based

on simplified models under the following typically implicitly utilised statistical

model assumptions:

� The observed values f̂t|t

(
θ̂(s1)

)
for times t ∈ {1, 2, . . . , T} are assumed to

be i.i.d. realizations of “observations” of the latent factors, conditional on
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exogenous covariates mt ∈ Rd. Note, these observations are already implicit

functions of the static model parameters from stage 1 of estimation θ̂(s1).

� The mean regression model is assumed to be given by

E
[
f̂t|t|mt

]
= E

[
E
[
ft|θ̂(s1), f̂t−1|t−1,Ft

]
|mt

]
= θ

(s2)
1 + θ

(s2)
2 mt

(14–59)

for d′ exogenous observed covariates mt ∈ Rd′ with unknown deterministic

static parameters to be estimated in stage 2, denoted by θ
(s2)
1 ∈ R2 and

θ
(s2)
2 ∈ R2 × Rd′ .

� Furthermore, it is commonly assumed in the above cited works that the co-

variance is conditionally heteroskedastic and given by Var
[
f̂t|t

(
θ̂(s1)

)
|x
]

=

Ω(s2), often with a diagonal covariance matrix.

Such a simple linear model can then be estimated via a generalized least

squares procedure such that the stage two model parameters
[
θ

(s2)
1 ,θ

(s2)
2

]
are

obtained as the solution to the quadratic minimization:

[
θ̂

(s2)
1 , θ̂

(s2)
2

]
= arg min

[(
f̂1:T |1:T −M

[
θ

(s2)
1 ,θ

(s2)
2

]T)T (
Ω(s2)

)−1

(
f̂1:T |1:T −M

[
θ

(s2)
1 ,θ

(s2)
2

]T)]
, (14–60)

where f̂1:T |1:T denotes the set of “responses” in the regression given by{
f̂1|1, f̂2|2, . . . , f̂T |T

}
and M is the design matrix of the exogenous covariates.

From this quadratic form, for a given response covariance matrix Ω(s2) the

Best Linear Unbiased Estimator for
[
θ

(s2)
1 ,θ

(s2)
2

]
is given by:

[
θ̂

(s2)
1 , θ̂

(s2)
2

]
=
(
MT

(
Ω(s2)

)−1
M
)−1

MT
(
Ω(s2)

)−1
f̂1:T |1:T

=
(
MT

(
Ω(s2)

)−1
M
)−1

MT
(
Ω(s2)

)−1 ⊕Tt=1

[
ĉ(s1) + Â(s1)f̂t−1|t−1

]
(14–61)
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where ⊕ is the kronecker sum.

The challenge with this approach is that the aforementioned assumptions are

typically not satisfied, making this form of regression both inefficient, due to the

two stage parameter estimation performed, as well as biased and inaccurate in the

model estimation and conclusions on model structure (for more detail please refer

to Ames et al. [2016]). Conversely, the one-stage estimation framework proposed

in this thesis allows a simultaneous inference of the latent factors dynamic as well

as the covariates coefficients and thus to overcome this estimation error associated

with the two-stage approach generally proposed in the literature.
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Chapter 15

Investigating Cross-Sectional

Dependence in Commodity

Prices via Hybrid Multi-Factor

State Space Models

In this chapter, the novel Hybrid Multi-Factor (HMF) model developed in Chap-

ter 14 is utilised to investigate commodity futures and spot price dynamics in

terms of interpretable observable factors that influence speculators and hedgers

heterogeneously. In particular, the factors driving the behaviour of oil prices are

analysed.

15.1 Introduction

Oil has historically been one of the most closely scrutinized commodities in the

market. First and foremost, this is due to the important role this commodity plays

in the worldwide economy and international relations, which gives it a prominent

role, when compared to other energy, agricultural and metals commodities, in

many aspects of the global economy and each country’s specific macro, micro and

monetary economic policy decisions.

The prominence of oil futures can be easily demonstrated for instance by the
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fact that its share of the global GDP was 4.8% in 2013 (Aguilera and Radetzki

[2015]). In addition, as discussed in Backus and Crucini [2000] it has a significant

influence over the respective balance of trade of consuming and producing countries

and thus the resulting geopolitical interactions among them.

Historically, one has observed the importance that economies place on the

price variation of oil and understanding the factors that affect such a dynamic in

order to better understand the determinants of shocks and volatility regimes in

the spot price, demand and supply.

Another determining reason lies in the frequent shocks affecting the supply and

demand of the so called “black gold”, giving birth to sudden and dramatic price

movements such as during the 1973/74 oil crisis. The price of this exhaustible

commodity has indeed been in the past heavily impacted by the discovery of

new fields or the conflicts in oil-producing countries. On the other hand, the

demand behaviour has generally been more influenced by the business cycles or

even the evolution of the extracted oil inventories. That being said, according to

the US Department of the Interior (DOI) as well as the US Energy Information

Administration (EIA), the technology used for its extraction has recently been

the main factor influencing the market supply. Over the last decade, advances in

the application of horizontal drilling and hydraulic fracturing in shale have indeed

drastically modified the international supply and demand equilibrium as well as

the existing international relations by allowing the biggest oil consumer, namely

the United States, to become over the same time period less and less dependent

on its energy imports. According to the EIA, in 2015, 24% of the petroleum

consumed in this country was imported, which corresponds to the lowest level

since 1970.

From a modelling perspective, these features are significant and need to be

incorporated into any interpretable and realistic commodity futures stochastic

model. In addition, if the model is developed, as is the case with the class of Hybrid

Multi-Factor Models (HMF) introduced in this thesis, to allow for clear closed

form representations of structural features such as sensitivity, shock transient

response and perturbation influence on the model parameters and the driving

exogenous covariates characterizing the features just discussed, then such a class

of models has the potential to significantly aid in the study of stochastic variation
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in oil futures prices and to aid in forecasting and policy decision. The main aim of

this research is to provide such a class of models and demonstrate their utility in

incorporating a range of exogenous covariates into different structural components

that will clearly explain short term and long term speculator and hedger positions

in oil futures and their influences.

Although one can obtain a coarse picture of the principal fundamental events

affecting oil price dynamics throughout history, the modelling and the choice of

explanatory variables for oil price dynamics is still fiercely debated in the academic

literature. Several reasons for this have been put forward, among which is the

microeconomic interactions between different types of agents who intervene in

the market and who are generally classified into two distinct groups, labelled

respectively hedgers and speculators. The pre-eminent role they can play in the

price discovery process of the market has raised unanswered questions about the

causality relationship existing between the future prices and the physical or spot

price observed in the real economy. As a matter of fact, several papers have

demonstrated that not just the speculators but also the commodity-index funds

were so influential in the market that the future price was actually leading the

spot price and thus disconnecting the oil price from the fundamentals, such as

those mentioned earlier (Kaufmann and Ullman [2009], Silvrio and Szklo [2012],

Kilian and Murphy [2014]). Following this strand of the literature, certain authors

(Bessembinder [1992]; Acharya et al. [2013]; Etula [2013]; Adrian et al. [2014])

considered the limits-to-arbitrage as one of the main reasons for the inverted

price discovery process. Through such analyses they were able to argue that

this demonstrated that any market friction limiting the arbitrage capacity of the

financial intermediaries was translating into limits to hedging for the producers

and accordingly impacting the real sphere participants’ behaviour as well as related

variables such as the spot oil prices.

The fact that macro and micro-economic observable variables influence the

determination of market price dynamics by directly influencing the decisions

and behaviour of speculators and hedgers in the market has naturally led to

an alternative proposition from academics consisting of modelling the oil price

dynamic through state space models where the log-price can be represented as a

combination of several latent processes, which can then be generically interpreted
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without being necessarily related to any fundamental or microeconomical variables

(Gibson and Schwartz [1990]; Schwartz and Smith [2000]; Casassus and Collin-

Dufresne [2005]). Among advocates for this approach, authors notably decomposed

the future prices as a combination of short term and long term latent components

while others have assumed equivalently that the latent process should be associated

to the convenience yield and thus determine the basis level or said differently the

price difference between the spot and the future contract. Kaldor [1939] explains

that the inter-temporal difference between futures and thus between the future

price and the spot price are linked to the cost of storage and also the so-called

convenience yield which embodies the benefits accrued to the owner of the physical

commodity by providing him with a certain flexibility with regards to his reaction

in case of market shocks. Schwartz and Smith [2000] demonstrated through a

change of variable the linear equivalence between modelling the convenience yield

or the dynamic of a long and a short term latent factor in order to model the

futures price curve. Another advantage in considering these models resides in

the ease of financial change of measure to risk neutral formulations that admit

closed form analytical futures prices in terms of stochastic factors assumed to

explain the spot price stochastic unobserved dynamics. From this systematic

model differentiation between macro, micro and latent factors and given also the

fact that the storage cost or the convenience yield are both naturally related

to fundamental elements such as the storage capacity in the market, followed

several articles dissecting the behaviour of the latent processes relative to a set

of fundamental and microeconomic variables (Dempster et al. [2012], Daskalaki

et al. [2014]). On the contrary other academics focused on demonstrating that the

fundamental factors were not marginally contributing to the explanation provided

by the futures prices themselves, and thus the latent processes (Daskalaki et al.

[2014]; Cummins et al. [2016]).

The research presented in this thesis reconciles two classes of model, the latent

factor stochastic multi-factor s.d.e. models and the alternative class of observable

regression econometric factor models, in a statistically consistent manner from

interpretation and estimation perspectives. This is achieved with the novel class of

stochastic HMF models that I develop, which allow for incorporation of exogenous

covariate structures in a statistically rigorous manner.
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One will notice that the proposed HMF stochastic models are a genuine

combination of the two approaches and do not presume any prevalence from one

approach or the other. The crux of the matter lies in building a model which

allows a one-stage estimation with simultaneous inference of the latent factors

dynamic and the covariates coefficients to overcome the estimation error associated

to the two-stage approach generally proposed in the literature. In such a two-stage

model (as in Dempster et al. [2012]), the authors recommend to first extract the

latent factor estimates to later regress as a function of a set of covariates. This

conditional estimation of the latent factor suffers from several flaws compared to

the conditional estimates proposed in this thesis.

Furthermore, as detailed in formal statistical arguments in Ames et al. [2016]

the current approaches proposed in the literature adopting such two stage esti-

mation procedures to estimate latent stochastic factors followed by regression

relationships in stage two for incorporation of exogenous covariates, often do so

with inappropriate statistical assumptions and regression models. This makes

claims and analysis coming from such models speculative at best, see discussion

in detail in Ames et al. [2016].

First and foremost, conditioning on a set of macroeconomic and microeconomic

variables commonly used in the literature leads to an undeniable improvement of

the inference procedure relative to the two-stage method while I also show how the

fundamental factors influence the different parameters of the latent factor models

presented in the literature. For instance, the estimation method makes possible

the distinction between the fundamental covariates which are impacting the mean

reverting component of the latent factors and those which are influencing their

respective trend.

The method utilised in this research allows one to consider covariate forecasts

in order to extrapolate values for the futures prices while considering the con-

fidence interval associated to this estimate. This is particularly convenient in

risk management and commodity hedging as one needs to consider not only the

amount to invest but also the uncertainty associated to this measurement.

Furthermore, the proposed model also copes with the topical problem of the

marginal contribution of certain fundamental variables modelling relative to the

latent process approaches. As a matter of fact, the results presented here show
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that adding a mean reversion component in the long term latent process and

combining it with the mean reverting dynamic of the short term latent process

devised by Schwartz and Smith [2000] model definitely improves the likelihood.

Last but not least, I demonstrate through a likelihood ratio test how certain

fundamental factors also consistently improve the inference of the state space

model parameters showing that those covariates provide additional information

not contained in the latent factors. Thus some adjustment in the latent factors

models is required in order to take into consideration for instance the stochastic

dynamic of the dollar variable. At present, there is no such general framework

in the literature and this model could answer numerous questions still debated

among academics about oil price dynamics.

15.2 Description of Price Data and Explanatory

Covariates

In this section, a discussion of the oil futures price data and the explanatory

covariate data used for the empirical analysis is presented. Furthermore, the

choices made for the explanatory covariates investigated in this thesis are detailed.

15.2.1 Explanatory Covariates Data

To facilitate the empirical analysis one can distinguish between the different types

of data sources among the covariates considered, as detailed in Table 15.1. The

main distinction is naturally between macroeconomic (coming from the spot or

physical sphere) and the microeconomic (coming from the financial markets sphere)

variables. For instance in the physical sphere I considered the Baltic Dry Index

(BDI) which represents an assessment of the freighting cost and is a composite of

the daily quotes for various sized dry-vessels bookings across 23 different shipping

routes and thus embodies an estimator for the price of moving the major raw

materials by sea. The interest of this index has already been demonstrated in the

literature (Bakshi et al. [2011],Geman and Smith [2012],Henderson et al. [2014])

and is due to the fact that the supply of cargo ships is quite inflexible and so the

BDI index mainly fluctuates following the demand for raw materials. I naturally

308



consider the US weekly crude oil Ending Stocks (excluding the strategic petroleum

reserves) which corresponds to the number of barrels of oil in inventories at the

end of each week in the United States (this data has been extensively used in

the literature, for instance in Dempster et al. [2012] and Gorton et al. [2013]).

Combining this data with the weekly refinery utilization rate, which measures the

percentage of the operable crude oil distillation units utilized at this time (this

indicator has been notably used in Kaufmann et al. [2008] and is also provided

by the Energy Information Administration) and the US Field Production which

represents the number of barrels of crude oil produced on a weekly basis in the

US (this information provided by the EIA has also been considered in Dvir and

Rogoff [2014]) allows one to take into account different fundamental information

about the US physical market. First and foremost, it is commonly admitted in

the literature that there is a negative relation between the convenience yield and

the level of inventories (Victor K. Ng [1994], Milonas and Henker [2001]) while the

freighting cost is directly related to the basis level, defined as the spread between

the future and the spot prices (Geman and Smith [2012]). Moreover, the recent

modification in the techniques used for extracting oil, in other words the advances

in the application of horizontal drilling and hydraulic fracturing in shale should

be quantified by the impressive growth of the US production over the last decade

(Dvir and Rogoff [2014]). Provided that crude oil is priced in dollar, the level of

the US currency relative to the other currencies is naturally affecting both the

supply and the demand side of the market and thus the dynamic of the short

and the long term latent variables. To measure the dollar fluctuations I retained

the US Dollar Index (also used in Tang and Xiong [2012],Dempster et al. [2012])

which is a weighted geometric mean of the dollar’s value relative to other selected

currencies (which are the Euro, Japanese yen, British pound sterling, Canadian

dollar, Swedish krona and the Swiss franc).

For the microeconomic or financial variables I retained two commonly men-

tioned indices in the limit to arbitrage literature, which are the speculative trading

pressure (for more detail about the complementary value of this covariate, i.e.

hedging pressure, please refer to Basu and Miffre [2013] and Acharya et al. [2013]),

estimated as the ratio of net open speculative investor futures positions to the

total open interest in the market, and the leverage ratio which represents the
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level of tightness of financial intermediaries’ funding constraints, computed as

the ratio of dealers’ assets to liabilities (for more detail about this ratio please

refer to Adrian et al. [2010], Adrian et al. [2014] and Daskalaki et al. [2014]).

While the speculative trading pressure is computed from the daily commitment

of traders reports published by the CFTC, the leverage factor on the contrary is

only available on a quarterly basis and is computed using the amounts of financial

assets and financial liabilities of security broker-dealers as published in Table

L.129 of the Federal Reserve Flow of Funds. I also take into consideration two

financial indices, which are the S&P500 and the Goldman Sachs Commodity

Index (GSCI) which respectively represent the market capitalisation weighted

index of the 500 largest public companies in the US and a weighted average of 24

commodities among which crude oil and other energy products represent about

64% of the index (both of these indices have been used in Daskalaki et al. [2014]

and Büyükşahin and Robe [2014]).

Table 15.1: List of covariates (and their abbreviations) investigated in
this modelling framework.

Covariate Abbreviation

Baltic Dry Index BDI
Dollar Index DXY
Ending Stocks End Stocks
Goldman Sachs Commodity Index GSCI
Leverage Ratio Lev Rat
Refinery Utilization Ref Util
S&P 500 Index S&P500
SPEC Ratio SPEC
United States Field Production US Prod

One challenge to resolve when working with such disparate and variable macro

and micro economic data sources is the difference of publication frequency. In this

research I match the frequency of all the fundamentals variables and take into

account their date of publication to cope with the problem of mismatch between

the data value date and the publication date. The weekly data published by

the EIA containing information up to the previous Friday is released at 10:30

a.m. (Eastern Time) on Wednesdays and also the speculative positions data
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published by the CFTC containing information up to Tuesday is released at 3:30

p.m. (Eastern time) on Fridays. Thus, I take the closing price on Wednesdays as

the weekly price data and use the latest available published fundamental data as

the synchronous covariate value. One can also note that Wednesdays are affected

by the least number of holidays.

I decided to consider in this study five different environments and periods as

they were presumably impacted by different variables. I decided to look at equal

sized samples, introducing no a priori bias, and considered period of five years

as according to Postali and Picchetti [2006] the average long term cycle in the

crude oil industry has been estimated to be 4-6 years. I first took the last five

years where financialisation of the commodity market has been more pronounced

according to several authors (Henderson et al. [2014], Büyükşahin and Robe [2014],

Singleton [2014]). Then, I considered the period from 2006 up to 2011 which

includes the financial crisis of 2008. Finally I looked at the period from 2000 to

2006 with the burst of the dot-com bubble, 1995-2000 with the LTCM collapse and

finally the period going from 1990 to 1995 including the Iraqi Army’s occupation

of Kuwait in August 1990.

Standardised time series of the covariates considered in this analysis can be

seen for the entire time period 1990 - 2016 in Figures 15.1 and 15.2. In these plots

the individual covariates have been standardised using the approach proposed in

Gelman [2008], i.e. by subtracting the mean and dividing by twice the standard

deviation.

15.2.2 Crude Oil Futures Price Data

The crude oil price data considered in this research is the West Texas Intermediate

(WTI) Crude oil futures prices traded on the New York Mercantile Exchange

(NYMEX) obtained from Bloomberg for the empirical study in this thesis. I

utilise the 1, 5, 9, 13 and 17 month expiry contracts as considered in Gibson

and Schwartz [1990]; Schwartz [1997]; Prokopczuk and Wu [2013] since these

contracts are sufficiently liquid. The Wednesday closing prices are retained at a

weekly frequency in order to match with the weekly release of oil related data

from the U.S. Energy Information Administration (EIA). The data sample covers
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Figure 15.1: Standardised time series of the following covariates (using
Gelman [2008] approach): BDI, DXY, Ending Stocks and GSCI Excess
Returns.

Date
92 95 97 00 02 05 07 10 12 15

St
an

da
rd

is
ed

 D
at

a 
Va

lu
e

-3

-2

-1

0

1

2

3

4
Standardised Covariates

HP

Leverage Ratio

Refinery Utilization

S&P500

US Production

Figure 15.2: Standardised time series of the following covariates (using
Gelman [2008] approach): Hedging Pressure, Leverage Ratio, Refinery
Utilization, S&P500 and US Production.
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the period 11th July 1990 to 22nd June 2016, i.e. 26 years or 1355 weeks. I divide

the sample into five equal length blocks of roughly five years in order to provide a

more detailed granular analysis.

In order to analyse the observable covariates at constant fixed points on the

futures curve and hence produce comparable and interpretable coefficient values,

a cubic spline interpolation approach is utilised to extract a fixed maturity futures

curve from the actual futures data, i.e. maturities of 1 month, 5 months, 9 months,

13 months, 17 months are extracted from the raw futures data for which the days

remaining until expiry of the contracts varies daily.

Summary statistics of the oil futures price time series data can be seen for

each of the five periods in Tables 15.2 to 15.6 respectively.

Table 15.2: Descriptive statistics of WTI futures prices for the period 90-
95. The mean, standard deviation, skewness, kurtosis, maximum and
minimum of each futures maturity time series is presented. In addition,
the average, maximum and minimum percentage backwardation is
shown, where percentage backwardation is calculated as 100×(Ft(τ1)−
Ft(τ5))/Ft(τ1).

Variable τ1 τ2 τ3 τ4 τ5

Mean 20.21 19.80 19.58 19.51 19.53
STD 3.97 2.95 2.33 2.00 1.80
Skew 2.13 1.70 1.30 1.11 1.00
Kurt 8.95 7.44 5.82 4.99 4.57
Max 38.46 32.70 28.81 27.02 26.08
Min 14.10 14.83 15.46 16.03 16.50
Avg. Bwd. % - 1.30 0.75 0.16 -0.20
Max. Bwd. % - 20.20 12.45 7.48 4.24
Min. Bwd. % - -7.79 -5.24 -4.25 -3.70

15.2.3 Data Preparation

In order to perform the empirical analyses considered in this chapter a substantial

amount of effort and time was invested into collecting, cleaning and preparing the

data. In particular, the following key steps were performed:
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Table 15.3: Descriptive statistics of WTI futures prices for the period 95-
00. The mean, standard deviation, skewness, kurtosis, maximum and
minimum of each futures maturity time series is presented. In addition,
the average, maximum and minimum percentage backwardation is
shown, where percentage backwardation is calculated as 100×(Ft(τ1)−
Ft(τ5))/Ft(τ1).

Variable τ1 τ2 τ3 τ4 τ5

Mean 20.85 20.06 19.53 19.16 18.91
STD 5.49 4.39 3.68 3.14 2.72
Skew 0.55 0.74 0.90 1.01 1.06
Kurt 2.80 3.27 3.73 4.08 4.30
Max 35.40 32.25 30.80 29.40 28.10
Min 11.34 12.18 12.70 13.14 13.54
Avg. Bwd. % - 2.51 1.92 1.45 0.99
Max. Bwd. % - 16.45 9.54 6.77 5.52
Min. Bwd. % - -17.07 -7.70 -6.00 -4.51

Table 15.4: Descriptive statistics of WTI futures prices for the period 00-
06. The mean, standard deviation, skewness, kurtosis, maximum and
minimum of each futures maturity time series is presented. In addition,
the average, maximum and minimum percentage backwardation is
shown, where percentage backwardation is calculated as 100×(Ft(τ1)−
Ft(τ5))/Ft(τ1).

Variable τ1 τ2 τ3 τ4 τ5

Mean 36.54 35.74 34.75 33.93 33.27
STD 13.08 13.79 14.02 14.08 14.06
Skew 0.89 1.05 1.14 1.19 1.23
Kurt 2.60 2.76 2.91 3.02 3.09
Max 69.15 69.87 69.50 69.61 69.44
Min 18.63 19.45 19.83 20.07 20.25
Avg. Bwd. % - 2.73 3.16 2.61 2.12
Max. Bwd. % - 16.28 9.32 7.02 5.75
Min. Bwd. % - -4.96 -2.26 -1.50 -1.08
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Table 15.5: Descriptive statistics of WTI futures prices for the period 06-
11. The mean, standard deviation, skewness, kurtosis, maximum and
minimum of each futures maturity time series is presented. In addition,
the average, maximum and minimum percentage backwardation is
shown, where percentage backwardation is calculated as 100×(Ft(τ1)−
Ft(τ5))/Ft(τ1).

Variable τ1 τ2 τ3 τ4 τ5

Mean 77.76 79.91 80.92 81.49 81.80
STD 20.40 19.03 18.21 17.52 17.00
Skew 0.84 1.01 1.10 1.17 1.23
Kurt 3.83 4.19 4.43 4.60 4.74
Max 143.81 145.02 145.06 144.26 143.41
Min 35.67 42.95 46.61 49.25 51.49
Avg. Bwd. % - -3.55 -1.59 -0.95 -0.54
Max. Bwd. % - 4.66 3.21 2.87 2.31
Min. Bwd. % - -24.90 -9.17 -7.37 -5.60

Table 15.6: Descriptive statistics of WTI futures prices for the period 11-
16. The mean, standard deviation, skewness, kurtosis, maximum and
minimum of each futures maturity time series is presented. In addition,
the average, maximum and minimum percentage backwardation is
shown, where percentage backwardation is calculated as 100×(Ft(τ1)−
Ft(τ5))/Ft(τ1).

Variable τ1 τ2 τ3 τ4 τ5

Mean 81.04 81.61 81.43 81.05 80.59
STD 23.80 22.13 20.87 19.80 18.82
Skew -0.77 -0.78 -0.78 -0.77 -0.77
Kurt 2.03 2.04 2.09 2.14 2.18
Max 112.89 113.70 113.27 112.30 110.95
Min 28.19 32.48 34.45 35.97 37.15
Avg. Bwd. % - -1.76 -0.38 0.02 0.21
Max. Bwd. % - 6.04 4.92 3.81 3.16
Min. Bwd. % - -19.49 -7.80 -5.05 -3.88

315



15. INVESTIGATING CROSS-SECTIONAL DEPENDENCE IN
COMMODITY PRICES VIA HYBRID MULTI-FACTOR STATE
SPACE MODELS

1. Collect commodity futures price data at maturities of 1 month, 5 months, 9

months, 13 months and 17 months.

2. Collect exogenous covariate data. This is available at various frequencies

depending upon the covariate being considered, e.g. the Baltic Dry Index

(BDI) is reported daily whereas the US Field Production is reported weekly

and indeed the Leverage Ratio is reported only quarterly.

3. Pre-process the commodity price data and the covariate data to deal with

missing data, i.e. if data is missing copy previous day’s price.

4. Match commodity price data to synchronous covariate data.

15.3 Results and Discussion

In order to appreciate the importance of each physical and financial covariate

within the crude oil prices dynamic I first highlight in this section the rationale

behind the model. To this end I first put in parallel the theoretical and empirical

features described in the literature with the model components and the result

obtained after calibration. I then show through an impulse response profile how

the futures curves react to modifications of the parameters and demonstrate the

impact of parameter changes upon the level and the slope of the crude oil futures

curve. Finally, I study the role played by each covariate in the dynamic behaviour

of the model parameters: first by looking at their statistical contribution to the log

likelihood of the model and then through a stress scenario analysis by highlighting,

conditionally on the past extreme values of a given covariate, their meaningfulness

in the market behaviour.

15.3.1 Relevance of the long term mean reversion

One of the contributions of this research to the extensive literature about com-

modity price modelling is the addition of a long term mean reversion to the two

factors model proposed by Schwartz and Smith [2000]. In Schwartz and Smith

[2000] the authors assume that the supply elasticity to the price changes on the

crude oil market is fitting into a short term time frame. They indeed consider that
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for a given rise of the crude oil barrel market price the profitability or internal

rate of return of some producers may suddenly be positive and consequently entail

an increase of the production on a short term basis. Reciprocally, if the price

of the crude oil decreases, the following reduction of the highest cost producers

margin will push them out of the market. On the other side the consumer demand

elasticity to oil prices plays a symmetrical role and thus can in the short to

mid-term constrain the fluctuations of the price. These mechanisms naturally

entail a mean reversion of the oil price on a short period of time and has proved its

efficacy in representing the commodity prices dynamic, see Cortazar et al. [2015].

I confirm this finding in Table 15.7 where the parameter β over several periods of

time is always statistically significant. That being said, the speed of this mean

reversion has been quite controversial in the literature and several authors have

demonstrated the existence of a very long term mean reverting behaviour towards

a long term equilibrium price (Bessembinder et al. [1995]; Pindyck [1999]; Postali

and Picchetti [2006]; Maslyuk and Smyth [2008]). This phenomenon is mainly due

to the long term horizon associated to drilling projects, which means investment

decisions from oil producers fit into a longer term time frame. The proposed

model thus presents the interest of coping with two horizons of mean reversion, the

first one which could be linked to the short to mid-term reaction of consumers or

producers having capacity of production or being capable to reduce rapidly their

production combined with a longer term behaviour from other producers which

start or suspend investment projects on a longer term basis, hence the supply

adjustments and thus price reversion on a longer time horizon. For its part, the

long term equilibrium price or marginal cost of production is directly influenced

by the extraction technologies as well as the discovery of new fields. This will be

represented by the value of the parameter µξ. I also tested the presence of a short

term stochastic trend to the mean reverting dynamic of the latent factor χt by

estimating its marginal contribution to the log likelihood but it turns out this was

not improving the model fit which means that there the long term equilibrium

price taking into account the marginal cost of production is embodied by the

parameter µξ. As far as the model goodness of fit is concerned, I should point out

through the comparison of Table 15.7 and Table 15.8 that the addition of the long

term mean reversion has significantly contributed to the likelihood of the proposed
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model. If one considers indeed that the Schwartz and Smith [2000] model is a

particular model of the SSX model where the mean reversion parameter γ is equal

to zero then we can compare the difference of likelihood between the two models

with a chi-squared distribution with 1 degree of freedom, corresponding to the

number of parameters that has been constrained. One can now consider the test

statistics for a 99% critical value. Given that the 99th percentile of a chi-squared

distribution with 1 degree of freedom is 6.635 one can see that except for the

2006-2011 sample all the other sample likelihood have been improved by adding

the mean reversion component. This is confirming the findings in the literature

about the long term mean reversion of commodity prices (Bessembinder et al.

[1995], Schwartz [1997],Postali and Picchetti [2006]).

Furthermore, Table 15.8 also displays a noticeable volatility in the trend parame-

ters under the historical probability as well as the risk premiums associated to

each latent factor. This feature has been frequently highlighted in the literature

(Cortazar et al. [2015] for instance) since the simultaneous estimation of the spot

dynamic and the associated risk premium is particularly perilous when one only

considers the futures prices. This set of prices indeed only contains information

about the risk neutral dynamic. Moreover if one shifts the trend associated to

each latent factor with a constant:

χt = χt +
∆

βtγt
(15–1)

ξt = ξt −
∆

βtγt
(15–2)

(15–3)

and accordingly modifies the respective risk premium:

λχt = λχt −
∆

γt
(15–4)

λξt = λξt +
∆

βt
(15–5)

(15–6)
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then no changes have been made to equation 14–40 and hence once has an

equivalent expression. These two arguments explain why for all the data sub-

samples, the estimation of the two risk premiums as well as the true trend obtained

with the models look very large and chaotic. Nevertheless, if one computes now the

sub-sample average risk neutral drifts, as the parameter one ultimately estimates

during the inference procedure, one obtains a value approximately equals to 8%

for all the sub-sample estimates, which is not an absurd value and is reasonably

close to the results obtained by Schwartz and Smith [2000].
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Table 15.7: Parameter estimates of Schwartz-Smith model (no covariates).

Variable 90-95 95-00 00-06 06-11 11-16

β 1.4651 ( 0.0329) 0.8619 ( 0.0245) 1.0460 ( 0.0473) 0.6604 ( 0.0265) 0.6702 ( 0.0237)

σχ 0.2976 ( 0.0146) 0.2891 ( 0.0126) 0.2663 ( 0.0136) 0.2744 ( 0.0130) 0.2378 ( 0.0121)

λχ -0.0105 ( 0.0290) 0.0760 ( 0.0222) -0.0183 ( 0.0251) -0.4678 ( 0.0219) -0.6038 ( 0.0236)

σξ 0.1397 ( 0.0062) 0.1518 ( 0.0066) 0.1669 ( 0.0076) 0.2658 ( 0.0114) 0.1802 ( 0.0084)

λξ -0.0771 ( 0.0637) 0.0629 ( 0.0646) 0.2511 ( 0.0756) 0.1166 ( 0.1336) -0.1900 ( 0.0817)

ρχξ 0.2848 ( 0.0676) -0.2631 ( 0.0617) 0.1217 ( 0.0728) 0.1119 ( 0.0692) 0.2779 ( 0.0766)

µξ -0.0602 ( 0.0636) 0.0686 ( 0.0646) 0.2048 ( 0.0761) 0.0506 ( 0.1329) -0.2414 ( 0.0818)

Std Pricing error τ1 0.0260 ( 0.0012) 0.0435 ( 0.0019) 0.0229 ( 0.0019) 0.0267 ( 0.0013) 0.0204 ( 0.0012)

Std Pricing error τ2 0.0002 ( 0.0014) 0.0091 ( 0.0004) 0.0033 ( 0.0013) 0.0049 ( 0.0002) 0.0050 ( 0.0004)

Std Pricing error τ3 0.0032 ( 0.0002) 0.0000 ( 0.0004) 0.0020 ( 0.0005) 0.0000 ( 0.0002) 0.0006 ( 0.0003)

Std Pricing error τ4 0.0000 ( 0.0002) 0.0000 ( 0.0002) 0.0000 ( 0.0002) 0.0000 ( 0.0002) 0.0000 ( 0.0003)

Std Pricing error τ5 0.0041 ( 0.0002) 0.0047 ( 0.0002) 0.0043 ( 0.0004) 0.0024 ( 0.0001) 0.0035 ( 0.0002)

NLL -4318 -4108 -4273 -4437 -4444
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Table 15.8: Parameter estimates of Extended Schwartz-Smith (SSX) model (no covariates).

Variable 90-95 95-00 00-06 06-11 11-16

β 0.1792 (0.0127) 1.1320 (0.0371) 0.8687 (0.0532) 0.0001 (0.0127) 0.0909 (0.0071)

σχ 0.1871 (0.0088) 0.3397 (0.0192) 0.2807 (0.0156) 0.2661 (0.0127) 0.2355 (0.0108)

λχ -0.0046 (0.0045) 0.1712 (0.0424) 0.0370 (0.0265) 0.0655 (0.0092) 0.0083 (0.0044)

σξ 0.2933 (0.0130) 0.2971 (0.0193) 0.1821 (0.0094) 0.2652 (0.0137) 0.1929 (0.0107)

γ 1.7901 (0.0438) 0.3782 (0.0173) 0.0422 (0.0085) 0.6753 (0.0245) 0.9611 (0.0356)

λξ 0.1152 (0.1243) 0.1225 (0.1345) 0.2759 (0.0848) -0.0740 (0.1182) -0.0610 (0.0833)

ρχξ 0.2010 (0.0612) -0.5639 (0.0585) -0.1006 (0.0947) 0.1221 (0.0666) 0.1107 (0.0740)

µξ 5.4037 (0.1842) 1.2561 (0.1622) 0.3831 (0.0993) 2.3741 (0.1431) 3.6727 (0.1605)

Std Pricing error τ1 0.0246 (0.0011) 0.0293 (0.0013) 0.0253 (0.0016) 0.0266 (0.0013) 0.0162 (0.0009)

Std Pricing error τ2 0.0000 (0.0024) 0.0000 (0.0012) 0.0056 (0.0006) 0.0049 (0.0002) 0.0002 (0.0010)

Std Pricing error τ3 0.0031 (0.0001) 0.0028 (0.0001) 0.0009 (0.0003) 0.0000 (0.0002) 0.0025 (0.0002)

Std Pricing error τ4 0.0000 (0.0002) 0.0000 (0.0002) 0.0000 (0.0003) 0.0000 (0.0002) 0.0000 (0.0002)

Std Pricing error τ5 0.0036 (0.0002) 0.0042 (0.0002) 0.0037 (0.0002) 0.0024 (0.0001) 0.0039 (0.0002)

NLL -4381 -4326 -4298 -4443 -4501
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15.3.2 Sensitivity analysis

In this section, I stress the financial meaning of each parameter estimated in the

model and try to assess the impact or response over time of the crude oil futures

curve following an instantaneous shock or impulse on one of the parameters of the

model. In the next section, I propose to decompose the dynamic of each latent

factors parameter as an affine function of the covariates described earlier. As a

consequence, it is necessary to present beforehand the consequences on the curve

level, its slope or even the crude oil convenience yield of a marginal parameter

change. But for ease of understanding it is worth re-emphasizing before that the

significance of each parameter in light of the calibration results. As one can notice

in Table 15.8, the order associated to the two mean reverting parameters, namely

γ and β, can from one sub-sample to another be interchangeable - meaning that

a qualification of the two latent factors as being respectively a short and a long

term component is not straightforward and needs some clarifications. If one takes

the period 2011-2016 it can be seen that the values associated to the parameter β,

(+0.0909) and γ, (+0.9611) corresponds respectively to equivalent half-lives of

3.31 and 0.311. Thus on average it will take 3.31 years for the random variable χt

to cross half of the distance existing at time t between the initial value χt and

the long term average value µχ. Similarly, it will take 0.31 years to reach the

midpoint between ξt and its long term expected value 0. As can be seen in this

case, the speed of mean reversion for the process χt is below that of ξt, which

means that contrary to the interpretation made in the paper Schwartz and Smith

1I define the half-life as the average time necessary for the process to revert half-way from
the mean. In such a case I want to find the time t? when the expected value of χ(t) will reach
the middle point between χ(0) and the long term mean µχ. To compute this value one just
needs to make the distance between the expected value of the mean reverting process χ(t) and
its long term mean equal half of the distance between the initial value and the long term mean,
which leads to the following equality:

t? ∈ R+ s.t. E [χ (t?)− µχ] =
χ (0)− µχ

2

which leads to the following solution:

e−βt
?

[χ (0)− µχ] =
χ(0)−µχ

2

t? = log2
β
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[2000], for the model proposed in this thesis and specifically for this sub-sample,

the latent factor χt does not embody the short term factor but instead a long

term dynamic. However, the second latent factor ξt for his part is the combination

of a long term expected value or equilibrium price and a quite short cyclicality

around it. Naturally, this does not tarnish the interest of the proposed model, but

it is necessary to adjust the parameter interpretation accordingly. In order to plot

the impulse response charts one needs to calculate the average backwardation of

log prices, which is given by the following expression:

Avg. Bwd of Log Pricest = E[lnFt(τ1)− lnFt(τ5)|ξ0, χ0]

=
(
e−βτ1 − e−βτ5

)
χ0e

−βt

+
(
e−γτ1 − e−γτ5

)(
ξ0e
−γt +

µ

γ

(
1− e−γt

))
−
σ2
χ

4β
(e−2βτ1 − 1)−

σ2
ξ

4γ
(e−2γτ1 − 1) +

λχ
β

(e−βτ1 − 1)

− 1

γ
(µξ − λξ)(e−γτ1 − 1)− ρχξσχσξ

(β + γ)
(e−(β+γ)τ1 − 1)

+
σ2
χ

4β
(e−2βτ5 − 1) +

σ2
ξ

4γ
(e−2γτ5 − 1)− λχ

β
(e−βτ5 − 1)

+
1

γ
(µξ − λξ)(e−γτ5 − 1) +

ρχξσχσξ
(β + γ)

(e−(β+γ)τ5 − 1)

(15–7)

Tables 15.9 and 15.10 show the instantaneous and asymptotic (t → ∞)

sensitivity of the average backwardation to shocks on µ, β or γ. Expressions for

the sensitivity of the average backwardation of log prices at time t to shocks on µ,

β or γ can be seen in Appendix E. From these tables one can see the time-varying

nature of the instantaneous sensitivities over the five time periods. In addition,

it can be seen that the equilibrium sensitivity of the backwardation to the µ

parameter is zero. Furthermore, one can plot the impulse response charts over

each 5-year period as shown in Figures 15.3 to 15.7. One can see in these figures

the effects of increasing/decreasing the various parameter values by 25%. In

particular, it can be noted that increasing the γ parameter results in a positive

change to the level of backwardation, whereas decreasing the γ parameter results
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in a negative change. The converse of this is true for the µ and β parameters.

Table 15.9: Instantaneous Sensitivity of Average Backwardation.

90-95 95-00 00-06 06-11 11-16

∂ABt
∂µ
|t=0 -0.44 -1.01 -1.29 -0.83 -0.69

∂ABt
∂β
|t=0 0.15 -0.03 0.04 0.17 0.18

∂ABt
∂γ
|t=0 1.30 3.08 3.89 2.75 2.45

Table 15.10: Equilibrium Sensitivity of Average Backwardation.

90-95 95-00 00-06 06-11 11-16

lim
t→∞

∂ABt
∂µ

0 0 0 0 0

lim
t→∞

∂ABt
∂β

0.031 -0.060 -0.001 0.010 0.041

lim
t→∞

∂ABt
∂γ

-0.017 -0.057 -0.235 0.066 0.035

15.3.3 Impact of Fundamental Variables Upon the Crude

Oil Futures Term Structure

In order to analyse the informational content of the crude oil prices term structure

I considered two different data samples. While the two samples include exactly

the same covariates I decided to base the model selection procedure on the quality

of the calibration when I was using backward looking data and simultaneous

covariates data. As a consequence, to determine the model parameters in the first

case I consider at time t the covariates values for the previous 8 weeks, whereas

in the second case I consider the last available covariates value. The average

likelihoods for the statistically significant covariates show that most of time the

regression models for the three parameters γ, β, µ are noticeably improved when

one considers only the latest data available for each covariates.

Table 15.11 shows the respective covariates impact upon the components of the

crude oil spot dynamic following from the HMF model, namely the short-term and
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the long-term mean reversion factors as well as the long term trend. The detailed

model parameter estimates for each of the five periods can be seen in Appendix F.

It can first and foremost be noticed that the relevant covariates are not necessarily

the same among the three latent factors parameters and thus that each factor

influences the dynamic of the crude oil price term structure in a different manner

(as demonstrated also by Dempster et al. [2012]). Furthermore, it can be observed

that this influence can evolve over the course of time. For instance, when one

looks at the factors impacting the long term trend µξ and the long term mean

reversion parameters (which could be the β or the γ parameter according to the

related half-life value as explained before) one notices that the dollar was one

of the most important factors between 1995 and 2011 period during which the

dollar index went conspicuously up until the burst of the dot-com bubble when

it was almost always decreasing until the end of 2008. The negative sign of the

µξ regression coefficient associated to the Dollar Index shows a inverse relation

between the dollar and the price of the crude oil which means that when the dollar

is going up the price of the crude oil, expressed in this currency, tends to decrease.

This relation has also been described in Akram [2009]. Nevertheless, this negative

relation associated to the DXY index in the regression of the long term trend µξ
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and its impact on the other components of the crude oil dynamic have been less

influential over the last five years (see Table 15.11). This statement is completing

the results published by Reboredo [2012] and Reboredo et al. [2014] which analyse

the relation between the WTI price and a set of currencies between the 4th of

January 2000 and the 5th of May 2012 and point out that the intensity of these

relations can fluctuate across time and notably reached their climax during the

2008 financial crisis.

These results not only demonstrate that the effect of the dollar on the dynamics

of the crude oil price has, over the last five years, faded out but also that at the

same time the US production of oil has recently weighed a lot more on the dynamic

of oil prices while it was not so influential in the past as can be seen in Table 15.11.

This result quantifies the recent impact of the advances in the application of

horizontal drilling and hydraulic fracturing in shale which have obviously modified

the international supply and demand equilibrium and thus the oil price dynamic

itself (Outlook [2013] and Dvir and Rogoff [2014]). Interestingly enough one can

also notice that this decrease of the US energy dependence has not impacted the

long term trend value but more the shape of the curve and the rate of reversion to

the equilibrium price. The latest negative sign indeed shows that the noticeable

increase of the US oil production over the last five years has significantly pushed

the futures curve into contango and thus explains in part this recent change in

the crude oil basis sign. This increase of the US oil production has to be put in

parallel with the increase of the refinery utilization rate that has been observed

lately and which has also positively impacted the curve slope and the current

contango situation in the crude oil market according to the results presented here.

Furthermore, according to the competitive rational expectations model of storage

(Pindyck [1994], Routledge et al. [2000] , Casassus and Collin-Dufresne [2005]

and see Gorton et al. [2013] for a detailed review of the literature) one should

also find a statistically significant negative relation between the inventories and

the level of backwardation of the curve which is indeed mostly the case in this

model if you consider the long term mean reversion impact on the curve slope

and thus the convenience yield. This negative relation indeed means that when

the US oil inventories decrease the long term mean reversion accelerates which

consequently, and as demonstrated in the previous subsection (see Table 15.9),
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generally increases persistently the backwardation of the futures term structure.

Although the sign of the inventories coefficients associated to the long term mean

reversion is mostly negative and statistically significant, this effect has however

not been as meaningful as the US oil production or the refinery utilization rate

for the last five years (as shown by the AIC criterion ranking). This is once again

confirming that in order to measure oil scarcity, the level of inventories in the US is

maybe not enough and it is necessary nowadays to take into consideration the fact

that the US are themselves producing a large part of their energy needs and can

potentially accommodate shocks to demand by adjusting their production. This is

also pointed out in Dvir and Rogoff [2014], who propose an extended commodity

storage model where they assume that the supply can shift from a restricted to

an unrestricted regime. The authors demonstrate that since the crisis of 1973,

following the Organization of Petroleum Exporting Countries members embargo,

there has been a restricted regime where supply does not react to shocks on the oil

demand because of the production capacity constraints or structural limitations,

e.g. refinery capacity, railroad infrastructure etc. Moreover, the results presented

in this chapter also echo the conclusion of Dvir and Rogoff [2014] regarding the

stability and potential shift of regime towards an unrestricted supply where the

US production can satisfy the shocks on demand1. According to the same authors,

in such a case the relation between the inventories and oil price, being a function

of the flexibility of the production, should be negative instead of positive. This

explains why I obtain a negative relation between the inventories and the oil price

level for the last period (sign of the inventories coefficient relative to the trend

component) while this relation was mostly positive in the past.

The proposed model also shows interesting results about the relation between

stock markets and goods price or inflation. This financial economics topic which is

linked to the Fisher hypothesis, according to which the long-run relation between

equities and goods price should be positive, has been contradicted by several

studies showing a negative relation between the equity indices and the goods

prices (Bodie [1976]; Fama [1981]; Lee [2010]). This point has led to the conclusion

1Dvir and Rogoff [2014], p. 127: “. . . regarding the availability of shale oil in the U.S., and
assuming that the industry will remain competitive, within a few years we may be again in a
period where increased demand can be easily met by more production from U.S. sources. This
development may well reverse the long-run relationship between inventories and price”.
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that the common stocks are a good hedge against inflation and thus commodities

a good diversifier for equity portfolio risk. However as recently shown in the

literature this relation may revert, weaken or at least not be consistently significant

over time (Kilian and Park [2009]; Büyükşahin et al. [2009]; Büyükşahin and Robe

[2014]). This concurs with the results presented here, as can be seen in Appendix F

the S&P500 is first and foremost almost always significantly impacting the three

elements of the crude oil spot price dynamic and is often (three periods out of

five) one of the three most important factors, according to the AIC criterion

ranking of the significant factor. Furthermore, the impact on the long term trend

is for the three periods of time spanning from 1990 to 2006 always negative,

substantiating the findings of the literature mentioned before. Nevertheless, over

the last ten years the results in Table 15.11 show the direction of the relation is

flipping around and becoming positive. One could conjecture that this change in

the sign of the relation between oil and equity is also linked to the last decade’s

significant increase of the US supply capacity which has reduced the impact of

the demand shocks for precautionary reasons. This argument is in line with the

findings of Kilian and Park [2009] who demonstrate that only demand shocks

for precautionary reasons such as those following political disturbances in the

middle east (such as the Iraqi invasion of Kuwait in August 1990) can generate a

significantly negative relation between equities and crude oil prices. The authors

also add that there is no evidence that supply shocks will have the same outcome.

Finally, when one looks at the financial sphere impact the results show that

the impact of the hedging pressure upon the trend of the crude oil price is not

obvious and even insignificant over the last decade. Nevertheless, the influence of

the hedgers seems to fall back on the two mean reversion components of the crude

oil dynamic which are directly linked to the slope of the futures curve. When

the hedging pressure is increasing, which means that there are more producers

hedging their exposure than processors, a net short position is thus appearing and

is subsequently offset by the speculators who accept to bear the risk in return for

which they ask for a risk premium Keynes [1930]. This risk premium is actually

materialized by a backwardation situation as explained by Hirshleifer [1990] and

through the excess returns of long-short hedging pressure portfolios in Basu and

Miffre [2013]. Table F.4 in Appendix F shows that during the 2008 financial
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crisis the hedging pressure was not at all altering the long term equilibrium price,

namely µξ, but instead increasing the speed of the long term mean reversion

which then increased the backwardation of the curve validating accordingly the

aforementioned literature. This result means also that during the financial crisis

of 2008 and the related large fluctuations of the crude oil price the speculator

has more assumed the role of an insurance provider under the increasing hedgers

pressure but has not necessarily impacted directly the trend of this commodity.

In line with recent articles raising questions about the potential impact of the

commodity market financialisation (Kilian and Lee [2014],Goldstein and Yang

[2015]), this statement sheds light on the complex role played by the speculators

in the energy futures market during the 2008 crisis which should not be boiled

down to the trend following strategies implemented by certain hedge funds as

claimed in different articles (Kaufmann and Ullman [2009], Cifarelli and Paladino

[2010], Kaufmann [2011]).

A final point should be made about the role of the financial institutions in

the market for the period of 2006 to 2016, while the results show an insignificant

influence of the hedging pressure on the curve dynamic from 2011 to 2016 it

seems nonetheless that the leverage ratio associated to the financial intermediaries

has significantly influenced the curve dynamic for the last five years and for the

other periods under scrutiny. If one considers the 2008 spike and collapse and

the 2015 spikes of this variable (see Figure 15.2), it seems that they impacted

differently the curve slope as well as the crude oil long term equilibrium price. If

one looks at the 2006 to 2011 period it can be seen that the crude oil collapse

can be explained by the impact of the leverage factor on the long term trend

(see Table F.4 in Appendix F) which confirms the findings of Acharya et al.

[2013], who demonstrate that a limitation in the risk-taking capacity of financial

institutions (which corresponds to a decrease of the financial institutions leverage

ratio) could mechanically generate a hedging pressure on the futures curve and

thus a backwardation situation as well as a decrease of the crude oil price, leading

to a positive relation between the leverage ratio and the oil price and a negative

relation between the same oil price and the backwardation. While the signs of

the mean reversion and trend components obtained through the proposed model

validate this theory for the 2006 to 2011 financial crisis it seems that the signs
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shift for the last five year invalidates it. According to the results for 2011 to 2016

it seems indeed that the recent spike (Q4 2015) of the financial intermediaries

leverage factor has on the contrary negatively impacted the long term trend and

has also increased the backwardation of the term structure.
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1990-1995 1995-2000 2000-2006 2006-2011 2011-2016

Covariate ST Mean LT Mean LT ST Mean LT Mean LT ST Mean LT Mean LT ST Mean LT Mean LT ST Mean LT Mean LT

Reversion Reversion Trend Reversion Reversion Trend Reversion Reversion Trend Reversion Reversion Trend Reversion Reversion Trend

BDI -0.009 -0.029

DXY -0.193 0.010 -0.032 -0.422 0.021 -0.070 0.009 0.032 -0.028

End Stocks -0.037 0.117

GSCI -0.042 0.127 0.177 -0.011 0.034 0.191 -0.042 0.054 0.168

Lev Rat -0.020 0.210 0.053 -0.344 0.017 -0.054 0.011 -0.036

Ref Util 0.172 -0.019

SP500 0.046 0.266 -0.129 -0.185 0.008 -0.025 -0.289 0.026 0.045 -0.017 -0.051 0.070

Hedging Pressure

US Prod 0.002 -0.036

Table 15.11: Three Highest AIC Criterion Contributors. In this table the three most important contributors
to the log likelihood among the significant regressions are selected. To do so only the statistically significant
factors are retained and their associated Akaike Information Criterion computed, then ranked in descending
order and only the three highest values are retained. The value corresponds to the coefficient associated
to the regression of the three model components on the macroeconomic and microeconomic independent
variables.
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15.3.4 Backwardation Changes Due to Perturbing

Covariates: a Stress Scenario Analysis

Using the fitted HMF models one can assess the impact that a shock to each

of the covariates will have on the futures curve. Figures 15.9 to 15.11 show

the effect to the percentage backwardation of the futures curve resulting from

a three1 standard deviation increase to the covariate value during the period

2011 to 2016. Here, percentage backwardation is calculated as the percentage

difference in futures price of the one month contract to the 5 month contract, i.e.

100× (Ft(τ1)− Ft(τ2))/Ft(τ1). It can be seen that such a stress test confirms the

previous analysis based on the AIC criterion. In particular, the impact of the US

production on the slope of the futures term structure over the last five years as

shown in Figure 15.10 is more substantial than the effect of inventories and the

other covariates taking into account a three standard deviation shock on the real

values. As far as the short term mean reversion is concerned, namely γ for this

period, one clearly sees that the GSCI as the average price of the commodities

has a dominant impact on the contango of the crude oil futures curve.

15.4 Conclusions

This chapter contributes to the literature about commodity term structure dynamic

modelling by proposing a model combining two mean reverting latent factors

for which the stochastic dynamic can be expressed as a function of a set of

macroeconomic covariates. Starting from the short term/long term model proposed

by Schwartz and Smith [2000] the interest of adding a second mean reversion

component with a higher half-life was demonstrated statistically and conceptually.

Furthermore, this research contributes to the literature by proposing an innovative

state-space framework which allows one to extract latent stochastic factors as

well as all static model parameters in a statistically consistent manner. This

model bridges the existing gap between the latent factor modelling literature

1The effects to the percentage backwardation resulting from one, two and three standard
deviation increases to the covariate value were investigated here. Three standard deviations are
presented in this section to aid in the interpretation of the plots, i.e. the lines are further apart
and hence easier to see.
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Figure 15.8: Percentage backwardation of the nearest two contracts
during the period 2011-2016. The line is coloured blue when the the
backwardation is positive and red when the backwardation is negative
(i.e. contango).
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Figure 15.9: Percentage backwardation of the nearest two contracts
resulting from a three standard deviation increase to the covariate
value during the period 2011 to 2016. Here the fitted model links the
covariate to the µ parameter.
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value during the period 2011 to 2016. Here the fitted model links the
covariate to the β parameter.
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and the two-step regression models generally proposed to explain the a priori

estimated latent factors stochastic dynamics as functions of macroeconomic and

microeconomic variables. Finally, the results presented here shed light upon

several topical challenges raised in the literature about the relation between crude

oil term structure behaviour and financial or physical information available in

the market. Notably, one can conclude that the recent increase of the US oil

production over the last decade has significantly influenced the behaviour of the

crude oil long term equilibrium price but also the dynamic of the futures term

structure emphasizing accordingly the interest of the extended commodity storage

model proposed recently by Dvir and Rogoff [2014].
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Chapter 16

Conclusions and Future Work

16.1 Summary

The research presented in this thesis constitutes an important and novel con-

tribution towards modelling dependence in financial applications. In particular,

contributing to the literature by further understanding the key factors driving the

dynamic nature of such dependence. This thesis focuses on two key financial ap-

plications: modelling multiple-currency basket returns and modelling commodity

prices.

16.2 Statistical Modelling and Estimation

Contributions

Three complementary dependence modelling approaches are developed in this

thesis. The first two approaches address the challenge of modelling the multivariate

distribution of a portfolio of asset returns. The third approach developed concerns

commodity price dependence modelling where the link between maturities through

the term structure of futures prices is considered. Firstly, a parametric copula

modelling approach is considered in order to capture the complex dependence

structure present in such data. In particular, flexible mixture copula models,

consisting of weighted Archimedean copula members such as Clayton, Frank

and Gumbel components, are developed including additional structural flexibility
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via distortion transforms corresponding to inner and outer-transform variants

estimated via the inference for margins method which consists of a two step fitting

procedure for the marginal model and then the dependence structure. In addition,

an expectation-maximisation method is considered.

Secondly, a covariance factor regression framework is utilised in order to

understand the influence of observed covariates on the covariance of the multi-

variate distribution of a portfolio of asset returns. This framework provides a

number of desirable properties. Crucially, the model is interpretable in a way

that GARCH-type models are not and as such, forecasting the covariance matrix

is straightforward and transparent. This is achieved by constructing time series

models for the observed covariates and calculating forecasts, which are then used

as inputs to the covariance matrix forecast. Furthermore, the estimation of the

covariance factor model can be performed using a simple and efficient Expectation-

Maximization (EM) algorithm. A sensitivity analysis of the covariance matrix to

the factors is also presented allowing the estimation of a confidence interval of

the covariance matrix entries as a function of the marginal distribution of each

covariate used for the covariance regression.

The resulting forecasts of the covariance matrix of asset returns can then be

utilised in portfolio optimisation. In particular, this modelling framework allows

one to calculate the sensitivity of the portfolio weights to the observable covariance

factors and accordingly helps to devise a global and dynamic hedging strategy for

portfolios of assets. Thus, the relationship between interpretable factors and the

weightings of assets in a portfolio can be further understood.

Thirdly, a novel Hybrid Multi-Factor (HMF) state-space modelling framework

is also proposed in order to understand the key factors driving the dependence

structure among commodity futures prices along their term structure. A consistent

estimation framework is developed, which builds on the familiar two-factor model

of Schwartz and Smith (2000), to allow for an investigation of the influence of

observable covariates on commodity prices. Using this novel Hybrid Multi-Factor

(HMF) model, it is possible to obtain closed form futures prices under standard

risk neutral pricing formulations, and one can incorporate state-space model

estimation techniques to consistently estimate both the structural features related

to the convenience yield and spot price dynamics (long and short term stochastic

340



dynamics) and also the structural parameters that relate to the influence on

the spot price of the observed exogenous covariates. Such models can then be

utilised to gain significant insight into the futures and spot price dynamics in

terms of interpretable observed factors that influence speculators and hedgers

heterogeneously. This is not attainable with existing modelling approaches.

16.3 Novel Insights into Finance and Economet-

ric Studies

This thesis also contributes to the literature by the application of the depen-

dence structure modelling described above to two challenging financial modelling

problems: modelling multiple-currency basket returns and modelling commodity

futures price term structure. In order to perform the empirical analyses considered

in this thesis a substantial amount of effort and time was invested into collecting,

cleaning and preparing the data.

Multiple Currency Basket Modelling

Firstly, this thesis investigates the well-known financial puzzle of the currency

carry trade, which is yet to be satisfactorily explained. It is one of the most

robust financial puzzles in international finance and has attracted the attention

of academics and practitioners alike for the past 25 years. The currency carry

trade is the investment strategy that involves selling low interest rate currencies in

order to purchase higher interest rate currencies, thus profiting from the interest

rate differentials. Assuming foreign exchange risk is uninhibited and the markets

have rational risk-neutral investors, then one would not expect profits from such

strategies. That is uncovered interest rate parity (UIP); the parity condition in

which exposure to foreign exchange risk, with unanticipated changes in exchange

rates, should result in an outcome that changes in the exchange rate should offset

the potential to profit from such interest rate differentials.

A dataset of daily closes on spot and one month forward contracts for 20

currencies from 2000 to 2013 was used to investigate the behaviour of carry

portfolios, formed by sorting on the forward premium (a proxy to the interest rate

differential to US dollar). A rigorous statistical modelling approach is proposed,
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which captures the specific statistical features of both the individual currency

log-return distributions as well as the joint features, such as the dependence

structures prevailing between the exchange rates.

The individual currency returns were transformed to standard uniform margins

after fitting appropriately heavy tailed marginal models, namely log-normal and

log generalised gamma models. To analyse the tail dependence present in the carry

portfolios - mixture copula models, consisting of weighted Clayton, Frank and

Gumbel components, were fitted on a rolling daily basis to the previous six months

of transformed log returns. Extracting and interpreting the multivariate tail

dependence present in the rolling daily baskets provided significant evidence that

the average excess returns earned from the carry trade strategy can be attributed

to compensation for not only individual currency tail risk, but also exposure to

significant risk of large portfolio losses due to joint adverse movements.

A key contribution of this thesis is therefore to provide a rationale for the

unintuitive excess returns seen empirically in the currency carry trade via the

presence of multivariate tail dependence and therefore increased portfolio crash

risk. This is a novel and promising approach. A further contribution of this

research is the identification of significant periods of carry portfolio construction

and unwinding through the analysis of multivariate tail dependence in mixture

copula models.

From a fundamental perspective this thesis also explores the impact of specula-

tive trading behaviour on the dependence structure of currency returns. The ratio

of speculative open interest (net non-commercial positions) to total open interest,

termed the SPEC factor, is shown to provide a good proxy to the behaviour of

carry trade investors via a PCA analysis and consequently the resulting complex

nonlinear relation between international exchange rates.

To investigate this phenomenon, a covariance regression modelling approach

whereby the influence of observed covariates on the covariance of the multivariate

returns of a basket of assets is proposed. In particular, the impact of speculative

trading behaviour, i.e. the SPEC factors, on the covariance of carry currencies

is investigated. These SPEC factors are shown to hold several orders of magni-

tude more explanatory power than the price index factors, DOL and HMLFX ,

previously suggested in the literature. Furthermore, it is demonstrated that the
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time series for the DOL and HMLFX factors are very close to white noise and

as such are essentially unforecastable. It is important to note that the DOL and

HMLFX covariates are risk premia and therefore shouldn’t be expected to be

forecastable, since otherwise there is no risk to be compensated for. The suggested

speculative open interest factors are shown to be amenable to ARIMA model fits

and so produce reasonable forecast accuracy.

A sensitivity analysis of the covariance to the factors is also presented allowing

the estimation of a confidence interval of the covariance matrix entries as a function

of the marginal distribution of each covariate used for the covariance regression. In

addition, a regression of the tail dependence measures, obtained from the mixture

copula modelling approach, on the SPEC factors illustrates the influence of carry

trade speculative behaviour on the extremal joint currency returns. The DOL

and HMLFX are shown to hold little explanatory power in the joint tails.

Commodity Price Modelling

In addition, this thesis employs a state-space modelling approach to understand

the joint dynamic of the commodity spot price and the related futures prices along

the curve. This framework is extended to allow for an investigation of the influence

of observed macroeconomical covariates on the commodity term structure and

in particular whether these covariates affect the short or long end of the curve.

This modelling can be used for risk management, derivatives pricing, real options

analysis and (carry) strategy development, e.g. backwardation/contango plays.

In particular, in this thesis the focus is on the behaviour of oil prices. Oil has

historically been one of the most closely scrutinized commodities in the market.

First and foremost, this is because of the important role this commodity plays in

the worldwide economy and international relations, which gives it a prominent

role, when compared to other energy, agricultural and metals commodities, in

many aspects of the global economy and each country’s specific macro, micro and

monetary economic policy decisions.

Historically, one has seen the importance that economies have placed on the

price variation of oil and understanding the factors that affect such a dynamic in

order to better understand the determinants of shocks and volatility regimes in

the spot price, demand and supply.
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Another determining reason for the continued interest lies in the frequent

shocks affecting the supply and demand of the so called “black gold” giving birth

to sudden and dramatic price movements, such as during the 1973/74 oil crisis.

The price of this exhaustible commodity has indeed been in the past heavily

impacted by the discovery of new fields or the conflicts in oil-producing countries.

On the other hand, the demand behaviour has generally been more influenced by

the business cycles or even the evolution of the extracted oil inventories. That

being said, according to the US Department of the Interior (DOI) as well as the US

Energy Information Administration (EIA), the technology used for its extraction

has recently been the main factor influencing the market supply. Over the last

decade, advances in the application of horizontal drilling and hydraulic fracturing

in shale have indeed drastically modified the international supply and demand

equilibrium as well as the existing international relations by allowing the biggest

oil consumer, namely the United States, to become over the same time period less

and less dependent on its energy imports. According to the EIA, in 2015, 24% of

the petroleum consumed in this country was imported which corresponds to the

lowest level since 1970.

From a modelling perspective, such changes in the physical market conditions

are significantly impacting the commodity price dynamic and need to be incor-

porated into any interpretable and realistic commodity futures stochastic model.

In addition, if the model is developed, as is the case with the class of Hybrid

Multi-Factor Models (HMF) introduced in this thesis, to allow for clear closed

form representations of structural features such as sensitivity, shock transient

response and perturbation influence on the model parameters and the driving

exogenous covariates characterizing the features just discussed, then such a class

of models has the potential to significantly aid in the study of stochastic variation

in oil futures prices and to aid in forecasting and policy decision. The main aim of

this research is to provide such a class of models and demonstrate their utility in

incorporating a range of exogenous covariates into different structural components

that will clearly explain short term and long term speculator and hedger positions

in oil futures and their influences.

Finally, the results presented in this thesis shed light upon several topical

challenges raised in the literature about the relation between crude oil term
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structure behaviour and financial or physical information available in the market.

One can conclude that the recent increase of the US oil production over the

last decade has significantly influenced the behaviour of the crude oil long term

equilibrium price and also the dynamics of the futures term structure.

16.4 Future Research Directions

The novel modelling developments proposed and the practical applications consid-

ered in this research naturally suggest many interesting questions to investigate.

Furthermore, we are currently completing research papers to extend the work

performed in this thesis.

From a copula modelling perspective, further investigation into dynamic copu-

lae and a comparison to the sliding window approach adopted in this thesis would

be interesting. In particular, whether it is possible to identify periods of currency

carry trade construction and unwinding through the change in dynamic copula

parameter. In addition, investigating larger baskets of currencies (incorporating a

wide range of developing countries) utilising vine copula models would be valuable.

Extending the covariance regression modelling framework to incorporate robust

covariate selection and thus optimising portfolio covariance forecasting is a key

research direction. This would allow the framework proposed in this thesis to

be practically implemented and an optimal currency carry trade strategy to be

performed.

The Hybrid Multi-Factor (HMF) modelling framework developed in this thesis

has many possible extensions: firstly, the implementation of multiple covariates

into each parameter link function; secondly, the implementation of multiple

parameter linkings within the same model; thirdly, allowing for a more flexible

dependence structure to enter into the model residuals. It would also be of much

interest to apply this framework to the investigation of other commodities, for

example grains, metals and other energy commodities.

Exploring the relationship between commodity prices and currency dependence

dynamics in a causal framework would be particularly revealing in the context of

the research presented in this thesis.
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Appendix A

Archimedean Copula Derivatives

A.1 Multivariate Clayton Copula

A.1.1 CC
ρ (u)

CC
ρ (u) =

(
d∑
i=1

u−ρi − d+ 1

)− 1
ρ

, ρ > 0 (A–1)

A.1.2 ψ
(d)
ρ : d-th derivative of the Clayton generator

(−1)dψ(d)
ρ (t) =

Γ
(
d+ 1

ρ

)
Γ
(

1
ρ

) (1 + t)−(d+ 1
ρ) (A–2)

A.1.3 Clayton Copula Density
(

∂dC
∂u1...∂ud

)
cCρ (u) =

d−1∏
k=0

(ρk + 1)

(
d∏
i=1

ui

)−(1+ρ) (
1 + tCρ (u)

)(−d+ 1
ρ) (A–3)

where

tCρ (u) =
d∑
i=1

ψ−1
C (ui)
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ψ−1
C (ui) = (u−ρi − 1)

A.2 Multivariate Frank Copula

A.2.1 CF
ρ (u)

CF
ρ (u) = −1

ρ
ln

1 +

d∏
i=1

(e−ρui − 1)

(e−ρ − 1)d−1

 , ρ > 0 (A–4)

A.2.2 ψ
(d)
ρ : d-th derivative of the Frank generator

(−1)dψ(d)
ρ (t) =

1

ρ
Li−(d−1)

{
(1− e−ρ)e−t

}
, t ∈ (0,∞), d ∈ N0 (A–5)

where Lis(z) =
∞∑
k=1

zk

ks

A.2.3 Frank Copula Density
(

∂dC
∂u1...∂ud

)

cFρ (u) =

(
ρ

1− e−ρ

)d−1

Li−(d−1)

{
hFρ (u)

} e
(
−ρ

d∑
j=1

uj

)

hFρ (u)
(A–6)

where

hFρ (u) = (1− e−ρ)1−d d∏
j=1

{1− e−ρuj}
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A.3 Multivariate Gumbel Copula

A.3.1 CG
ρ (u)

CG
ρ (u) = e

−
(

d∑
i=1

(−log ui)ρ
) 1
ρ

, ρ ≥ 1 (A–7)

A.3.2 ψ
(d)
ρ : d-th derivative of the Gumbel generator

(−1)dψ(d)
ρ (t) =

ψρ(t)

td
PG
d, 1
ρ

(
t

1
ρ

)
, t ∈ (0,∞), d ∈ N (A–8)

where

PG
d, 1
ρ

(
t

1
ρ

)
=

d∑
k=1

aGdk

(
1
ρ

)
(t

1
ρ )k

aGdk(
1
ρ
) =

d!

k!

k∑
i=1

(
k

i

)( i
ρ

d

)
(−1)d−i , k ∈ 1, ..., d

A.3.3 Gumbel Copula Density
(

∂dC
∂u1...∂ud

)

cGρ (u) = ρde

(
−tρ(u)

1
ρ

) d∏
i=i

(−log ui)ρ−1

tρ(u)d
d∏
i=1

ui

PG
d, 1
ρ
(tGρ (u)

1
ρ ) (A–9)

where

PG
d, 1
ρ

(t
1
ρ ) =

d∑
k=1

aGdk(
1
ρ
)(t

1
ρ )k

aGdk(
1
ρ
) =

d!

k!

k∑
i=1

(
k

i

)( i
ρ

d

)
(−1)d−i , k ∈ 1, ..., d

tGρ (u) =
d∑
i=1

ψ−1
G (ui)

ψ−1
G (ui) = (−log ui)ρ
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A.4 Multivariate Clayton-Frank-Gumbel Mixture

Copula

A.4.1 CCFG
ρ1,ρ2,ρ3

(u)

CCFG
ρC ,ρF ,ρG

(u) = λC(CC
ρC

(u)) + λF (CF
ρF

(u)) + λG(CG
ρG

(u))

= λC ×

(
d∑
i=1

u−ρi − d+ 1

)− 1
ρ

+ λF ×−
1

ρ
ln

1 +

d∏
i=1

(e−ρui − 1)

(e−ρ − 1)d−1


+ λG × e

−
(

d∑
i=1

(−log ui)ρ
) 1
ρ

(A–10)

A.4.2 Clayton-Frank-Gumbel Mixture Copula Density

cCFGρC ,ρF ,ρG
(u) =λC(cCρC (u)) + λF (cFρF (u)) + λG(cGρG(u))

=λC ×
d−1∏
k=0

(ρk + 1)

(
d∏
i=1

ui

)−(1+ρ) (
1 + tCρ (u)

)(−d+ 1
ρ)

+ λF ×
(

ρ

1− e−ρ

)d−1

Li−(d−1)

{
hFρ (u)

} e
(
−ρ

d∑
j=1

uj

)

hFρ (u)

+ λG × ρde
(
−tρ(u)

1
ρ

) d∏
i=i

(−log ui)ρ−1

tρ(u)d
d∏
i=1

ui

PG
d, 1
ρ
(tGρ (u)

1
ρ )

(A–11)

where
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tCρ (u) =
d∑
i=1

ψ−1
C (ui)

ψ−1
C (ui) = (u−ρi − 1)

hFρ (u) = (1− e−ρ)1−d d∏
j=1

{1− e−ρuj}

PG
d, 1
ρ

(t
1
ρ ) =

d∑
k=1

aGdk(
1
ρ
)(t

1
ρ )k

aGdk(
1
ρ
) =

d!

k!

k∑
i=1

(
k

i

)( i
ρ

d

)
(−1)d−i , k ∈ 1, ..., d

tGρ (u) =
d∑
i=1

ψ−1
G (ui)

ψ−1
G (ui) = (−log ui)ρ
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Appendix B

Calculating Confidence Intervals

for Covariance Regression

Approximate confidence intervals for model parameters can be provided by Wald

intervals, i.e. the MLEs plus or minus a multiple of the standard errors, as described

in Hoff and Niu [2012]. Standard errors can be obtained from the inverse of the

expected information matrix evaluated at the MLEs. The log-likelihood given

an observation e is l(B,Ψ : e) = log p(e|Σ) = −(p log 2π + log |Σ|+ eTΣ−1e)/2,

where e = y−βx and Σ = Ψ+BxxTBT . The likelihood derivative with respect

to B can be obtained as follows:

l̇B = ∂l(B,Ψ : e)/∂B = −(∂ log |Σ|/∂B + ∂eTΣ−1e/∂B)/2 (B–1)

= −Σ−1BxxT + Σ−1eeTΣ−1BxxT (B–2)

= HzBxx
T , (B–3)

where Hz = Σ−1/2(zzT−I)Σ−1/2 and z = Σ−1/2e. The derivative with respect

to Ψ is more complicated, as the p×p matrix Ψ has only p(p+1)/2 free parameters.

Following McCulloch [1982], we let ψ = vechΨ be the p(p+ 1)/2 vector of unique

elements of Ψ. As described in that article, derivatives of functions with respect

to ψ can be obtained as a linear transformation of derivatives with respect to Ψ,
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obtained by ignoring the symmetry in Ψ:

l̇Ψ = ∂l(B,Ψ : e)/∂Ψ = −(Σ−1 −Σ−1eeTΣ−1)/2 (B–4)

= Σ−1/2(zzT − I)Σ−1/2/2 = Hz/2, (B–5)

l̇ψ = ∂l(B,ψ : e)/∂ψ = GTvec l̇Ψ = GTvecHz/2, (B–6)

where G is the matrix such that vecX = GvechX, as defined in Henderson and

Searle [1979]. Letting b = vecB and l̇b = vec l̇B the expected information is

I(b,ψ : x) = Eb,ψ

 l̇bl̇
T
b l̇bl̇

T
ψ

l̇ψ l̇
T
b l̇ψ l̇

T
ψ

 ≡
 Ibb Ibψ

ITbψ Iψψ

 .

Calculation of Ibb Ibψ and Iψψ involves expectations of (vecHz)(vecHz)
T , which

has expected value (Σ−1 ⊗ Σ−1)(Ip2 + Kp,p), where Kp,p is the commutation

matrix described in Magnus and Neudecker [1979]. Straightforward calculations

show that

Ibb = (xxTBT ⊗ Ip)(Σ−1 ⊗Σ−1)(Ip2 +Kp,p)(Bxx
T ⊗ Ip), (B–7)

Ibψ = (xxTBT ⊗ Ip)(Σ−1 ⊗Σ−1)G, (B–8)

Iψψ = GT (Σ−1 ⊗Σ−1)G/2. (B–9)

The expected information contained in observations to be made at x-values

x1, . . . ,xn is then I(b,ψ : X) =
∑n

i=1 I(b,ψ : xi). Plugging the MLEs into

the inverse of this matrix gives an estimate of their variance, V̂ar[b̂T , ψ̂T )T ] =

I−1(b̂, ψ̂ : X).
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Appendix C

Forward Price Curve

Interpolation

In order to calculate daily values of the monthly DOL and HMLFX factors of

Lustig and Verdelhan [2007], it is necessary to mark to market the one month

forward contracts on a daily basis, and hence interpolate the forward curve between

the overnight, one week, two week, three week and one month forward contracts.

This interpolation of the forward curve was achieved via a linear interpolation

on the implied interest rates from the forward contract prices, thus resulting in a

monotonic interpolation between available forward price data points along the

curve. Equation C–1 shows the interpolation formula used,

logFt,t? =

[
logFt,t1
t1 − t

× t2 − t?

t2 − t1
+

logFt,t2
t2 − t

× t? − t1
t2 − t1

]
× (t? − t) (C–1)

where t < t1 < t? < t2

For each monthly segment m (starting at the beginning of each month), I

calculate the mark to market daily carry returns by first calculating the interpolated

forward curve each day, then taking the difference between the log forward prices

of the appropriate contracts, as shown in equation C–2,

logRm
i = logFi,T−i − logFi+1,T−i−1 i ∈ 1, 2, . . . , T (C–2)

357
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where logFT,0 = ST .
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Figure C.1: Forward Price Curve Interpolation. Blue markers show
the set of market data points, i.e. spot rate, overnight rate, 1 week
rate, 2 week rate, 3 week rate and 1 month rate. The green line shows
the interpolated values between these market data points.
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Appendix D

Kalman Filter Estimation via

Gradient Descent

The score function is given by:

S(θ) =
∂l(θ)

∂θ
=

T∑
t=1

∂lt(θ)

∂θ
(D–1)

where

lt(Θ) = −N
2
log(2π)− 1

2
log|Wt| −

1

2
vTt W

−1
t vt , t = 1, 2, . . . , T. (D–2)

Using the following matrix identities from the Matrix Cookbook (Petersen and

Pedersen):

∂|M |
∂x

= |M |tr

[
M−1∂M

∂x

]
(D–3)

∂M−1

∂x
= −M−1∂M

∂x
M−1 (D–4)
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One obtains:

∂lt(θ)

∂θi
= −1

2
tr

[
[W−1

t

∂Wt

∂θi
][I −W−1

t vtv
T
t ]

]
−

(
∂vt
∂θi

)T

W−1
t vt (D–5)

Hence, one requires the derivatives of vt and Wtwith respect to θi.

∂Wt

∂θi
=
∂Λt

∂θi
Pt|t−1ΛT

t + Λt

∂Pt|t−1

∂θi
ΛT
t + ΛtPt|t−1

∂ΛT
t

∂θi
+
∂H

∂θi
(D–6)

∂vt
∂θi

= −Λt

∂f̂t|t−1

∂θi
− ∂Λt

∂θi
f̂t|t−1 (D–7)

Now one needs derivatives of f̂t|t−1 and Pt|t−1 w.r.t. θi:

∂f̂t|t−1

∂θi
=
∂A

∂θi
f̂t−1|t−1 + A

∂f̂t−1|t−1

∂θi
+
∂c

∂θi
− ∂A

∂θi
c− A ∂c

∂θi
(D–8)

∂Pt|t−1

∂θi
=
∂A

∂θi
Pt−1|t−1A

T + A
∂Pt−1|t−1

∂θi
AT + APt−1|t−1

∂AT

∂θi
+
∂Q

∂θi
(D–9)

where the updated derivatives of f̂t|t and Pt|t w.r.t. θi are given by:

∂f̂t|t
∂θi

=
∂f̂t|t−1

∂θi
+
∂Pt|t−1

∂θi
ΛT
t W

−1
t vt + Pt|t−1

∂ΛT
t

∂θi
W−1
t vt

Pt|t−1ΛT
t W

−1
t

∂Wt

∂θi
W−1
t vt + Pt|t−1ΛT

t W
−1
t

∂vt
∂θi

(D–10)

∂Pt|t
∂θi

=
∂Pt|t−1

∂θi
−
∂Pt|t−1

∂θi
ΛT
t W

−1
t ΛtPt|t−1 − Pt|t−1

∂ΛT
t

∂θi
W−1
t ΛtPt|t−1

+Pt|t−1ΛT
t W

−1
t

∂Wt

∂θi
W−1
t ΛtPt|t−1 − Pt|t−1ΛT

t W
−1
t

∂Λt

∂θi
Pt|t−1

−Pt|t−1ΛT
t W

−1
t Λt

∂Pt|t−1

∂θi
(D–11)
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One also needs the derivatives of the parameter matrices A, c, Λt, H and Q

w.r.t θi:

∂c

∂θi
=



0

0

 if θi = µ

 0

∆t

 if θi 6= µ

(D–12)

∂A

∂θi
=



−∆te−β∆t 0

0 0

 if θi = β

0 0

0 0

 if θi 6= β or γ

0 0

0 −∆te−γ∆t

 if θi=γ

(D–13)

∂Λt

∂θi
=




−τ1e

−βτ1 0
...

...

−τNe−βτN 0

 if θi = β


0 0
...

...

0 0

 if θi 6= β or γ


0 −τ1e

−βτ1

...
...

0 −τNe−βτN

 if θi=γ

(D–14)
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∂H

∂θi
=




1 · · · 0
...

. . .
...

0 0 0

 if θi = s1

...
...

0 · · · 0
...

. . .
...

0 0 1

 if θi = sN

(D–15)
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∂Q

∂θi
=



 − 1
2
σ2
χ(1− e−2β∆t)β−2 + σ2

χ∆te−2β∆tβ−1 (ρχξσχσξ)[(e−(β+γ)∆t − 1)(β + γ)−2 + ∆te−(β+γ)∆t(β + γ)−1]

(ρχξσχσξ)[(e−(β+γ)∆t − 1)(β + γ)−2 + ∆te−(β+γ)∆t(β + γ)−1] 0

 if θi = β;

 (1− e−2β∆t)
σχ
β

(1−e−(β+γ)∆t)ρχξσξ
β+γ

(1−e−(β+γ)∆t)ρχξσξ
β+γ

0

 if θi = σχ;

 0
(1−e−(β+γ)∆t)ρχξσχ

β+γ

(1−e−(β+γ)∆t)ρχξσχ
β+γ

(1− e−2γ∆t)
σξ
γ

 if θi = σξ;

 0 (ρχξσχσξ)[(e−(β+γ)∆t − 1)(β + γ)−2 + ∆te−(β+γ)∆t(β + γ)−1];

(ρχξσχσξ)[(e−(β+γ)∆t − 1)(β + γ)−2 + ∆te−(β+γ)∆t(β + γ)−1] − 1
2
σ2
χ(1− e−2γ∆t)γ−2 + σ2

χ∆te−2γ∆tγ−1

 if θi = γ;

 0
(1−e−(β+γ)∆t)σχσξ

β+γ

(1−e−(β+γ)∆t)σχσξ
β+γ

0

 if θi = ρχξ;

0 0

0 0

 if θi 6= β or σχ or σξ or γ or ρχξ.

(D–16)
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Therefore, the score function is:

S(θ) =
∂l(θ)

∂θ
(D–17)

where

∂l(θ)

∂θi
=

T∑
t=1

{
− 1

2
tr

[
[W−1

t

∂Wt

∂θi
][I −W−1

t vtv
T
t ]

]
−

(
∂vt
∂θi

)T

W−1
t vt

}
(D–18)

for , i = 1, 2, . . . , p.
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Appendix E

Sensitivity of Average

Backwardation to

Parameter Shocks

Here, I give the expressions for the derivatives of the average backwardation with

respect to the three parameters to which the observable covariates are linked in

the HMF models.

The sensitivity of the Average Backwardation of Log Pricest to a shock on µ

is given as:

∂ABt

∂µ
= −e

−γtt

γt
(e−γtτ1 − e−γtτ5) (E–1)

The sensitivity of the Average Backwardation of Log Pricest to a shock on βt
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is given as:

∂ABt

∂βt
= −t(e−βtτ1 − e−βtτ5)χ0e

−βtt − τ1e
−βtτ1χ0e

−βtt

+ τ5e
−βtτ5χ0e

−βtt + 0.25σ2
χβ
−2
t (e−2βtτ1 − 1)

+ 0.5τ1σ
2
χβ
−1
t e−2βtτ1 − λχβ−2

t (e−βtτ1 − 1)

− τ1λχβ
−1
t e−βtτ1 + ρχξσχσξ(βt + γt)

−2(e−(βt+γt)τ1 − 1)

+ τ1ρχξσχσξ(βt + γt)
−1e−(βt+γt)τ1 − 0.25σ2

χβ
−2
t (e−2βtτ5 − 1)

− 0.5τ5σ
2
χβ
−1
t e−2βtτ5 + λχβ

−2
t (e−βtτ5 − 1)

+ τ5λχβ
−1
t e−βtτ5 − ρχξσχσξ(βt + γt)

−2(e−(βt+γt)τ5 − 1)

− τ5ρχξσχσξ(βt + γt)
−1e−(βt+γt)τ5 (E–2)

The sensitivity of the Average Backwardation of Log Pricest to a shock on γt

is given as:

∂ABt

∂γt
= −tξ0e

−γtt(e−γtτ1 − e−γtτ5)− τ1e
−γtτ1ξ0e

−γtt

+ τ5e
−γtτ5ξ0e

−γtt +
µ

γt
(−τ1e

−γtτ1 + τ5e
−γtτ5)(1− e−γtt)

− µγ−2
t (1− e−γtt)(e−γtτ1 − e−γtτ5) +

µ

γt
te−γtt(e−γtτ1 − e−γtτ5)

+ 0.25σ2
ξγ
−2
t (e−2γtτ1 − 1) + 0.5τ1σ

2
ξγ
−1
t e−2γtτ1

+ γ−2
t (µ− λξ)(e−γtτ1 − 1) + τ1γ

−1
t (µ− λξ)e−γtτ1

+ ρχξσχσξ(βt + γt)
−2(e−(βt+γt)τ1 − 1) + τ1ρχξσχσξ(βt + γt)

−1e−(βt+γt)τ1

− 0.25σ2
ξγ
−2
t (e−2γtτ5 − 1)− 0.5τ5σ

2
ξγ
−1
t e−2γtτ5

− γ−2
t (µ− λξ)(e−γtτ5 − 1)− τ5γ

−1
t (µ− λξ)e−γtτ5

− ρχξσχσξ(βt + γt)
−2(e−(βt+γt)τ5 − 1)− τ5ρχξσχσξ(βt + γt)

−1e−(βt+γt)τ5

(E–3)
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F.1 2011 - 2016 Results

Table F.1: HMF SSX Model parameter estimates and negative log likelihoods obtained when incorporating
covariates into µ parameter. Data period 2011 - 2016.

Covariate β σχ λχ σξ γ λξ ρχξ ψconst ψ1 NLL

None 0.091 (0.007) 0.235 (0.011) 0.008 (0.004) 0.193 (0.011) 0.961 (0.036) -0.061 (0.083) 0.111 (0.074) 3.673 (0.160) - -4501

BDI 0.093 (0.007) 0.237 (0.011) 0.007 (0.004) 0.195 (0.010) 0.964 (0.035) -0.064 (0.085) 0.096 (0.072) 3.677 (0.160) 1.02E-2 (8.33E-3) -4502

DXY 0.091 (0.008) 0.235 (0.011) 0.008 (0.005) 0.193 (0.011) 0.961 (0.036) -0.061 (0.084) 0.111 (0.074) 3.673 (0.162) -7.15E-5 (1.59E-2) -4501

End Stocks 0.100 (0.010) 0.241 (0.012) 0.005 (0.005) 0.195 (0.010) 0.968 (0.035) -0.075 (0.085) 0.069 (0.076) 3.689 (0.161) -3.60E-2 (2.68E-2) -4502

GSCI 0.139 (0.019) 0.206 (0.010) -0.037 (0.014) 0.244 (0.019) 0.930 (0.039) -0.114 (0.107) 0.026 (0.090) 3.395 (0.199) 1.68E-1 (3.37E-2) -4512***

Lev Rat 0.101 (0.008) 0.243 (0.011) 0.003 (0.005) 0.193 (0.010) 0.974 (0.035) -0.080 (0.084) 0.063 (0.071) 3.697 (0.159) -3.60E-2 (1.38E-2) -4504***

Ref Util 0.091 (0.007) 0.236 (0.011) 0.009 (0.004) 0.193 (0.011) 0.963 (0.036) -0.059 (0.084) 0.108 (0.073) 3.692 (0.161) 7.20E-3 (4.31E-3) -4502

SP500 0.082 (0.007) 0.224 (0.011) 0.014 (0.004) 0.198 (0.011) 0.947 (0.034) -0.031 (0.086) 0.163 (0.076) 3.690 (0.157) 7.03E-2 (1.77E-2) -4509***

SPEC 0.091 (0.007) 0.235 (0.011) 0.008 (0.004) 0.195 (0.011) 0.958 (0.035) -0.060 (0.084) 0.107 (0.073) 3.662 (0.161) 6.50E-3 (7.27E-3) -4501

US Prod 0.090 (0.007) 0.235 (0.011) 0.010 (0.005) 0.193 (0.011) 0.959 (0.036) -0.058 (0.084) 0.111 (0.074) 3.677 (0.161) 1.04E-2 (2.14E-2) -4501
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Table F.2: HMF SSX Model parameter estimates and negative log likelihoods obtained when incorporating
covariates into β parameter. Data period 2011 - 2016.

Covariate σχ λχ µ σξ γ λξ ρχξ ψconst ψ1 NLL

None 0.235 (0.011) 0.008 (0.004) 3.673 (0.161) 0.193 (0.011) 0.961 (0.036) -0.061 (0.084) 0.111 (0.073) 0.091 (0.007) - -4501

BDI 0.241 (0.011) 0.007 (0.032) 3.603 (0.134) 0.195 (0.012) 0.949 (0.008) -0.068 (0.126) 0.072 (0.081) 0.096 (0.030) -0.003 (0.002) -4509 ***

DXY 0.227 (0.011) 0.013 (0.052) 3.697 (0.207) 0.195 (0.014) 0.960 (0.015) -0.051 (0.173) 0.155 (0.109) 0.077 (0.044) -0.003 (0.004) -4504 **

End Stocks 0.233 (0.011) 0.008 (0.051) 3.676 (0.202) 0.193 (0.014) 0.962 (0.015) -0.060 (0.169) 0.121 (0.106) 0.088 (0.043) -0.001 (0.004) -4501

GSCI 0.216 (0.011) 0.014 (0.041) 3.894 (0.159) 0.200 (0.014) 1.002 (0.017) -0.036 (0.128) 0.229 (0.096) 0.052 (0.037) 0.011 (0.004) -4531 ***

Lev Rat 0.222 (0.013) 0.007 (0.051) 3.818 (0.365) 0.200 (0.021) 0.972 (0.021) -0.044 (0.309) 0.115 (0.165) 0.088 (0.066) -0.010 (0.004) -4503 **

Ref Util 0.230 (0.012) 0.016 (0.034) 3.579 (0.117) 0.193 (0.011) 0.927 (0.009) -0.048 (0.109) 0.153 (0.085) 0.076 (0.031) -0.005 (0.001) -4522 ***

SP500 0.213 (0.011) 0.023 (0.037) 3.261 (0.126) 0.197 (0.011) 0.843 (0.009) -0.033 (0.117) 0.227 (0.078) 0.056 (0.030) -0.005 (0.003) -4512 ***

SPEC 0.237 (0.012) 0.006 (0.032) 3.776 (0.116) 0.192 (0.011) 0.989 (0.009) -0.064 (0.107) 0.107 (0.086) 0.094 (0.031) 0.001 (0.002) -4501

US Prod 0.214 (0.034) 0.023 (0.042) 3.287 (0.113) 0.197 (0.031) 0.847 (0.010) -0.032 (0.106) 0.223 (0.149) 0.055 (0.024) -0.005 (0.004) -4513 ***
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Table F.3: HMF SSX Model parameter estimates and negative log likelihoods obtained when incorporating
covariates into γ parameter. Data period 2011 - 2016.

Covariate β σχ λχ µ σξ λξ ρχξ ψconstant ψ1 NLL

None 0.091 (0.008) 0.235 (0.011) 0.008 (0.005) 3.673 (0.164) 0.193 (0.011) -0.061 (0.085) 0.111 (0.075) 0.961 (0.036) - -4501

BDI 0.094 (0.007) 0.237 (0.011) 0.007 (0.004) 3.680 (0.159) 0.195 (0.010) -0.065 (0.085) 0.088 (0.070) 0.965 (0.035) -0.004 (0.002) -4502

DXY 0.093 (0.008) 0.236 (0.011) 0.007 (0.005) 3.662 (0.163) 0.193 (0.011) -0.064 (0.084) 0.104 (0.075) 0.961 (0.036) 0.002 (0.004) -4501

End Stocks 0.105 (0.010) 0.244 (0.012) 0.003 (0.005) 3.695 (0.159) 0.196 (0.009) -0.081 (0.086) 0.047 (0.073) 0.970 (0.035) 0.014 (0.007) -4503*

GSCI 0.138 (0.016) 0.209 (0.010) -0.036 (0.012) 3.411 (0.188) 0.238 (0.016) -0.109 (0.104) 0.035 (0.081) 0.933 (0.038) -0.042 (0.008) -4514***

Lev Rat 0.103 (0.008) 0.245 (0.012) 0.002 (0.005) 3.701 (0.159) 0.193 (0.009) -0.083 (0.084) 0.052 (0.070) 0.976 (0.035) 0.011 (0.004) -4506***

Ref Util 0.091 (0.007) 0.236 (0.011) 0.009 (0.004) 3.693 (0.161) 0.193 (0.011) -0.059 (0.084) 0.107 (0.073) 0.964 (0.036) -0.002 (0.001) -4502*

SP500 0.082 (0.007) 0.224 (0.011) 0.014 (0.004) 3.692 (0.158) 0.197 (0.011) -0.033 (0.086) 0.164 (0.076) 0.949 (0.034) -0.017 (0.004) -4508***

SPEC 0.091 (0.007) 0.235 (0.011) 0.008 (0.004) 3.661 (0.160) 0.195 (0.011) -0.060 (0.085) 0.107 (0.073) 0.958 (0.035) -0.002 (0.002) -4501

US Prod 0.090 (0.008) 0.235 (0.011) 0.009 (0.005) 3.675 (0.161) 0.193 (0.011) -0.060 (0.084) 0.111 (0.074) 0.960 (0.036) -0.001 (0.005) -4501
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F.2 2006 - 2011 Results

Table F.4: HMF SSX Model parameter estimates and negative log likelihoods obtained when incorporating
covariates into µ parameter. Data period 2006 - 2011.

Covariate β σχ λχ σξ γ λξ ρχξ ψconst ψ1 NLL

None 0.000 (0.014) 0.266 (0.013) 0.065 (0.011) 0.265 (0.014) 0.675 (0.027) -0.074 (0.118) 0.122 (0.066) 2.374 (0.147) - -4443

BDI 0.000 (0.014) 0.264 (0.013) 0.065 (0.011) 0.267 (0.014) 0.676 (0.027) -0.075 (0.118) 0.127 (0.066) 2.382 (0.147) 2.28E-2 (1.59E-2) -4444

DXY 0.000 (0.013) 0.260 (0.013) 0.064 (0.010) 0.268 (0.014) 0.676 (0.025) -0.059 (0.118) 0.140 (0.067) 2.419 (0.145) -2.79E-2 (9.04E-3) -4448***

End Stocks 0.000 (0.013) 0.266 (0.013) 0.065 (0.009) 0.265 (0.014) 0.675 (0.025) -0.070 (0.119) 0.123 (0.066) 2.384 (0.144) 1.04E-2 (1.63E-2) -4443

GSCI 0.000 (0.010) 0.185 (0.010) 0.038 (0.009) 0.367 (0.023) 0.683 (0.025) -0.048 (0.160) -0.019 (0.100) 2.371 (0.182) 1.91E-1 (3.22E-2) -4462***

Lev Rat 0.000 (0.013) 0.265 (0.013) 0.065 (0.009) 0.265 (0.014) 0.675 (0.025) -0.074 (0.118) 0.124 (0.067) 2.375 (0.143) 7.47E-3 (7.10E-3) -4444

Ref Util 0.000 (0.013) 0.265 (0.013) 0.065 (0.009) 0.266 (0.014) 0.675 (0.025) -0.073 (0.118) 0.123 (0.066) 2.375 (0.143) -3.33E-3 (4.23E-3) -4443

SP500 0.000 (0.011) 0.259 (0.012) 0.063 (0.008) 0.268 (0.014) 0.676 (0.023) -0.072 (0.119) 0.147 (0.065) 2.372 (0.142) 4.55E-2 (1.26E-2) -4449***

SPEC 0.000 (0.013) 0.266 (0.013) 0.065 (0.009) 0.265 (0.014) 0.675 (0.024) -0.073 (0.118) 0.124 (0.066) 2.377 (0.143) 6.10E-3 (5.28E-3) -4444

US Prod 0.000 (0.013) 0.266 (0.013) 0.065 (0.009) 0.265 (0.014) 0.675 (0.025) -0.076 (0.118) 0.124 (0.067) 2.370 (0.143) -4.95E-3 (4.95E-3) -4444
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Table F.5: HMF SSX Model parameter estimates and negative log likelihoods obtained when incorporating
covariates into β parameter. Data period 2006 - 2011.

Covariate σχ λχ µ σξ γ λξ ρχξ ψconst ψ1 NLL

None 0.235 (0.013) 0.100 (0.009) 2.288 (0.151) 0.277 (0.015) 0.641 (0.024) -0.051 (0.127) 0.224 (0.072) -0.051 (0.013) - -4452

BDI 0.238 (0.013) 0.093 (0.009) 2.080 (0.150) 0.292 (0.015) 0.582 (0.024) -0.057 (0.126) 0.137 (0.073) -0.037 (0.013) -0.029 (0.005) -4472***

DXY 0.264 (0.015) 0.063 (0.010) 2.239 (0.147) 0.285 (0.015) 0.620 (0.024) -0.046 (0.124) 0.066 (0.080) 0.008 (0.015) 0.032 (0.005) -4474***

End Stocks 0.232 (0.013) 0.104 (0.009) 2.206 (0.147) 0.282 (0.014) 0.620 (0.025) -0.054 (0.120) 0.210 (0.067) -0.055 (0.013) 0.012 (0.004) -4456***

GSCI 0.232 (0.013) 0.098 (0.009) 2.234 (0.154) 0.282 (0.015) 0.626 (0.028) -0.051 (0.120) 0.208 (0.069) -0.048 (0.013) -0.005 (0.005) -4453***

Lev Rat 0.240 (0.013) 0.094 (0.009) 2.262 (0.144) 0.278 (0.014) 0.635 (0.024) -0.056 (0.119) 0.196 (0.068) -0.041 (0.013) -0.008 (0.003) -4456***

Ref Util 0.239 (0.013) 0.094 (0.009) 2.336 (0.146) 0.277 (0.014) 0.656 (0.026) -0.053 (0.118) 0.212 (0.067) -0.043 (0.013) 0.006 (0.002) -4456***

SP500 0.259 (0.014) 0.082 (0.009) 2.691 (0.180) 0.263 (0.013) 0.764 (0.042) -0.073 (0.111) 0.222 (0.065) -0.030 (0.012) 0.026 (0.005) -4461***

SPEC 0.236 (0.013) 0.101 (0.009) 2.308 (0.144) 0.277 (0.014) 0.649 (0.025) -0.057 (0.118) 0.226 (0.066) -0.052 (0.012) 0.006 (0.003) -4454***

US Prod 0.236 (0.000) 0.098 (0.000) 2.282 (0.000) 0.280 (0.000) 0.642 (0.000) -0.057 (0.000) 0.213 (0.000) -0.049 (0.000) 0.010 (0.000) -4460***

372



Table F.6: HMF SSX Model parameter estimates and negative log likelihoods obtained when incorporating
covariates into γ parameter. Data period 2006 - 2011.

Covariate β σχ λχ µ σξ λξ ρχξ ψconstant ψ1 NLL

None -0.051 (0.000) 0.235 (0.000) 0.100 (0.000) 2.288 (0.000) 0.277 (0.000) -0.051 (0.000) 0.224 (0.000) 0.641 (0.000) - -4452

BDI 0.542 (0.025) 0.310 (0.016) -0.429 (0.020) -0.108 (0.130) 0.231 (0.015) 0.120 (0.112) 0.095 (0.077) -0.045 (0.015) -0.009 (0.001) -4473***

DXY 0.598 (0.032) 0.298 (0.021) -0.483 (0.026) 0.110 (0.289) 0.265 (0.026) 0.131 (0.240) 0.019 (0.135) 0.013 (0.021) 0.009 (0.002) -4474***

End Stocks 0.609 (0.028) 0.290 (0.015) -0.446 (0.021) -0.198 (0.119) 0.231 (0.014) 0.077 (0.100) 0.211 (0.067) -0.058 (0.017) 0.003 (0.001) -4449***

GSCI 0.622 (0.030) 0.288 (0.015) -0.458 (0.022) -0.180 (0.122) 0.233 (0.014) 0.069 (0.104) 0.213 (0.069) -0.051 (0.016) 0.000 (0.001) -4446**

Lev Rat 0.621 (0.028) 0.287 (0.015) -0.459 (0.021) -0.132 (0.130) 0.239 (0.015) 0.081 (0.112) 0.184 (0.073) -0.041 (0.015) -0.003 (0.001) -4451***

Ref Util 0.651 (0.034) 0.286 (0.014) -0.472 (0.022) -0.141 (0.130) 0.241 (0.015) 0.068 (0.108) 0.203 (0.070) -0.040 (0.018) 0.002 (0.001) -4451***

SP500 0.756 (0.042) 0.271 (0.016) -0.529 (0.025) -0.106 (0.127) 0.261 (0.016) 0.055 (0.104) 0.209 (0.068) -0.027 (0.019) 0.005 (0.001) -4453***

SPEC 0.635 (0.028) 0.286 (0.015) -0.464 (0.020) -0.189 (0.122) 0.235 (0.014) 0.066 (0.104) 0.222 (0.068) -0.053 (0.016) 0.001 (0.001) -4447***

US Prod 0.631 (0.028) 0.288 (0.014) -0.458 (0.020) -0.172 (0.121) 0.235 (0.014) 0.075 (0.104) 0.210 (0.068) -0.051 (0.015) 0.002 (0.001) -4454***
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F.3 2000 - 2006 Results

Table F.7: HMF SSX Model parameter estimates and negative log likelihoods obtained when incorporating
covariates into µ parameter. Data period 2000 - 2006.

Covariate β σχ λχ σξ γ λξ ρχξ ψconst ψ1 NLL

None 0.869 (0.054) 0.281 (0.032) 0.037 (0.050) 0.182 (0.034) 0.042 (0.030) 0.276 (0.162) -0.101 (0.078) 0.383 (0.238) - -4298

BDI 0.808 (0.029) 0.292 (0.017) 0.046 (0.040) 0.196 (0.016) 0.065 (0.018) 0.285 (0.118) -0.217 (0.057) 0.475 (0.143) 2.42E-2 (3.58E-3) -4311***

DXY 0.727 (0.055) 0.326 (0.028) 0.020 (0.045) 0.239 (0.034) 0.127 (0.041) 0.297 (0.181) -0.432 (0.094) 0.698 (0.284) -7.04E-2 (6.51E-3) -4357***

End Stocks 0.851 (0.088) 0.304 (0.050) -0.050 (0.052) 0.259 (0.056) 0.186 (0.049) 0.322 (0.310) -0.398 (0.117) 0.895 (0.444) 1.17E-1 (6.51E-3) -4365***

GSCI 0.787 (0.056) 0.322 (0.022) 0.080 (0.043) 0.192 (0.023) 0.091 (0.021) 0.279 (0.153) -0.318 (0.073) 0.565 (0.199) 3.12E-2 (4.13E-3) -4300**

Lev Rat 0.787 (0.040) 0.295 (0.019) 0.010 (0.043) 0.202 (0.019) 0.063 (0.018) 0.278 (0.143) -0.245 (0.060) 0.458 (0.174) -5.41E-2 (2.43E-3) -4391***

Ref Util 0.866 (0.032) 0.281 (0.016) 0.038 (0.041) 0.182 (0.016) 0.042 (0.016) 0.276 (0.128) -0.102 (0.058) 0.384 (0.153) 1.49E-3 (3.00E-3) -4298

SP500 0.844 (0.045) 0.291 (0.024) -0.027 (0.044) 0.184 (0.025) 0.022 (0.021) 0.271 (0.145) -0.155 (0.066) 0.309 (0.183) -3.72E-2 (2.88E-3) -4344***

SPEC 0.829 (0.045) 0.289 (0.019) 0.052 (0.042) 0.191 (0.019) 0.049 (0.021) 0.278 (0.145) -0.178 (0.065) 0.413 (0.187) 1.11E-2 (3.49E-3) -4305***

US Prod 0.871 (0.000) 0.280 (0.000) 0.036 (0.000) 0.183 (0.000) 0.044 (0.000) 0.276 (0.000) -0.102 (0.000) 0.389 (0.000) -1.74E-3 (0.00E0) -4298
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Table F.8: HMF SSX Model parameter estimates and negative log likelihoods obtained when incorporating
covariates into β parameter. Data period 2000 - 2006.

Covariate σχ λχ µ σξ γ λξ ρχξ ψconst ψ1 NLL

None 0.281 (0.018) 0.037 (0.028) 0.383 (0.117) 0.182 (0.011) 0.042 (0.011) 0.276 (0.092) -0.101 (0.106) 0.869 (0.063) - -4298

BDI 0.288 (0.017) 0.042 (0.026) 0.430 (0.111) 0.189 (0.011) 0.054 (0.010) 0.284 (0.090) -0.153 (0.101) 0.894 (0.060) 0.302 (0.048) -4319***

DXY 0.305 (0.021) 0.088 (0.026) 0.462 (0.130) 0.199 (0.014) 0.063 (0.014) 0.275 (0.097) -0.242 (0.118) 0.855 (0.070) -0.422 (0.048) -4354***

End Stocks 0.306 (0.023) 0.106 (0.032) 0.449 (0.141) 0.195 (0.015) 0.061 (0.017) 0.260 (0.096) -0.256 (0.133) 0.862 (0.083) 0.430 (0.053) -4330***

GSCI 0.281 (0.016) 0.040 (0.030) 0.387 (0.103) 0.183 (0.010) 0.043 (0.010) 0.276 (0.086) -0.106 (0.100) 0.866 (0.057) 0.020 (0.069) -4298

Lev Rat 0.313 (0.019) 0.114 (0.022) 0.454 (0.113) 0.202 (0.013) 0.060 (0.011) 0.276 (0.091) -0.273 (0.100) 0.791 (0.054) -0.344 (0.034) -4368***

Ref Util 0.281 (0.016) 0.037 (0.027) 0.383 (0.099) 0.182 (0.009) 0.042 (0.008) 0.276 (0.085) -0.101 (0.095) 0.869 (0.053) 0.000 (0.038) -4298

SP500 0.298 (0.017) 0.100 (0.017) 0.444 (0.099) 0.186 (0.011) 0.051 (0.009) 0.295 (0.084) -0.193 (0.096) 0.743 (0.045) -0.289 (0.028) -4352***

SPEC 0.291 (0.017) 0.049 (0.016) 0.390 (0.109) 0.186 (0.010) 0.044 (0.009) 0.280 (0.090) -0.149 (0.096) 0.885 (0.058) 0.327 (0.041) -4340***

US Prod 0.284 (0.015) 0.041 (0.021) 0.368 (0.099) 0.184 (0.010) 0.039 (0.008) 0.269 (0.086) -0.110 (0.090) 0.904 (0.049) -0.247 (0.064) -4306***
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Table F.9: HMF SSX Model parameter estimates and negative log likelihoods obtained when incorporating
covariates into γ parameter. Data period 2000 - 2006.

Covariate β σχ λχ µ σξ λξ ρχξ ψconstant ψ1 NLL

None 0.869 (0.056) 0.281 (0.034) 0.037 (0.049) 0.383 (0.248) 0.182 (0.036) 0.276 (0.167) -0.101 (0.081) 0.042 (0.032) - -4298

BDI 0.816 (0.056) 0.291 (0.034) 0.045 (0.049) 0.464 (0.248) 0.194 (0.036) 0.285 (0.167) -0.203 (0.081) 0.063 (0.032) -0.006 (0.002) -4309***

DXY 0.739 (0.029) 0.323 (0.016) 0.019 (0.040) 0.704 (0.143) 0.239 (0.016) 0.297 (0.118) -0.422 (0.058) 0.130 (0.018) 0.021 (0.001) -4354***

End Stocks 0.898 (0.058) 0.298 (0.029) -0.065 (0.045) 0.942 (0.301) 0.262 (0.036) 0.325 (0.188) -0.380 (0.099) 0.203 (0.044) -0.037 (0.002) -4363***

GSCI 0.780 (0.094) 0.332 (0.053) 0.086 (0.053) 0.617 (0.476) 0.195 (0.059) 0.277 (0.333) -0.361 (0.124) 0.107 (0.052) -0.011 (0.002) -4302***

Lev Rat 0.789 (0.057) 0.295 (0.022) 0.010 (0.043) 0.452 (0.203) 0.203 (0.023) 0.276 (0.154) -0.243 (0.074) 0.062 (0.022) 0.017 (0.001) -4390***

Ref Util 0.865 (0.040) 0.281 (0.019) 0.038 (0.043) 0.384 (0.174) 0.181 (0.019) 0.276 (0.143) -0.102 (0.060) 0.042 (0.018) -0.001 (0.001) -4298

SP500 0.838 (0.032) 0.292 (0.016) -0.024 (0.040) 0.300 (0.153) 0.183 (0.016) 0.272 (0.128) -0.157 (0.059) 0.018 (0.016) 0.012 (0.001) -4343***

SPEC 0.828 (0.046) 0.289 (0.024) 0.052 (0.044) 0.413 (0.184) 0.190 (0.025) 0.278 (0.145) -0.176 (0.066) 0.049 (0.021) -0.003 (0.001) -4305***

US Prod 0.869 (0.045) 0.281 (0.019) 0.037 (0.042) 0.384 (0.189) 0.182 (0.019) 0.276 (0.146) -0.101 (0.065) 0.042 (0.022) 0.000 (0.001) -4298
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F.4 1995 - 2000 Results

Table F.10: HMF SSX Model parameter estimates and negative log likelihoods obtained when incorporating
covariates into µ parameter. Data period 1995 - 2000.

Covariate β σχ λχ σξ γ λξ ρχξ ψconst ψ1 NLL

None 1.132 (0.054) 0.340 (0.032) 0.171 (0.050) 0.297 (0.034) 0.378 (0.030) 0.122 (0.162) -0.564 (0.078) 1.256 (0.238) - -4326

BDI 1.079 (0.029) 0.367 (0.017) 0.264 (0.040) 0.336 (0.016) 0.430 (0.018) 0.080 (0.118) -0.648 (0.057) 1.413 (0.143) 1.98E-2 (3.58E-3) -4341***

DXY 1.119 (0.055) 0.314 (0.028) 0.215 (0.045) 0.254 (0.034) 0.294 (0.041) 0.115 (0.181) -0.458 (0.094) 1.007 (0.284) -3.21E-2 (6.51E-3) -4366***

End Stocks 1.082 (0.088) 0.382 (0.050) 0.174 (0.052) 0.344 (0.056) 0.431 (0.049) 0.116 (0.310) -0.668 (0.117) 1.415 (0.444) -1.43E-2 (6.51E-3) -4332***

GSCI 1.049 (0.056) 0.438 (0.022) 0.192 (0.043) 0.380 (0.023) 0.477 (0.021) 0.100 (0.153) -0.739 (0.073) 1.552 (0.199) 3.40E-2 (4.13E-3) -4363***

Lev Rat 1.178 (0.040) 0.332 (0.019) 0.154 (0.043) 0.290 (0.019) 0.378 (0.018) 0.131 (0.143) -0.537 (0.060) 1.256 (0.174) 9.33E-3 (2.43E-3) -4331***

Ref Util 1.151 (0.032) 0.338 (0.016) 0.171 (0.041) 0.296 (0.016) 0.378 (0.016) 0.124 (0.128) -0.558 (0.058) 1.256 (0.153) 4.36E-3 (3.00E-3) -4328*

SP500 1.158 (0.045) 0.326 (0.024) 0.213 (0.044) 0.276 (0.025) 0.342 (0.021) 0.111 (0.145) -0.508 (0.066) 1.147 (0.183) -2.52E-2 (2.88E-3) -4361***

SPEC 1.189 (0.045) 0.327 (0.019) 0.148 (0.042) 0.287 (0.019) 0.377 (0.021) 0.136 (0.145) -0.524 (0.065) 1.254 (0.187) -8.39E-3 (3.49E-3) -4331***

US Prod 1.186 (0.000) 0.325 (0.000) 0.175 (0.000) 0.278 (0.000) 0.351 (0.000) 0.127 (0.000) -0.508 (0.000) 1.175 (0.000) 1.50E-2 (0.00E0) -4341***
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Table F.11: HMF SSX Model parameter estimates and negative log likelihoods obtained when incorporating
covariates into β parameter. Data period 1995 - 2000.

Covariate σχ λχ µ σξ γ λξ ρχξ ψconst ψ1 NLL

None 0.340 (0.009) 0.171 (0.004) 1.256 (0.198) 0.297 (0.013) 0.378 (0.053) 0.122 (0.124) -0.564 (0.061) 1.132 (0.013) - -4326

BDI 0.385 (0.009) 0.307 (0.004) 1.424 (0.200) 0.351 (0.013) 0.440 (0.054) 0.041 (0.124) -0.677 (0.061) 1.064 (0.013) 0.136 (0.027) -4339***

DXY 0.332 (0.009) 0.250 (0.004) 1.124 (0.206) 0.281 (0.013) 0.336 (0.050) 0.097 (0.127) -0.535 (0.061) 1.129 (0.012) -0.193 (0.019) -4350***

End Stocks 0.349 (0.009) 0.185 (0.005) 1.296 (0.183) 0.307 (0.013) 0.392 (0.044) 0.115 (0.126) -0.590 (0.063) 1.115 (0.014) -0.036 (0.012) -4327

GSCI 0.394 (0.009) 0.258 (0.008) 1.414 (0.303) 0.336 (0.018) 0.433 (0.071) 0.075 (0.147) -0.668 (0.100) 1.100 (0.027) 0.177 (0.027) -4354***

Lev Rat 0.333 (0.009) 0.115 (0.003) 1.253 (0.194) 0.288 (0.013) 0.376 (0.045) 0.147 (0.129) -0.538 (0.064) 1.232 (0.015) 0.249 (0.028) -4345***

Ref Util 0.336 (0.009) 0.092 (0.003) 1.233 (0.189) 0.291 (0.013) 0.369 (0.046) 0.154 (0.130) -0.547 (0.066) 1.189 (0.015) 0.170 (0.023) -4336***

SP500 0.334 (0.020) 0.226 (0.011) 1.173 (0.341) 0.286 (0.016) 0.352 (0.081) 0.105 (0.157) -0.535 (0.120) 1.180 (0.044) -0.185 (0.034) -4353***

SPEC 0.329 (0.009) 0.170 (0.004) 1.250 (0.182) 0.290 (0.013) 0.377 (0.045) 0.124 (0.124) -0.530 (0.061) 1.198 (0.013) -0.105 (0.018) -4331***

US Prod 0.336 (0.000) 0.178 (0.000) 1.212 (0.000) 0.291 (0.000) 0.364 (0.000) 0.121 (0.000) -0.544 (0.000) 1.175 (0.000) 0.139 (0.000) -4339***
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Table F.12: HMF SSX Model parameter estimates and negative log likelihoods obtained when incorporating
covariates into γ parameter. Data period 1995 - 2000.

Covariate β σχ λχ µ σξ λξ ρχξ ψconstant ψ1 NLL

None 1.132 (0.056) 0.340 (0.034) 0.171 (0.049) 1.256 (0.248) 0.297 (0.036) 0.122 (0.167) -0.564 (0.081) 0.378 (0.032) - -4326

BDI 1.038 (0.056) 0.407 (0.034) 0.305 (0.049) 1.476 (0.248) 0.377 (0.036) 0.030 (0.167) -0.718 (0.081) 0.459 (0.032) -0.008 (0.002) -4342***

DXY 1.121 (0.029) 0.314 (0.016) 0.210 (0.040) 1.001 (0.143) 0.253 (0.016) 0.118 (0.118) -0.455 (0.058) 0.292 (0.018) 0.010 (0.001) -4364***

End Stocks 1.077 (0.058) 0.386 (0.029) 0.175 (0.045) 1.430 (0.301) 0.350 (0.036) 0.114 (0.188) -0.677 (0.099) 0.436 (0.044) 0.005 (0.002) -4332***

GSCI 1.049 (0.094) 0.440 (0.053) 0.191 (0.053) 1.561 (0.476) 0.383 (0.059) 0.100 (0.333) -0.743 (0.124) 0.480 (0.052) -0.011 (0.002) -4365***

Lev Rat 1.176 (0.057) 0.333 (0.022) 0.155 (0.043) 1.254 (0.203) 0.290 (0.023) 0.130 (0.154) -0.538 (0.074) 0.378 (0.022) -0.003 (0.001) -4331***

Ref Util 1.151 (0.040) 0.337 (0.019) 0.171 (0.043) 1.256 (0.174) 0.296 (0.019) 0.124 (0.143) -0.557 (0.060) 0.378 (0.018) -0.001 (0.001) -4328**

SP500 1.160 (0.032) 0.325 (0.016) 0.209 (0.040) 1.138 (0.153) 0.274 (0.016) 0.113 (0.128) -0.505 (0.059) 0.339 (0.016) 0.008 (0.001) -4360***

SPEC 1.190 (0.046) 0.327 (0.024) 0.148 (0.044) 1.254 (0.184) 0.287 (0.025) 0.136 (0.145) -0.525 (0.066) 0.377 (0.021) 0.003 (0.001) -4331***

US Prod 1.185 (0.045) 0.325 (0.019) 0.174 (0.042) 1.170 (0.189) 0.277 (0.019) 0.127 (0.146) -0.506 (0.065) 0.349 (0.022) -0.005 (0.001) -4340***
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F.5 1990 - 1995 Results

Table F.13: HMF SSX Model parameter estimates and negative log likelihoods obtained when incorporating
covariates into µ parameter. Data period 1990 - 1995.

Covariate β σχ λχ σξ γ λξ ρχξ ψconst ψ1 NLL

None 0.179 (0.014) 0.187 (0.009) -0.005 (0.005) 0.293 (0.013) 1.790 (0.047) 0.115 (0.125) 0.201 (0.061) 5.404 (0.186) - -4381

BDI 0.186 (0.014) 0.189 (0.009) -0.005 (0.005) 0.293 (0.013) 1.805 (0.046) 0.110 (0.125) 0.198 (0.061) 5.430 (0.186) -1.76E-2 (1.64E-2) -4382

DXY 0.182 (0.013) 0.188 (0.009) -0.004 (0.005) 0.294 (0.013) 1.807 (0.048) 0.113 (0.125) 0.199 (0.061) 5.453 (0.193) 9.62E-3 (1.17E-2) -4382

End Stocks 0.188 (0.013) 0.191 (0.009) -0.009 (0.005) 0.293 (0.013) 1.803 (0.044) 0.103 (0.125) 0.187 (0.062) 5.379 (0.185) 2.18E-2 (9.76E-3) -4384**

GSCI 0.291 (0.028) 0.167 (0.009) 0.005 (0.009) 0.375 (0.022) 1.766 (0.055) 0.076 (0.176) -0.169 (0.111) 5.387 (0.267) 1.27E-1 (1.60E-2) -4404***

Lev Rat 0.166 (0.012) 0.183 (0.009) -0.002 (0.004) 0.296 (0.013) 1.816 (0.045) 0.120 (0.125) 0.222 (0.060) 5.514 (0.190) 5.31E-2 (1.68E-2) -4387***

Ref Util 0.186 (0.013) 0.189 (0.009) -0.005 (0.005) 0.294 (0.013) 1.795 (0.044) 0.111 (0.125) 0.188 (0.063) 5.407 (0.185) -1.33E-2 (9.11E-3) -4382*

SP500 0.287 (0.021) 0.217 (0.011) -0.014 (0.008) 0.301 (0.013) 1.794 (0.049) 0.073 (0.133) 0.015 (0.074) 5.297 (0.216) -1.29E-1 (1.39E-2) -4407***

SPEC 0.176 (0.013) 0.186 (0.009) -0.004 (0.004) 0.294 (0.013) 1.781 (0.043) 0.119 (0.124) 0.202 (0.061) 5.387 (0.183) 1.20E-2 (7.36E-3) -4383*

US Prod 0.188 (0.000) 0.188 (0.000) -0.005 (0.000) 0.296 (0.000) 1.799 (0.000) 0.112 (0.000) 0.184 (0.000) 5.425 (0.000) 1.49E-2 (0.00E0) -4383*
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Table F.14: HMF SSX Model parameter estimates and negative log likelihoods obtained when incorporating
covariates into β parameter. Data period 1990 - 1995.

Covariate σχ λχ µ σξ γ λξ ρχξ ψconst ψ1 NLL

None 0.187 (0.009) -0.005 (0.004) 5.404 (0.198) 0.293 (0.013) 1.790 (0.053) 0.115 (0.124) 0.201 (0.061) 0.179 (0.013) - -4381

BDI 0.194 (0.009) -0.003 (0.004) 5.691 (0.200) 0.294 (0.013) 1.892 (0.054) 0.101 (0.124) 0.208 (0.061) 0.183 (0.013) -0.084 (0.027) -4386***

DXY 0.189 (0.009) 0.002 (0.004) 5.581 (0.206) 0.299 (0.013) 1.832 (0.050) 0.119 (0.127) 0.185 (0.061) 0.199 (0.012) 0.110 (0.019) -4398***

End Stocks 0.191 (0.009) -0.013 (0.005) 5.243 (0.183) 0.295 (0.013) 1.764 (0.044) 0.108 (0.126) 0.170 (0.063) 0.204 (0.014) -0.060 (0.012) -4392***

GSCI 0.174 (0.009) -0.019 (0.008) 4.661 (0.303) 0.325 (0.018) 1.567 (0.071) 0.120 (0.147) 0.058 (0.100) 0.217 (0.027) -0.143 (0.027) -4412***

Lev Rat 0.182 (0.009) -0.002 (0.003) 5.292 (0.194) 0.301 (0.013) 1.755 (0.045) 0.124 (0.129) 0.190 (0.064) 0.183 (0.015) 0.210 (0.028) -4421***

Ref Util 0.182 (0.009) -0.016 (0.003) 4.899 (0.189) 0.301 (0.013) 1.646 (0.046) 0.122 (0.130) 0.148 (0.066) 0.207 (0.015) 0.172 (0.023) -4413***

SP500 0.220 (0.020) -0.048 (0.011) 4.187 (0.341) 0.316 (0.016) 1.435 (0.081) 0.134 (0.157) -0.130 (0.120) 0.353 (0.044) 0.266 (0.034) -4467***

SPEC 0.185 (0.009) -0.002 (0.004) 5.374 (0.182) 0.293 (0.013) 1.770 (0.045) 0.122 (0.124) 0.199 (0.061) 0.178 (0.013) 0.030 (0.018) -4383*

US Prod 0.180 (0.000) -0.012 (0.000) 5.032 (0.000) 0.307 (0.000) 1.691 (0.000) 0.114 (0.000) 0.151 (0.000) 0.179 (0.000) -0.140 (0.000) -4402***
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Table F.15: HMF SSX Model parameter estimates and negative log likelihoods obtained when incorporating
covariates into γ parameter. Data period 1990 - 1995.

Covariate β σχ λχ µ σξ λξ ρχξ ψconstant ψ1 NLL

None 0.179 (0.014) 0.187 (0.009) -0.005 (0.005) 5.404 (0.187) 0.293 (0.013) 0.115 (0.125) 0.201 (0.061) 1.790 (0.046) - -4381

BDI 0.187 (0.014) 0.189 (0.009) -0.006 (0.005) 5.438 (0.187) 0.293 (0.013) 0.108 (0.125) 0.198 (0.061) 1.810 (0.046) 0.008 (0.006) -4382

DXY 0.182 (0.013) 0.188 (0.009) -0.004 (0.005) 5.456 (0.192) 0.294 (0.013) 0.113 (0.125) 0.198 (0.061) 1.808 (0.048) -0.004 (0.004) -4382

End Stocks 0.187 (0.013) 0.191 (0.009) -0.009 (0.005) 5.390 (0.185) 0.293 (0.013) 0.104 (0.125) 0.189 (0.062) 1.805 (0.044) -0.007 (0.003) -4383**

GSCI 0.288 (0.027) 0.166 (0.009) 0.006 (0.009) 5.486 (0.255) 0.376 (0.022) 0.067 (0.174) -0.190 (0.111) 1.801 (0.051) -0.042 (0.005) -4404***

Lev Rat 0.165 (0.012) 0.183 (0.008) -0.002 (0.004) 5.514 (0.189) 0.297 (0.013) 0.120 (0.125) 0.222 (0.060) 1.815 (0.045) -0.020 (0.006) -4388***

Ref Util 0.185 (0.013) 0.189 (0.009) -0.005 (0.005) 5.411 (0.185) 0.294 (0.013) 0.111 (0.125) 0.190 (0.063) 1.796 (0.044) 0.004 (0.003) -4382

SP500 0.288 (0.021) 0.217 (0.011) -0.014 (0.008) 5.364 (0.216) 0.301 (0.013) 0.070 (0.133) 0.007 (0.075) 1.819 (0.049) 0.046 (0.005) -4404***

SPEC 0.176 (0.013) 0.186 (0.009) -0.004 (0.004) 5.388 (0.183) 0.294 (0.013) 0.118 (0.124) 0.202 (0.061) 1.781 (0.043) -0.004 (0.002) -4383*

US Prod 0.187 (0.000) 0.188 (0.000) -0.005 (0.000) 5.427 (0.000) 0.296 (0.000) 0.112 (0.000) 0.185 (0.000) 1.800 (0.000) -0.005 (0.000) -4383*
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variate archimax copulas. Journal of Multivariate Analysis, 126:118–136, 2014.

96, 97, 98

Denis B Chaves, Jason C Hsu, Feifei Li, and Omid Shakernia. Efficient algorithms

for computing risk parity portfolio weights. Journal of Investing, 21:150–163,

2012. 249

Vijay K Chopra and William T Ziemba. The effect of errors in means, vari-

ances, and covariances on optimal portfolio choice. The Journal of Port-

folio Management, 19(2):6–11, 1993. doi: 10.3905/jpm.1993.409440. URL

http://dx.doi.org/10.3905/jpm.1993.409440. 236, 254

390

http://dx.doi.org/10.1111/j.1540-6261.1997.tb03808.x
http://dx.doi.org/10.1111/j.1540-6261.1997.tb03808.x
http://www.cftc.gov/MarketReports/CommitmentsofTraders/ExplanatoryNotes/index.htm
http://www.cftc.gov/MarketReports/CommitmentsofTraders/ExplanatoryNotes/index.htm
http://rfs.oxfordjournals.org/content/12/5/937.abstract
http://rfs.oxfordjournals.org/content/12/5/937.abstract
http://dx.doi.org/10.3905/jpm.1993.409440


REFERENCES

Yves Choueifaty and Yves Coignard. Toward maximum diversification. Journal

of Portfolio Management, 35(1):40, 2008. URL http://dx.doi.org/10.3905/

JPM.2008.35.1.40. 246, 254

Yves Choueifaty, Tristan Froidure, and Julien Reynier. Properties of the most

diversified portfolio. Journal of Investment Strategies, 2(2):49–70, 2013. 246

Charlotte Christiansen, Angelo Ranaldo, and Paul Söderlind. The time-varying
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Ali Dolati and Manuel Úbeda-Flores. On measures of multivariate concordance.

Journal of Probability and Statistical Science, 4(2):147–164, 2006. 67

393

http://pubsonline.informs.org/doi/abs/10.1287/mnsc.1080.0986
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.1080.0986
http://rfs.oxfordjournals.org/content/22/5/1915.abstract
http://rfs.oxfordjournals.org/content/22/5/1915.abstract


REFERENCES

Catherine Donnelly and Paul Embrechts. The devil is in the tails: actuarial

mathematics and the subprime mortgage crisis. Astin Bulletin, 40(1):1–33, 2010.

61

Fabrizio Durante and Carlo Sempi. Copula theory: an introduction. In Copula

theory and its applications, pages 3–31. Springer, 2010. 74

Eyal Dvir and Kenneth Rogoff. Demand effects and speculation in oil mar-

kets: Theory and evidence. Journal of International Money and Finance, 42:

113 – 128, 2014. ISSN 0261-5606. doi: http://dx.doi.org/10.1016/j.jimonfin.

2013.08.007. URL http://www.sciencedirect.com/science/article/pii/

S0261560613001095. Understanding International Commodity Price Fluctua-

tions. 309, 328, 329, 337

P. Embrechts. Copulas: A personal view. Journal of Risk and Insurance, 76(3):

639–650, 2009. 62

Paul Embrechts. Discussion of copulas: Tales and facts, by thomas mikosch.

Extremes, 9(1):45–47, 2006. 62

Paul Embrechts, Alexander McNeil, and Daniel Straumann. Correlation and

dependence in risk management: properties and pitfalls. Risk management:

value at risk and beyond, pages 176–223, 2002. 59

Paul Embrechts, Filip Lindskog, and Alexander McNeil. Modelling dependence

with copulas and applications to risk management. Handbook of heavy tailed

distributions in finance, 8(329-384):1, 2003. 58

Paul Embrechts, Rdiger Frey, and Alexander McNeil. Quantitative risk manage-

ment. Princeton Series in Finance, Princeton, 2005. 59

Charles Engel. The forward discount anomaly and the risk premium: A survey of

recent evidence. Journal of empirical finance, 3(2):123–192, 1996. 41, 108

Charles M. Engel. Testing for the absence of expected real profits from forward

market speculation. Journal of International Economics, 17(34):299 – 308,

1984. ISSN 0022-1996. doi: 10.1016/0022-1996(84)90025-4. URL http://www.

sciencedirect.com/science/article/pii/0022199684900254. 107

394

http://www.sciencedirect.com/science/article/pii/S0261560613001095
http://www.sciencedirect.com/science/article/pii/S0261560613001095
http://www.sciencedirect.com/science/article/pii/0022199684900254
http://www.sciencedirect.com/science/article/pii/0022199684900254


REFERENCES

Robert Engle. Garch 101: The use of arch/garch models in applied econometrics.

The Journal of Economic Perspectives, 15(4):157–168, 2001. 167

Robert Engle. Dynamic conditional correlation. Journal of Business & Economic

Statistics, 20(3):339–350, 2002. doi: 10.1198/073500102288618487. URL http:

//dx.doi.org/10.1198/073500102288618487. 176, 238

Robert Engle and Riccardo Colacito. Testing and valuing dynamic correlations

for asset allocation. Journal of Business & Economic Statistics, 24(2):238–253,

2006. doi: 10.1198/073500106000000017. URL http://dx.doi.org/10.1198/

073500106000000017. 177, 238, 260, 261

Robert F Engle. Autoregressive conditional heteroscedasticity with estimates

of the variance of united kingdom inflation. Econometrica: Journal of the

Econometric Society, pages 987–1007, 1982. 166

Robert F Engle and Tim Bollerslev. Modelling the persistence of conditional

variances. Econometric reviews, 5(1):1–50, 1986. 167

Robert F Engle and Kenneth F Kroner. Multivariate simultaneous generalized

arch. Econometric theory, 11(01):122–150, 1995. 171, 239

Robert F Engle and Victor K Ng. Measuring and testing the impact of news on

volatility. The journal of finance, 48(5):1749–1778, 1993. 167

Robert F Engle, David M Lilien, and Russell P Robins. Estimating time varying

risk premia in the term structure: the arch-m model. Econometrica: Journal of

the Econometric Society, pages 391–407, 1987. 168

Robert F Engle, Victor K Ng, and Michael Rothschild. Asset pricing with a

factor-arch covariance structure: Empirical estimates for treasury bills. Journal

of Econometrics, 45(1):213–237, 1990. 172, 178

Erkko Etula. Broker-dealer risk appetite and commodity returns.

Journal of Financial Econometrics, 2013. doi: 10.1093/jjfinec/

nbs024. URL http://jfec.oxfordjournals.org/content/early/2013/01/

10/jjfinec.nbs024.abstract. 43, 305

395

http://dx.doi.org/10.1198/073500102288618487
http://dx.doi.org/10.1198/073500102288618487
http://dx.doi.org/10.1198/073500106000000017
http://dx.doi.org/10.1198/073500106000000017
http://jfec.oxfordjournals.org/content/early/2013/01/10/jjfinec.nbs024.abstract
http://jfec.oxfordjournals.org/content/early/2013/01/10/jjfinec.nbs024.abstract


REFERENCES

Cavaliere Francesco Faa di Bruno. Note sur une nouvelle formule de calcul
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