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Abstract p38a is a Ser/Thr protein kinase involved in a variety of cellular processes and

pathological conditions, which makes it a promising pharmacological target. Although the activity

of the enzyme is highly regulated, its molecular mechanism of activation remains largely

unexplained, even after decades of research. By using state-of-the-art molecular dynamics

simulations, we decipher the key elements of the complex molecular mechanism refined by

evolution to allow for a fine tuning of p38a kinase activity. Our study describes for the first time

the molecular effects of different regulators of the enzymatic activity, and provides an integrative

picture of the activation mechanism that explains the seemingly contradictory X-ray and NMR data.

DOI: 10.7554/eLife.22175.001

Introduction
p38 Ser/Thr kinases are mitogen-activated protein kinases (MAPKs) involved in the regulation of mul-

tiple cellular processes, including cell proliferation, differentiation, senescence, and death

(Cuadrado and Nebreda, 2010). The p38 subgroup of MAPKs comprises four members (a-d) where

only p38a is expressed ubiquitously at high levels (Cuadrado and Nebreda, 2010). p38 signaling is

strongly activated by environmental stresses (e.g. osmotic shock, ionizing radiation), and biological

stimuli, such as growth factors and inflammatory cytokines (Trempolec et al., 2013). Furthermore,

p38a has been implicated in several pathological conditions, for example, chronic inflammatory dis-

eases, cancer, and heart and neurodegenerative diseases (Yong et al., 2009, Denise Martin et al.,

2012), which is why elucidation of its activation mechanism is of therapeutical importance

(Yong et al., 2009; Hammaker and Firestein, 2010).

Like most kinases, p38a is composed of two lobes: the smaller N-terminal lobe, consisting mostly

of b-sheets, and the a-helical C-terminal lobe. The lobes are linked by a flexible hinge that forms the

ATP-binding site together with structural elements from both lobes (marked regions in Figure 1). In

the canonical activation pathway, MAPK kinases (MAP2Ks) dually phosphorylate the TGY sequence

in the activation loop (A-loop; Figure 1a and Video 1) which, according to X-ray crystallography

(Zhang et al., 2011a), triggers its large conformational rearrangements and the formation of a
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characteristic b-sheet motif away from the ATP- and substrate-binding sites (Figure 1b). The new

position of the A-loop brings N- and C-lobes closer and facilitates the reorientation of key residues

which participate in the stabilization of ATP and the catalytically crucial Mg2+ ions (Taylor and Kor-

nev, 2011) (i.e. the universally conserved K53, E71, and D168). Moreover, p38a and other MAPKs

possess two distinct structural elements (Figure 1): (1) the MAPK insert (MKI), which forms a lipid-

binding site (Diskin et al., 2008) and (2) the L16 loop that extends from the C-lobe to the N-lobe

Figure 1. Structural models of (a) the inactive (PDB ID: 3S3I), and (b) the active, dually phosphorylated, p38a (PDB

ID: 3PY3). Main structural elements are colored as follows: A-loop in purple (inactive) and green (active), aC helix in

red, L16 loop in slate, P-loop in cyan, hinge in yellow, and MKI in orange. Key residues are shown as sticks and

labeled appropriately. The ATP-binding site is indicated by the grey filled ellipse, while the aE helix, and CD and

ED sites by the green dashed ellipse.

DOI: 10.7554/eLife.22175.002
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where it folds into the C-terminal L16 helix. At its

C-lobe segment, the L16 loop contains an acidic

patch, called the common docking (CD) motif

(Tanoue et al., 2000), which together with the

hydrophobic groove, formed by the linker

between aD and aE helices, and the b7-b8 reverse

turn (also termed the ED site) (Chang et al.,

2002) (Figure 1a), defines the peptide docking

site recognized by the conserved docking motif

present in activators, substrates, and regulators

of MAPKs. The docking site enhances the speci-

ficity of MAPKs’ interactions, as well as its activ-

ity, albeit through an unknown molecular

mechanism (Tanoue et al., 2000). All the struc-

tural elements are detailed in the Video 1.

The canonical activation mechanism outlined

above, derived from the analysis of phosphory-

lated and unphosphorylated crystal structures of

p38a (Zhang et al., 2011a) has recently been

challenged by an NMR study of p38a in solution

(Tokunaga et al., 2014), which surprisingly showed that the dual phosphorylation of the A-loop

induces only small conformational changes to p38a, raising doubts about the reliability of conforma-

tional states associated with the canonical activation. To understand the changes that take place

upon p38a phosphorylation and to explain the observed discrepancies between the NMR and X-ray

results, we employed state-of-the-art simulation techniques. Specifically, we used unbiased molecu-

lar dynamics (MD) simulations and parallel tempering metadynamics (PT-metaD) (Bussi et al., 2006;

Bonomi and Parrinello, 2010; Sutto et al., 2012), a method that combines an enhanced sampling

technique with a multi-replica approach and is thus able to converge very complex conformational

free-energy surfaces as a function of a few relevant variables, as has been shown previously for sev-

eral protein kinases (Berteotti et al., 2009; Lovera et al., 2012; Sutto and Gervasio, 2013;

Lovera et al., 2015; Marino et al., 2015) and other proteins (Bonomi et al., 2007; Papaleo et al.,

2014; Lambrughi et al., 2016). In total, we obtained a high level of sampling (>115 ms) which

allowed us to explore the molecular mechanism of p38a canonical activation in unprecedented detail

and reconcile the apparently contradictory X-ray and NMR data.

Results
We performed PT-metaD in the well-tempered ensemble to obtain free-energy surfaces (FESs) for

human p38a in four different states: (1) the unphosphorylated, (2) the apo dually phosphorylated, (3)

the dually phosphorylated state with bound ATP-Mg2+, and (4) the dually phosphorylated state with

bound ATP-Mg2+ and MK2 docking peptide (Figure 2 and Figure 2—figure supplement 1), obtain-

ing total sampling times of 24.25, 24.85, 10.35, and 9.86 ms, respectively. To analyze the systems,

we projected the FESs along two collective variables (CVs) - CV1 and CV2, both of which are based

on the A-loop contacts that measure the distance from the crystallographically observed inactive

(CV1) and active (CV2) conformations (see Materials and methods), and which were successfully used

previously to study protein kinases (Sutto et al., 2012; Sutto and Gervasio, 2013; Marino et al.,

2015). When CV1 < 0.2 and CV2 > 0.8, then the system assumes an inactive conformation (as in

Figure 1a). On the other hand, when CV1 > 0.6 and CV2 < 0.2, the A-loop has formed the character-

istic b-sheet motif (as in Figure 1b) and the enzyme has adopted the canonical active state. As the

representative structure of each highlighted minimum, we chose the central structure of the most

populated cluster present in the minimum (see Materials and methods for further details).

Unphosphorylated p38a
FES of the unphosphorylated state (upper left panel, Figure 2) and the representative structures of

the explored minima (Figure 2 and Figure 2—figure supplement 1, enlarged structures in Fig-

ure 2—figure supplement 2) show that the unphosphorylated protein neither explores the active

Video 1. Detailed presentation of p38a structural

elements and binding sites which play an important

role in its activation.

DOI: 10.7554/eLife.22175.003
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Figure 2. Free-energy surface for p38a (apo unphosphorylated, apo dually phosphorylated, dually phosphorylated with bound ATP-Mg2+, and dually

phosphorylated with bound ATP-Mg2+ and MK2 peptide) as a function of CV1 and CV2 which indicate the distance from the reference inactive and

active structures, respectively. The contour lines are drawn every two kcal mol�1. Representative structures for the selected minima are shown and

colored as follows: A-loop in purple, aC helix in red, L16 loop in slate, P-loop in cyan, and hinge in yellow. Key residues are shown as sticks and labeled

appropriately. Part of the FES of the phosphorylated p38a that is populated by structures which are likely to bind ATP are highlighted with a grey

rectangle (upper right panel).

DOI: 10.7554/eLife.22175.004

Figure 2 continued on next page
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conformation, nor does it populate a state able to accommodate ATP. Specifically, in the more inac-

tive of the two free-energy minima - (CV1, CV2) = (0.2, 0.7) (upper left panel in Figure 2, Figure 2—

figure supplement 2a), the A-loop is positioned over the C-lobe forming contacts with residues

involved in the substrate binding and phosphotransfer (Table 1). The P-loop is quite flexible and the

K53-E71 salt bridge, which stabilizes ATP, is displaced from the C-lobe due to the broken regulatory

spine that is otherwise formed with D168 upon ATP binding (Taylor and Kornev, 2011). Further-

more, E71 interacts with the MAPK-conserved R67 from the aC helix that stabilizes pT180 in the

active form (Figure 1b, present in >90% of structures in the most populated cluster). On the other

hand, the A-loop of the second minimum contains a short helix which places the conserved R173 in

direct contact with the K53-E71 salt bridge, as well as D168 of the conserved DFG motif (Figure 2,

Figure 2—figure supplement 2b), while the P-loop is partly collapsed into the ATP-binding site. We

observe similar autoinhibitory interactions for the other two higher energy minima explored by p38a

(Supplementary file 1, Figure 2—figure supplement 2c,d). In both cases, R173 is in contact with

D168 which otherwise stabilizes ATP upon binding (Kumar et al., 1995; Bellon et al., 1999).

Figure 2 continued

The following figure supplements are available for figure 2:

Figure supplement 1. Free-energy surface for p38a (apo unphosphorylated, apo dually phosphorylated, and dually phosphorylated with bound ATP-

Mg2+, and dually phosphorylated with bound ATP-Mg2+ and MK2 peptide) as a function of CV1 and CV2 which indicate the distance from the reference

inactive and active structures, respectively.

DOI: 10.7554/eLife.22175.005

Figure supplement 2. Representative structures of selected free-energy minima calculated for p38a in the apo unphosphorylated state located at: (a)

(CV1, CV2) = (0.2, 0.7), (b) (CV1, CV2) = (0.2, 0.6), (c) (CV1, CV2) = (0.1, 0.8), and d) (CV1, CV2) = (0.3, 0.35).

DOI: 10.7554/eLife.22175.006

Figure supplement 3. Representative structures of selected free-energy minima calculated for p38a in the apo phosphorylated state located at: (a)

(CV1, CV2) = (0.3, 0.55), (b) (CV1, CV2) = (0.45, 0.4), (c) (CV1, CV2) = (0.15, 0.75), and d) (CV1, CV2) = (0.6, 0.2).

DOI: 10.7554/eLife.22175.007

Figure supplement 4. Histogram of the minimal distances between residues R49 and D112 calculated for the structures of the most populated cluster

in the global minimum of the dually phosphorylated p38a.

DOI: 10.7554/eLife.22175.008

Figure supplement 5. Representative structures of selected free-energy minima calculated for p38a in the phosphorylated state with bound ATP-Mg2+

located at: (a) (CV1, CV2) = (0.5, 0.4), (b) (CV1, CV2) = (0.6, 0.1), and (c) (CV1, CV2) = (0.25, 0.5).

DOI: 10.7554/eLife.22175.009

Figure supplement 6. Representative structures of selected free-energy minima calculated for p38a in the phosphorylated state with bound ATP-Mg2+

and MK2 peptide located at: (a) (CV1, CV2) = (0.7, 0.1), and (b) (CV1, CV2) = (0.4, 0.4).

DOI: 10.7554/eLife.22175.010

Table 1. Interactions of key residues observed in the free-energy minima. Residue pairs with interaction occupancy >75% in the most

populated clusters of the selected minima are bolded, while the occupancy for the rest of the pairs is in the range of 60–75%.

System Minimum Residue pairs

p38a 0–2 kcal mol�1

(CV1, CV2 = 0.2, 0.7)
D176-R189, D177-R186, E178-K152, E178-R173

0–2 kcal mol�1

(CV1, CV2 = 0.2, 0.6)
R173-E71, D168-R173, D177-R186

p38a-pTpY 0–2 kcal mol�1 E178-R149, E178-R189, D177-R67, pY182-R173

4–6 kcal mol�1

(CV1, CV2 = 0.45, 0.4)
D176-R149, D176-R189, D177-R70, pT180-R67, R173-E328

p38a-pTpY (ATP-Mg2+) 0–2 kcal mol�1 pT180-R67, pT180-R70, pY182-R186, pY182-R189, E178-R70

p38a-pTpY (ATP-Mg2+ + MK2 peptide) 0–2 kcal mol�1

(CV1, CV2 = 0.7, 0.1)
pT180-R67, pT180-R173, D112-ATP

0–2 kcal mol�1

(CV1, CV2 = 0.4, 0.4)
pY182-R67, pY182-R70, D177-R173, D112-ATP

DOI: 10.7554/eLife.22175.011
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Furthermore, in the more inactive minimum (Figure 2—figure supplement 2c), the P-loop is col-

lapsed into the ATP-binding site; while the other explores a conformation reminiscent of the Src-like

inactive conformation (Xu et al., 1999) (Figure 2—figure supplement 2d) in which the A-loop forms

a short helix stacked against the aC helix. This configuration has been previously observed also in

CDK (De Bondt et al., 1993) and EGFR kinases (Sutto and Gervasio, 2013). These findings are in

perfect agreement with experimental studies reporting that the unphosphorylated p38a shows

almost no affinity for ATP (Tokunaga et al., 2014; Frantz et al., 1998), confirming the strong regula-

tion of the enzyme by phosphorylation.

To confirm that the extended conformation of the A-loop attributed to the active state is highly

unstable in the unphosphorylated protein, we used unbiased MD simulations that were started from

the conformation observed in the X-ray structure of p38a-pTpY (PDB ID: 3PY3) (Figure 1b) (see

Materials and methods). We performed ten 500-ns-long independent runs at 380 K, all of which

quickly showed a change in the A-loop conformation toward the inactive state and sampled confor-

mations that fall in the regions explored in metadynamics simulations. Furthermore, in one of the

independent runs the A-loop managed to break the b-sheet motif in the simulated time, so we

extended this run to 2.675 ms to allow the protein to transition to the inactive state (Figure 3a).

Indeed, the protein mostly remained in the global minima observed in metadynamics simulations,

and the final conformation showed very similar features to the representative inactive structures

(Figure 3b). Root-mean-square fluctuations (RMSF) reveal a high flexibility of several structural ele-

ments besides the A-loop (i.e. aC, aD, and the MKI helices, Figure 3b) that occurs due to the open-

ing of the lobes and the local unfolding (in the case of aD helix). Both these events have been

previously linked to large conformational changes occurring in other kinases (Sutto and Gervasio,

2013; Whitford et al., 2007; Shan et al., 2013) but have been so far unobserved for p38a.

Figure 3. (a) Free-energy surface for the unphosphorylated p38a, obtained from metadynamics simulations, as a

function of CV1 and CV2 which indicate the distance from the reference inactive and active structures, respectively.

The contour lines are drawn every two kcal mol�1. The CV values for the unbiased MD simulation of the same

system are drawn every 0.5 ns and shown in a grey gradient as a function of time. (b) The conformation assumed

by the protein at the end of the unbiased MD simulation. The backbone is colored according to the RMSF values,

with purple indicating higher flexibility regions, while the key residues are shown as sticks and labeled

appropriately.

DOI: 10.7554/eLife.22175.012
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Dually phosphorylated p38a
Surprisingly, once p38a is dually phosphorylated, it explores conformations that are not largely dif-

ferent from the ones observed for the unphosphorylated protein (upper right panel in Figure 2 and

Figure 2—figure supplement 1, enlarged structures in Figure 2—figure supplement 3), contrary to

the reported X-ray data (Zhang et al., 2011a). In the global minimum, the A-loop moves away from

the ATP-binding site, mostly due to the electrostatic interactions formed by the phosphorylated resi-

dues which subsequently also stabilize the P-loop and prevent it from collapsing into the ATP bind-

ing pocket (Table 1). However, the sampled conformation is unlikely to bind ATP due to the

formation of a salt bridge between R49 (positioned beneath the P-loop) and D112 (found at the

beginning of the aD helix) (Figure 2, Figure 2—figure supplement 3a; distance histogram is shown

in Figure 2—figure supplement 4). This interaction, which seems to be specific for the phosphory-

lated protein, locks the hinge and occludes the ATP-binding site. However, the protein also explores

a higher energy minimum that comes closer to the active one (Figure 2, Figure 2—figure supple-

ment 3b): the A-loop extends toward the L16 loop, yet does not form the b-sheet motif associated

with the active conformation. Regardless, the higher energy conformation allows the A-loop to form

a number of electrostatic interactions with the aC helix and the L16 loop (Table 1), while pT180

forms a salt bridge with the highly conserved R67 preventing the P-loop from collapsing into the

ATP-binding site. Furthermore, the aD helix partly unfolds allowing the ATP-binding pocket to

assume a more open conformation with the key residues aligned for ATP binding. This observation

explains the protein’s low affinity toward ATP in the phosphorylated state (Tokunaga et al., 2014;

Frantz et al., 1998) and demonstrates that the dual phosphorylation can help define a receptive

ATP-binding site but is not sufficient for the protein to adopt the conformation captured by X-ray

crystallography (Figure 1b). In fact, to populate that state, we would need to add 16–18 kcal mol�1

of free energy to the phosphorylated system (minimum located at (CV1, CV2) = (0.6, 0.2) in the upper

right panel of Figure 2, Figure 2—figure supplement 3d).

To further confirm the instability of the conformation observed by X-ray crystallography, we again

used unbiased MD simulations that were started from the said conformation (PDB ID: 3PY3)

(Figure 1b) (see Materials and methods). We performed ten 1-ms-long independent runs at 380 K,

most of which showed a change in the A-loop conformation toward the regions explored by the pro-

tein in metadynamics simulations (upper right panel in Figure 2). Furthermore, in one of the inde-

pendent runs the A-loop broke the b-sheet motif, so we extended this run to 2 ms during which the

protein settled in the aforementioned higher energy minima that seems likely to bind ATP

(Figure 4a). The final conformation shows similar features to the representative structure of this mini-

mum, that is, the A-loop is positioned away from the ATP-binding site and forms several electro-

static interactions with the ac helix and the L16 loop (Figure 4b). RMSF values reveal a high

flexibility of several structural elements besides the loops (i.e. aD, and the MKI helices, Figure 4b)

that occurs due to local unfolding.

Dually phosphorylated p38a with bound ATP-Mg2+

The FES plot for the phosphorylated system with bound ATP-Mg2+ complex shows a clear shift

toward a more active conformation (i.e. a displacement toward right and bottom in the lower left

panel of Figure 2 and Figure 2—figure supplement 1, enlarged structures in Figure 2—figure sup-

plement 5). While the representative structure of the global minimum does not form the b-sheet

motif associated with the active state (Figure 2—figure supplement 5a), its A-loop extends toward

the L16 loop and connects to the aC helix via the coordination of pT180 by R67 and R70 (as

observed in the active X-ray structure in Figure 1b). The b-sheet motif does form in the

higher energy minimum centered at (CV1, CV2) = (0.6, 0.1); however, its representative structure

(lower left panel in Figure 2, Figure 2—figure supplement 5b) shows pT180 forming less contacts

with the aC helix and the L16 loop (Supplementary file 1). The lack of these interactions, together

with the disorder present in the P-loop, breaks the contact of E71 with Mg2+ ions resulting in a less

stable complex with ATP. Overall, albeit the binding of ATP stabilizes an active-like structure, it is

not enough for the protein to display the active conformation observed in the crystal structure

(Figure 1b). While the A-loop does adopt an extended conformation and forms the b-sheet motif at

the higher energy state, it still remains quite mobile and the phosphorylated residues do not neces-

sarily form all the contacts observed in the X-ray structures.
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Once again, we used unbiased MD simulations to give further support to our free-energy surfa-

ces. We performed ten 1-ms-long independent runs at 380 K of the dually phosphorylated p38a with

bound ATP-Mg2+ starting with the A-loop in the extended conformation (as in Figure 1b) (see Mate-

rials and methods). Most of the simulations explored only the local minimum close to the starting

structure, while one of the runs showed more conformational diversity, so we extended it to 1.55 ms

which allowed the protein to transition to the global minimum (Figure 5a). The final conformation

shows the disruption of the b-sheet motif in the A-loop and the calculated RMSFs reveal its high flex-

ibility (Figure 5b). Furthermore, pT180 remains in contact with the conserved arginine residues of

the aC helix, while pY182 moves away from H228, similarly to the representative structure of the

global minimum in the free-energy surface. Overall, RMSF values show a lower flexibility of the pro-

tein upon the addition of the ATP compared to the simulations of the apo systems (Figures 3b and

4b).

The active conformation
While the dual phosphorylation and the ATP-binding drive the enzyme toward an active conforma-

tion, there is an obvious need for additional elements to complete the transition. Particularly, we

wondered whether the binding of the MK2 docking peptide could provide the necessary stability to

form the b-sheet motif. The FES for this system indeed shows a deepening of the minimum at (CV1,

CV2) = (0.7, 0.1) which is associated with the formed b-sheet motif (lower right panel in Figure 2,

enlarged structures in Figure 2—figure supplement 6). The representative structure of the minimum

(Figure 2—figure supplement 6a) confirms this observation and shows pT180 near the three con-

served arginines (R67, R70, and R173), while pY182 again displays higher mobility and moves away

from H228 (Table 1, Figure 1b). Furthermore, the addition of the MK2 peptide does not eliminate

the global minimum at (CV1, CV2) = (0.4, 0.4), observed also in the presence of ATP (two lower pan-

els in Figure 2). However, it flattens the FES which would indicate an easier transition between the

two described minima. The representative structure of the minimum (Figure 2—figure supplement

Figure 4. (a) Free-energy surface for the dually phosphorylated p38a, obtained from metadynamics simulations, as

a function of CV1 and CV2 which indicate the distance from the reference inactive and active structures,

respectively. The contour lines are drawn every two kcal mol�1. The CV values for the unbiased MD simulation of

the same system are drawn every 0.5 ns and shown in a grey gradient as a function of time. (b) The conformation

assumed by the protein at the end of the unbiased MD simulation. The backbone is colored according to the

RMSF values, with purple indicating higher flexibility regions, while the key residues are shown as sticks and

labeled appropriately.

DOI: 10.7554/eLife.22175.013
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6b) shows a conformation in which the A-loop is extended away from the ATP-binding site, yet with-

out the formed b-sheet motif and with switched positions of phosphorylated residues compared to

the X-ray structure (Table 1, Figure 1b).

In addition, we performed unbiased MD simulations of the dually phosphorylated p38a with

bound ATP-Mg2+ and the MK2 docking peptide. We generated ten 1-ms-long independent runs at

380 K, obtaining a total accumulated sampling time of 10 ms (see Materials and methods). The pro-

tein remains mostly in the regions associated with the extended conformation of the A-loop with

formed b-sheet motif, but it also explores the conformational space closer to the other global mini-

mum (also the global minimum in the system without the MK2 peptide) (Figure 6a). Interestingly,

the N-terminal part of the MK2 docking peptide binds the ED site and stabilizes the aD-aE linker hin-

dering the flexibility of the aD helix and allowing the D112 to reorient and stabilize ATP by forming

hydrogen bonds with ribose (Figure 2—figure supplement 6, Figure 6b). While we also observe

this interaction in the absence of the MK2 peptide, it is not as stable as in its presence which

explains the phosphotransfer enhancement upon MK2 peptide docking (Tokunaga et al., 2014).

Our results suggest that p38a predominantly samples conformations with the fully extended

A-loop only upon double phosphorylation and the binding of ATP and the docking peptide. This

might seem in contrast to the model obtained from X-ray crystallography (Figure 1b). However,

careful analysis of the crystal contacts (which form between the molecules due to their orientation

and packing within the crystal, Figure 7) reveals numerous interactions formed between functionally

important structural elements, such as the L16 loop. These contacts mimic the stabilizing effects of

p38a binders. Particularly, we found an atypically long expression His-tag of a neighboring molecule

bound to the hydrophobic docking groove which, upon closer inspection (see below), has the same

effect on the protein as the MK2 docking peptide did in our simulations.

To prove that this is the case, we simulated a crystal supercell of the apo dually phosphorylated

p38a composed of 4 unit cells and 16 protein molecules (see Materials and methods), which allowed

us to maintain crystal contacts and obtain 8 ms of sampling for ~170,000 atoms. As shown by Fig-

ure 8, the A-loop is very stable in the conformation captured by the X-ray model - the b-sheet motif

Figure 5. (a) Free-energy surface for the dually phosphorylated p38a with bound ATP-Mg2+, obtained from

metadynamics simulations, as a function of CV1 and CV2 which indicate the distance from the reference inactive

and active structures, respectively. The contour lines are drawn every two kcal mol�1. The CV values for the

unbiased MD simulation of the same system are drawn every 0.5 ns and shown in a grey gradient as a function of

time. (b) The conformation assumed by the protein at the end of the unbiased MD simulation. The backbone is

colored according to the RMSF values, with purple indicating higher flexibility regions, while the key residues are

shown as sticks and labeled appropriately.

DOI: 10.7554/eLife.22175.014
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is unperturbed during the simulation, as well as the contacts made by pT180 with the three con-

served arginines (R67, R70, and R173). However, pY182 is more mobile and at times breaks away

from H228 and the conserved arginines of the P+1 loop (R186 and R189). This is consistent with the

electron density which is not so well defined for pY182 as it is for the rest of the A-loop. Further-

more, we could also qualitatively match the B-factors reported for the X-ray structure (PDB ID: 3PY3)

(Figure 8b,d), while the most mobile regions in our simulations (mainly, the N- and C-terminal tails)

are missing from the deposited electron density. We would like to stress that it is impossible for our

MD simulations to quantitatively match the reported B-factors for the following reasons: (1) While

the crystals were grown at 293 K, the data were collected at 100 K. Since MD simulations and their

algorithms have not been developed for such low temperatures, we performed our crystal simula-

tions at 293 K which increased the overall atomic motions; (2) The experimental data collected for

the crystals in general are time and ensemble averages of 1023 molecules which are in the end repre-

sented by a single model, while its B-factors then reflect both the static and the dynamic disorder of

the crystal. Finally, two independent studies had shown that the refinement process underestimates

the disorder present in the crystal thereby producing lower B-factors (Janowski et al., 2013;

Kuzmanic et al., 2014).

Thus, our analysis and simulations strongly suggest that the deposited crystal structure does not

fully capture the apo conformation that p38a assumes under physiological conditions and it most

likely suffers from artifacts due to the crystal contacts.

Discussion
In the clever paraphrase of Tolstoy’s Anna Karenina, Noble et al. (Noble et al., 2004) stated how all

active kinases are alike but an inactive kinase is inactive after its own fashion - referring to the attrac-

tiveness of the inactive form in the everlasting search for inhibitor selectivity. Kinases, however,

seem to have a few surprises left within their folds, even when it comes to the seemingly uniform

Figure 6. (a) Free-energy surface for the dually phosphorylated p38a with bound ATP-Mg2+ and MK2 docking

peptide, obtained from metadynamics simulations, as a function of CV1 and CV2 which indicate the distance from

the reference inactive and active structures, respectively. The contour lines are drawn every two kcal mol�1. The

CV values (calculated every 0.5 ns) for the unbiased MD simulations of the same system are shown as orange

contours based on their density. (b) Histograms of the minimal distances between ATP and D112 calculated from

the unbiased simulations of the dually phosphorylated p38a with bound ATP-Mg2+ with or without the MK2

docking peptide (colored grey and red, respectively). The average values are shown as dashed lines, while the bin

size is 0.5 Å.

DOI: 10.7554/eLife.22175.015
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active state. In the case of p38a, the protein requires dual phosphorylation of the TGY motif for its

activation and subsequent ATP binding. Based on the apo X-ray structure of p38a-pTpY

(Zhang et al., 2011b), the phosphorylation event has been perceived as the trigger for the confor-

mational change in which the A-loop moves away from the ATP-binding site enabling the N- and

C-lobes to reorient and align the residues necessary for the ATP stabilization. Unlike CDK5

(Berteotti et al., 2009), EGFR (Sutto and Gervasio, 2013), and Src (Shukla et al., 2014;

Foda et al., 2015), p38a never explores the aC-out conformation (neither in any of the deposited

X-ray structures - Figure 9a nor in our simulations), in which the helix rotates by >45˚ (breaking the

K53-E71 salt bridge in the process). This likely occurs due to the extensive range of contacts formed

between the aC and the L16 helix, which is unique to MAPKs, indicating that the observed feature

could be family-specific. Furthermore, MAP kinases contain two conserved arginine residues (R67

and R70) in the aC helix that readily form salt bridges with numerous negatively charged residues in

the A-loop (Figure 10), thereby stabilizing various A-loop conformations which are not necessarily

observed by X-ray crystallography. Despite an overwhelming amount of structural data (with 206

structures of human p38a in the PDB), just 47 structures have complete A-loops (i.e. without any

missing or zero-occupancy residues), out of which only one structure contains the A-loop devoid of

any crystal contacts (PDB ID: 2BAJ). Unfortunately, this structure has been solved in the DFG-out

conformation with a bound inhibitor and it cannot be representative of the apo unphosphorylated

state. However, the mere lack of information indicates just how flexible the A-loop is and why it is

almost impossible to resolve it unless it forms crystal contacts. Our extensive simulations also indi-

cate that the unphosphorylated p38a never explores a conformation that could possibly bind and

stabilize ATP - mostly due to A-loop interactions with the DFG-Asp which is crucial for ATP

Figure 7. Contact map for interactions formed between the residues of the reported X-ray structure (PDB ID:

3PY3, p38a-pTpY) (x-axis) and its symmetry related neighbors (y-axis). The residues are considered to be in contact

if the minimal distance between any of their atoms is under 4 Å. The contacts formed by the docked elements are

indicated by the solid ellipses, while the ones formed between functionally important elements are indicated by

the dashed ellipses. Secondary structure elements are also shown with a-helices in purple, b-sheets in green, and

loops in grey. Missing residues are shown as light grey rectangles.

DOI: 10.7554/eLife.22175.016
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stabilization (Kumar et al., 1995). It is worth noting that related proteins, like ERK2, are able to bind

ATP in the unphosphorylated state (Lee et al., 2005; Sours et al., 2008; Canagarajah et al., 1997;

Khokhlatchev et al., 1998) most likely due to longer A-loops (Figure 10), which are then easier to

stabilize away from the ATP-binding site.

Phosphorylation, however, does change the free-energy surface and enables the A-loop to form

salt bridge interactions with the autoinhibitory arginine residues - R67 and R173. The former of the

two, as mentioned above, is MAPK-specific and its importance is highlighted further by the R67A

mutation that decreases p38a kinase activity (Gum et al., 1998), and the R67I somatic mutation that

was found in colon adenocarcinoma (COSMIC: COSM1444062). The newly formed interactions keep

the A-loop away from the ATP-binding site which is occluded by the formation of the R49-D112 salt

Figure 8. (a) Free-energy surface for the dually phosphorylated p38a, obtained from metadynamics simulations, as

a function of CV1 and CV2 which indicate the distance from the reference inactive and active structures,

respectively. The contour lines are drawn every two kcal mol�1. The CV values (calculated every 0.5 ns) for the

unbiased MD simulations of the 3PY3 crystal are shown as orange contours based on their density. (b) The average

conformation of the protein calculated from the unbiased MD simulations. The protein is colored according to the

calculated RMSF values after the backbone alignment with respect to the 3PY3 X-ray structure. (c) Backbone RMSD

values calculated with respect to the 3PY3 X-ray structure either with or without N- and C-terminal tails. The

average values over 16 molecules are shown by the black lines, the extreme values by the red lines, while the error

bars depicting one standard deviation are shown every 25 ns. (d) X-ray structure of the dually phosphorylated

p38a (PDB ID: 3PY3) colored by refined B-factors.

DOI: 10.7554/eLife.22175.017
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bridge. ATP binding is therefore only possible in less populated conformations of the protein,

explaining the experimentally observed low

ATP-binding affinity (Tokunaga et al., 2014;

Frantz et al., 1998). If one looks solely at X-ray

structures where R49 is ~15 Å away from D112

(Figure 9b), the formation of this particular salt

bridge might seem like an artifact arising from

force field or methodological imperfections.

However, R49 is a part of the loop positioned

below the very flexible P-loop (whose residues

are often unresolved) and we have often

observed its interaction with E160 of the ED site

in our simulations (both unbiased and biased),

regardless of the protein’s phosphorylation state

(R49-E160 is ~9 Å in the analyzed X-ray struc-

tures - Figure 9c). We believe that the reason

for these discrepancies lies in the fact that the

loop containing R49 forms crystal contacts in all

the 206 deposited X-ray structures which would

most likely restrict its mobility and prevent the

interactions observed in MD simulations.

While the binding of ATP-Mg2+ helps p38a

come closer to the active form, it is insufficient

to lead to a complete shift, as proposed by the

NMR model (Tokunaga et al., 2014). The full

transition, however, does occur in our simula-

tions upon binding of the MK2 docking peptide,

which has been previously shown to enhance the

catalytic steps (Tokunaga et al., 2014). We

Figure 9. Histograms of the minimal distances between (a) K53-E71, (b) R49-D112, and c) R49-E160 calculated from p38a X-ray structures currently

deposited in PDB (March, 2017). K53-E71 distances were calculated for structures without any mutations, while R49-D112 and R49-E160 for structures

without missing R49, D112, and E160 residues. The average values are shown as red dashed lines, while the bin size is 0.5 Å.

DOI: 10.7554/eLife.22175.018

Figure 10. Multiple alignments of the aC helix and the

activation loop (from the DFG motif to the P+1 loop)

sequences of several human kinases. Selected

positively charged residues are colored green,

negatively charged ones magenta, while the

catalytically important residues in the aC helix are

bolded, as well as the phosphorylated residues in the

activation loop.

DOI: 10.7554/eLife.22175.019
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hypothesize that the docking peptide prevents the formation of the R49-D112 salt bridge in the

phosphorylated protein and brings in the L16 loop. This allows the A-loop to form additional stabiliz-

ing contacts, as suggested in the case of ERK2 (Zhou et al., 2006) and causes the observed 20-fold

increase in the ATP-binding affinity by the MK2 docking peptide (Tokunaga et al., 2014). The

changes that the docking peptide introduces into the protein structure are particularly interesting

when it comes to the crystal contact analysis of the dually phosphorylated p38a X-ray structure with

the active A-loop conformation. We found an atypically long expression tag of the neighboring mol-

ecule bound in the docking site which, together with other crystal contacts, induces the active state

stabilized within the crystal. These observations show how important it is to carefully analyze symme-

try-related molecules and they call for caution in the interpretation of deposited X-ray structures, as

they can be misleading.

Overall, our extensive PT-metaD calculations converge to free-energy surfaces that together with

the unbiased MD simulations offer unparalleled insight into the molecular mechanism of p38a

canonical activation elucidating a complex conformational behavior that is consistent with experi-

mental observations. Despite the initial discrepancies between previous structural studies, our find-

ings reconcile the deposited models from X-ray crystallography with the NMR data. Considering the

importance of p38a for both normal physiology and pathological processes, we hope the knowledge

obtained in this study will help to target the protein with more specificity.

Materials and methods

Protein structures and their preparation
The X-ray structure used as the starting conformation for the PT-metaD simulations of inactive

unphosphorylated and phosphorylated human p38a is deposited under the Protein Data Bank (PDB)

code 3S3I. This structure was also used with the structure of the active phosphorylated mouse p38a

(PDB ID: 3PY3) to build the human protein in the latter conformation by using ICM (RRID:SCR_

014878) (Abagyan et al., 1994). The coordinates of the ATP molecule and the Mg ions were taken

from the active phosphorylated human p38g (PDB ID: 1CM8), while the coordinates of the MK2

docking peptide (residues 370–393) were taken from the p38a-MK2 complex (PDB ID: 2OKR). The

missing atoms in 3S3I and MK2 peptide were built with PDB2PQR (Dolinsky et al., 2004), while the

residues T180 and Y182 were phosphorylated using Vienna-PTM server (Margreitter et al., 2013).

All proteins consist of the sequence E4-P352 and the standard residue numbering for p38a is

applied throughout.

MD simulations
Each simulated system was generated using CHARMM27 force field (MacKerell et al., 1998;

Foloppe and MacKerell, Jr., 2000; MacKerell and Banavali, 2000) at pH 7.4. The protonation states

of the residues were determined both by H++ server (Anandakrishnan et al., 2012) and PROPKA3.0

(Li et al., 2005) which gave identical results leaving all the residues in their usual charge states, except

for His312 which was protonated. Since the pKa2 of phosphoric acid is measured at 6.7 and 7.2

(Peacock and Nickless, 1969; Lide, 2005), the charge of phosphoric residues was set at �1. The sys-

tems were solvated with ~20,000 TIP3P water molecules (Jorgensen et al., 1983; Mahoney and Jor-

gensen, 2000) in a triclinic box with periodic boundary conditions, while Na+ and Cl- ions were added

to reach neutrality and the final concentration of 50 mM (the total number of atoms was ~65,000).

Energy of the simulated system was initially minimized in two cycles of steepest-descent energy mini-

mization. The initial velocities for the atoms were taken from Maxwell distribution at 100 K, and the

system was subsequently heated to 300 K in five steps of 50 K simulated for 200 ps at constant volume

each using velocity rescale thermostat (Bussi et al., 2007). In parallel, atomic position restraints for

the protein (as well as the ATP molecule and Mg2+ ions if present) were uniformly relaxed (with the

restraint spring constant going from 25,000 kJ mol�1 nm�2 to 0 kJ mol�1 nm�2 in steps of 5000 kJ

mol�1 nm�2). In the end, the system was equilibrated for additional 200 ps under the final conditions.

The magnesium ions were restrained to the ATP molecule, that is its last two phosphate atoms (at 3

and 4 Å) and their adjoining oxygen atoms (two restraints per Mg2+ at 2.4 Å) throughout the equilibra-

tion and production runs using a restraint spring constant of 150 kJ mol�1 nm�2. The weak restraints

were used to make sure that the ions do not unbind at higher temperature replicas. The production
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simulations were generated using the GROMACS 4.6.7 biomolecular simulation package (RRID:SCR_

014565) (Pronk et al., 2013) with the PLUMED2.1 plugin (Bonomi et al., 2009; Tribello et al., 2014)

with a 2-fs integration step. Constant volume conditions were employed throughout with the velocity

rescale thermostat (Bussi et al., 2007). Bond lengths were constrained using LINCS (Hess et al.,

1997), while van der Waals interactions were treated with a cutoff of 10 Å. Electrostatic interactions

were computed using the particle mesh Ewald method (Essmann et al., 1995) with the direct sum cut-

off of 10 Å and the Fourier spacing of 1.2 Å.

In the case of unbiased simulations (unphosphorylated p38a with the A-loop in the extended con-

formation, apo dually phosphorylated p38a with the A-loop in the extended conformation, the

dually phosphorylated p38a with bound ATP-Mg2+, and the dually phosphorylated p38a with bound

ATP-Mg2+ and MK2 docking peptide), 10 independent runs of each system were equilibrated to a

temperature of 380 K by two additional steps of 40 K compared to the aforementioned protocol,

while the position restraints for the protein were uniformly relaxed in steps of 2500 kJ mol�1 nm�2.

The system was equilibrated for additional 200 ps under constant pressure using Berendsen barostat

(Berendsen et al., 1984). The production simulations were generated under the same conditions as

above with the addition of constant pressure of one bar using Parrinello-Rahman barostat

(Parrinello and Rahman, 1981) and coordinate output of 10 ps. In the case of unphosphorylated

system, each independent run was initially 500 ns long. One run that showed a broken b-sheet motif

after 500 ns was extended to a total of 2.675 ms. For the apo phosphorylated system, each indepen-

dent run was 1 ms long. One of the trajectories showed a broken b-sheet motif early on and was

extended to 2 ms. Each independent run of the phosphorylated system with bound ATP-Mg2+ was

also initially simulated for 1 ms, while one run that exhibited more conformational diversity was

extended to 1.55 ms to transition to the global minimum. In the case of the dually phosphorylated

system with bound ATP-Mg2+ and MK2 docking peptide, each independent run was 1 ms, amounting

to a total sampling time of 10 ms. The magnesium ions were restrained to the ATP molecule through-

out the equilibration and production runs in the same way as in the metadynamics runs.

For the simulation of p38a protein crystal, a supercell of the dually phosphorylated mouse p38a

(PDB ID: 3PY3) containing four unit cells (2 � 2 � 1), each with four asymmetric units (i.e. 16 protein

molecules in total), was built using PyMOL (RRID:SCR_000305) (Schrodinger, 2015). Missing resi-

dues of the N- and C-terminal tails were added to each protein using Modeller (RRID:SCR_008395)

(Sali and Blundell, 1993). Protein chain whose tail was built buried within the crystal was chosen as

the starting structure to avoid steric clashes caused by the lack of periodic boundary conditions dur-

ing the modelling process. The supercell was rebuilt in PyMOL and used for pKa calculations with

PROPKA3.0 (Li et al., 2005) leaving all the residues in the same charged state as in the previous sim-

ulations, while among the newly built residues His-10 was protonated. The system was solvated

with ~24,000 TIP3P water molecules (Jorgensen et al., 1983; Mahoney and Jorgensen, 2000) in a

triclinic box using the dimensions of the original crystal and periodic boundary conditions. Na+ and

Cl- ions were added to reach neutrality and the ionic strength of sodium citrate used in the original

experiment (with the final concentration of 600 mM). The total number of atoms in the system

was ~170,000. The system was minimized and equilibrated as described above to the temperature

of 293 K which corresponds to the temperature used for growing crystals. Canonical ensemble at

293 K was maintained for the production run which was 500 ns long. By using a supercell system,

crystal contacts were present throughout the simulation, while the interaction of molecules with

themselves through periodic boundary conditions was avoided and 8 ms of sampling were obtained

for the dually phosphorylated p38a in the crystal environment.

Enhanced sampling
First, a parallel tempering metadynamics (PT-metaD) with 10 replicas per system was performed at

increasing temperatures (300, 310, 320, 330, 341, 352, 363, 375, 387, and 400 K) in which only the

potential energy was biased to achieve an exchange rate of 30% between the neighboring replicas.

The obtained bias was saved and used further in the production runs as a constant bias. The produc-

tion runs of PT-metaD in the well-tempered ensemble (Bonomi and Parrinello, 2010) were performed

for each system consisting of 10 replicas, meaning that a Gaussian potential was deposited in the col-

lective variable space every 2 ps with the height W ¼ W0e
�Vðs;tÞ=ðf�1ÞT , where W0 = 5 kJ mol�1 is the ini-

tial height, Vðs; tÞ is the bias potential at time t and CV value s; f = 10 is the biasing factor, and T is the
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temperature of the replica. The collective variables used in the study are distances in contact map

space from the inactive (CV1) and active (CV2) A-loop conformation.

CVðRÞ ¼ 1=N
P

g�GðDgðRÞ � DgðRref ÞÞ
2, where DgðRÞ is a sigmoidal function that measures the degree

of formation of the contact g in the structure R and is defined as DgðRÞ ¼ Wg
1�ðrg=r

0

gÞ
n

1�ðrg=r0gÞ
m :rg. is the contact

distance in the structure R; r0g is the contact distance in either the reference inactive or active conforma-

tion depending on which the contact g is specific for, Wg is the weight of the contact and is set to one

for regular contacts and three for salt bridges, N is a normalization constant, n = 6, and m = 10. The

widths of the Gaussians are s1,2 = 0.05. The set of contacts G defining the contact maps was deter-

mined as follows: minimized structures of inactive (PDB ID: 3S3I) and active (PDB ID: 3PY3) conforma-

tions were used to determine all the pairs of Ca, Cb or backbone O atoms that fall within a 5 Å distance

cutoff. To relax and lose possible crystal contacts, 10 independent equilibration runs were generated

for both the inactive and the active phosphorylated systems. Only those atomic pairs that appear in

five or more equilibrated structures and that specifically discriminate between the inactive and active

conformations were kept, that is, those that appear either in one or the other, thereby discarding the

pairs common to both conformations. A set of 97 regular contacts was obtained this way to which

seven salt-bridge contacts involving residues of the A-loop that were specific to the active conforma-

tion were added and weighed three times more than regular contacts.

Convergence of metaD simulations
Initially, FE surfaces were produced with a bias corresponding to an exchange rate of 30% between

neighboring replicas and were subsequently refined by lowering the bias on the potential energy to

achieve an exchange rate of 10% and run for additional 150 ns to convergence. The simulations

were considered to be converged once the free energy in the bidimensional projections and in the

monodimensional projections does not change more than 2 kcal mol�1 in the last 100 ns. This crite-

rion resulted in a 2.425-ms-long simulation for the unphosphorylated, 2.485-ms-long simulation for

the phosphorylated system, 1.035-ms-long simulation for the phosphorylated system with bound

ATP, and 0.986-ms-long simulation for the phosphorylated system with bound ATP and MK2 docking

peptide.

Analysis of structures populating the free-energy minima
Free-energy surfaces (FES) for the two CVs were calculated by integrating the bias deposited during

the simulations. For each system, several basins from the FES plot were chosen for further analysis.

All the structures that fell within each basin were clustered using the gromos algorithm

(Daura et al., 1999) and the g_cluster routine (GROMACS) by using the RMSD of Ca atoms as the

distance between the structures and the cutoff value of 2 Å. The central structure of the most popu-

lated cluster of each basin (i.e. the structure with the smallest distance to all the other members of

the cluster) was chosen as the representative of the basin. Furthermore, central structures of top five

most populated clusters (which on average contain 75% of all structures) were inspected to make

sure that the main structural features in terms of P-loop and A-loop positions were captured by

these clusters. To avoid highlighting interactions that occur only sporadically in the simulations, only

those salt-bridge interactions that are maintained in the majority of structures of the most populated

cluster, as well as most of structures of the selected basin, were highlighted in the tables throughout

the paper.

Analysis of X-ray structures and their symmetry-related neighbors
Symmetry-related molecules of mouse apo p38a-pTpY (PDB ID: 3PY3) that are closer than 4 Å to

the original structure were generated by PyMOL (Schrodinger, 2015). The same distance criterion

was used to determine which pairs of residues of neighboring molecules come into contact.
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