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Figure 1: In training (left), our approach learns a mapping from attributes in deferred shading buffers, e.g., positions, normals, reflectance,
to RGB colors using a convolutional neural network (CNN). At run-time (right), the CNN is used to produce effects such as depth-of-field,
sub-surface scattering or ambient occlusion at interactive rates (768×512 px, 1 ms rasterizing attributes, 27 /27/ 9 ms network execution).

Abstract
In computer vision, convolutional neural networks (CNNs) achieve unprecedented performance for inverse problems where RGB
pixel appearance is mapped to attributes such as positions, normals or reflectance. In computer graphics, screen space shading
has boosted the quality of real-time rendering, converting the same kind of attributes of a virtual scene back to appearance,
enabling effects like ambient occlusion, indirect light, scattering and many more. In this paper we consider the diagonal problem:
synthesizing appearance from given per-pixel attributes using a CNN. The resulting Deep Shading renders screen space effects at
competitive quality and speed while not being programmed by human experts but learned from example images.

CCS Concepts
•Computing methodologies → Neural networks; Rendering; Rasterization;

1. Introduction

Deep learning achieves unprecedented performance on many com-
puter vision tasks, with several applications revolving around map-
ping image appearance to attributes such as positions, normals or re-
flectance. In computer graphics, screen space shading has increased
the visual quality in interactive image synthesis, employing per-
pixel attributes such as positions, normals or reflectance of a virtual
scene to render effects such as ambient occlusion (AO), directional
occlusion (DO), indirect light (GI), sub-surface scattering (SSS),

depth-of-field (DOF), motion blur (MB), image-based lighting (IBL)
or anti-aliasing (AA). In this paper we turn the typical flow of infor-
mation through computer vision deep learning pipelines around to
synthesize appearance from given per-pixel attributes, using deep
convolutional architectures. We call this Deep Shading [NAM∗16].
Its main benefit is that it can achieve quality and performance simi-
lar to human-written shaders by only learning from example data
which may be rendered or come from actual photographs. Unlike
previous approaches using learning for better filtering of noisy shad-
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ing estimates [KBS15], we directly hallucinate the shading without
any preceding Monte Carlo sampling. This avoids human effort in
shader programming and ultimately allows to for a deep “multi-
shader” that combines previously separate screen space effects in
one single CNN.

2. Previous Work

Previous work comes from a computer graphics background where
attributes are converted into appearance and from a computer vision
background where appearance has to be converted into attributes.

Attributes-to-appearance The rendering equation [Kaj86] is a re-
liable forward model of appearance in the form of radiance reach-
ing a virtual sensor when a 3D scene description is given. Several
methods for solving it exist, such as finite elements, Monte Carlo
path tracing and photon mapping, but high-quality results come
at significant computational cost. Interactive performance is only
possible through advanced parallel implementations in specific GPU
programming languages [OLG∗07], demanding substantial program-
ming effort and proficiency. By deep learning, we seek to overcome
these costs by focusing computation on converting attributes into
appearance according to sample data rather than using physics.

Our approach is based on screen space shading which can ap-
proximate many visual effects at high performance, such as ambi-
ent occlusion [Mit07], indirect light [RGS09], sub-surface scatter-
ing [JSG09], participating media [ERS13], depth-of-field [Rok93]
and motion blur [MHBO12]. Anti-aliasing too can be seen as a
special form of screen space shading, where additional depth in-
formation allows to post-blur along depth discontinuities to reduce
aliasing as in FXAA [Lot11]. All of these transform a deferred shad-
ing buffer [ST90], i.e., a dense map of pixel-attributes, into RGB
appearance. We show how a single CNN can combine different
effects at once.

Although screen space shading has limitations like missing light
or shadows from surfaces not part of the image, several prop-
erties make it attractive for interactive applications like games:
computation is focused only on what is visible on screen; no pre-
computations are required making it ideal for rich dynamic worlds;
it is independent of the geometric representation, allowing to shade
range images or ray-casted iso-surfaces; it fits the massive fine-
grained parallelism of GPUs and many different effects can be
computed from the same input representation.

Until now, image synthesis has considered rendering from a pure
simulation point of view. In this paper, we achieve competitive
results by learning from data, mitigating the need for mathemati-
cal derivations from first principles. This avoids effort that comes
with designing a mathematical simulation model. We only require
a general but slow simulation system, such as Monte Carlo, to pro-
duce exemplars. Also, learning adapts to the statistics of real world
renders which might differ from the ones a programmers assume.

Applications of machine learning to image synthesis are limited,
with a few notable exceptions. An overview how computer graphics
could benefit from learning was given by Hertzmann [Her03]. The
CG2Real system [JDA∗11] starts from simulated images that are
then augmented by patches of real ones. It achieves images that are

locally very close to natural images but is founded in a simulation
system, sharing its limitations and design effort. Recently, CNNs
have been used to transfer artistic style from a corpus of example
images to any new exemplar [GEB15]. While style transfer per-
forms local changes of RGB image structures to resemble different
RGB structures, we compute shading from diverse physically-based
scene features. Also, results need to be produced in real-time. Dachs-
bacher [Dac11] has used neural networks to reason about occluder
configurations. They have also been used as a basis of pre-computed
radiance transfer [RWG∗13] (PRT) by running them on existing
features to fit a function valid for a single scene. In a similar spirit,
Ren et al. [RDL∗15] have applied machine learning to re-lighting:
a network learns how image pixels change color in response to
modified lighting. Both works [RWG∗13, RDL∗15] demonstrate
high-quality results when generalizing over light conditions but
share the limitation to static 3D scenes, resp. 2D images, without
showing generalization to new geometry or animations, such as we
do. Such generalization is critical for applications where geometry
is dynamic, resulting in a more demanding problem that is worth
addressing using advanced (i.e., deep) learning. We would argue
that Deep Shading achieves this generalization required to make
learning a competitive image-synthesis solution in practice, in the
same way that screen space shading is highly adopted by the gaming
industry for its inherent support for dynamic scenes.

Earlier, neural networks were used to learn a mapping from char-
acter poses to visibility for PRT [NKF09]. Without the end-to-end
learning made possible by deeper architectures the approach does
not achieve generalization between scenes but remains limited to
a specific room, character, etc. Kalantari et al. [KBS15] have used
sample data to learn optimal parameters for filtering Monte Carlo
Noise. Our input, i.e., screen space attributes, might appear similar
but does not include a noisy estimate of the shading to be computed.
Also, the range of the machine learning is different. While Kalan-
tari et al. [KBS15] learn optimal parameters for filtering the noisy
input using a pre-defined filter, we directly hallucinate the final
image. Not much is known about the complexity of the mapping
from attributes to filter settings and what the effect of sub-optimal
learning is. In our case, the mapping from input attributes to appear-
ance labels is as complex as shading itself. At the same time, the
stakes are high: learning this mapping results in an entirely different
form of interactive image synthesis, not building on anything such
as Monte Carlo ray-tracing that can be slow to compute.

For image processing, convolution pyramids [FFL11] have pur-
sued an approach that optimizes over a space of nested filters to
perform fast and large convolutions. We optimize over pyramidal
filters as well, but for much more complex filters defined on much
richer input. Similar to Cconvolution pyramids, our network is based
on a “pyramidal” CNN to produce long-range effects such as distant
shadows or strong depth-of-field.

Appearance-to-attributes The inverse problem of turning image
appearance into (non-)semantic attributes lies at the heart of com-
puter vision. Of late, deep neural networks, particularly CNNs,
have shown unprecedented advances in classic problems such as
detection [KSH12], segmentation [GDDM14], and depth [EPF14],
normal [WFG15] or reflectance estimation [NMY15]. These ad-
vances were enabled by three developments: availability of large
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training datasets, deep but trainable (convolutional) architectures,
and GPU acceleration. Another key contributor has been the ability
to train end-to-end, i.e., going from input to output without having
to devise intermediate representations or processing.

One recent advance would be of importance applying CNNs to
high-quality shading: The ability to produce dense output, even
for high resolutions, by CNNs that do not only decrease but also
increase resolutions as proposed by [LSD15, HAGM15]. For the
problem of segmentation, Ronneberger et al. [RFB15] even apply
a fully symmetric U-shaped net where each down-sampling step is
matched by a corresponding up-sampling step that may also re-use
earlier intermediate results of the same resolution level.

CNNs have also been employed to replace certain graphics
pipeline operations such as changing the viewpoint [DTSB15,
KWKT15]: Appearance is known but manipulated to achieve a
novel view. We do not seek to change a rendered image but to
create full high-quality shading from the basic output of a GPU
pipeline such as geometry transformation, visible surface determi-
nation, culling, direct light, and shadows. We seek to circumvent
manual programming of efficient screen space shaders and elude
the need to come up with analytic approaches by instead learning
from examples and optimizing over deep convolutional networks to
achieve a single general screen space shader that is optimal in the
sense of certain training data.

3. Background

Here we briefly summarize relevant aspects of machine learning
to the extent necessary for immediate application to the computer
graphics problem of shading. For our purposes, it suffices to view
(supervised) learning as fitting a sufficiently complex and high-
dimensional function f̃ to data samples generated by an underlying,
unknown function f in a robust way. The quality of the fit is quan-
tified by a loss function. In our case, the domain of f consists of
deferred shading buffers of a given (spatial) resolution which contain
per-pixel attributes such as position, normal and material parame-
ters, while the range of f covers per-pixel RGB image appearance
of the same resolution. We are given n function values f (xi) for n
exemplary inputs xi. These can be produced in arbitrary quantity,
e.g., by path tracing or other image synthesis algorithms as well as
(depth) sensor imagery.

(Convolutional) Neural Networks Neural networks are a way of
defining powerful non-linear approximations f̃ . A neural network
is comprised of computational units or neurons mapping multi-
dimensional inputs to scalar outputs. These are computed by apply-
ing a non-linear function, called activation function, to an affine
combination of the inputs governed by a vector of weights wk for
each unit k. The weights wk are what is learned during training. As
activation function, we use Rectified Linear Units (ReLUs) which
are defined by r(x) = max(0,x)

Multiple units are arranged in a hierarchical fashion and grouped
into layers, with the outputs of one layer serving as inputs to follow-
ing layers. There are usually no connections between units of the
same layer. The fan-in, i.e., the vector of inputs of each unit, can
either cover all outputs of the previous layer (fully-connected) or

only a few. Units may also connect to several preceding layers in the
hierarchy. Defining w as the set of weights for the entire network,
the function f̃ (xi) can be expressed as f̃w(xi).
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Figure 2: CNN convolution in the simplified case of one spatial
dimension. Left: At layer i, the data has a spatial extent of five
(horizontal) and three features (vertical). Middle: Unit j has kernel
width three in the spatial dimension and takes all features present at
layer i as input. The fan-in is highlighted by a black outline. Right:
Unit j produces one feature at one spatial location in layer i+1.

Convolution layers are a particular type of layer defining a regular
spatial arrangement of the units: units are arranged into multiple
regular and same-sized grid slices. Each unit in the convolution layer
i+1 connects to the units of all slices of layer i within a certain local
spatial extent centered at the respective unit as depicted in Fig. 2.
All units of a slice share their weights, so that the computation
happening for each slice can be seen as a 3D convolution with a
kernel which is as “high and wide” as the spatial fan-in of the units
and as “deep” as the number of slices in the previous layer. We will
refer to the spatial kernel size simply as kernel size.

Convolutional neural networks stack multiple convolution layers
and often also reduce the spatial resolution between consecutive
layers to achieve translation invariance and computational efficiency
for richer features. CNNs are complemented by de-convolutional
(or up-sampling) networks which additionally allow to increase the
resolution again [LSD15] which is critical for our task where we
want to produce per-pixel appearance in the original resolution.

Training The network’s weights are optimized in a non-linear fash-
ion using stochastic gradient descent (SGD) so that the network
reproduces the training data. The distance between the actual train-
ing value and the network output is quantified by the loss. A common
choice of loss function is the L2-norm but for networks with images
as output, a perceptual loss based on the structural similarity (SSIM)
has proven useful [ZGFK17].

4. Deep Shading

Here, we detail the training data we produced for our task, the
network architecture proposed and the process of training it. We will
use the term attributes when referring to the inputs of our networks,
i.e., the screen space information such as positions, normals or
material parameters. Furthermore, we will refer to the outputs, with
which the the inputs are supposed to be labeled by the network, with
the general term appearance.

4.1. Data Generation

Structure of the Data Our data sets consist of 61,000 pairs of
deferred shading buffers and corresponding shaded reference images
in a resolution of 512×512 px for AO and 256×256 px for all other
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Figure 3: Selection of images showing training and testing scenes with random textures and lighting.

effects. Of these 61,000 pairs, we use 54,000 images to train the
network, 6,000 for validation and the remaining 1,000 for testing
(Sec. 6.2). Train and validation images share the same set of 10
scenes, while the test images come from 4 different scenes not used
in training or validation.

To generate the 60,000 train/validation images, we first render
1,000 pairs for each of the set of ten scenes of different nature
(Fig. 3, left part). These base images are then rotated (in steps of
90◦) as well as flipped horizontally and vertically to increase the
robustness and size of the training set in an easy way. Special care
has to be taken when transforming attributes stored in view space,
here the respective positions and vectors have to be transformed
themselves by applying rotations or mirroring. For the test set, we
proceed analogously but using the distinct set of four scenes and
appropriately less base images per scene. Generating one set, i.e.,
rendering and subsequent data augmentation, takes up to about 170
hours of computation on a single high-end GPU. We plan to make
our network definitions and data sets available for use by other
research groups.

The base images all show unique and randomly sampled views of
the respective scene seen through a perspective camera with a fixed
field-of-view of 50◦. View positions are sampled from a box fitted to
the scenes’ spatial extents. Sec. 5 contains additional information on
the training sets for each application. Fig. 3 shows samples of typical
ground truth images for a combination of image-based lighting and
depth-of-field.

About half of our scenes are common scenes from the computer
graphics community such as Crytek Sponza or Sibenik Cathedral
and other carefully modeled scenes from sources such as BlendSwap.
The remaining scenes were composed by ourselves using objects
from publicly available sources to cover as many object categories as
possible, e.g., vehicles, vegetation or food. Procedurally generated
scenes would be another more sophisticated option.

Attributes The deferred shading buffers are computed using
OpenGL’s rasterization. They contain per-pixel geometry, mate-
rial and lighting information. All labels are stored as 16 bit float
images.

Positions are stored in camera space (Ps) while normals are stored
in camera and world space (Ns and Nw). Camera space is chosen as,
for our shading purposes, absolute world positions do not contain
more information than the former and would encourage the network
to memorize geometry. Normals are represented as unit vectors in
Cartesian coordinates. Additionally, depth (Ds = Ps,3), distance to
the focal plane (Dfocal) and a high-level parameter B correspond-
ing to the radius of the circle of confusion of the lens system are

provided to capture camera sensor-related parameters. To be able
to compute view-dependent effects, the normalized direction to the
camera (Cw) is an additional input. Material parameters (R) combine
surface and scattering properties. For surfaces, we use the set of
parameters to the Phong [Pho75] reflection model, i.e., RGB diffuse
and specular colors (denoted as Rdiff and Rspec) as well as scalar
glossiness (Rgloss). For scattering we use the model by Christensen
and Burley [CB15] which is parameterized by the length of the
mean free path for each color channel (Rscatt). Direct light (denoted
by L or Ldiff for diffuse-only) is not computed by the network but
provided as an input to it, as is the case with all corresponding
screen space shaders we are aware of. Fortunately, it can be quickly
computed at run-time and fed into the network. Specifically, we use
the Phong reflection model and shadow maps. Finally, to support
motion blur, per-pixel object motion F is encoded as a 2D polar
coordinate in each pixel, assuming that the motion during exposure
time is small enough to be approximated well by a translation. The
first component holds the direction between 0 and π (motion blur is
time-symmetric for time-symmetric shutter functions), the second
component holds the distance in that direction.

In summary, each pixel contains a high-dimensional features vec-
tor, where the dimensions are partially redundant and correlated,
e.g., normals are derivatives of positions and camera space differs
from world space only by a linear transformation. Nonetheless,
those attributes are the output of a typical deferred shading pass in a
common interactive graphics application, produced within millisec-
onds from complex geometric models. Redundant attributes come at
almost no additional cost but improve the performance of networks
for certain effects. At the same time, for some effects that do not
need certain labels, they can be manually removed to increase speed.

Appearance The reference images store per-pixel RGB appearance.
They are produced from virtual scenes using rendering. More specif-
ically, we use path tracing for AO, DO and IBL and sample multiple
lens positions or points in time for depth-of-field and motion blur,
respectively. For anti-aliasing, reference images are computed with
8× super-sampling relative to the label images. We use 64 samples
per pixel (spp) to compute the AO training and validation data and
256 samples for the remaining effects. While this means that some
Monte Carlo noise remains, compute time is better invested into
producing more individual images as demonstrated in Fig. 15. The
test sets however are rendered at higher sample counts guaranteeing
for noiseless images.

All per-object attributes which are allowed to vary at run-time
(e.g., material parameters) are sampled randomly for each train-
ing sample. For effects including depth-of-field and sub-surface
scattering we found it beneficial to texture objects by randomly as-
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signed textures from a large representative texture pool [CMK∗14]
to increase the information content with respect to the underlying
blurring operations. Automatic per-object box mapping is used to
assign UV coordinates.

We do not apply any gamma or tone mapping to our reference
images used in training. It therefore has to be applied as a post-
process after executing the network.

In practice, some effects like AO and DO do not compute final
appearance in terms of RGB radiance, but rather a quantity which
is later multiplied with albedo. We found networks that do not
emulate this obvious multiplication to be substantially more efficient
while also requiring less input data and therefore opt for a manual
multiplication. However, the networks for effects that go beyond this
simple case need to include the albedo in their input and calculations.
The result section will get back to where albedo is used in detail.
Tbl. 1 provides an overview in the column “albedo”. In a similar
vein, we have found that some effects are best trained for a single
color channel, while others need to be trained for all channels at
the same time. In the first case, the same network is executed for
all three input channels simultaneously using vector arithmetic after
training it on scalar images showing only one of the color channels.
In the second case, one network with different weights for the three
channels is run. We refer to the first case as “mono” networks, to
the latter as “RGB” networks (Tbl. 1).

4.2. Network

Our network is U-shaped, with a left and a right branch. The first
and left branch is reducing spatial resolution (down branch) and the
second and right branch is increasing it again (up branch). We refer
to the layers producing outputs of one resolution as a level. Fig. 4
shows an example of one such level. Overall, up to 6 levels with
corresponding resolutions ranging from 512×512 px to 16×16 px
are used. Further, we refer to the layers of a particular level and
branch (i.e., left or right) as a step. Each step is comprised of a
convolution and a subsequent activation layer. The convolutions
(blue in Fig. 4) have a fixed extent in the spatial domain, which is
the same for all convolutions but may vary for different effects to
compute. Furthermore, we use convolution groups with 2n groups
on level n. This means that both input and output channels of a
convolution layer are grouped into 2n same-sized blocks where
outputs from the m-th block of output channels may only use values
from the m-th block of input channels. The consecutive activation
layers (orange in Fig. 4) consist of leaky ReLUs as described by
Maas et al. [MHN13], which multiply negative values by a small
constant instead of zero.

The change in resolution between two steps on different levels is
performed by re-sampling layers. These are realized by 2×2 mean-
pooling on the down (red in Fig. 4) and by bilinear up-sampling
(green in Fig. 4) on the up branch.

The layout of this network is the same for all our effects, but
the number of kernels on each level and the number of levels vary.
All designs have in common that the number of kernels increases
by a factor of two on the down part to decrease by the same factor
again on the up part. We denote the number of kernels used on
the first level (i.e., level 0) by u0. A typical start value is u0 =

16, resulting in a 256-dimensional feature vector for every pixel
in the coarsest resolution for the frequent case of 5 levels. The
coarsest level consists of only one step, i.e., one convolution and one
activation layer, as depicted in Fig. 4. Additionally, the convolution
steps in the up-branch access the outputs of the corresponding step
of the same output resolution in the down part (gray arrow in Fig. 4).
This allows to retain fine spatial details. A typical network has about
130,000 learnable parameters i.e., weights and bias terms (Tbl. 1).
We call the CNN resulting from training on a specific input and
specific labels a Deep Shader.

Training Caffe [JSD∗14], an open-source neural network imple-
mentation, is used to implement and train our networks. To produce
the input to the first step, all input attributes are loaded from image
files and their channels are concatenated forming input vectors with
3 to 18 components per pixel. To facilitate learning of networks
of varying complexity, without the need of hyper-parameter opti-
mization, particularly of learning rates, we use an adaptive learning
rate method (ADADELTA [Zei12]) with a momentum of 0.9 which
selects the learning rate autonomously.

We use a loss function based on the structural similarity (SSIM)
index [ZGFK17] which compares two image patches in a percep-
tually motivated way, and which we found to work best for our
task (Sec. 6.3). The loss between the output of the network and the
ground truth is determined by tiling the two images into 8× 8 px
patches and combining the SSIM values computed between cor-
responding patches for each channel. SSIM ranges from −1 to 1,
higher values indicating higher similarity. Structural dissimilarity
(DSSIM) is defined as (1−SSIM)/2, and used as the final loss.

Testing The test error is computed as the average loss over our test
sets (Sec. 4.1). The resulting SSIM values are listed in Tbl. 1.

Implementation While Caffe is useful for training the network,
it is inconvenient for use inside an interactive application. Instead
of integrating Caffe into a rendering framework we implement the
forward pass of the CNN using OpenGL shaders operating on ar-
ray textures. OpenGL also enables hardware-supported up- and
down-sampling as well as to drop actual concatenation layers by
simply accessing two layered inputs instead of one when perform-
ing convolutions. In our application, the Deep Shader output can be
interactively explored as seen in the supplemental video.

5. Results

This section analyzes learned Deep Shaders for different shading ef-
fects. Tbl. 1 provides an overview of their input attributes, structural
properties and resulting SSIM achieved on test sets, together with
the time needed to execute the network using our implementation
on an NVIDIA GeForce GTX 1070 GPU. For visual comparison,
we show examples of Deep Shaders applied to new (non-training)
scenes compared to the reference implementations used to produce
the training sets in Fig. 5.

Some shading effects like IBL or DO depend on an input envi-
ronment map which is accessed globally. As our CNN structure,
however, only performs local operations we cannot expect it to han-
dle arbitrary environment maps e.g., given as an additional input
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Figure 4: Left: The big picture with one branch going down and another going up again in a U-shape. Right:. One level of our network. Boxes
represent in- and outputs of the layers, the arrows correspond to the operations performed by the respective layers. The spatial resolution is
denoted by multiples of n, the number of channels by multiples of u. The convolution groups are not emphasized for simplicity.

slice. Yet, it is possible to train networks for such shading effects
with training images computed using a specific environment map. In
this case, the network will implicitly “bake” the lighting information
into the weights it learns. We still consider this useful in the same
way as static environment maps are used in practice. Generalizing
over different environment maps by using the latter as additional
network input in a differently structured CNN remains future work.

Table 1: Structural properties of the networks for different effects,
resulting degrees of freedom, SSIM on the test set and time for
executing the network using our OpenGL implementation on 768×
512 px inputs. In case of mono networks, the time refers to the
simultaneous execution of three networks. The SSIM is always with
respect to the raw output of the network, e.g., indirect irradiance for
GI. The final image might show even better SSIM.

Effect Attributes Albedo Mono u0. Lev. Ker. Size SSIM Time

AO Ns, Ps 7 3 8 6 3 71 K .805 9 ms
GI Ns, Ps, Ldiff 3 3 16 5 3 134 K .798 28 ms
DoF Dfocal ·B, Ds, L 3 3 16 5 3 133 K .959 27 ms
MB F,L,Ds 3 3 16 5 3 133 K .937 26 ms
SSS Ps, Rscatt, L 3 3 16 5 3 133 K .905 27 ms
AA Ds, L 3 3 8 1 5 1.2 K .982 1.8 ms
Multi (see AO, DoF) 3 7 16 5 3 135 K .933 26 ms

IBL Nw, Cw, R 3 7 300 1 1 3.9 K .973 21 ms
DO Nw, Ns, Ps 7 7 16 5 3 135 K .589 26 ms
RS Ns 3 7 16 5 5 370 K .622 80 ms

Ambient Occlusion Ambient occlusion, a prototypical screen
space effect, simulates darkening in corners and creases due to
a high number of blocked light paths and is typically defined as the
percentage of directions in the hemisphere around the surface nor-
mal at a point which are not blocked within a certain distance. Our
ground truth images are computed using ray-tracing with a constant
effect range defined in world space units. In an actual application,
the AO term is multiplied with the ambient lighting term before
adding it to the image.

The CNN faithfully reproduces darkening in areas with nearby
geometry (Fig. 5), the most noticeable difference to the reference
being blurrier fine details. To evaluate how well our learned shader
performs in comparison to optimized screen space AO techniques, in
Fig. 7, we show a same-time comparison to Horizon-based Ambient
Occlusion (HBAO) [BSD08] which is an efficient technique used in

games. As our method does not have any parameters - apart from
the network structure itself - that can be tweaked, we adjust HBAO
to same computation time by choosing the same effect radius, and
using 24 sampling steps into 16 sampling directions. On the test set,
we achieve higher SSIM than HBAO which we consider remarkable
given that our method has been learned by a machine. Furthermore,
our method does not exhibit the high frequency banding artifacts
which are typical for HBAO (Fig. 7, insets on top row) and creates
less “cut off” indirect shadows where the screen space information
is insufficient (Fig. 7, bottom insets) as the CNN was trained on
unbiased data. We made AO the subject of further in-depth analysis
of alternative network designs described in Sec. 6 and seen in Fig. 13,
a) and b).

Diffuse Indirect Light A common challenge in rasterization-based
real-time rendering is indirect lighting. To simplify the problem, the
set of relevant light paths is often reduced to a single “indirect
bounce”, diffuse reflection [TL04] and restricted to a certain radius
of influence. The ground truth in our case consists of the “indirect
radiance”, i.e., the light arriving at each pixel after one interaction
with a surface in the scene. From this, the final indirect component
can be computed by multiplying with the diffuse color. We com-
pute our ground truth images in screen space. The position of the
light source is sampled uniformly at random per image. As we are
assuming diffuse reflections, the direct light input to the network
is computed using only the diffuse reflectance of the material. In
the absence of advanced effects like fluorescence or dispersion, the
light transport in different color channels is independent from each
other. We therefore apply a monochromatic network. The network
successfully learns to brighten areas in shadow applying the color
of nearby lit objects (Fig. 5).

In Fig. 8 (top) we perform a same-time comparison in the same
way as for HBAO above. The screen space competitor is SSGI by
Ritschel et al. [RGS09] which achieves comparable speed when
using a 12×12 px sampling pattern but loses out on achieved SSIM
on the test set. This is not surprising as SSIM, as well as human
observers, are sensitive to the MC noise it produces while Deep
Shading generates smooth outputs.

Depth-of-field As a simple rasterization pass can only simulate a
pinhole camera, the appearance of a shallow depth-of-field (DoF)
has to be faked by post-processing when multiple rendering passes
are too costly. In interactive applications, this is typically done by
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Figure 5: Results of different Deep Shaders as discussed in Sec. 5. ‘Original” shows the scenes without the respective effects. The supplemental
material contains the images in higher resolution with corresponding input attributes.
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Figure 6: Frames from animated sequences. See the supplemental
for the corresponding video sequences and more effects.
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Figure 7: In a same-time comparison, Deep Shading for AO is on-
par with state-of-the-art methods like HBAO, both numerically and
visually. The given SSIM values are w.r.t. the full AO test set.

adaptive blurring of the sharp pinhole-camera image. We learn our
own depth-of-field blur from sample data which we generate in an
unbiased way, by averaging renderings from multiple positions on
the virtual camera lens. The amount of blurriness depends on the
distance of each point to the focal plane as well as on the circle of
confusion. Both parameters are sampled randomly during data gener-
ation and then multiplied (Ds ·B) to form a single blurriness attribute
which is fed to the network and permits direct manipulation of the
DoF shallowness at run-time. To allow for depth order-dependent
behavior of the shader, we also provide plain image depth. The Deep
Shader again is trained independently for each channel, assuming a
non-dispersive lens. The trained network blurs things in increasing
distance from the focal plane by increasing extents. In Fig. 5, the
sunflowers appear sharper than e.g., grass in the background or the
leaves in front.

Motion Blur Motion blur is the analog to depth-of-field in the
temporal domain. Images of objects moving with respect to the
camera appear to be blurred along the motion trajectories of the
objects for non-infinitesimal exposure times. The direction and
strength of the blur depends on the speed of the object in the image
plane [MHBO12]. For training, we randomly move objects inside

Di
re

cti
on

al
 o

cc
l.

In
di

re
ct

 li
gh

t

Deep Shading[Ritschel et al. 2009] Reference

SSIM .798, 28 msSSIM .478, 28ms 794 ms

SSIM .589, 26 msSSIM .098, 26ms 12.8 s

Figure 8: Same-time comparisons for GI and DO, comparing with
the method of Ritschel et al. [RGS09]. The SSIM values are w.r.t.
the full test sets.

the scene for random distances. Motions are restricted to those which
are parallel to the image plane, so that the motion can be encoded
by an angle and magnitude alone. We also provide the Deep Shader
with a depth image to allow it to account for occlusion relations
between different objects correctly, if possible. Our Deep Shader
performs motion blur in a convincing way that manages to convey a
sense of movement and comes close to the reference image (Fig. 5).

Sub-surface Scattering Simulating the scattering of light inside
an object is crucial for achieving realistic appearance for translu-
cent materials like wax and skin. A popular approximation to this
is screen space sub-surface scattering (SSSS) [JSG09] which es-
sentially applies a spatially-varying blurring kernel to the different
color channels of the image. We produce training data at every pixel
by iterating over all other pixels and applying Pixar’s scattering
profile [CB15] depending on the distance between the 3D position
at the two pixels. After training the Deep Shader independently
for all RGB channels on randomly textured training images with
random parameters to the blurring profile we achieve images which
transport the same sense of translucency as the reference method.

Anti-aliasing While aliasing on textures can be reduced by ap-
plying proper pre-filtering, this is not possible for sharp features
produced by the geometry of a scene itself. Classic approaches com-
pute several samples of radiance per pixel which typically comes
with a linear increase in computation time. This is why state-of-the-
art applications like computer games offer simple post-processing
filters like fast approximate anti-aliasing (FXAA) [Lot11] as an
alternative, which operate on the original image and auxiliary infor-
mation such as depth values. We let our network learn such a filter
on its own, independently for each channel. Applying our network
to an aliased image (Fig. 5) replaces jagged edges by smooth ones.
While it cannot be expected to reach the same performance as the
8× multi-sample anti-aliasing (MSAA) we use for our reference,
which can draw from orders of magnitude of additional information,
the post-processed image shows fewer disturbing artifacts. At the
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same time, the network learns to not over-blur interior texture areas
that are properly sampled, but only blurs along depth discontinuities.

Image-based Lighting In image-based lighting a scene is shaded
by sampling directions in an environment map to determine in-
coming radiance, assuming the latter is unblocked. The network
is trained to render IBL based on diffuse and specular colors as
well as gloss strengths using the Phong shading model which also
depends on the surface normal and camera direction. As a special
case, for IBL we also apply grouped convolution using three groups
on the final convolution layer, effectively using one group per color
channel. In an application, the IBL is typically added to shading
from a small number of main light sources. As can be seen from
the vehicles in Fig. 5, the network handles different material colors
and levels of glossiness. The two main limitations are a slight color
shift compared to the reference, as seen e.g., in the shadowed areas
of the bikes’ tires, and an upper bound on the level of glossiness.
The latter is not surprising as the extreme here is a perfect mirror
which would need a complete encoding of the illumination used in
training, which has a resolution of several megapixels, into a few
hundred network kernels.

Directional Occlusion Directional occlusion [RGS09] is a gener-
alization of AO where sample directions are associated with radi-
ance samples from an environment map and light from unblocked
directions is accumulated. DO is applied by using it directly as
ambient lighting term. As for AO, ray-tracing is used to resolve
occluded directions within a fixed world-space radius. While the
related AO works well, DO is more challenging for Deep Shading.
The increased difficulty comes from indirect shadows now having
different colors and appearing only for certain occlusion directions.
As can be seen in Fig. 5, the color of the light from the environment
map and the color of shadows match the reference but occlusion is
weakened in several places. This is due to the fact that the indirect
shadows resulting from DO induce much higher frequencies than un-
shadowed illumination or the indirect shadows in AO, which assume
a constant white illumination from all directions, and are harder to
encode in a network. Despite these shortcomings, Deep Shading
performs better than the original screen space DO (SSDO) [RGS09]
given the same time-budget as seen in the bottom row of Fig. 8.
Even for the 10×10 samples per pixel used, SSDO has problems
handling high-frequencies in the environment map.

Multi Shading Finally, we learn a Deep Shader that combines
several shading effects at once and computes a scene shaded with
ambient occlusion to produce soft shadows and additional shal-
low depth-of-field. The network uses the union of attributes of the
AO and DoF networks simultaneously. Note, that this single Deep
Shader realizes both effects together in a single network. Unlike
the AO network, the network output is not multiplied with the re-
maining shading but already applied by the CNN itself as the DoF
component cannot be decoupled. An image generated using the
network (Fig. 5) exhibits both effects present in the training data.
Shallow depth-of-field is added and corners are darkened, as can be
seen particularly well when applying the network to a fully white
radiance input (cf. insets).

Real Shading As an addition, we demonstrate that Deep Shaders
can not only be trained from renderings but also from actual pho-
tographs. In a prototypical experiment, we captured 12,000 samples
of RGB and depth images of a scene of neutrally colored objects
in a characteristically lit environment (Fig. 9, left) using a standard
RGBD camera (Creative Senz3D) by fixing the position of the cam-
era while moving and rearranging different objects in front of it. The
main light sources are distant enough to create an almost directional
direct lighting environment, where incident lighting only depends
on the normal in camera space, which is at the same time interacting
with visibility changes due to occlusions by nearby geometry and
global illumination effects in general. Using the known camera in-
trinsics, we derive camera positions from the captured depth values
which are in turn used to determine camera space normals. After
registering normal and RGB data, we train a network to map the
former to the latter.

Images generated by the network for real and rendered depth
data (Fig. 9, middle) reproduce the lighting environment with red or
bluish tints depending on the objects’ normals and including AO-like
darkening in corners and creases, even for geometry very different
to the training data. The main limitation is due to the precision of
our depth camera which cannot capture fine details in the geometry.
Consequently, geometry details below a certain scale are ignored
by the network which is apparent when comparing its output on
training depth images to ground truth (Fig. 9).

In the two rightmost columns of Fig. 9, we compare our method
to the probably closest CNN-based application, the style transfer
approach by Gatys et al. [GEB15] which differs in its objective in
that its input consists of an RGB image without auxiliary geometric
information. While style transfer tries to change hues and structures
to match the example, it becomes evident that a reproduction of light
transport aspects, like shadows or bounces, really needs additional
attributes such as surface normals.

We believe that more detailed shading could be learned using im-
proved depth sensors and that an extension to proper world normals,
e.g., by mounting the camera on a gonioreflectometer, or even to
other varying attributes like albedo, is only a matter of acquisition.

Animations For applying the AO and GI Deep Shaders to dynamic
scenes, we found it beneficial to increase temporal coherence by
warping CNN outputs from a small number of previous frames to the
current view and blending them with the current result [SYM∗12].
Please see the supplemental video for scenes with moving cameras
and moving or deforming objects. Fig. 6 shows several sample
frames for fully dynamic scenes.

6. Analysis

In the first part of this section, we address some shortcomings in the
form of typical artifacts produced by our method and also discuss
how the network reacts when applying it to new resolutions and
attributes rendered with a different field-of-view value. The remain-
der of the section explores some of the countless alternative ways
to apply CNNs, and machine learning in general, to the problem
of screen space shading. We cover different choices of actual net-
work structure (Sec. 6.2), loss function (Sec. 6.3) and training data
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Figure 9: Deep Shading learnt from RGBD video that captures screen space normals (top) and appearance (bottom). Deep Shading can
learn the correlation including directional light, occlusion and bounces and transfer it to novel synthetic or captured normal images (4th and
5th column). This performs better than established deep-learning based style transfer [GEB15] from RGB to RGB images (last column).

anatomy (Sec. 6.4) as well two techniques competing with deep
CNNs, namely multi-layer perceptrons (MLPs) and random forest
(RFs) (Sec. 6.5).

6.1. Visual Analysis
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a) b) c) d) e)

Figure 10: Typical artifacts of our approach: a): Blur. b): Color
shift. c): Ringing. d): Background darkening. e): Attribute disconti-
nuities.

Typical Artifacts Light transport can become highly complex and
the mapping from screen space attributes to shading is inherently
ambiguous due to partial information, hence we cannot expect a
CNN to act correctly for every given input. Even what looks plausi-
ble in a static image may start to look painterly or surrealistic when
seen in motion: patterns resembling correct shading emerge but
being inconsistent with the laws of optics and with each other. We
show exemplary artifacts in Fig. 10. Capturing high frequencies is a
key challenge for Deep Shaders (Fig. 10, a). If the network does not
have enough capacity or was not trained enough the results might
over-blur with respect to the reference. We consider this a graceful
degradation compared to typical artifacts of man-made shaders such
as ringing or Monte Carlo (MC) noise (Fig. 7) which are highly
unstable over time and unnatural with respect to natural image statis-
tics. Sometimes, networks trained on RGB tend to produce color
shifts (Fig. 10, b) which can typically be weakened by increasing
the number of features. CNN-learned filters may also introduce
high frequencies resembling ringing due to false-positive neuron

activations resulting from overfitting (Fig. 10, c). Sometimes effects
propagate into the wrong direction in world space, e.g., geometry
may cast occlusions on things behind it (Fig. 10, d). At attribute dis-
continuities, the SSIM loss lacking an inter-channel prior sometimes
fails to prevent color ringing (Fig. 10, e).

Range of Values While many attributes used as an input to Deep
Shaders are limited to a certain range e.g., normals, others are the-
oretically unbounded and a CNN might react unexpectedly when
confronted with values far outside the training range. We tackle
this by, first, choosing particularly large ranges of possible values
during training and second, if necessary, scaling inputs on which
light transport depends linearly (e.g., the unblurred input to DoF) in
a linear way before feeding them to the network and undoing this
transformation afterwards.

Effect Radius Typically, screen space shading is faded out based on
a distance term and only accounts for a limited spatial neighborhood.
As we train in one resolution but later apply the same trained network
also to different resolutions, the effective size of the neighborhood
changes. As a solution, when applying the network at a resolution
which is larger by factor of N compared to the training resolution, we
also scale the effect radius accordingly, dividing it by N. While the
effect radius is not an input to the network but fixed in the training
data, it can still be adjusted at test time by scaling the attributes
determining the spatial scale of the effect, e.g., of the camera space
positions in the case of AO, DO or GI, or of the distance to the focal
plane in the case of DoF. To conclude, effect radius and resolution
can be changed at virtually no additional cost (per pixel) without
re-training the network.

Internal Camera Parameters As we compute our training data
using a fixed FOV (50◦), it is not clear how the trained networks
perform on framebuffers rendered using a different FOV. Fig. 12
investigates the influence of a FOV mismatch on image quality. To
keep the image content as similar as possible while changing FOV,
we performed a dolly-zoom. Judging from the minimal fluctuation
of the error, the network is absolutely robust to FOV mismatches.
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Figure 12: Effect of FOV on image quality. The horizontal axis is
FOV in degrees. The central line is the reference of 50◦. The vertical
axis is DSSIM error w.r.t. the ray-traced reference. Note that the
vertical axis spans only a small difference (.106 to .112), indicating
FOV has no large impact on visual quality.

6.2. Network Structure

To better understand how the structural parameters of our CNN
architecture control its expressiveness and computational demand,
we investigate two modes of variation: varying spatial extent of
the kernels as well as the number of kernels on the first level u0,
which also determines the number of kernels for the remaining levels
(Sec. 4.2). We seek the smallest network with adequate learning
capacity, that generalizes well on previously unseen data. The results
are summarized in Fig. 13, a, b) for the example of AO.

Spatial Kernel Size Fig. 13, (a) (green and yellow lines) shows the
evolution of training, validation and test error with an increasing
number of training iterations, with the number of kernels fixed to a
medium value of u0 = 8 and varying the spatial extent of the kernels.
We see that with a kernel size of 5×5, the training profile slightly
lags behind that for kernel size of 3×3, but both approach a similar
test loss at 100k iterations, i.e., networks have sufficient capacity

to approximate the mapping, with neither beginning to overfit. We
observe a similar relative timing relationship between the pairs of
networks with u0 = 4 and u0 = 16. As, regarding running time, the
one with a kernel size of 3× 3 is about twice as fast as the one
with 5×5 we opt for the former. Regarding memory consumption,
different spatial kernel sizes have only a small impact as the memory
needed to store convolution parameters is insignificant compared to
the memory usage of the intermediate representations.

Initial Number of Kernels The orthogonal mode of variation is
u0, the number of kernels on the first level, also influencing the
kernel counts of subsequent layers which are expressed as multiples
of u0. Again, we plot the training, validation and test errors, this
time for different u0 (Fig. 13, a, green and blue lines, yellow and
purple lines). Reducing the number to u0 = 4 clearly leads to a loss
of expressiveness as can be seen from both the training and test
loss. Further, nets with u0 = 16 perform only slightly better than
those with u0 = 8 (Fig. 13, b,) while losing out in compute time by
more than a factor of 6. This is in part due to increased memory
consumption, in particular for the intermediate representations.

Structural Choices for Other Effects We perform an analogous
analysis for other effects. We start off with spatial extents of 3×3
and 5× 5, with u0 = 8, and proceed to increase or decrease u0 in
accordance with over-fit / underfit characteristics exhibited by the the
train-test error curves. Tbl. 1 indicates the final choices of network
structure. Additionally, the corresponding train-test error curves are
shown in Fig. 13, (c), with their test loss-vs.-speed characteristics
captured in Fig. 13, (d).

The number of iterations shown in Fig. 13, (a) and (c), though
sufficient to make decisions about the structural parameters, still
leave the network with scope to learn more (indicated by negative
slopes of the train-test curves). We therefore resumed training for
the respective optimal choices of u0 = 8 for about 400k additional
iterations until the losses settled completely.

It is worth noting that, while the training errors we measured
are smaller than the respective validation errors as expected, in
some cases we measured smaller test than training errors (e.g.,
Fig. 13, a). This is possible because we use disjoint sets of scenes
for training and validation on one hand and testing on the other
hand, i.e., the scenes used for testing might be “easier” to tackle
for the network. For example, they might contain less cases where
the deferred shading inputs to the network are insufficient to derive
ground truth results because of lacking information about occluded
geometry.

6.3. Choice of Loss Function

The choice of loss function in the optimization has a significant
impact on how Deep Shading will be perceived by a human observer.
We trained the same network structure using the common L1 and
L2 losses as well as the perceptual SSIM metric and also using
combinations of the three. Fig. 14 shows a visual comparison of
results produced by the respective nets. We found L1 and L2 to be
prone to producing halos instead of fading effects out smoothly as
can be seen in the first two columns. The combination of L2 with
SSIM also exhibits these kind of artifacts to a lesser extent. SSIM
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Figure 14: Outputs produced by the same network trained with
different loss functions for the case of AO.

and SSIM + L1 both produce visually pleasing results with pure
SSIM being more faithful to the amount of contrast found in the
reference images.

6.4. Training Data Trade-offs

Ideally, a training set consists of a vast collection of images with no
imperfections from Monte Carlo noise and showing a large number
of different scenes. Yet, in practice, the time budget to produce
training data is typically limited and the question how to spend this
time best arises. In this section, we investigate different trade-offs.

Amount of Noise vs. Image Set Size The time spent to generate
a training set is roughly linear in both, the number of MC samples
taken per pixel and the number of individual images rendered (before
data augmentation), e.g., we can render twice as many images if we
only use half as many samples per pixel. To investigate to which
extent noise in the training data affects the quality of the trained
network and to find out which trade-off between the number of
samples and individual views should be taken, we performed a
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Figure 15: Left: Data points correspond to the same time budget to
produce training data but using different numbers of samples per
pixel. The resulting number of individual views per scene (before
data augmentation) is given for each point. Right: AO produced by
the corresponding trained networks.

same-time comparison using AO as an example. As can be seen
from Fig. 15, a larger number of views per scene is typically more
desirable than noiseless images. Only for very low sample counts
leading to excessive noise (around 16 spp in the case of AO), the
variance in the individual images begins to hinder proper training of
a network.

Scene Diversity Another factor that has influence on the quality of
the trained Deep Shaders is the diversity of scenes in the training
set, e.g., a CNN that has only seen round objects during training
will fail to correctly re-produce its effect for square objects. In our
training sets, we use 1000 views from each of 10 different scenes
as our starting points (cf. Sec. 6.4). To see how well CNNs perform
for less diverse data we produced DO training sets of the same total
size but for a lower number of different scenes. DO was chosen
as we observed it to be particularly sensitive to the scene diversity.
The resulting DSSIM values for (the same) test set are plotted in
Fig. 16, left. While the error for five scenes compared to a single
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Figure 16: Left: Data points correspond to the same time budget
to produce training data but with different trade-offs regarding the
scene count. Right: Patches from a test scene.

one is 5% smaller, increasing the number further to 10 scenes leads
to only a smaller advantage of about another 1% which indicates
that our scene set is of acceptable diversity. In the case of DO, the
difference in the loss visually translates to a more correct placement
of darkening. A network trained with only one scene tends to create
“phantom occlusions” in free spaces (Fig. 16, right).

6.5. Comparison With Other Regression Techniques
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Figure 17: AO computed using random forests, shallow MLPs and
Deep Shading. The vertical axis is image error (DSSIM) on a linear
scale. The horizontal axis is compute time for 256×256 px images
on a logarithmic scale. n indicates the number of trees.

Besides deep CNNs, competing approaches such as shallow mul-
tilayer perceptrons (MLPs) and random forests (RFs) [CS13] could
supposedly be used for our objective, having found use in other im-
age synthesis tasks such as estimation of filter parameters [KBS15]
or relighting [RWG∗13, RDL∗15]. To investigate these alternatives,
we perform a comparison, training our Deep Shader, MLPs, and
RFs to produce AO for 256×256 px deferred shading buffers. As
for MLPs and RFs direct regression on the full buffers would be
prohibitively expensive, we train the former on patches of 11×11
and 21×21 px and the latter on patches of 21×21 px, to predict
AO for the central pixel. To compute AO in high resolution later on,
they are swept across the whole input buffers. The MLPs consist of
2 hidden layers with 50 nodes each while the RFs are split across
four cores and have a minimum of five samples per leaf.

As SSIM can only be computed on patches but MLPs and RFs

have to be restricted to single pixels in training due to their com-
putational demand, we resort to training both methods as well as
our CNN using L2 loss for this comparison. We still evaluate all
approaches using SSIM. For MLPs, we measure their execution
time using the same OpenGL implementation as used for our CNNs
while we employ scikit-learn [PVG∗11] on a regular workstation
for the RFs. Fig. 17, shows the relative speed and quality of MLPs
and RFs compared to Deep Shading. Pixel-wise predictions with
RFs clearly lose out on both visual quality and run time. RF run
times increase linearly with the number of trees, more of which are
necessary to construct a better ensemble. Even with more readily
parallelizable variants of RFs [BZM07], there would have to be a
run time improvement of more than two orders of magnitude to be
comparable to a Deep Shader. For the MLPs, we actually observe a
degradation of image quality with increasing patch size: as the num-
ber of parameters increases quadratically with the diameter of the
filter, the resulting MLP becomes prone to overfitting. Only far more
training data and training iterations could mitigate this problem.

In conclusion, deep CNNs have an edge over competing ap-
proaches for our setting as they allow for large receptive fields
through stacked (smaller) convolutions and downsampling, without
an exponential increase in parameter count, while leveraging the
expressiveness of deep representations [Has86].

7. Conclusion

We have leveraged deep learning to turn attributes of virtual scenes
into appearance, showing that CNNs can model any screen space
effect as well as combinations of them at competitive quality and
speed. This is a first proof that full image synthesis can be learned
from data without human intervention and programming effort.

Our limitations are as for common screen space techniques,
namely missing shading from objects not contained in the image due
to occlusion, clipping or culling. But we also inherit its benefits such
as handling of large, dynamic scenes in an output-sensitive man-
ner. In future refinements, Deep Shaders could even learn to fill-in
more missing information than they already do, e.g., for AO (Fig. 7)
where the network seems to complete geometry configurations in a
natural way. Different scene representations, e.g., surfels or patches,
could help achieving this. Some shading effects are due to complex
relations between screen space attributes. Not all configurations
are resolved correctly by networks with limited capacity, such as
ours which run at interactive rates. We however observe that typical
artifacts are less salient than from human-designed shaders which
suffer from ringing or MC noise (Fig. 7). Instead, CNNs reproduce
patterns encountered during training which are inherently natural as
they have been computed using traditional light transport methods
and appear visually plausible. A perceptual study could verify this.
Temporal coherence can be addressed in the same way as for classic
screen space shading by temporal integration, resulting in mostly
coherent behavior as seen in the supplemental video.

We have demonstrated that Deep Shading can achieve better
approximations than common methods in the case of AO given the
same time budget (Fig. 7). We hope that even more diverse training
data, advances in learning methods, and new types of representations
or losses will allow surpassing human-programmed shaders for more
effects in a not-so-distant future.
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