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Abstract
Spekkens’ toymodel is a non-contextual hidden variablemodel with an epistemic restriction, a
constraint onwhat an observer can know about reality. The aimof themodel, developed for
continuous and discrete prime degrees of freedom, is to advocate the epistemic view of quantum
theory, where quantum states are states of incomplete knowledge about a deeper underlying reality.
Many aspects of quantummechanics and protocols fromquantum information can be reproduced in
themodel. In spite of its significance, a number of aspects of Spekkens’model remained incomplete.
Formal rules for the update of states aftermeasurement had not beenwritten down, and the theory
had only been constructed for prime-dimensional and infinite dimensional systems. In this work, we
remedy this, by derivingmeasurement update rules and extending the framework to derivemodels in
all dimensions, both prime and non-prime. Stabiliser quantummechanics (SQM) is a sub-theory of
quantummechanics with restricted states, transformations andmeasurements. First derived for the
purpose of constructing error correcting codes, it nowplays a role inmany areas of quantum
information theory. Previously, it had been shown that Spekkens’model was operationally equivalent
to SQM in the case of odd prime dimensions. Here, exploiting known results onWigner functions, we
extend this to show that Spekkens’model is equivalent to SQM in all odd dimensions, prime and non-
prime. This equivalence provides new technical tools for the study of technically difficult compound-
dimensional SQM.

1. Introduction

A long tradition of research, starting from the famous ‘EPR paper’ [1], has consisted of analysing quantum
theory in terms of hidden variablemodels, with the aimof obtaining amore intuitive understanding of it. This
has led to some crucial results in foundation of quantummechanics, namely Bell’s andKochen–Specker’s no-go
theorems [2, 3]. Nowadays a big question is whether to interpret the quantum state according to the ontic view,
i.e. where it completely describes reality, or to the epistemic view, where it is a state of incomplete knowledge of a
deeper underlying reality which can be described by the hidden variables. In 2005, Robert Spekkens [4]
constructed a non-contextual hidden variablemodel to support the epistemic view of quantummechanics. The
aimof themodel was to replace quantummechanics by a hidden variable theory with the addition of an
epistemic restriction (i.e. a restriction onwhat an observer can know about reality). Thefirst version of the
model [4]was developed in analogywith quantumbits (qubits), with 2-outcome observables. Despite the
simplicity of themodel, it was able to supportmany phenomena and protocols that were believed to be
intrinsically quantummechanical (such as dense coding and teleportation). Spekkens’ toymodel has influenced
much research over the years: e.g. people provided a newnotation for it [25], studied it from the categorical point
of view [26], used it for quantumprotocols [27], exploited similar ideas tofind a classicalmodel of one qubit
[28], and tried to extend it in a contextual framework [29]. Also Spekkens’ toymodel addressesmany key issues
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in quantum foundations: whether the quantum state describes reality or not,finding a derivation of quantum
theory from intuitive physical principles and classifying the inherent non-classical features.

A later version of themodel [5], whichwewill call Spekkens’ theory (ST), introduced amore general and
mathematically rigorous formulation, extending the theory to systems of discrete prime dimension, where
dimension refers to themaximumnumber of distinguishablemeasurement outcomes of observables in the
theory, and continuous variable systems. Spekkens called these classical statistical theories with epistemic
restrictions as epistricted statistical theories. By considering a particular epistemic restriction that refers to the
symplectic structure of the underlying classical theory, the classical complementarity principle, theories with a rich
structure can be derived.Many features of quantummechanics are reproduced there, such asHeisenberg
uncertainty principle, andmany protocols introduced in the context of quantum information, such as
teleportation.However, as an intrinsically non-contextual theory, it cannot reproduce quantum contextuality
(and the related Bell non-locality), which, therefore arises as the signature of quantumness. Indeed, for odd
prime dimensions and for continuous variables, STwas shown to be operationally equivalent to sub-theories of
quantummechanics, which Spekkens called quadrature quantummechanics.

In thefinite dimensional case quadrature quantummechanics is better known as stabiliser quantum
mechanics (SQM). The latter is a sub-theory of quantummechanics developed for the description and study of
quantum error correcting codes [6], but subsequently playing a prominent role inmany important quantum
protocols. In particular,many studies of quantum contextuality can be expressed in the framework of SQM,
including theGHZparadox [8] and the Peres–Mermin square [9, 10]. This exposes a striking difference between
odd and even dimensional SQM. Even-dimensional SQMcontains classical examples of quantum contextuality
while odd-dimensional SQMexhibits no contextuality at all, necessary for its equivalence with ST.While
developed for qubits, SQMwas rapidly generalised to systems of arbitrary dimension [6]. However, for non-
prime dimensions SQMremains poorly characterised and little studied (recent progress in this was recently
reported in [12]).

Quasiprobability representations, such as theWigner function, have been an important tool for the
description of quantum systems formany years [24]. Recently, negative quasi probability representations and
contextuality have been shown to have an important resource character in quantum computation [13–16,
17–22]. In particular in certain fault tolerant quantum computation schemes, SQMplays a central role as both
the set of operations that can be directly fault tolerantly realised, and the part of the computationwhich is
efficiently simulable by a classical computer [7]. Such computation can be then boosted to quantumuniversality
by ‘injecting’ a resource state, known as amagic state [11]. In the case of odd prime dimensions, Howard et al
[13] showed that the contextuality of the injected state is necessary for reaching universal quantum
computation.Other similar results have been found in the case of qubits, at the cost of considering smaller
subtheories than SQM for the classically simulatable non-contextual part of the computation [14–16]. The
operational equivalence between SQMand ST in odd dimensions suggests to study the possible role of ST in this
researchfield, thus also accomplishing the task of characterising its computational power.

In spite of the importance of Spekkens’ theory, there remain some important aspects of it which have not yet
been characterised and studied. First, all prior work on ST have only considered systemswhere the dimension is
prime. Furthermore, while Spekkens’ recent work strengthens themathematical foundations of themodel [5],
one key part of the theory has not yet been described in a general and rigorous way. These are themeasurement
update rules, the rules which tell us how to update a state after ameasurement has beenmade. In prior work,
these rules, and the principles behind themhave been described but not formalised.

In this paper, we complete this step, deriving a formal description of themeasurement rules for prime-
dimensional ST.Having done so, we nowhave a fully formal description of themodel, which can be used as a
basis to generalise it.We do so, generalising the framework fromprime-dimensions to arbitrary dimensions and
finding that it is themeasurement update rule, where the richer properties of the non-prime dimension can be
seen, which provides the key to this generalisation.

Having developed ST for allfinite dimensions, we then focus on the general odd-dimensional case, and
prove that in all odd-dimensional cases Spekkens’ theory is equivalent to SQM.The bridge between SQMand ST
is given byGross’ theory (GT) of discreteWigner functions [23]. Unlikemost other studies, Gross’ treatment
considered both prime and non-prime cases in its original formulation.

To summarise the contributions of this paper, we provide a compete formulation of ST in all discrete
dimensions, even and odd, endowedwith the updating rules for sharpmeasurements both for prime andnon-
prime dimensional systems.We extend the equivalence between ST and SQMviaGross’Wigner functions to all
odd dimensions, andfind themeasurement updating rules also for theWigner functions. The above equivalence
allows us to shed light onto a complete characterisation of SQM in non-prime dimensions. Finally the incredibly
elegant analogy between the three theories in odd dimensions: ST, SQMandGT, is depicted in terms of their
updating rules.

2
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The remainder of the paper is structured as follows. In section 1we precisely and concisely describe the
original framework of ST, in particular we define ontic and epistemic states, observables and the rule to obtain
the outcome of themeasurement of an observable given a state. In sections 2 and 3we state and prove the
updating rules in ST respectively for prime and non-prime dimensional systems.We prove these in two steps:
first considering the case inwhich the state andmeasurement commute, and then themore general (non-
commuting) case. Themathematical difference between the set of integersmodulo d, for d prime and non-
prime, results in having two levels of observables: the fundamental ones—thefine graining observables—and
the ones that encode some degeneracy—the coarse-graining observables. The latter are problematic and are only
present in the non-prime case. This is the reasonwhywe need a different formulation in the two cases. The
updating rules for the coarse graining observables will need a step inwhich the coarse-graining observables are
written in terms offine graining ones. In section 4we state the equivalence of ST and SQMviaGross’Wigner
functions in all odd dimensions.We also express the already found updating rules in terms ofWigner functions
andwe use them to depict the elegant analogies between these three theories. The paper endswith a discussion of
the possible applications of our achievements andwith a summary of themain results.

2. Spekkens’ theory

We start by reviewing and introducing ST for prime-dimensional systems.We take a slightly different approach
to [4, 5]. ST is a hidden variable theory, where the hidden variables are points in a phase space. The state of the
hidden variables is called the ontic state. In Spekkens’model the ontic state is hidden and can never be knownby
an experimenter. The experimenter’s best description of the system is the epistemic state, representing a
probability distribution over the points in phase space.

For a single d-dimensional system, a phase space can be defined via the values of two conjugatefiducial
variables, whichwe labelX andP, in analogy to position andmomentum.X andP can each take any value
between 0 and -d 1, and a single ontic state of the system is specified by a pair (x, p), where x is the value ofX
and p is the value ofP. This phase space is equivalent to the space d

2. Infigure 1 three examples of epistemic
states of one trit (d = 3) are depicted, whereX andP are represented by the columns and rows in the phase
space  .3

A collection of n systems is described by n pairs of independent conjugate variablesXj andPj, with
Î ¼ -j n0, , 1 a label indexing the systems. The phase space, denoted byΩ, is simply the cartesian product of

single systemphases spaces and thus W º ( )d
n2 1.

The ontic state of the n-party system represents a set of values for eachfiducial observablesXj and Pj. In other
words, an ontic state is denoted by a point in the phase space l Î W.WecallXj andPj observables because they
correspond tomeasurable quantities, and assume that these observables are sufficient to uniquely define the
ontic state.We can refer toΩ as a vector space where the ontic states are vectors (bold characters)whose
components (small letters) are the values of thefiducial variables:

l = ¼ - -( ) ( )x p x p x p, , , , , , . 1n n0 0 1 1 1 1

Not only are the fiducial variables important for defining the state space, they also generate the set of all
general observables in the theory. A generic observable, denoted byS, is defined by any linear combination of
fiducial variables:

åS = +( ) ( )a X b P , 2
m

m m m m

where Îa b,m m d and Î ¼ -m n0, , 1.The observables inhabit the dual space *W , which is isomorphic toΩ
itself. Therefore we can define them as vectors, in analogywith ontic states,

S = ¼ - -( ) ( )a b a b a b, , , , , , . 3n n0 0 1 1 1 1

The formalismprovides a simpleway of evaluating the outcomeσ of any observablemeasurementΣ given the
ontic state l, i.e. by computing their inner product:

ås l= S = +( ) ( )a x b p , 4T

j
j j j j

where all the arithmetic is over  .d

ST gains its special properties, and in particular, its close analogywith SQMvia the imposition of an epistemic
restriction, a restriction onwhat an observer can know about the ontic state of a system. The observer’s best
description is called the epistemic state, which is represented by a probability distribution l( )p overΩ (figure 1).

1
The dimension d is any positive number, andwewill not, in general, restrict it to odd or even, prime or non-prime, unless specified.

3
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The epistemic restriction of ST is called classical complementarity principle and it states that two observables
can be simultaneouslymeasured onlywhen their Poisson bracket is zero. This ismotivated by SQM, since it
captures the condition for two observables in SQM to commute.We shall adopt the quantum terminology here,
and say that if the Poisson bracket between two observables is zero they commute. This can be simply recast in
terms of the symplectic inner product:

S S S Sá ñ º = ( )J, 0, 5T
1 2 1 2

where =
-=

⎡
⎣⎢

⎤
⎦⎥⨁J 0 1

1 0j
n

j
1 is the symplecticmatrix. Note that each observableSj partitionsΩ into d subsets,

each of the form S +^( { }) wspan ,j wherew is any ontic state such that sS =· w .T
jj

Let us now consider sets of variables that can be jointly known by the observer. Such variables commute, and
represent a sub-space ofΩ known as an isotropic subspace.We denote the subspace of the known variables as
= S ¼ S Í W{ }V span , , ,n1 whereSi denotes one of the generators (commuting observables) ofV.
Sets of known commuting variables are important as these define the epistemic states within the theory. In

particular, we can define an epistemic state by the set of variablesV that are knownby the observer and also the
values s s¼, , n1 that these variables take.

Thismeans that sS =· w ,j
T

j where Îw V is an ontic state that evaluates the knownobservables.Wewill
callw a representative ontic state for the epistemic state.More precisely we can state the following theorem.

Proposition 1.The set of ontic states consistent with the epistemic state described by ( )V w, is

+^ ( )V w, 6

where the perpendicular complement ofV is, by definition, = Î W = " Î^ { ∣ }V a b Va b 0 .T

Proof. Let us start by considering the set of ontic statesλ such that lS = " j0 .j
T By definition of perpendicular

complements, the ontic statesλ belong to ^V . If we consider an ontic statew such that sS =w ,j
T

j then

l sS + =( )w .j
T

j Therefore the ontic states consistent with the epistemic state associated to ( )V w, are the ones

of the kind l + w, i.e. the ones belonging to +^V w. ,

Note that the presence of ¹w 0 simply implies a translation, that is whywe can also call it shift vector.

Figure 1.One trit Spekkens states examples. In the figures abovewe consider the case of one trit andwefind the isotropic subspacesV
and ^V and the corresponding Spekkens epistemic state. In these cases the observables(linear functionals) are always of the form

+ =aX bP 0, where Îa b, .3 Moreover in the above examples we assume =w 0. In figure 1(a) the observer only knowsX= 0 and
this implies that the generator ofV isS = ( )1, 0 .The subspace ^V can be simply calculated fromV by definition. In figure 1(b) the
observer only knows that + =X P 0 and this implies the generator ofV to beS = ( )1, 1 . Infigure 1(c)nothing is known. The
subspaceV is generated byS = ( )0, 0 only.Here ^V coincides with thewhole phase space W.Note that it is not possible to have

=^ ( )V 0, 0 , because this would correspond to have the knowledge of the ontic state.

4
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By assumption the probability distribution associated to the epistemic state ( )V w, is uniform (indeedwe
expect all possible ontic states to be equiprobable), so the probability distribution of one of the possible ontic
states in the epistemic state ( )V w, is

l d l= +^( ) ( ) ( )( )P
d

1
, 7V n Vw w,

where the delta is equal to one only if l Î +^V w (note thismeans that the theory is a possibilistic theory). In
figure 1we specify the subspacesV and ^V in three different examples of epistemic states of one trit.

We can sumup our approach to Spekkens’model as follows:

(i) Start from the intuitive formula (4) that relates observablesSj, ontic statesλ and outcomes sj.

(ii) Epistemic restriction: the compatible observables are the oneswhose symplectic inner product is zero.

(iii) Compute the shift vector w.This allows us to shift back the set of points l to obtain a subspace.

(iv) The set of ontic states compatible with the epistemic state ( )V w, is +^V w, where V is the isotropic
subspace spanned by the observablesSj (the set of known variables).

We say that this approach is physically intuitive becausewe start with equation (4), which is physicallymotivated
and states, observables and the corresponding outcomes are defined in terms of it. Equation (4) also allows us to
see that the shift comes from the need to recover the subspace structure.

3.Updating rules—prime dimensional case

The formulation of ST in [5], made for prime (and infinite) dimensional systems and described in the previous
section, does not provide a full treatment of the transformative aspect ofmeasurements, i.e. how the epistemic
state has to be updated after ameasurement procedure. In the followingwewill provide a proper formalisation
of it, and in the next sectionwewill generalise the formalism to all dimensions, non-prime too.

The set of integersmodulo d shows different features depending on d being prime or not. In particular in the
non-prime case it is not always possible to uniquely define the inverse of a number. The consequences of this will
directly affect the updating rules. In particular the possible observables sometimes will not show full spectrum:
some outcomeswill not be possible because theywould derive from arithmetics involving numbers with not
well-defined inverses. This will divide the set of possible observables in two categories depending onwhether
they have full spectrumor not.We start from the prime casewhere problematic observables are not present
because inverses always exist.

Like in quantum theory, duality in the description of states andmeasurements characterises ST. Thismeans
thatwe can represent the elements of ameasurementΠ in an epistemic-state way, P( )V r, ,wherewe can go from
one element of themeasurement to the other by simply shifting the representative ontic vector r (see figure 2). In
ST themeasurement process corresponds to the process of learning some information (aka asking questions)
about the ontic state of the system. According to the classical complementarity principle only the observables
that are compatible (i.e. Poisson-commute)with the state of the system can be learned (jointly knowable). This
means that the state aftermeasurement will be given by the generators of themeasurement and the generators of
the state before themeasurement, which are compatible with it2. It is then fundamental to understand how
compatible sets of ontic states (the isotropic subspaces of known variablesV and their perpendicular ^V ) change
when independent observables are added and removed from the set of known variablesV.

3.1. Adding and removing generators to/fromV

(i) Let us start with the case of adding a generator S¢ to the set of generators of = S ¼ S{ }V span , , .n1 We
assume thatS¢ is linear independent with respect to the set spanned by theS .j Let us seewhat happens to
^V .The subspaceV after the addition becomes

¢ = Å S¢{ } ( )V V span . 8

By definition the direct sumof two subspaces ÅA B returns a subspace such that for each Îa A and
Îb B, the sum a+ b belongs to ÅA B.The direct sumof two subspaces is a subspace.We are interested in

the orthogonal complement of a direct sum. It is well known that Å = Ç^ ^ ^( )A B A B .Thismeans that by

2
As an abuse of languagewe here talk of generators of a statemeaning the orthogonal basis set that generates the subspace of known variables

associatedwith the state.

5
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adding a generator toV , its perpendicular ^V is given by

¢ = Ç S¢^ ^ ^( { }) ( )V V span . 9

Note that ¢̂V is smaller than ^V .

(ii) We now analyse what happens if we remove a generator, say S ,n from the set of generators of V .Thismeans
that now ¢ = S ¼ S -{ }V span , , .n1 1 The set ^V is clearly contained in ¢̂V , since any vector orthogonal to
all elements ofVmust also be orthogonal to all elements of ¢V .By definition, the set ¢̂V is composed by all
the ontic statesλ such that lS = 0j

T for all <j n, but lS ¹ 0.n
T Thismeans that we need to remove the

constraint lS = 0n
T to enlarge ^V to ¢̂V , i.e. we simply need to add the ontic states l g¢ = c to ^V ,where

Î ¹c 0d and γ is a vector such that gS = 1.n
T Indeed this implies that

l l l gS + ¢ = S + = + ¹( ) ( )c c0 0.n
T

n
T

In prime dimensions γ uniquely exists and it corresponds to S-k ,n
1 where = S Sk .n

T
n Indeed the inverse of

an integer Î ¹k 0d always uniquely exists if d is a prime number. The formula for ¢̂V then reads

¢ = + S º + = Å^ ^ -

Î

^ ^⋃( ) ⋃ ( ) ( )V V ck V w V V , 10
c

n
w V

n n
1

n n

where the addition of+wn means that thewhole set ^V is shifted by w ,n and = S{ }V span .n n The previous
trick in general works as follows. Given the ontic state l, the observableΣ and the outcomeσ associated
with them, i.e. l sS = ,T then it is possible to shift the valueσ by a constant k such thatS S = k,n

T
n by only

addingΣ itself to the ontic state:

l s sS + S = + S S = +( ) ( )k. 11T T

Note that the above identity allows us to change the value of the outcome associatedwith an ontic state by a
constant factor (that we can also choose)without affecting any commuting observable (in this caseΣ).

3.2.Measurement updating rules
Wenowwant tofind the updating rules for the state ( )V w, of a prime dimensional systemwhenwe perform a
measurement P( )V r, on it.Wewill consider PV being spanned by the generators denoted asS¢ .j The
representative ontic vector associated to themeasurement, r, is such that, by definition, sS¢ = ¢r ,j

T
j where the

s¢j are the outcomes associatedwith themeasurement. The subspace of known variablesV can bewritten in

Figure 2.Epistemic representation of ameasurement. The elements of themeasurementΠ can be represented as epistemic states. This
duality is present also in quantum theory. The elements of themeasurement P P P, ,0 1 2 can be thought as the analogue of the
projectors ñá ñá ñá{∣ ∣ ∣ ∣ ∣ ∣}0 0 , 1 1 , 2 2 .Wecan always go fromone element to the other by shifting the representative ontic vector. In the
above case we can go, for example, from P0 to P1 by adding to = ( )r 0, 0 the vector ( )1, 0 , thus getting = ( )r 1, 0 .1 The example
above shows themeasurement corresponding to asking the question ‘what is the value of the variable X?’ about the ontic state of the
system.

6
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terms of the sets generated by the generators Poisson-commuting with all theS¢ ,j V ,commute and non-commuting
ones,V .other According to this definitionVcommute will always be a subspace.We cannot state the same forV ,other

since the null vector does not belong to it. For this reasonwe augmentVother with the null vector in order to
create a subspace. This implies that we can decomposeV as

= Å ( )V V V . 12commute other

Wecan also prove the following lemma.

Lemma1.The subspaceVother has dimension m,where m is the number of non-commuting generators of the
measurement with the state.

Proof. Let us initially assume themeasurement to consist only of one non-commuting generatorS¢, som= 1.
Let us prove the lemma by contradiction. Let u v, be two orthogonal non-zero elements ofV .other Note that, by
definition of a subspace, if Îu v V, ,other also a linear combination of u v, has to belong toV .other By definition
u v, do not commutewithS¢.Therefore we canwrite

S¢ =J au ,T

S¢ =J bv ,T

where ¹a b, 0. In particular therewill exist a constant Îc d such that - =a bc 0.This implies that

S¢ - =( )J cu v 0.T

Hence the linear combination -( )u cv belongs toV .commute This is a contradiction, thereforeVother has
dimension 1. From the same reasoning, in the case ofm non-commuting generators of themeasurement, the
subspaceVother has dimensions atmaximumequal to m. Let us assume now that the dimension ofVother is

-m 1.This is not possible because it wouldmean that, for example,S¢ -m 1 can bewritten as a linear
combination ofS¢ ¼ S¢ -, , .m0 2 However this is not the case because, by definition of basis set, all the generators
are linearly independent. ThereforeVother has dimension m. ,

Wewill nowprovide the updating rules both forV and w in two steps:first considering the state and
measurement to commute, and then the general (non-commuting) case.

Theorem1. (Commuting case).Given the epistemic state ( )V w, and themeasurement P( )V r, that commutes
with it, i.e. their generators all Poisson commute, the epistemic state ¢ ¢( )V w, after themeasurement is described by

¢ = + - ¢ Ç + - ¢^ ^
P
^( ) ( ) ( )V V Vw w r w , 13

where ¢w is given by equation

å gS¢ = + ¢ -( ) ( )w w r w , 14
i

i
T

i

whereS¢i are the generators of themeasurementΠ and gi is such that gS¢ = 1.i
T

i

Proof.When the state andmeasurement commutewe have to add the generators of themeasurement to the set
of generators ofV , aswe have seen in the previous section 3.1 (learning stage). Therefore the updating rule for
the subspaceV is (equation (8))

 ¢ = Å S¢ S¢ S¢ = Å P{ } ( )V V V V Vspan , ,... ,... . 15i0 1

In terms of perpendicular subspaces this implies that ¢ = Ç^ ^
P
^V V V .

Let us initially assume themeasurement to consist only of one generatorS¢.Let us recall that the outcome
associatedwithS¢ is s¢.Weassume w is not compatible with this outcome, i.e. sS¢ = ¢ + xw ,T for some shift

Îx ,d andwewant tofind ¢w such that

sS¢ ¢ = ¢ ( )w . 16T

The identity (11)we used in the previous section does the job.More precisely,

g¢ = - xw w ,

where the vector g is such that gS¢ = 1.T The above expression can be alsowritten as

S¢ = - ¢-k xw w ,1

where = S¢ S¢k .T The inverse of k always exists becausewe are in the prime dimensional case.Without referring
to xwe can restate the updating rule for the representative ontic vector as

7
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s S S S S + ¢ - ¢ ¢ = + ¢ - ¢- -( ) ( ) ( )k kw w w w r w . 17T T1 1

Note that ifwe considermore thanonegenerator of themeasurement,we simplyhave to sumover all those generators
in the second term.This immediately follows fromconsidering thewholemeasurementΠ as a sequenceof
measurements givenby eachgeneratorS¢i andapply every time the rule (17).We state again that the above formula
always holds forprimedimensional systems.Wecannot claim the same innon-primedimensions. The correct
updating rule for the subspace ¢̂V is foundby combining theupdating rules forV and w as in (13). This correction
simply sets the subspaces to the sameorigin inorder to correctly compute their intersection, as schematically shown in
figure4.At the endweobtain for the epistemic state ¢ ¢( )V w, that ¢ + ¢ = + Ç +^ ^

P
^( ) ( )V V Vw w r .Werecall

that theprobability associated to eachontic state consistentwith the epistemic state is uniform, i.e. givenby

¢ ¢ =
¢ + ¢

=
¢

=
+ Ç +^ ^ ^

P
^( )

∣ ∣ ∣ ∣ ∣( ) ( )∣
P V

V V V V
w

w w r
,

1 1 1
,

where ∣·∣ indicates the size of the subspace. ,

Figure 3 shows a basic example of theorem1.

Theorem2. (Non-commuting case).Given the epistemic state ( )V w, and themeasurement P( )V r, that does not
commute with it, i.e. some of the generators do not Poisson commute with the state, the epistemic state ¢ ¢( )V w, after
themeasurement is described by

¢ = + - ¢ Ç + - ¢^ ^
P
^( ) ( ) ( )V V Vw w r w , 18commute

where ^Vcommute is given by

= Å^ ^ ( )V V V . 19commute other

The representative ontic vector ¢w is given by

å gS¢ = + ¢ -( ) ( )w w r w , 20
i

i
T

i

whereS¢i are the generators (even the non-commuting ones) of themeasurementΠ and gi is such that gS¢ = 1.i
T

i

Proof. Let us assume thatS¢ ,j for Î ¼ -{ }j m0, , 1 , do not commutewith the generators ofV . In addition to
the learning stage of the previous commuting case, we also have a removal stage of the disturbing part of the
measurement.We have already seen that we can split the subspaceV in = ÅV V V ,commute other whereVother is
generated, from lemma 1, by all theS¢ ,j for Î ¼ -{ }j m0, , 1 .Therefore we can reduce to the commuting case
if we only considerVcommute instead of thewholeV .The updating rule for the subspaceV then becomes

Figure 3.Updating rules in the prime commuting case. The figure above shows a simple one-trit example of theorem 1 regarding the
updating rule to predict the state after a sharpmeasurement that commuteswith the original state. The state aftermeasurement is
given by ¢ + ¢ = + Ç +^ ^

P
^( ) ( )V V Vw w r . In the above case the shift vectors are all ( )0, 0 , the perpendicular subspaces are

= W^V , =P
^ {( )}V span 1, 0 , and ¢ =^

P
^V V .Note that with ‘measurement’we are here representing one element of the

measurement. The other elements can be obtained by simply shifting r as seen in figure 2. The final state is associated to each element
of themeasurement, each onewith a corresponding probability of happening. The same reasoning holds for figures 5 and 8.
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 ¢ = Å S¢ S¢ S¢ = Å P{ }V V V V Vspan , ,... ,... .icommute 0 1 commute

In terms of the perpendicular subspaces note thatwe can bothwrite

¢ = Å Ç^ ^
P
^( )V V V V ,other

and

¢ = Ç^ ^
P
^V V V ,commute

from the usual property that the perpendicular of a direct sum is the intersection of the perpendicular subspaces.
The updating rule for the representative ontic vector is the same as in the previous case (equation (14)). The
correct updating rule for the subspace ¢̂V is found by combining the updating rules forV and w as in the
previous case (13), where ^V is replaced by ^V .commute At the endwe obtain for the epistemic state ¢ ¢( )V w, that
¢ + ¢ = + Ç +^ ^

P
^( ) ( )V V Vw w r .commute ,

Figure 5 shows a basic example of theorem1.

4.Updating rules—non prime dimensional case

It is quite common in studies of discrete theories, like Spekkens’model and SQM, to only consider the prime
dimensional case because of the particular features of the set of integersmodulo d,  ,d when d is non-prime, like
the impossibility of uniquely define inverses of numbers. For example in our present case, figure 6 shows the
peculiar properties of the observable X3 in =d 6,which has not full spectrumof outcomes. The general
formulation of Spekkens’model of section 2 does not change; not even the rules for calculating the probabilities
of outcome and the updating of the state after a reversible evolutions (which are present in [5]). The new
formulationwe provide affects the observables and the relatedmeasurements updating rules.More precisely our
issue, as already noticed, regards the updating-rule formula (14) and (19) for the shift vector ¢w and the subspace
^V ,commute which do not always holdwhen the dimension d is non-prime. In fact the vector gi such that gS¢ = 1i

T
i

does not always exist in that case. On the other hand, in prime dimensions, it always uniquely exists because
g S= ¢-ki i i

1 and the inverse of the integer S S= ¢ ¢ki i
T

i always uniquely exists. Unlike the original formulation
due to Spekkens, wewill now characterise Spekkens’model in non-prime dimensions. In particular we
characterise which are the observables that are problematic in the above sense—the coarse-graining observables,
like X3 in d= 6—andwe thenfind the updating rules for a state subjected to themeasurement of such
observables by rewriting them in terms of non-problematic observables—the fine-graining observables.

Figure 4. Schematic representation of the updating rules. The figure above schematically shows the subspaces ¢^
P
^ ^V V V, , and the

shifted ones (after applying the corresponding representative ontic vectors ¢w r w, , ). In particular this picture explains the expression
¢ = + - ¢ Ç + - ¢^ ^

P
^( ) ( )V V Vw w r w as a result of combining the updating rules for the epistemic subspaces and the

representative ontic vectors. It is important to notice that to obtain the correct intersectionwe have to shift the subspaces +^V w and
+PV r back to the same origin (this is the role of ¢w ). Indeed note that Ç^

P
^V V is different from + Ç +^

P
^( ) ( )V Vw r .

9
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In the next subsectionwe assume single-systemobservables (i.e. of the kindS¢ = +aX bP, Îa b, d) in
order to soften the notation and facilitate the comprehension. This will bringmore easily to the updating rules
even in themost general case ofmany systems (section 4.2). In this case we recall, withoutmaking any reference
to the quantity -k ,1 but just in terms of the vector g, the updating rule for the shift vector ¢w ,

g¢ = - ( )xw w , 21

Figure 5.Updating rules in the prime non-commuting case. The figure above shows a simple one-trit example of theorem 2 regarding
the updating rule to predict the state after a sharpmeasurement that does not commutewith the original state. The state after
measurement is given by ¢ + ¢ = + Ç +^ ^

P
^( ) ( )V V Vw w r .commute In the above case the shift vectors are all ( )0, 0 , the perpendicular

subspaces are = W^V ,commute =P
^ {( )}V span 1, 1 , and ¢ =^

P
^V V .

Figure 6. Simple example of a coarse-graining observable and its decomposition infine-graining observables in d= 6. The coarse-
graining observable = =O X3 0cg in d= 6 shows degeneracyD= 3. The threefine-graining observables associatedwithOcg are

= =( )O X 0,fg
0 = =( )O X 2fg

1 and = =( )O X 4.fg
2 The perpendicular subspaces of known variables are =^ {( ) ( )}V span 0, 1 , 2, 0 ,cg

=^ {( )}V span 0, 1fg and = {( )}V span 2, 0 .D A choice for the representative ontic vectors is = ( )r 0, 0 ,cg = ( )( )r 0, 0 ,fg
0 = ( )( )r 2, 0fg

1

and = ( )( )r 4, 0 .fg
2 Notice that not all the values are possible for the coarse-graining observable X3 to be a valid observable. Only

=X3 0 and =X3 3 are valid (indeedwhat would it be the epistemic state representation for e.g =X3 2?), as witnessed by the
expression (31) for the associated fine-graining observables, that is valid onlywhen the ratio

s

D

cg
exists.
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where, as usual, S= - ¢ -( )x r w ,T and the expression for ^V ,commute

g= +^ ^⋃( ) ( )V V c . 22
c

commute

4.1. Coarse-graining andfine-graining observables
Wedefine afine-graining observable as an observable that has full spectrum, i.e. it can assume all the values in  .d

On the contrary a coarse-graining observable has not full spectrum.

Lemma2.An observable Ofg has full spectrum, i.e. it is a fine-graining observable, if and only if it has the following
form,

= ¢ + ¢ ( )O a X b P, 23fg

where ¢ ¢ Îa b, d are such that they do not share any integer factor or power factor of d.

On the contrary a coarse-graining observable is written as

= + = ¢ + ¢( ) ( )O aX bP D a X b P , 24cg

where ¢ ¢ Îa b, d are again such that they do not share any integer factor or power factor of d andD is a factor
shared by Îa b, .d More precisely the factorD is called degeneracy and it is defined as

= · · ( )D D D ..., 25n n
1 2

1 2

where D D, ,...1 2 are different integer factors of d shared by a and b, and n n, ,...1 2 are themaximumpowers of
these factor such that they can still be grouped out from a and b.We take themaximumpowers becausewewant
the remaining part, ¢ + ¢a X b P, to not share any common integer factor or power factor of d between ¢a and ¢b .
In this waywe can associate afine-graining observable to a coarse graining one by simply dropping the
degeneracyD from the latter.

Proof. Let usfirst prove that an observable of the kind (23), = ¢ + ¢O a X b P,fg is a full spectrumone. This can be
proven by using Bezout’s identity [30]: let ¢a and ¢b be nonzero integers and letD be their greatest common
divisor. Then there exist integersX andP such that + =aX bP D. In our case the greatest common divisorD is
equal to one, since ¢ ¢a b, are coprime3. Therefore we have proven that there exist values of the canonical
variables ÎX P, d such that = ¢ + ¢ =O a X b P 1.fg In order to reach all the other values of the spectrumwe
simply need tomultiply bothX andP in the previuos equation by Îj .d

Wenowprove the converse, i.e. that a full spectrumobservable implies it to bewritten as (23).We prove this
by seeing that an observable written as (24)has not full spectrum, i.e. we negate both terms of the reverse original
implication. Proving the latter is straightforward, since themultiplicationmodulo d between an arbitrary
quantity and a factor D,which is given by powers of integer factors of d, gives as a result amultiple of D. Since
themultiples ofD do not cover thewhole  ,d then any observable of the form (24) has not full spectrum4. Since
an observable of the form (23) is an observable that cannot bewritten as (24) by definition, we obtain that a full
spectrumobservable implies the observable to bewritten as (23). ,

Given lemma 2we have got the expressions (23) and (24) for coarse-graining and fine-graining observables.
Wewant now to prove the following lemma to ensure thatfine-graining observables are characterised by
precisely defined updating rules.

Lemma3.The vector g in the updating rule (21) for the shift vector ¢w and in the equation (22) for the subspace
^Vcommute exists if and only if the observable is a fine-graining one.

Proof. Let us prove that if we have afine graining observable the vector g exists. In our caseS¢ = ¢ ¢( )a b, and, by
definition of ¢ ¢a b, (as usual defined forfine-graining observables) and full spectrum, we can alwaysfind a vector
g g g= ( ),a b such that g g gS¢ = ¢ + ¢a bT

a b equals 1.
Let us prove the converse.We nowhave the vector g such that g g gS¢ = + =a b 1,T

a b where the
coefficients Îa b, d define our observable s+ =aX bP .Wewant to prove thatσ can achieve all the values of
 .d Since gS¢ = 1T we can set the values of (X,P) as equal to g g( ),a b in order to reach the value s = 1.Wecan

3
It could be that ¢ ¢a b, share a factor which is not a factor of d. In this case the argument follows identically as if theywere coprime.

4
Multiples ofD do not cover the whole spectrumof d becauseD has not an inverse -D 1 (it is not coprimewith d) and sowe cannot obtain

thewhole valuesσ of d by simplyfinding X P, such that s¢ + ¢ = -a X b P D .1
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now achieve all the other values of the spectrumby simply redefining γ as g g=˜ c ,where c assumes all the values
in  .d ,

The above lemma 3 should convince us that in order tofind the updating rules in the presence of a coarse
graining observable, it is appropriate to decompose it in terms offine-graining observables. Let us assume that
our coarse-graining observable is s= + = ¢ + ¢ =( )O aX bP D a X b Pcg , and the associated isotropic subspace
and representative ontic vector are ( )V r, .cg cg To this observable we can associate D̄ differentfine-graining
observables s= ¢ + ¢ =O a X b P ,jfg where Î ¼ -¯j D0, , 1.The quantity D̄ is the degeneracyDwithout the
powers ¼n n, , ,1 2 i.e. =¯ · ·D D D ....1 2 Indeed the powers n n, ,...1 2 simply representmultiplicities associated
to each corresponding fine-graining observable. The associated isotropic subspaces and representative ontic
vectors are ( )( )V r, ,j

fg fg where = ¢ ¢{( )}V a bspan ,fg (see figure 6).
By definition the perpendicular isotropic subspaces are

= = Î W + = ¢ + ¢ =^ { ( ) ∣ ( ) ( )} ( )V v v v a v b D v a v b dv , 0 mod , 26a b a b a bcg

= ¢ = ¢ ¢ Î W ¢ ¢ + ¢ ¢ =^ { ( ) ∣ ( )} ( )V v v v a v b dv , 0 mod . 27a b a bfg

It is clear that É^ ^V Vcg fg andwe can therefore construct
^Vcg as

= + = Å^

=

-
^ ^⋃ ( ) ( )

¯

V V V Vv , 28
j

D

j Dcg
0

1

fg fg

where the subspaceVD provides all the vectors that we need to combinewith the vectors of ^Vfg to reach the

whole ^V .cg Wecall the subspaceVD the degeneracy subspace because it encodes the degeneracy ofVcg with respect

toVfg . It has dimension 1 and size D̄.This is consistent with the fact that the dimensions of ^Vcg and
^Vfg are

respectively 2 and 1.The sizes are respectively ¯ ·D d and d.The size of ^Vfg is d because it is always amaximally
isotropic subspace and its dimension is 1 because fromone generator we get all the other vectors of the subspace
bymultiplicationwith Îj d. The dimension ^Vcg is 2 because it cannot be 1 (it would be the same subspace as
^Vfg ) and it cannot be greater than 2 since also thewhole phase space W = d

2 has dimension 2. In order to know

the size of ^Vcg weneed to count all the jv,where Î ¼ -{ ¯ }j D0, 1, , 1 , thatmeans ¯ ·D d.Therefore it can be
written as = { }V vspan ,D and all its D̄ vectors are of the kind = jv v.j The above reasoning easily extends to the

case of n systems, where the dimensions are = = =^ ^( ) ( ) ( )V n V n V ndim 2 , dim , dim ,Dcg fg and the sizes are

= = =^ ^∣ ∣ ¯ ∣ ∣ ∣ ∣ ¯V D d V d V D, , .n n n
D

n
cg fg Wecannowprove thatVD is a vector space.

Proof.The definition ofVD is

a b a b= Î W + = Î Î Î^ ^{ ∣ } ( )V V Vv w v t w t, where , , , . 29D dfg cg

To see that it is a vector spacewe just need to see that ( )0, 0 belongs toVD and thatVD is closed under addition
andmultiplication, i.e. under linear combinations. The null vector belongs toVD because in the definition (29)
wewould remainwith a =w t,where Î ^Vw fg and Ì^ ^V V .fg cg Let us imagine thatwe have two vectors

Î Vv z, .D Is the vector g d+v z,where g d Î, ,d still belonging toV ?D It is easy to see that if we apply the
definition (29)wewould get

a b g d+ +( )w v z ,

which can be rewritten as

a bg bd+ + +( ) ( · )w v w z0 ,

where each of the two terms in parenthesis belong to ^V ,cg and therefore thewhole expression belongs to it
too. ,

Wenowdefine the shift vectors ( )r j
fg in terms of rcg and see that we can encode the degeneracy expressed by

VD in there. The idea is schematically depicted in figure 7.
Given the shift vector associated to the coarse-graining observable r ,cg the shift vectors ( )r j

fg associated to the
corresponding fine-graining observables are of the kind

= + ( )( )r r v , 30j
jfg cg

where Î Vvj d and are therefore of the kind jv,where Î ¼ -{ ¯ }j D0, , 1 .This implies that if we assume the

outcome associated to the coarse-graining observable to be s ,cg i.e. sS =r ,T
cg cg cg whereS = ( )a b, ,cg then the

outcomes associated to thefine graining-observables are
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s
S S= + = +( ) ( )( ) j

D
jCr r v , 31T j T

fg fg fg cg
cg

whereC is the anti-degeneracy and it is defined as a non-zero number belonging to d such that
=· ( )D C d0 mod .The idea is that the vector Î Vv D is such thatS = ¹Cv 0,T

fg so it does not belong to ^V ,fg

but it does belong to ^V ,cg since =· ( )D C d0 mod .An easyway tofind one of the possible v is to calculate it as

SC ,fg whereSfg is the generator ofV .fg In this waywe know that =Dv 0, but v does not belong to ^V ,fg i.e.

¢ + ¢ ¹v a v b 0a b becauseSfg is not in
^V .fg It is important to notice that equation (31) implies that not all the

outcomes are allowed for the fine-graining observables associated to the coarse-graining one; they are allowed
onlywhen the ratio

s

D

cg exists. Figure 6 also explains this fact.

4.2.Measurement updating rules
Let us assume to have n systems and tomeasure the coarse-graining observable

s= + + + + = ¢ + ¢ + + ¢ + ¢ =( )O a X b P a X b P D a X b P a X b P... ... ,n n n n n n n ncg 1 1 1 1 1 1 1 1 cg with corresponding
isotropic subspace of known variablesVcg and shift vector r ,cg on the state r a b= + + +X P ...1 1 1 1 a +Xn n

b s=P ,n n with corresponding isotropic subspace of known variables = S ¼ S{ }V span , , n1 and shift vector w .
The idea in order tofind the updating rules for the state aftermeasurement, the subspace of known variable ¢V
and the representative ontic vector ¢w is to compute the updating rule of the initial state ρwith thefine-graining
observables that are associated to the coarse graining observable O ,cg i.e.

s= ¢ + ¢ + + ¢ + ¢ =( ) ( )O a X b P a X b P...j
n n n n

j
fg 1 1 1 1 fg (indeedwe know that the updating rules are valid for them

from theorem 3), and then combine them together.More precisely, the following theoremholds.

Theorem3.Given the epistemic state ( )V w, and a coarse-grainingmeasurement ( )V r, ,cg cg the epistemic state
¢ ¢( )V w, after themeasurement is described by

¢ = + - ¢ Ç + - ¢^

=

-
^ ^⋃ [( ) ( )] ( )

¯
( )V V Vw w r w , 32

j

D
j

0

1

commute fg fg

where the shift vector ¢w is the shift vector deriving from the updating rule of the state after themeasurement of the
fine-graining observable ( )O ,j

fg

Figure 7. Schematic representation of coarse-graining decompositions intofine-graining observables. The figure above schematically
represents the relation between the subspaces ^ ^ ^V V V, ,cg fg and their corresponding shift vectors

( )w r r, , .j
cg fg The green rectangles

represent the subspaces ^Vcg and its translated +^V r .cg cg The latter can be seen to be equivalent either to the dashed red rectangle

representing ^Vfg shifted by the degeneracy vectors ofVD (light black arrows), this corresponding to ^V ,cg and then shifted by rcg (green
arrow or light grey arrow), or to the dashed rectangle representing ^Vfg shifted by each

( )r j
fg (red arrows). Both are in accordancewith

the expressions of +^V r ,cg cg + = Å + = + å +^ ^ ^
=
- ( )¯

V V V V jr r r v ,D j
D

cg cg fg cg fg 0
1

cg where v is the generator of V .D Note that, as a

consequence of the degeneracy characterising the coarse-graining observable, we could keep adding å ==
-¯

j Dv vj
D

0
1 without

changing the validity of the expression of +^V r .cg cg Wecan see it just by noticing that + å ==
-¯

V j VvD j
D

D0
1 or,more simply, that

S= ¢ =·D D Cv 0,fg since =· ( )D C d0 mod .
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å gS¢ = ¢ = + ¢ -
=

( ) ( )( )w w w r w , 33j
i

n

i
T j

i
0

fg

where the vectors gi are defined such that gS¢ = 1,i
T

i andS¢i are the n generators of the subspace Vfg associated to the

fine-graining observable ( )O .j
fg The subspace ^Vcommute is given by the originalV after having removed the non-

commuting part, i.e. equation (19),

å g= + = = Å^

=

^

= +

^

= +

^
⎛
⎝⎜

⎞
⎠⎟⋃ ⨁ ( )V V c V V V V , 34

c

d

l N

n

l
l N

n

lcommute
1 1 1

other

where gl is such that gS = 1l
T

l andVl are the subspaces spanned by the -( )n N non-commuting generatorsSl .

Obviously if the state andmeasurement commute, then =^ ^V V .commute

The above theorem tells us that thewaywe combine the updating subspaces of the state with each individual
fine-graining observables is through their union. This result is clear in terms of schematic diagrams (figure 7).
The updated shift vector is just one of the updated shift vectors of the state with the fine-graining observables,
because the information needed to update the shift vector of the state is encoded in just one of the fine-graining
shift vectors. The degeneracy includes ameaninglessmultiplicity in the coarse-graining shift vector, and
therefore everyfine-graining observable can do the job of correctly updating the shift vector of the state. Actually
every combination of the shift vectors ¢w j can do the job, apart from the ones that sum to ( )d0 mod , like

å ¢=
-¯

w .j
D

j0
1 Note also that in the definition of ^Vcommute the vector gl is, in general, degenerate. This is not a

problembecause any degenerate value of gl brings to the same subspace ^V ,commute since by definition its role is to

add the vectors l g¢ = c l to
^V such that lS ¢ ¹ 0.n

T

Proof.Wefind the expression for the updated subspace ¢̂V by simply reusing the already found formulas (13)
and (19) of the prime-dimensional case and substituting P

^V with ^Vcg and r with r ,cg

¢ = + - ¢ Ç + - ¢^ ^ ^( ) ( )V V Vw w r w .commute cg cg

If we now consider the decomposition of +^V rcg cg as in (28) and (30), we obtain

È¢ = + - ¢ Ç + - ¢^ ^

=

-
^

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥( ) ( )

¯
( )V V Vw w r w .

j

D
j

commute
0

1

fg fg

Since the intersection of a union is the union of the intersections, we have proven the first part of the theorem,

¢ = + - ¢ Ç + - ¢^

=

-
^ ^⋃ [( ) ( )]

¯
( )V V Vw w r w .

j

D
j

0

1

commute fg fg

The second part of the proof regards ¢w being equal to any of the ¢w .j Because of the degeneracy, any ¢w j is
equivalent to the others (with different value of j) in order to provide uswith ¢w , indeed it is possible tofind one
fromanother just by adding a vector Î Vv .D The latter can be proven as follows. For simplicity let us assume to
be in the case n= 1 and that v is the generator ofV .D Weknow that, by the definition of state aftermeasurement
of afine-graining observable, the updated shift vector ¢w j is such that sS ¢ = + =

s ( )jCw ,T
j D

j
fg fg

cg where

S=C vT
fg is the antidegeneracy (equation (31)). It is straightforward to see that if we add v to ¢w ,j we get

¢ + = ¢ +w v w ,j j 1 indeed sS ¢ + = + + =
s +( ) ( ) ( )j Cw v 1 .T

j D
j

fg fg
1cg

,

Figure 8 shows a basic example of theorem3.

5. Equivalence of ST and SQM in all odd dimensions

In [5] it has been shown that SQMand Spekkens’ toymodel are two operationally equivalent theories in odd
prime dimensions viaGTof discrete non-negativeWigner functions.We have generalised Spekkens’model to
all discrete dimensions. The above equivalence does not hold in even dimensions, butwewill now see that it
holds in all odd dimensions.Wewill also state the equivalence in terms of the updating rules, where all its
elegance arises.We recall that SQMandGTof non-negativeWigner functions are equivalent in all odd
dimensions [23].

5.1. SQM—updating rules
SQM is a subtheory of quantummechanics wherewe only consider common eigenstates of tensors of Pauli
operators, unitaries belonging to theClifford group, and Paulimeasurements [6].We can alwayswrite a
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stabiliser state ρ as


r r r r= · · · ( )1

, 35N1 2

where  r r r= [ · · · ]Tr ,N1 2 Î ¼{ }j N n1, , , n is the number of qudits and

r = + + + + -( ) ( )g g g... , 36j d j j j
d2 1

where gj is a stabiliser generator,more precisely aWeyl operator:

l c=ˆ ( ) ( ) ˆ ( ) ˆ ( ) ( )W pq S q B p , 37

where c =
p( )pq e ,pq
d

2 i
q p, are the coordinates of the phase space point l = ( )q p, , and ˆ ˆS B, are respectively the

shift and boost operators (generalised Pauli operators) and the arithmetics ismodulo d,


å= ¢ - ñá ¢
¢Î

ˆ ( ) ∣ ∣ ( )S q q q q 38
q d


å c= ñá
Î

ˆ ( ) ( )∣ ∣ ( )B p pq q q . 39
q d

When consideringmore than one qudit, theWeyl operator is given by the tensor product of the singleWeyl
operators.We canwrite the stabiliser state ρ in amore compact way as

  år =
-

( )g
1

. 40
j

n

i

d

j
i

1

Howeverwewillmostly use the following notation in terms of stabiliser generators,

r  á ¼ ñ ( )g g, , . 41N1

Wenow analyse the updating rules for the state ρ under the stabilisermeasurement P,

P  á ¼ ñ ( )p p, , 42M1

where pk is a stabiliser generator ofΠ and Î ¼{ }k M n1, , .Weanalyse the updating rulesfirst in the
commuting case ( r P =[ ], 0) and then in the general case.

(i) For non-disturbing (commuting) measurements, the state after measurement r¢ is given by adding the
stabiliser generators of themeasurementΠ and the state r, unless some generators coincide. In the latter
case we obviously count themonly once.

r¢  á ¼ ¼ ñ ( )g g g p p p, , , , , , , , 43N M1 2 1 2

wherewe have here considered the case inwhich no generators coincide. This formulameans that the state

Figure 8.Updating rules in the non-prime non-commuting case. Thefigure above shows a simple example (one system in d = 6) of
theorem 3 regarding the updating rule to predict the state after a sharpmeasurement that does not commutewith the original state.
The state aftermeasurement is given by ¢ + ¢ = + Ç +^

=
- ^ ^⋃ [( ) ( )]¯ ( )V V Vw w r .j

D j
0
1

commute fg fg In the above case the shift vectors are

= = = = ¢ =( ) ( ) ( ) ( ) ( )( ) ( ) ( )w r r r w0, 0 , 0, 0 , 2, 0 , 4, 0 , 0, 0 ,fg
0

fg
1

fg
2 the perpendicular subspaces are = W^V ,commute

=^ {( )}V span 0, 1 ,fg =P
^ {( ) ( )}V span 0, 1 , 2, 0 , and ¢ =^

P
^V V .
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r¢ is now
*

  år¢ =
-

r
1

,
j

N

i

d

j
i

1

where * = +N N M and rj is a stabiliser generator of r¢, i.e. it is either a valid (commuting) generator gj or
p .j In the case where e.g. F generators coincide, then * = + -N N M F.

(ii) For disturbing (non-commuting) measurements (the most general case) the idea is that if we remove the
non-commuting factors rj from the state r, i.e. r P ¹[ ], 0,j this case reduces to the previous commuting
one.We assume the state ρ to have only one non-commuting factor, say r ,N which corresponds to the
stabiliser generator g .N The state aftermeasurement r¢ is given by removing the non-commuting generator
and adding the remaining ones of the state andmeasurement, unless some generators coincide. In the latter
case we obviously count themonly once.

r¢  á ¼ ¼ ñ- ( )g g g p p p, , , , , , , , 44N M1 2 1 1 2

wherewe have here considered the case inwhich no generators coincide. This formulameans that the state
r¢ is now

*

  år¢ =
-

r
1

,
j

N

i

d

j
i

1

where * = + -N N M 1and rj is a stabiliser generator of r¢, i.e. it is either a valid (commuting) generator
gj or p .j In the case where e.g. F generators coincide, then * = + - -N N M F1 .

To sumup, in the commuting case we add generators of state andmeasurement to obtain the state after
measurement. In the non-commuting case we remove the non-commuting generator of the state and add all the
others as in the commuting case. This structure is perfectly analogue to Spekkens’updating rules, which are just
motivated by the classical complementarity principle.

5.2. Gross’Wigner functions—updating rules
Gross theory. InGT theWigner function of a state ρ in a point of the phase space l Î W is given by

l l r=r ( ) [ ˆ ( ) ] ( )W ATr , 45

where lˆ ( )A is the phase point operator associated to each pointλ,

ål c l l l= á ¢ñ ¢
l¢ÎW

ˆ ( ) ( ) ˆ ( ) ( )A
d

W
1

, , 46
n

where lˆ ( )W are theWeyl operators defined in equation (37). Note that the normalisation is such that
l =[ ˆ ( )]ATr 1.We recall that a stabiliser state is a joint eigenstate of a set of commutingWeyl operators. Two

Weyl operators commute if and only if the corresponding phase-space points ¢a a, have vanishing symplectic
inner product:

¢ = á ¢ñ = ¢ =[ ˆ ( ) ˆ ( )] ( )W W Ja a a a a a, 0 if and only if , 0. 47T

This result derives from the product rule ofWeyl operators:

c¢ = á ¢ñ + ¢ˆ ( ) ˆ ( ) ( ) ˆ ( )W W Wa a a a a a, .

From this result, the sets of commutingWeyl operators, and, as a consequence, the stabiliser states, are
parametrised by the isotropic subspaceM of W.More precisely, for eachM and each Î Ww we can define a
stabiliser state (Gross construction) rM w, as the projector onto the joint eigenspace spanned by

Î{ ˆ ( ) }W Ma a: ,where ˆ ( )W a has eigenvalue c á ¢ñ( )w a, .TheWigner function associated to the state rM w, is
always positive (necessary and sufficient condition in odd dimensions) and it is of the kind

l d l= +( ) ( ) ( )( )W
d

1
, 48m n Mw w, C

whereMC is the symplectic complement of M.Moreover the transformations that preserve the positivity of the
Wigner functions are theClifford unitaries. GT of non-negativeWigner functions is a faithful way of
representing SQM.

Equivalence of ST andGT. TheWigner function (48) has the same formof the probability distribution (7)
associated to the epistemic state ( )V w, in ST.More precisely, they are equivalent if we assume =M JV 5, indeed

5
Note that the action of J is simply tomap a variable into its conjugated.
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this transformation implies that =^V M .C The equivalence betweenGT and Spekkens theory, using the
symplecticmatrix J as the bridge, also extends in terms of transformations andmeasurement statistics [5]. This
equivalence also implies the equivalence between ST and SQM in odd dimensions. Thereforewe can see the
description based on known variables (Spekkens) and the description based onWigner functions (Gross) as two
equivalent descriptions of SQM in odd dimensions.Wewill now translate the already found updating rules of ST
intoGross’Wigner functions.

Updating rules. Let us consider a stabiliser state r r r r= · · · ,n1 2 where n is the number of qudits (odd
prime dimensions), and ameasurementΠ on the stabiliser stateP = P P P· · ,m1 2 where, in general, m n.
Let us assumem= n in order to consider ‘total’measurements (not only to a part of the state).

Theorem4. (Commuting case). Let us assume the state andmeasurement to commute, i.e. r P =[ ], 0.TheWigner
function of the state aftermeasurement is

l l l=r r¢ P( ) ( ) ( ) ( )W
N

W R
1

, 49

where l Î W and PR denotes theWigner function (also called response function) associatedwith themeasurement
P.The normalisation factor N is

å l l=
l

r
ÎW

P( ) ( )N W R .

Proof.We rewrite the formula (49) by replacing theWigner functionswith their definition in terms of Spekkens’
subspaces,

d d d¢ =
l l l+ ¢ + +^ ^

P
^· ( ). 50

V V Vw w r, , ,

The proof is straightforward. The rhs is one if and only if both the deltas are one; thismeans thatλhas to belong
simultaneously to +^V w and +P

^V r, i.e. l Î + Ç +^
P
^( ) ( )V Vw r . If we recall equation (13) (andfigure 4),

we see that

+ Ç + = ¢ + ¢^
P
^ ^( ) ( ) ( )V V Vw r w ,

andwe can conclude that the rhs of equation (50) is one if and only if the lhs is one. At this point we can insert the
normalisation factors on the rhs and the lhs. These guarantee that lå =l rÎW ¢( )W 1 and the uniformity as
expected. ,

In the commuting case the updating rule in SQMconsists of the addition of the stabiliser generators of state
andmeasurement (equation (43)). In ST the updating rule consists of the intersection of the perpendicular
isotropic subspaces (equation (13)). InGT addition and intersection translate into the product of theWigner
functions (equation (49)). In particular this stage consists of introducing zeros to theWigner function in
correspondence of the addition of generators to the subspace of known variablesV (and so removing generators
from the subspace ^V ).Wewill call this process—wherewe learn information about the state—the localisation
stage.

Theorem5. (Non-commuting case). Let us assume themeasurement, in general, not to commute with the state, i.e.
r P ¹[ ], 0.TheWigner function of the state aftermeasurement is

ål l l= -r r¢
Î

P( ) ( ) ( ) ( )W
N

W Rt
1

, 51
Vt other

where l Î W,Vother is the set spanned by the non-commuting generators of Spekkens’ subspace V associated to the
state r.The normalisation factor N is

å å l l= -
l

r
ÎW Î

P( ) ( )N W Rt .
Vt other

Note that we could have stated the theorem in terms of stabiliser generators instead of Spekkens’ generators. The
former being related to the latter as follows,

S= -ˆ ( ) ( )g W J , 52j j
1

where J is the usual symplecticmatrix,Sj are Spekkens’ generators and gj the corresponding stabiliser generators.
The relation (52) follows from the relation between ST andGTpreviously described, where the bridge between
the two formulations is given by thematrix J .

Proof. In general the state aftermeasurement in quantummechanics (up to a normalisation) is r r¢ = P P. If
r P =[ ], 0 then r r¢ = P.
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In order to simplify the proof, let us assume the case of only one non-commuting generator, say r .n In the
present case we know, from the structure of SQMand Spekkens’updating rules (adding the commuting factors
between state andmeasurement and removing the non-commuting ones), that the state aftermeasurement is

*r r¢ = P,where *r r r= -· .n1 1 Thismeans that we canwrite the state aftermeasurement as a product of
two commuting terms: *r andP.Thereforewe canwrite theWigner function of r¢ according to the product
rule for the commuting case (equation (49)):

*l l l=r r¢ P( ) ( ) ( )W
N

W R
1

,

where * l l= ål r P( ) ( )N W R .Wewant now to prove that equation (51) is equal to the latter. Thismeanswe
want to prove the following:

*ål l l l l= - =r r r¢
Î

P P( ) ( ) ( ) ( ) ( )W W R W Rt .
Vt other

Wecan simplify the terms lP( )R , thus getting

*å l l- =r r
Î

( ) ( ) ( )W Wt . 53
Vt other

At this point, in order to prove the above theorem, we rewrite the formula (51) by replacing theWigner
functionswith their definition, i.e. Kronecker deltas,

å d d=l l
Î

- + +^ ^ ( ), 54
t V

V Vt w w, ,

other

commute

where = Å^ ^V V V .commute other Note thatwehave removed the response function of themeasurement. This also
implies thatwedonot have to change w, becausewehave onlymodified ^V into ^Vcommute and ¢w is not affected.
Wenowwant to see that the lhs of equation (54) is different fromzero exactlywhen the rhs is. The lhs is different
fromzerowhen at least one Î Vt other is such thatl - Î +^Vt w.The latter corresponds tol Î + +^V w t.
Thismeans thatl Î Å +^V V w,other i.e.l Î +^V w,commute which is preciselywhatmakes the rhs different
fromzero. ,

In themost general non-commuting case, in addition to the localisation stage, in SQMwe also have to
remove the non-commuting generators from the state (equation (44)). In ST this consists of the union and shifts
in the perpendicular subspace (equation (22)). InGT removal and union translate into the averaging out of the
Wigner function (equation (51)). In particular this stage consists of introducing ones to theWigner function in
correspondence of the removal of generators from the subspace of known variablesV (and so adding generators
to the subspace ^V ).We can think of this process as the onewhere, after having learned some information in the
localisation stage, we need to forget something, otherwisewewould get toomuch information about the ontic
state, which is forbidden by the classical complementarity principle. This also explains why non-commuting
measurements are also called disturbingmeasurements.Wewill call this forgetting-part of the process the
randomisation stage. Finally note that the general-case formula (51) reduce to the product rule (49) in the
commuting case. Figure 9 summarises the updating rules in the three theories in prime dimensions.

In the non-prime dimensional case, we can rephrase all the reasonings already done in ST in terms ofWigner
functions.

Lemma4.TheWigner function l( )Wcg of the coarse-graining observable

s= + + + + = ¢ + ¢ + + ¢ + ¢ =( )O a X b P a X b P D a X b P a X b P... ... ,n n n n n n n ncg 1 1 1 1 1 1 1 1 cg can bewritten in terms

of theWigner functions l( )( )W j
fg of the associated fine graining observables

s= ¢ + ¢ + + ¢ + ¢ =( ) ( )O a X b P a X b P...j
n n n n

j
fg 1 1 1 1 fg as

ål l=
=

-

( ) ¯ ( ) ( )
¯

( )W
D

W
1

. 55
j

D
j

cg
0

1

fg

Proof. First of all the normalisation factor
D̄

1 is due to the fact that we are adding D̄ Wigner functions, each of

themhaving a normalisation factor of ,
d

1 since they areWigner functions ofmaximally isotropic subspaces (of
dimension d). The proof of the rest of the formula is straightforward. According to the definition ofWigner
functions, we need to prove that

åd dµ+ +^ ^ ( )( ). 56V
j

Vr r j
cg cg fg fg
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From the decomposition of the isotropic subspaces and shift vectors in Spekkens’model, equations (28) and
(30), we already know that + = Å + = + å +^ ^ ^

=
- ( )¯

V V V V jr r r v ,D j
D

cg cg fg cg fg 0
1

cg which exactly proves that the
rhs of (56) is one if and only if the lhs is one. ,

From the above construction and theorem3we can immediately write theWigner function of a stabiliser
state after a coarse-grainingmeasurement, thus generalising theorem5.

Theorem6.Given the state r of n-qudit systems, where the dimension d is a non-prime integer, and the (non-
commuting)measurement P, theWigner function of the state r¢ after themeasurement is given by

å ål l l= -r r¢
Î =

-

( ) ¯ ( ) ( ) ( )
¯

( )W
N D

W Rt
1 1

, 57
V j

D
j

t 0

1

fg
other

where l Î W V, other is the set spanned by the non-commuting generators of Spekkens’ subspaceV associated to the
state r.The response function of the jth fine-grainingmeasurement is denoted by ( )R .j

fg The normalisation factor N is

å å l l= -
l

r
ÎW Î

P( ) ( )N W Rt ,
Vt other

where l l= åP =
-( ) ( )¯

¯ ( )R R .
D j

D j1
0
1

fg

Proof.We just need to apply lemma 4 to the response function of the coarse grainingmeasurement of theorem
5. ,

Figure 10 summarises the updating rules in ST andGT in prime and non-prime dimensions.

Figure 9.Equivalence of three theories in odd dimensions in terms ofmeasurement updating rules: Spekkens’ toymodel, stabiliser
quantummechanics andGross’ theory. The table above shows the updating rules in the threementioned theories in odd prime
dimensions both for the commuting and themore general non-commuting case. In SQM the updating rules were already known: if
state andmeasurement commute then the final state r¢ is given by the stabiliser generators of both ρ and P. If,more generally, they do
not commute, we also need to remove the non-commuting generators (gN in the table above) of the original state. In Spekkens’model
the updating rules for the epistemic state ( )V w, and themeasurement P( )V r, have the same structure of the ones in SQM.At the level
of the perpendicular subspaces, the updating rules involve the intersection and also the direct sum (union and shifts) of the state
perpendicular subspace ^V with the non-commuting subspaceVother. The updating rules for the representative ontic vector w are
written in terms of themeasurement generators S¢i and the vector gi such that gS¢ = 1.i

T
i The table above does not show, for

aesthetics reasons, the influence of the shift vectors ¢w r w, , on the perpendicular subspaces. The actual updating rule would be
¢ = + - ¢ Ç + - ¢^ ^

P
^( ) ( )V V Vw w r w .commute InGT the updating rule forWigner functions of stabiliser states are given by a simple

product of theWigner functions associated to the state, rW , andmeasurement, PR , in the commuting case, and an averaging over the
non-commuting subspaceVother in the general case. It is easy to see that the latter formula reduces to the previous in the commuting
case (i.e. = {( )}V 0, 0other ).
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6.Discussion

The importance of completing STwith updating rules to determine the state after a sharpmeasurement depends
upon their application in future works. In particular we think that it would be interesting to explore how
quantum computational schemes can be represented by ST. In order to do this it is appropriate tofirst
characterise ST in terms of its computational power.

We can perform a simple analysis of the computational complexity of simulating ST on a classical computer
following the same approach as Aaronson andGottesman’s analysis of the simulation of stabiliser circuits [31].
In ST, each epistemic state is described by the isotropic subspace of known variables V ,which is defined by n
generators, and the shift vector w , which attributes n values to the n variables. Each generator is specified by n2
components. Thereforewe need 2n2+ n digits to specify an epistemic state ( )V w, .Tofind the perpendicular
subspace ^V , we need a further n2 operations to check all the inner products between the generators.

Simulating dynamics requires computing symplectic affine transformations involving about
+ +( ) ( )n n n n2 12 digits for each generator of the epistemic state that has n n2 components, since the

product between amatrix and a vector involves ( )nO 2 modular arithmetic operations and the affine translation
n2 operations. Therefore the total is + ( ) ·n n n n1 .3

It should be possible tofindmore efficient algorithmusing some of the ideas in [31]. However we are not
aiming to optimise this simulation complexity in the current work, just show that it is classically efficient. The
updating rules for themeasurements in the prime case (2) involvefirst adding the generators of the subspacesV
and PV and then removing the non-commuting ones (this involves to check their symplectic inner product,
whichmeans about n3 operations). In total wewould have + = + ( )n n n n n2 23 2 3 operations forfinding
¢V , the isotropic subspaces of known variables after themeasurement. The updated shift vector involves the sum

of two inner products between vectors of n2 components, which roughlymeans n3 operations. In the non-prime
case (3) further operations are needed, namely the ones to recover the degeneracy factor D̄,which consist of
dividing the n2 components of the generators by each of the d possible integer factors and then do the division
again for surely less than d times, whichmeans nomore than ·n d2 2 operations. Afinal operation of checking
whether the results of the divisions of the n2 components give the same valuemust be considered. It implies
another factor of nd2 .This allows us to compute the operations to perform the union of the perpendicular
subspaces in (3), i.e. ¯ ( )Dn nd 3 operations. This approximate analysis wants just to show that, evenwith basic
simulation schemes, the computational complexity to perform a classical simulation of ST is polynomial in the
number of systems. This is in line, as expected, with the computational power of SQM.

Apossible application of ST in the above direction is to use it as a non-contextual hidden variablemodel to
represent the classically simulatable part of some state-injection schemes of quantum computation. ST and its

Figure 10.Measurement updating rules in Spekkens’ toymodel andGross’ theory in prime and non-prime dimensions. The table
above shows the updating rules (for the general non-commuting case) of ST andGross’ theory in prime dimensions, first column, and
non-prime dimensions, second column. The former have been already depicted in table 9. The latter regard the case of a coarse-
grainingmeasurement observableOcg. In terms of perpendicular subspaces the updating rules consist of the union of the updating
subspaces of the original state ( )V w, with each of the D̄ individual fine-graining observables ( )( )V r, j

fg fg . The updated shift vector ¢w is

just one of the updated shift vectors ¢w j of the state with thefine-graining observables. In terms ofWigner functions, the union

translates into a sumof D̄ terms, and the response functions of thefine-graining observables are denoted as ( )R .j
fg
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subtheories which are operationally equivalent to subtheories ofQMcan play the role of witnesses of non-
negativity of theWigner functions and non-contextuality, and can therefore be used as a unifying framework for
state injection schemeswhere negativity and contextuality are resources for universal quantum computation,
similarly to [13–16, 18–20]. In particular, this would extend [13] by considering systems of compound
dimensions.

The result about the equivalence between ST and SQMand the associated updating rules in prime and non-
prime odd dimensions can provide a powerful newway to use and analyse SQM in non-prime dimensions, about
which almost nothing is known. For examplewe are now facilitated to state, given a set of commuting Pauli
operators, whether the joint eigenstate that they represent is pure. In non-prime dimensions the latter issue is
not trivial because for coarse-graining observables the number of independent generators is not equal to the
number of observables. However, fromour construction to decompose coarse-graining into fine-graining
observables, we know that the number of independent generators is equal to the number offine-graining
observables. Therefore if the set of commuting Pauli operators has the number of independent generators that
equals the number offine-graining observables, then the state is pure. Indeedfine-graining observables are
associated to pure states. In addition, in the field of quantum error correction it could be interesting to study if
the coarse-graining observables have any usefulness. The coarse-grained observables considered here are an
example of degenerate observables. Degenerate observables, such as a paritymeasurement, play a central role in
quantum error correction theory. The degeneracymeans that errors can be detectedwithout collapsing the
logical state. It would be interesting to investigate whether the coarse-grained observables in compound
dimension SQMhave any utility for novel forms of quantum error correction.

Finally, the enforced equivalence of SQM, ST andGT in odd dimensions can be exploited to address a given
problem fromdifferent perspectives, where, depending on the cases, one theory can bemore appropriate than
another. An example is the alreadymentioned one of addressing protocols based on SQMwith Spekkens theory
instead of SQMorWigner functions.

7. Conclusion

Spekkens’ toymodel is a very powerfulmodel which has led tomeaningful insights in the field of quantum
foundations and that seems to have interesting applications in the field of quantum computation.We have
extended it fromprime to arbitrary dimensional systems andwe have derivedmeasurement updating rules for
systems of prime dimensionswhen the state andmeasurement commute, equations (13) and (14), when they do
not, equations (18) and (14), and for systems of non-prime dimensions (theorem3). These results directly derive
from the basic axiomof the theory: the classical complementarity principle. The latter characterises a structure
for the updating rules which is the same as in SQM: the state aftermeasurement is composed by the generators of
themeasurement and the compatible (i.e. commuting) generators of the original state.

Spekkens showed the equivalence between SQMand ST in odd prime dimensions via Gross’Wigner
functions.We have extended this result to all odd dimensions andwe have translated the updating rules of ST in
terms ofWigner functions (theorems 4– 6).We stress again that Spekkens’model and ourmeasurement
updating rules hold in all dimensions, in even dimensions too.However the equivalence between ST and SQM
only holds in odd dimensions. Themain reason is that SQM in even dimensions shows contextuality, while ST
does not. One of themain future challenges is tofind an epistemic hidden variable toymodel which is also
equivalent to qubit SQM.

We treat the problemwith systems of non-prime dimensions, which arises from the problemof defining an
inverse in  ,d by decomposing the problematic (coarse-graining) observables in terms of the non-problematic
(fine-graining) ones. This approach naturally suggests the formof the updating rules. By comparing the
updating rules in the threementioned theories we highlight the beauty and the elegance of this equivalence,
where addition and removal of generators in SQMcorrespond to intersection and union in ST and product and
randomisation inGT. This correspondence is schematically depicted, for the prime-dimensional case, in table 9.
The non-prime case correspondence is represented in table 10.We believe that the fresh perspective gained by
moving fromone theory to another can give powerful new tools for new insights in the field of quantum
computation.

Acknowledgments

Wewould like to thankMisja Steinmetz for suggesting Bezout’s identity. This workwas supported by EPSRC
Centre forDoctoral Training inDeliveringQuantumTechnologies [EP/L015242/1].

21

New J. Phys. 19 (2017) 073035 LCatani andDEBrowne



References

[1] EinsteinA, Podolsky B andRosenN 1935Can quantum-mechanical description of physical reality be considered complete? Phys. Rev.
47 777–80

[2] Bell J S 1966On the problemof hidden variables in quantummechanicsRev.Mod. Phys. 38 447–52
[3] Kochen S and Specker E P 1967The problemof hidden variables in quantummechanics J.Math.Mech. 17 59–87
[4] Spekkens RW2007 Evidence for the epistemic view of quantum states: a toy theory Phys. Rev.A 75 032110
[5] Spekkens RW2016Quasi-quantization: classical statistical theories with an epistemic restriction Fund. Theor. Phys. 181 83–135
[6] GottesmanD1997 Stabilizer codes and quantum error correction PhDThesisCalifornia Institute of Technology
[7] GottesmanD1999TheHeisenberg representation of quantum computersProceedings of the XXII International Colloquium onGroup

TheoreticalMethods in Physics ed S PCorney, RDelbourgo and PD Jarvis (Cambridge,MA: International Press) 32–43
[8] GreenbergerD,HorneM, ShimonyA andZeilinger A 1990 Bellʼs theoremwithout inequalitiesAm. J. Phys. 58 1131
[9] MerminND1990 Simple unified form for themajor no-hidden-variables theorems Phys. Rev. Lett. 65 3373–6
[10] Peres A 1990 Incompatible results of quantummeasurementsPhys. Lett.A 151 107–8
[11] Bravyi S andKitaev A 2005Universal quantum computationwith ideal Clifford gates and noisy ancillas Phys. Rev.A 71 022316
[12] GottesmanD Stabilizer codeswith prime power qudits Invited Talk at Caltech IQIMSeminar (Pasadena, California)
[13] HowardM,Wallman J, VeitchV and Emerson J 2014Contextuality supplies themagic for quantum computationNature 510 351–5
[14] DelfosseN,Guerin PA, Bian J andRaussendorf R 2015Wigner function negativity and contextuality in quantum computation on

rebits Phys. Rev.X 5 2160–3308
[15] Raussendorf R, BrowneD,DelfosseN,OkayC andBermejo-Vega J 2017Contextuality as a resource for qubit quantum computation

Phys. Rev.A 95 052334
[16] Bermejo-Vega J, DelfosseN, BrowneDE,OkayC andRaussendorf R 2016Contextuality as a resource for qubit quantumcomputation

arXiv:1610.08529
[17] Raussendorf R 2013Contextuality inmeasurement-based quantum computation Phys. Rev.A 88 022322
[18] VeitchV,Mousavian SAH,GottesmanDand Emerson J 2014The resource theory of stabilizer quantum computationNew J. Phys. 16

013009
[19] VeitchV,WiebeN, Ferrie C and Emerson J 2013 Efficient simulation scheme for a class of quantumoptics experiments with non-

negativeWigner representationNew J. Phys. 15 013037
[20] Ferrie C,Morris R and Emerson J 2010Necessity of negativity in quantum theory Phys. Rev.A 82 044103
[21] VeitchV, Ferrie C, GrossD and Emerson J 2012Negative quasi-probability as a resource for quantum computationNew J. Phys. 14

113011
[22] Wallman J J and Bartlett SD 2012Non-negative subtheories and quasiprobability representations of qubits Phys. Rev.A 85 062121
[23] GrossD 2006Hudsonʼs theorem for finite-dimensional quantum systems J.Math. Phys. 47 122107
[24] WoottersWK1987AWigner-function formulation of finite-state quantummechanicsAnn. Phys. 176 1
[25] PuseyMF 2012 Stabilizer notation for Spekkens’ toy theory Found. Phys. 42 688
[26] Coecke B, Edwards B and Spekkens RW2011 Phase groups and the origin of non-locality for qubits, electronNotes Theor. Comput.

270 29
[27] Disilvestro L andMarkhamD2017Quantumprotocols within Spekkens’ toymodel Phys. Rev.A 95 052324
[28] Blasiak P 2013Quantum cube: a toymodel of a qubit Phys. Lett.A 377 847–50
[29] Larsson J 2012A contextual extension of Spekkens’ toymodelAIPConf. Proc. 1424 211
[30] Bezout E 1779Theorie Generale des Equations Algebriques (Paris, France: Ph.D. Pierres)
[31] Aaronson S andGottesmanD2004 Improved simulation of stabilizer circuits Phys. Rev.A 70 052328

22

New J. Phys. 19 (2017) 073035 LCatani andDEBrowne

https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/RevModPhys.38.447
https://doi.org/10.1103/RevModPhys.38.447
https://doi.org/10.1103/RevModPhys.38.447
https://doi.org/10.1512/iumj.1968.17.17004
https://doi.org/10.1512/iumj.1968.17.17004
https://doi.org/10.1512/iumj.1968.17.17004
https://doi.org/10.1103/PhysRevA.75.032110
https://doi.org/10.1007/978-94-017-7303-4_4
https://doi.org/10.1007/978-94-017-7303-4_4
https://doi.org/10.1007/978-94-017-7303-4_4
https://doi.org/10.1119/1.16243
https://doi.org/10.1103/PhysRevLett.65.3373
https://doi.org/10.1103/PhysRevLett.65.3373
https://doi.org/10.1103/PhysRevLett.65.3373
https://doi.org/10.1016/0375-9601(90)90172-K
https://doi.org/10.1016/0375-9601(90)90172-K
https://doi.org/10.1016/0375-9601(90)90172-K
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1038/nature13460
https://doi.org/10.1038/nature13460
https://doi.org/10.1038/nature13460
https://doi.org/10.1103/PhysRevX.5.021003
https://doi.org/10.1103/PhysRevX.5.021003
https://doi.org/10.1103/PhysRevX.5.021003
http://arxiv.org/abs/1610.08529
https://doi.org/10.1103/PhysRevA.88.022322
https://doi.org/10.1088/1367-2630/16/1/013009
https://doi.org/10.1088/1367-2630/16/1/013009
https://doi.org/10.1088/1367-2630/15/1/013037
https://doi.org/10.1103/PhysRevA.82.044103
https://doi.org/10.1088/1367-2630/14/11/113011
https://doi.org/10.1088/1367-2630/14/11/113011
https://doi.org/10.1103/PhysRevA.85.062121
https://doi.org/10.1063/1.2393152
https://doi.org/10.1016/0003-4916(87)90176-X
https://doi.org/10.1007/s10701-012-9639-7
https://doi.org/10.1016/j.entcs.2011.01.004
https://doi.org/10.1103/PhysRevA.95.052324
https://doi.org/10.1016/j.physleta.2013.01.045
https://doi.org/10.1016/j.physleta.2013.01.045
https://doi.org/10.1016/j.physleta.2013.01.045
https://doi.org/10.1063/1.3688973
https://doi.org/10.1103/PhysRevA.70.052328

	1. Introduction
	2. Spekkens’ theory
	3. Updating rules—prime dimensional case
	3.1. Adding and removing generators to/from V
	3.2. Measurement updating rules

	4. Updating rules—non prime dimensional case
	4.1. Coarse-graining and fine-graining observables
	4.2. Measurement updating rules

	5. Equivalence of ST and SQM in all odd dimensions
	5.1. SQM—updating rules
	5.2. Gross’ Wigner functions—updating rules

	6. Discussion
	7. Conclusion
	Acknowledgments
	References



