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1 Introduction 20 

One third of food produced across the globe is thrown away uneaten, and this waste 21 

has a large associated environmental burden (IMechE, 2013). Food waste is 22 

responsible for 3.3 Bt-CO2-eq. yr-1, which makes it equivalent to the world’s third 23 

biggest carbon emitter after the economies of China and USA (FAO, 2013). In order 24 

to reduce the environmental impact of food waste, the food waste hierarchy has 25 

been adopted in various forms across different countries (Papargyropoulou et al., 26 

2014), providing guidelines on which disposal technologies are preferable (EC, 2008). 27 

Food waste prevention, at the top of the food waste hierarchy, is considered to be 28 

the most environmentally favorable option (Papargyropoulou et al., 2014). 29 

According to a study published by the European Commission, approximately 44Mt 30 

CO2-eq. year could be avoided by introducing a 20% food waste reduction target (EC, 31 

2014). This finding supports other studies highlighting the significant environmental 32 

benefits of preventing food waste (Bernstad and Andersson, 2015; Gentil et al., 33 

2011; Martinez-Sanchez, 2016). Nevertheless, reported results are subject to a high 34 

level of uncertainty; the reported greenhouse gas (GHG) emissions savings vary 35 

widely, ranging from 800 to 4400 kg CO2-eq. per ton of food waste (Bernstad and 36 

Cánovas, 2015). These variations in the literature arise largely due to methodological 37 

choices: most studies rely entirely on life cycle assessment approaches, do not 38 

consider food imports, and ignore rebound effects. We discuss these three 39 

methodological challenges before introducing a new holistic modelling approach to 40 

addressing them. 41 

Firstly, the majority of studies take a conventional process-based Life cycle 42 

assessment (LCA) approach, commonly used in waste management studies (Table 1). 43 
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Excluding Martinez-Sanchez et al's study (2016), all of the reviewed studies adopt a 44 

bottom-up LCA approach, and therefore inherit the widely-discussed limitations of 45 

LCA such as system boundary cut-offs, data inconsistencies, study-specific scenarios 46 

and assumptions (Bernstad and la Cour Jansen, 2012; Laurent et al., 2014a, 2014b). 47 

LCA is also inadequate for evaluating waste prevention strategies due to its 48 

incomplete representation of the food system. For example, LCA studies generally 49 

do not consider variations within the same food category due to differences in 50 

production systems (e.g. all fish may be assigned the same carbon footprint, rather 51 

than distinguishing between different sources and catch methods), quality of the 52 

product (e.g. conventional vs organic) and methodological assumptions and 53 

approaches (e.g., truncation errors) (Audsley et al., 2009; Bernstad and Cánovas, 54 

2015; Chapagain and James, 2011). 55 

Table 1 - Quantitative studies evaluating the environmental benefit of food waste 56 
prevention. 57 

Study Country Assessment method 
International 

trade included? 
Rebound effect 

included? 

Bernstad and Andersson (2015) Sweden Consequentional LCA Y N 
Chapagain and James (2011) UK LCA N N 
Matsuda et al. (2012) Denmark LCA N N 
Gentil et al. (2011) Denmark LCA N N 
Venkat (2011) USA LCA N N 
Audsley et al. (2009) UK LCA N N 
Martinez-Sanchez et al. (2016) Denmark Life cycle costing N Y 

The second challenge in modelling food waste prevention is the globalization of the 58 

food and associated supply chains. For example, 48% of the UK’s food supply in 2008 59 

was imported from abroad, and these imports accounted for 67% of the GHG 60 

emissions associated with the UK food supply (Ruiter et al., 2016). It is therefore vital 61 

to account for the source of food products when estimating environmental benefits 62 

associated with food waste prevention. Excluding Bernstad and Andersson's study 63 

(2015), all of the reviewed studies assume food production occurs domestically or 64 
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regionally (Audsley et al., 2009; Martinez-Sanchez, 2016; Matsuda et al., 2012; 65 

Venkat, 2011). 66 

The final factor that results in substantial variation in estimated benefits from 67 

preventing food waste is the inclusion, or lack of inclusion, of the rebound effect: the 68 

avoidance of food waste in households leads to increased effective income and 69 

additional expenditure on alternative products and services (Binswanger, 2001; 70 

Brookes, 1990; Khazzoom, 1980). As this additional expenditure generates additional 71 

GHG emissions, the environmental benefits of minimizing food waste can be partially 72 

or completely offset. If the economic savings were to be spent on carbon-intensive 73 

goods or services (e.g. air travel or domestic heating), it is even plausible for food 74 

waste prevention to create higher environmental burdens than disposing of food 75 

waste via other waste management alternatives (Martinez-Sanchez, 2016). 76 

To conclude, the limitations discussed above show that conventional approaches to 77 

investigating environmental benefits associated with food waste prevention are 78 

insufficient in the context of behavioral and systemic effects, as well as a globalized 79 

world. In order to combat these limitations, this study outlines a holistic approach to 80 

quantifying the environmental benefits of food waste prevention. To counter 81 

limitations of conventional bottom-up LCAs, a hybrid LCA approach is used, 82 

combining conventional process-based LCA and input-output data (Salemdeeb and 83 

Al-Tabbaa, n.d.). Secondly, the flow of goods and services throughout the global 84 

supply chain was modelled using economic, top-down multi-regional input output 85 

(MRIO) methods. Finally, the rebound effect is modelled using an econometric-based 86 

marginal expenditure model. The United Kingdom was used as a case study. 87 
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2 Methodology 88 

Three scenarios were modelled for the management of 1 ton of household food 89 

waste:  90 

i. Baseline-scenario: 1 ton of food is wasted and all food waste is sent to be 91 

processed in an anaerobic digestion (AD) plant. Anaerobic digestion was 92 

selected because it is the food waste treatment technology most currently 93 

favored in the UK (Evangelisti et al., 2014; Salemdeeb and Al-Tabbaa, 2015); 94 

ii. A partial-reduction scenario: a 60% reduction in food waste, with the 95 

remaining fraction of food waste being sent to an AD plant; and 96 

iii. A total-reduction scenario: 77% of food waste is prevented and 23% is sent to 97 

an AD plant. 98 

Food waste prevention scenarios are based on a study published by the Waste and 99 

Resources Action Programme (WRAP), which estimates that 60% of food waste in 100 

the UK is avoidable whilst 17% of this total has the potential to be avoided (WRAP, 101 

2013). Possibly avoidable food waste includes leftovers such as bread crusts or 102 

potato skins which are eaten by some people, but not others, and unavoidable food 103 

waste (the remaining 23% of the total) consists of inedible waste such as egg shells 104 

and tea bags (Table 2). Figure 1 shows a schematic diagram illustrating all scenarios 105 

and processes. 106 

Our study adopts a green-consumption approach: households which reduce food 107 

waste are assumed to have reduced food purchases, rather than increased 108 

consumption. Food waste prevention scenarios also include avoided household 109 

food-related activities (e.g. grocery shopping, storage and preparation). Literature 110 

data was used to model these activities: shopping is accountable for 70 kg CO2-eq. 111 
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per ton food and the GHG burden associated with home storage and preparation is 112 

420kg CO2-eq. per ton of food waste (Brook Lyndhurst, 2008; Pretty et al., 2005). 113 

Greenhouse gas emissions are presented using a single mid-point impact category: 114 

climate change. The global warming potential (GWP) metric is used to convert 115 

greenhouse gases to equivalent amounts of CO2 by weighting their radiative? 116 

properties on  a time horizon of 100 years (IPCC, 2007). 117 

 118 

Figure 1 Conceptual diagram of scenarios investigated in this study. Post-primary 119 
production stage includes the processing of primary food products, the distribution 120 
and retailing of final products whilst primary production consists of processes 121 
required to produce primary food products and transport them to a regional 122 
distribution centre. 123 

2.1 Hybrid life cycle assessment: anaerobic digestion 124 

The environmental impacts of the baseline scenario and the unavoided fraction of 125 

food waste in other scenarios (i.e., 40% of food waste in the partial-reduction and 126 

23% in the total-reduction scenarios) was modelled using a hybrid LCA model 127 

(Salemdeeb and Al-Tabbaa, (n.d.)) combining conventional process-based LCA and 128 

input-output analysis. Life cycle inventory data and technical parameters related to 129 

the AD technology are based on a previous study (Salemdeeb et al., 2016). Food 130 

waste collection and transportation are included in the assessment whilst food 131 
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waste packaging is excluded due to its insignificant impact (Bernstad and Andersson, 132 

2015; Lebersorger and Schneider, 2011). 133 

2.2 An environmentally extended multi-regional input output analysis: food 134 

waste prevention 135 

Input-Output (IO) analysis is a top-down approach to modelling the complex 136 

interdependencies of industries within an economy (Leontief, 1936). IO tables are 137 

widely applied to link economic sectors with producers and customers to understand 138 

the interactions and impacts of economic activities (Leontief, 1951a, 1951b; Miller 139 

and Blair, 2009). Exiobase V2 is a high-resolution database used for the multi-140 

regional input-output model in this study (Wood et al., 2015). The database provides 141 

data at an unprecedented level of consistent detail in terms of sectors, products, 142 

emissions and resources and covers 43 countries, which together account for 143 

approximately 89% of global gross domestic product and 80-90 % of the trade flow 144 

by value within Europe (Stadler et al., 2014; Tukker et al., 2014). 145 

In order to integrate the monetary value of potential savings made by preventing 146 

food waste with the Exiobase database, the following steps were taken: (i) food 147 

prices, listed in Table 2, were converted from GB£ to Euro€ using the Purchasing 148 

Power Parity index (World Bank, 2015); [ii] the data was then adjusted to the 149 

Exiobase base year (i.e. 2007) in order to take into account inflation using the UK 150 

Consumer Price Index (ONS, 2013); [iii] the data reported in purchase prices was 151 

then converted into basic prices using a conversion ratio to in order to respect 152 

margins, taxes and subsidies on products (Appendix A); [iv] a concordance matrix 153 

was used to map monetary data onto the Exiobase’s structure format (Appendix B); 154 
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and [v] the data was disaggregated to account for food imports by using existing 155 

food import weighting coefficients from Exiobase (Appendix C ). 156 

Table 2 The functional unit of the study: 1 tonne of UK household food waste 157 
disaggregated into three stream categories (i.e. unavoidable, possibly avoidable and 158 
avoidable). The functional unit is presented below using both physical (kg) and 159 
monetary (GB£) units (WRAP, 2013). 160 

Food Type 

Food waste 

Unavoidable Possibly avoidable Avoidable 

Quantity 
(kg) EV (£ )1 

Quantity 
(kg) EV (£ ) 1 Quantity (kg) EV (£)1 

Fresh vegetables and salads 39.2 41.7 89.5 95.0 127.1 135.1 

Drink 41.5 41.5 0.0 0.0 58.5 58.5 

Fresh fruit 84.7 83.8 3.1 3.1 54.9 54.3 

Meat and fish 31.4 115.6 10.4 38.2 47.1 173.5 

Bakery 0.2 0.2 17.3 26.5 70.6 108.5 

Dairy and eggs 9.3 15.0 0.2 0.3 65.9 107.1 

Meals (home-made and pre-prepared) 0.2 0.7 0.2 0.7 69.0 329.6 

Processed vegetables and salad 0.2 0.4 0.2 0.4 28.2 80.0 

Cake and desserts 0.2 0.6 0.2 0.6 25.1 89.5 

Staple foods 0.2 0.4 0.2 0.4 23.5 54.9 

Condiments, sauces, herbs & spices 0.2 0.7 0.3 1.5 22.0 102.0 

Oil and fat 0.2 0.1 8.2 6.2 3.1 2.4 

Confectionery and snacks 0.2 1.0 0.2 1.0 9.6 63.3 

Processed fruit 0.2 1.4 0.2 1.4 3.3 29.8 

Other 0.2 0.0 59.6 4.4 1.7 0.1 

Total2 207.7 303.4 189.4 179.8 609.8 1388.5 
1 Economic value based on the year 2012 
2 Figures might not sum due to rounding. 

2.3 Modelling the rebound effect 161 

The microeconomic rebound effect consists of a direct and indirect effect: the first is 162 

related to the additional demand for the product that has been subject to an 163 

efficiency improvement (i.e. additional demand for some categories of food, where 164 

the efficiency improvement is an increase in the ratio between the food purchased 165 

and consumed), whereas the latter refers to the additional demand in all other 166 

consumption categories (D Font Vivanco et al., 2016). The rebound effect was 167 

quantified through a single re-spending model in which all consumption categories 168 
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were treated equally (Murray, 2013). This approach achieves methodological 169 

consistency at the expense of differentiation between the direct and the indirect 170 

effect (for examples of the latter, see the works of Freire-González (2011), Thomas 171 

and Azevedo (2013) and Font Vivanco and van der Voet (2014)). Specifically, we 172 

estimate how freed effective income (FEI) was spent by calculating the marginal 173 

budget shares (MBS) for each consumption category i. The MBS were calculated 174 

using a linear specification of an Almost Ideal Demand System (AIDS), a demand 175 

system model developed by (Deaton and Muellbauer, 1980) with properties that 176 

makes it preferable to competing models (Chitnis and Sorrell, 2015; Deaton and 177 

Muellbauer, 1980). For instance, compared with other approaches based on 178 

expenditure elasticities or Engel curves (Chitnis et al., 2013, 2014; Font Vivanco et 179 

al., 2014; Murray, 2013), the AIDS allows to estimate more accurately the pure 180 

income effect (changes in expenditure due to changes in effective income), as the 181 

substitution effect (changes in expenditure due to changes in relative prices) is 182 

corrected by means of a price index. In a budget share (w) form, the AIDS model for 183 

the ith consumption category and a given time period t is expressed as (Deaton and 184 

Muellbauer, 1980): 185 

𝑤𝑡
𝑖 = 𝛼𝑖 + ∑ 𝛾𝑠

𝑖

𝑗=1,...,𝑛

ln 𝑝𝑡
𝑠 + 𝛽𝑖 ln (

𝑥𝑡
𝑠

𝑃𝑡
)           (1) 186 

where n is the number of consumption categories, x is total expenditures, P is 187 

defined here as the Stone’s price index, p is the price of a given category and α, β 188 

and γ are the unknown parameters. The Stone’s price index is defined as: 189 

ln 𝑃𝑡 = ∑ 𝑤𝑡
𝑠 ln 𝑝𝑡

𝑠

𝑗

        (2) 190 



11 
 

Additionally, and in order to comply with consumer demand theory, three 191 

constraints are imposed: adding-up, homogeneity and symmetry (Deaton and 192 

Muellbauer, 1980). The microeconomic rebound effect in demand units (rd) is 193 

defined as: 194 

𝑟𝑑 = ∑ 𝑠 ∗ 𝑤𝑖         (3)

𝑗

 195 

where s is the total economic savings. 196 

Data on the final consumption expenditure of households and price indices for 197 

Classification of Individual Consumption According to Purpose (COICOP) 3 digit 198 

categories for the UK and the period 2004-2013 were obtained from Eurostat 199 

(2016a, 2016b). In order to harmonize product categories reported by the COICOP 3 200 

digit (i) and Exiobase databases (j), we used the approach from Koning and Xingyu, 201 

(2016), which derives transformation tables describing how COICOP categories are 202 

distributed over Exiobase categories. Specifically, we used household expenditure 203 

data to build weights in cases when a given COICOP category is distributed over 204 

multiple Exiobase categories. The marginal budget shares of UK household 205 

expenditure are listed in Appendix H in both Exiobase and COICOP formats. 206 

The modelling of the rebound effect entails a high level of uncertainty. When people 207 

save money from reducing food waste, it is not certain how they will alternatively 208 

spend this surplus. We therefore model five scenarios of rebound spending, listed in 209 

Table 3, that were developed based on a literature review (Appendix D). The first 210 

scenario, the behavior-as-usual scenario (R-1), is based on the methodology 211 

discussed above to allocate free effective income to all consumption categories. Two 212 
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sub-scenarios were also considered to investigate the level of uncertainty in MBS 213 

estimates (scenarios R-1A and R-1B, see Table 3). In these two scenarios, the profit 214 

made from reducing food waste is re-spent on the top 25 consumption categories, 215 

which together make up more than 88% of spending (i.e., categories with the 216 

highest MBS). Within these 25 categories, the re-spend is divided between the 15 217 

categories with either the highest GHG-intensities (scenario R-1A) or the highest 218 

MBS (scenario R-1B). The re-spend is limited to the top 25 consumption categories in 219 

order to make the results more conservative and realistic than previous modelling 220 

approaches which assume that additional spending may occur on services with the 221 

highest or lowest GHG-intensities, regardless of their importance in the household 222 

budget (e.g. Martinez-Sanchez et al. 2016). 223 

The second part of the sensitivity analysis is based on the observation made by 224 

WRAP that people tend to spend 50% of FEI in buying higher quality food products 225 

(WRAP, 2014). Examples of food up-trade include buying locally-produced organic 226 

agricultural products, higher-quality meat or switching between food types (e.g., 227 

more meat, less staples or more beef, less chicken). Therefore, we also include up-228 

trade scenarios that investigate the impact of re-spending 50% of the freed effective 229 

income on purchasing quality oriented food products whilst the remaining 50% of 230 

the FEI follow the original expenditure pattern. As GHG-intensities can vary largely 231 

between quality oriented and conventional food products (Appendix E), we consider 232 

two sub-scenarios: (i) GHG intensities remain the same for both conventional and 233 

quality oriented products (scenario R-2A), and (ii) GHG intensities are updated to 234 

reflect the variation between quality oriented and conventional food products 235 
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(scenario R-2B); we model quality orientated food products as organic food products 236 

(Appendix G). 237 

Table 3 Rebound effect scenarios considered in this study. 238 
Scenario Description  

Behaviour-as-usual (R-1) 

A reference scenario that assumes the re-spend occurs in line with the 
methodology discussed in section 2.3. The marginal budget shares 
(MBS) for each consumption category are listed in Appendix H, in both 
Exiobase and COICOP formats. 

Major spending scenario: GHG 
based (scenario R-1A) 

This scenario allocates the re-spend to 15 major consumption 
categories1 with the highest CO2 intensities. MBS were recalculated 
based on the original weight of MBS values (Appendix I). 

Major spending scenario: 
expenditure based (scenario R-1B) 

This senario redistributes the re-spend on 15 major consumption 
categories1 of the highest MBS. MBS were recalculated based on the 
original weight of MBS values (Appendix I). 

Up-trade scenario: Exiobase GHG 
intensities (R-2A) 

This scenario assumes that 50% of the re-spend occurs in food-product 
categories while the remaining 50% follows the same distribution 
patters on the behaviour-as-usual scenario. 

Up-trade scenario: Updated GHG 
intensities (R-2B) 

This scenario uses updated GHG intensities to investigate the variation  
as a result of purchasing quality oriented products. Conversion factors 
are derived from literature (Appendix E). 

1 Major consumption categories is a list, presented in Table H.3, of 25 consumption cateogires where more than 
88% the re-spend occur (i.e., categories with the highest MBS).  

3 Results and discussion 239 

Reducing food waste leads to substantial GHG savings (Table 4). Emissions are 240 

reduced by 700 and 888 kg CO2-eq. per ton food waste for the scenarios of a partial 241 

(60%) and total reduction of avoidable and possibly avoidable food waste (77% with 242 

the remaining 23% of unavoidable food waste sent to AD plant), respectively. 243 

Hotspot analysis, depicted in Figure 2, shows that the avoidance of food production is 244 

accountable for the majority of these benefits: 83.5% for the partial reduction 245 

scenario and 76% for the total reduction scenario. These findings confirm other 246 

studies which recognise the importance of savings made in the production stage 247 

(Bernstad and Andersson, 2015; Gentil et al., 2011; Martinez-Sanchez et al., 2016). 248 

GHG savings from avoided food production are estimated in all industries across the 249 

entire supply chain, from fertilizers to iron and steel inputs (Table 5). Most of the 250 

savings result from avoided fertiliser and energy use; N-fertiliser production and 251 



14 
 

coal-based electricity generation contribute to the overall reduction by 25% and 252 

20%, respectively. 253 

Table 4 GHG emissions, expressed in GWP, from food waste management as total 254 
food waste (kg CO2-eq. per ton food waste) divided on streams and rebound effect1. 255 
Negative values are overall GHG savings. 256 

 

Food waste 
treatment (AD) 

Food waste 
prevention 

Rebound 
effect (RE)1 Total1 

RE Reduction 
rate (%)2 

Baseline scenario -89 0 0 -89 NA 
Partial-reduction 
scenario -30 -1138 467 (290-685) -700 (-483 to -878) 25-59 
Total-reduction 
scenario -11 -1419 542 (335-795) -888 (-635 to -1095) 23-56 
1Range in brackets 

2The reduction in GHG savings due to the inclusion of rebound spending. 

 257 

Figure 2 Hotspot analysis of GHG savings from food waste prevention. Triangles show the overall 258 
avoided GHG emissions.  259 

 260 

Table 5 Hotspot analysis for GHG savings from the avoided production of food, as 261 
food waste is reduced. Categories reported are Exiobase Industrial categories 262 

Industrial sector 
Weight 

% 

N-fertiliser 25 

Electricity (coal) 20 

Vegetables, fruit, nuts 6 

Electricity (gas) 5 
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Crude petroleum and services related to 
crude oil extraction 

5 

P- and other fertiliser 3 

Basic iron and steel 3 

Steam and hot water supply services 2 

Chemicals 2 

Cereal grains 2 

Others 25 

The second largest contributor to GHG savings is food-related household activities 263 

(e.g., grocery shopping transportation, food storage and preparation). These 264 

activities contribute to GHG reductions of 16.5% and 24% for the partial-reduction 265 

and total-reduction scenarios respectively. These estimations are based on data 266 

obtained from literature and raise questions concerning its reliability. For instance, 267 

Gruber et al. (2014) state that between 0.7 - and 2.1 MJ of electricity is needed to 268 

cook of 1 kg rice or potatoes, depending on household behaviour. 269 

Overall, the combination of GHG savings in food production and related household 270 

activities leads to a large potential GHG reduction, ranging from 1138-1419 kg CO2-271 

eq. per ton of food waste prevented. However, these benefits are reduced by nearly 272 

23-59% due to the impact of the rebound effect, shrinking GHG reductions to 273 

between 483 and 1095 kg CO2-eq. per ton of food waste. Despite the substantial 274 

reductions in reported benefits, overall GHG savings remain 5-12 times greater than 275 

those reported for anaerobic digestion. The study quantitatively confirms the 276 

significant impact of the rebound effect in reducing environmental benefits 277 

associated with food waste prevention (Druckman et al., 2011; Martinez-Sanchez et 278 

al., 2016). A further discussion regarding the impact of the rebound effect and the 279 

sensitivity of our results is covered in section 3.4. 280 
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With regards to the baseline-scenario where 1 ton of food is wasted and sent for 281 

anaerobic digestion, results show an overall GHG reduction of 89 kg CO2-eq. per ton 282 

of food waste. These GHG savings occur mainly due to energy recovery and the 283 

displacement of fertiliser, which lead to GHG reductions of 185.5 and 4.6 CO2-eq. per 284 

ton of food waste respectively. Contrastingly, most of the GHG burden of AD is a 285 

result of the digestion process itself and the energy input required to operate the 286 

system, whilst food waste collection and transportation has a less significant impact: 287 

11 kg CO2-eq. per ton of food waste (Salemdeeb and Al-Tabbaa, 2015). A hot spot 288 

analysis of the baseline-scenario is presented in appendix F. 289 

3.1 The role of the MRIO model 290 

The GHG savings from reducing food waste occur internationally (Figure 3). Only 22% 291 

of these savings take place within UK borders (Figure 3b)  ̶  this relatively low 292 

percentage is attributed to the UK’s dependence on food imports, the relatively 293 

environmentally efficient food production systems and low-carbon energy sources in 294 

the UK. Our results echo recent findings that the majority of the UK food basket’s 295 

GHG emissions occur abroad (Ruiter et al., 2016), partly due to  lower GHG 296 

efficiencies in agriculture in developing nations. Whilst only 6.5% of financial savings 297 

made from waste avoidance comes from food produced in India, for example, this is 298 

equivalent to a 17.5% reduction in GHG emissions (Table b in Figure 3). In this case, 299 

the rice products category is the largest contributor to these savings which are made 300 

across various industry groups in India, such as coal-based electricity (50%), N-301 

fertiliser (18%), P-fertiliser (4%) and the paddy rice sector (9%). 302 
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 303 

Figure 3 Preventing food waste in UK households leads to GHG savings 304 
internationally, due to savings made throughout the UK’s global food supply chain. 305 
Countries shaded in grey have no data available. 306 

The MRIO approach allows an unprecedented resolution of analysis, including 307 

differentiating impacts per food group as well as country. In the case of sugar, more 308 

than half of the GHG savings occur in Brazil and France, the leading suppliers of sugar 309 

to the UK (Figure 4); 37% of sugar cane being imported from Brazil and 21% of sugar 310 

beet being imported from France (Baker and Morgan, 2012).  311 

 312 

Figure 4 Sources of GHG savings for the avoidance of sugar waste, both from sugar 313 
beet and sugar cane. Countries shaded in grey have no data available. 314 

Despite the analytical strengths of the MRIO method in modelling the global supply 315 

chain, the adoption of such an approach is subject to a major limitation. MRIO 316 

models use average national data and therefore neglect variation in impacts 317 

associated with products aggregated into the same industrial category (for example, 318 
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this study allocated an average GHG intensity for all dairy products in each country). 319 

This shortcoming could in future be addressed by improving the quality of data 320 

integrated into the MRIO model. This could be done by integrating the World Food 321 

LCA database ̶  a comprehensive and international inventory database for 200 food 322 

life cycle assessments (Nemecek et al., 2015) - with the MRIO model. This hybrid 323 

approach would then combine the advantages of IO analysis to cover the global food 324 

supply chain and the advantage of process-based LCA to use up-to-date and high-325 

resolution environmental intensities. 326 

3.2 Comparison with previous studies 327 

Despite finding substantial GHG benefits of avoiding food waste, our estimates of 328 

the GHG savings are more conservative than those reported in previous studies 329 

(Figure 5). Differences arise due to the aggregated nature of the method (as 330 

discussed above, see section 3.1) and variations in the scenarios evaluated and the 331 

data used in each study. The scenarios used in this study assume, for example, that 332 

23% of food waste is unavoidable (40% in the partial reduction scenario and 23% in 333 

the total reduction scenarios) and, is therefore sent to anaerobic digestion, leading 334 

to lower GHG reductions than if we had assumed that the total functional unit (1 ton 335 

of food waste) was preventable. 336 
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 337 

Figure 5 A comparison of the different estimates of GHG savings from avoiding one 338 
ton of food waste. The error bars illustrate the ranges reported in each study.  339 

3.3 Rebound effect 340 

Results of the sensitivity analysis show a high level of uncertainty associated with the 341 

rebound effect, with the reduction in GHG savings ranging from 23-59% (Table 4 and 342 

error bars in Figure 6a). The upper limit (R-1A), representing the GHG-based major 343 

spending scenario, is a result of re-spending savings on GHG-intensive categories 344 

such as wholesale trade, motor gasoline, petroleum and air transport services. The 345 

lower limit, representing the expenditure-based major spending scenario (R-1B), is a 346 

result of re-spending the freed effective income on less GHG intensive categories 347 

such as education services, real estate services and communication services. 348 

The second part of the sensitivity analysis investigated the effect of shifting from 349 

conventional to quality-oriented food products (Up-trade scenarios, see Table 3 and 350 

Figure 6b). The use of the same Exiobase GHG intensities (scenario R-2A) results in a 351 

small 3.5% increase, while using updated GHG intensities increases the size of the 352 

rebound effect and, consequently reduces the benefits of food waste prevention by 353 
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19.5% (354 

355 
Figure 66b). The low increase estimated using Exiobase GHG intensities could be 356 

explained by two factors: 50% of the re-spending occurs in food product categories 357 

that are considered low-GHG categories (Druckman et al., 2011), and the assumption 358 

that GHG intensities of quality oriented products increase in the same way as paying 359 

a higher price per functional unit (Girod and de Haan, 2010; Vringer and Blok, 1996). 360 

For example, if the price of a functional unit of a quality-oriented product is twice 361 

this of the conventional counterpart, then the environmental burden associated with 362 

it would be doubled. Therefore the first scenario of the uptrade option approach 363 

may fail to represent the true variation in environmental impacts between 364 

conventional and quality-oriented products. The literature review shows that these 365 

variations could vary hugely, from -38% for sugar and oil seeds to +27% for pig meat 366 

production (Appendix D & G). Updating GHG intensities to reflect these variations 367 

(scenario R-2B) show that shifting to quality-oriented products increases the 368 

rebound effect and, consequently reduced food waste prevention benefits by 19.5% 369 

(370 
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371 
Figure 66b). This is due to the additional environmental burden associated with the 372 

production of many quality-oriented food products. Examples of higher impact and 373 

higher value products include organic products, (which have lower yields than 374 

conventional products) boneless meat, (which requires additional energy input in 375 

the food production process) and the use of premium packaging. 376 

377 
Figure 6 Uncertainty in estimates for the rebound effect. The left two bars (a) show 378 
the GHG savings assuming that the respend occurs in line with current budget shares 379 
(R-1), i.e. behavior-as-usual. The error bars represent the estimates for the GHG 380 
savings when spending is assume to shift between the top 25 consumption 381 
categories (scenario R-1A, upper limit & scenario R-1B, lower limit). The bars to the 382 
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right show (b) the estimated GHG savings, assuming that some of the respend is 383 
spent “trading up” to higher quality goods (scenarios R-2A and R-2B). 384 

A handful of peer-reviewed studies have investigated the impact of the rebound 385 

effect in food waste prevention activities or a similar context (Alfredsson, 2004; 386 

Druckman et al., 2011; Martinez-Sanchez et al., 2016). Martinez-Sanchez and her 387 

colleagues used an environmental life-cycle costing approach to evaluate the impact 388 

of the rebound effect in food waste prevention activities in Denmark. Their study’s 389 

results also found a large rebound effect – in fact much larger than that of our study 390 

(1528-4367 kg CO2 eq/tonne of food waste; 2-5 times higher than results reported in 391 

this study). Their findings suggest that the rebound effect could exceed the GHG 392 

savings from avoiding food waste, a phenomenon known as “backfire”, where 393 

reducing food waste might actually increase GHG emissions. The large difference 394 

between these two estimates are attributable to various factors: (i) Martinez-395 

Sanchez et al. use a highly aggregated economic model, combining all industrial 396 

sectors into 9 categories; (ii) they use consumer expenditure surveys to allocate 397 

savings on consumption categories; and (iii) they investigate extreme scenarios for 398 

the rebound effect, including allocating 100% of the savings to the sector with the 399 

highest environmental impact, namely “Household use, Hygiene”. Sectorial 400 

aggregation is a known source of bias in the input-output literature (Moran and 401 

Wood, 2014; Su et al., 2010), and our results may indicate that higher disaggregation 402 

leads to lower overall GHG emissions for our case study. Our rebound effect model 403 

also combines expenditure and cross-price elasticity (section 2.3), which may lend 404 

more weight to low GHG-intensive consumption categories compared to simpler 405 

models. Finally, our sensitivity analysis for the rebound effect is constrained so that 406 

it more closely resembles current household spending. Despite these differences, 407 
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the potentially large rebound effect reported here as well as in similar studies 408 

reveals the limitation of behavioural interventions, such as reducing food waste in 409 

order to reduce greenhouse gas emissions (Martinez-Sanchez et al., 2016). To reduce 410 

rebound effects and deliver effective GHG savings, behavioural change must be 411 

coupled with economy-wide reductions in GHG intensity (Alfredsson, 2004; 412 

Druckman et al., 2011; David Font Vivanco et al., 2016). 413 

4 Conclusions 414 

This paper explores the value of methodological refinements to evaluating the 415 

environmental impacts associated with food waste prevention. The quantitative 416 

results confirm existing ideas on the environmental benefits of food waste 417 

prevention. Concretely, estimated GHG reduction values range between 700 and 888 418 

kg CO2-eq. per ton of food waste. Nevertheless, these emissions are relatively lower 419 

than others reported in the literature, partly due to the impact of the rebound 420 

effect, which reduces GHG benefits by up to 59%. Overall, our findings indicate that 421 

the environmental benefits associated with food waste prevention intervention (e.g., 422 

the “love food hate waste” campaign in the UK (WRAP, 2013)) could be partially 423 

undermined by rebound spending. Efforts to reduce the impact of food waste must 424 

explicitly consider rebound effects; ultimately, to effectively deliver GHG reductions, 425 

behavioural change, such as food waste reduction, must be coupled with reductions 426 

in GHG emissions across the economy. 427 

Furthermore, this study provides the first comprehensive assessment of food waste 428 

prevention that includes the impacts associated with food imports. It highlights the 429 

importance of adopting a top-down multi-disciplinary system-wide approach in 430 

order to deal with the complexity of the food supply chain that extends beyond 431 
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geographical borders and across various industries. The findings of this research 432 

have provided further insight into our understanding of the environmental impacts 433 

of the globalized food production supply chain, particularly in developing countries. 434 

The study would consequently help policy makers to develop strategies in order to 435 

ensure high efficiency across the global supply chain, especially in developing 436 

countries. 437 
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