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Abstract
Accurate estimation of neuronal receptive fields is essential for understanding sensory pro-

cessing in the early visual system. Yet a full characterization of receptive fields is still incom-

plete, especially with regard to natural visual stimuli and in complete populations of cortical

neurons. While previous work has incorporated known structural properties of the early

visual system, such as lateral connectivity, or imposing simple-cell-like receptive field struc-

ture, no study has exploited the fact that nearby V1 neurons share common feed-forward

input from thalamus and other upstream cortical neurons. We introduce a new method for

estimating receptive fields simultaneously for a population of V1 neurons, using a model-

based analysis incorporating knowledge of the feed-forward visual hierarchy. We assume

that a population of V1 neurons shares a common pool of thalamic inputs, and consists of

two layers of simple and complex-like V1 neurons. When fit to recordings of a local popula-

tion of mouse layer 2/3 V1 neurons, our model offers an accurate description of their

response to natural images and significant improvement of prediction power over the cur-

rent state-of-the-art methods. We show that the responses of a large local population of V1

neurons with locally diverse receptive fields can be described with surprisingly limited num-

ber of thalamic inputs, consistent with recent experimental findings. Our structural model

not only offers an improved functional characterization of V1 neurons, but also provides a

framework for studying the relationship between connectivity and function in visual cortical

areas.

Author Summary

A key goal in sensory neuroscience is to understand the relationship between sensory sti-
muli and patterns of activity they elicit in networks of sensory neurons. Many models have
been proposed in the past; however, these models have largely ignored the known architec-
ture of primary visual cortex revealed in experimental studies, thus limiting their ability to
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accurately describe neural responses to sensory stimuli. Here we propose a model of pri-
mary visual cortex that takes into account the known architecture of visual cortex, specifi-
cally the fact that only a limited number of thalamic inputs with stereotypical receptive
fields are shared within a local area of visual cortex, and the hierarchical progression from
neurons with linear receptive fields (simple cells) to neurons with non-linear receptive
fields (complex cells). We show that the proposed model outperforms state-of-the-art
methods for receptive field estimation when fitted to two-photon calcium recordings of
local populations of mouse V1 neurons responding to natural image stimuli. The model
demonstrates how the diverse set of receptive fields in the local population of neurons can
be constructed from a limited number (< 20) thalamic inputs.

Introduction
The fundamental assumption underlying early sensory processing is that different external sti-
muli elicit distinct activity patterns that encode the content of the stimuli. Patterns of neuronal
activity in early sensory areas of cortex are themselves a product of the network in which the
neurons are embedded [1,2]. Understanding the relationship between stimuli and responses in
a given neural population, and how these responses are created by the underlying neural cir-
cuits, is thus essential for explaining the role of these neurons in sensory processing [3].

A common approach for identifying stimulus-response functions is to present a large set of
stimuli while recording the responses of individual neurons, and subsequently fit each neuron
with a model. The accuracy of the model can be determined by comparing the predicted and
actual activities in responses to a novel stimulus set. This data-driven approach to describing
stimulus response functions (e.g. spatio-temporal response functions, STRFs) of neurons in the
visual system has been refined over the last four decades. Initially, the filter functions of func-
tionally linear neurons in the retina, lateral geniculate nucleus (LGN), or simple cells in pri-
mary visual cortex (V1) were obtained using artificial sets of stimuli, such as sparse noise or M-
sequences [4–6]. More recently, studies advanced to describing the response functions of less
linear neurons (complex cells in primary visual cortex, and neurons in V2) [7,8] while using
stimuli more representative of the natural environment, such as sequences or movies of natural
scenes [9–12]. However, even in V1, the modest response prediction accuracy from these mod-
els indicates that our current ability to characterize the stimulus response functions is incom-
plete [8,10,13].

Several major advances in the estimation of response functions have been introduced in
recent years. Spike-triggered covariance (STC) [7] and multi-layer neural networks [13–15]
made it possible to estimate the non-linear receptive fields (RFs) of complex cells. Most previ-
ous methods for estimating RFs in the early visual system have dealt with data from single cells
independently [4–6,16,17]. The introduction of generalized linear models (GLMs) showed that
incorporating information about the activity of nearby neurons a few milliseconds in the past
can significantly improve predictive power [2], but this technique is restricted to a linear repre-
sentation of the receptive field. More recently, usage of pre-defined banks of linear and non-
linear filters to pre-process the visual input, and then using linear regression in this trans-
formed input space to fit the model, has improved prediction accuracy [8,18]. However, no RF
estimation method has taken advantage of the fact the RFs of a local population of neurons are
constructed from a limited number of shared LGN inputs [19], which have stereotypical cen-
ter-surround RF structure. The advent of two-photon calcium imaging makes it possible to
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record the activity from complete local populations of neurons [20,21], and thus allows estima-
tion of a model containing these constraints.

Here we propose a new method for estimating RFs in V1—the Hierarchical Structural
Model (HSM)—which assumes that a local neuronal population shares a limited number of
afferent inputs from the LGN. The model explicitly incorporates hierarchical sub-cortical and
cortical processing, whereby center-surround thalamo-cortical inputs are summed in the first
layer of neurons, consisting of putative simple cells, followed by a second layer of neurons that
sum inputs from simple cells to form both simple and complex-cell like RFs. The model takes
advantage of the RF redundancies among nearby V1 neurons, by simultaneously fitting the
entire local population of recorded neurons, and outperforms current state-of-the-art
approaches to RF estimation when predicting neuronal activity measured with two-photon cal-
cium imaging.

Results
Wemeasured neuronal responses with two-photon calcium imaging of local populations of
mouse V1 neurons labeled with Oregon Green Bapta-1 AM (OGB-1), during presentation of a
large set of full-field natural images (see Fig 1 and Materials and Methods). We recorded cal-
cium signals in populations of layer 2/3 neurons in V1 (three regions from two mice) in
response to unique set of 1260 to 1800 images. To obtain reliable responses we applied a stimu-
lation protocol in which images were presented for 500 ms, interleaved with blank grey screens
presented for 1474 ms. An extra 50 images were presented for 8–12 trials each, providing a set
of neuronal responses used as a validation dataset. Calcium signals were converted into puta-
tive spikes using a fast non-negative de-convolution method [22]. Combined cell-attached
recordings and calcium imaging were used to validate the spike inference method in a subset of
neurons (53±6% single spikes and 95±2% of burst of 2 spikes detected per imaging frame; false
positive rate 0.049±0.009 Hz [22,23]).

Model-based RF estimation in mouse V1
Our model-based approach to RF estimation is inspired by the anatomical and functional orga-
nization of mammalian V1 (see Fig 2 and Materials and Methods). It is based on the following
basic assumptions: LGN units can be well described as difference-of-Gaussian functions [24];
the local population of V1 neurons shares input from limited number of such LGN units
[19,25]; simple cells can be constructed by summing several RFs of LGN neurons [26,27]; com-
plex cells can be constructed by summing inputs from the local population of simple cells that
are selective to the same orientation but different RF phases [27].

The HSM consists of 3 layers of units: the first layer consists of linear kernels of LGN units
that are modeled as 2D difference-of-Gaussians functions (see Fig 2). Units in the second layer
sum the responses of LGN-like linear units, and pass on the resulting potential via a logistic-
loss non-linearity. In this way units in the second layer construct oriented RFs through feed-
forward summation of thalamocortical inputs [27]. Linear summation coupled with logistic-
loss non-linearity is repeated again in the third layer, which enables construction of RFs that
are tuned to orientation but can be insensitive to spatial phase (i.e. units resembling complex
cells). Moreover, this approach also allows the generation of RFs that do not conform to the
standard idealized models of either simple or complex cells, including, for example, models of
cells that are selective to two orthogonal orientations. The HSM therefore leverages the
assumed local connectivity in V1, thus potentially improving fits on limited data, while fitting
RFs that do not conform to the idealized models of V1 neurons, a requirement that may be
important for capturing the full response variability of V1 neurons.
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We estimated the RFs for each neuronal population in V1 by applying a gradient ascent
method to optimize corresponding log-likelihood functions with respect to the model parame-
ters to reproduce responses to the set of training visual stimuli (see Materials and Methods). To
demonstrate the results of fitting the HSM to a local population of mouse V1 neurons, we plot-
ted the linearized RFs in cortical space with each RF centered on the location of the corre-
sponding neuron’s cell body in the imaged region (Fig 3). The color of the frame around each
neuron’s RF represents the value of the non-linearity index (NLI; see Materials and Methods)
for the given neuron, indicating the portion of the predicted responses which is due to non-

Fig 1. The stimulation protocol and population responses in L2/3 of mouse V1. (A) Natural images were presented for 500 ms,
interleaved by 1474 ms periods of blank gray screens. (B) The responses (inferred spike rate) of 103 measured neurons to the first
600 of the 1800 images presented to the animal as a part of the training set (note that due to copyright restrictions the images
presented during experiments were in this figure replaced with different equally pre-processed images which are under Creative
Commons CC0 license). (C) Examples of spatial activity patterns to single natural images.

doi:10.1371/journal.pcbi.1004927.g001
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linear as opposed to linear aspects of the HSM, and can be considered as an estimate of a neu-
ron’s non-linearity. We observed a diversity of RF shapes in local regions of mouse V1, with a
full range of linear and non-linear characteristics (Fig 3).

HSM accurately predicts neuronal responses to natural stimuli
To estimate the performance of the HSM, we measured the correlation between responses pre-
dicted by the fitted model and evoked responses to a novel set of validation images (50 images,
responses averaged over 8–12 trials) that were not included in the training set (Fig 4). The top
neuron depicted in Fig 4A was the best fit neuron (R = 0.9; p<0.001). The model predicted its
response with high accuracy, apart from small response deviations at lower response ampli-
tudes. The neuron in Fig 4B exhibited the median correlation between predicted and recorded
responses (R = 0.53; p<0.001), where the predicted response captured a considerable part of the
neural response, but significant deviations from the measured activity were still observed. The
correlation coefficients of neurons from all three imaged regions in V1 were broadly distributed
across a range of positive values, with few neurons showing weak anti-correlation (median val-
ues of 0.53, 0.45 and 0.47 respectively; p<0.001 for all three regions; Fig 4C). We found a strong
negative relationship between the normalized noise power [28] in recordings of individual neu-
rons and the performance of the model for those neurons (Fig 4D). This is because response
reliability of neurons has a significant impact on the ability of the model to fit individual neu-
rons, as less reliable responses carry less information about the stimulus, and the mean response
from the validation image set is likely to deviate more from the true average response for less
reliable neurons. This predicts that collecting a larger training set and increasing the number of
repetitions in the validation set would further improve the prediction power of the model.

Fig 2. The architecture of the HSM. The model consists of a limited number of difference-of-Gaussian
kernels, parameterized by the width and weight of the central and surrounding Gaussians, and the x and y
coordinates of their center. This LGN layer is followed by two `cortical`layers of simple integrators with
logistic-loss type transfer functions. The two layers are inter-connected by all-to-all connections and the first
layer has all-to-all connections from the LGN units. Each unit in the two ‘cortical’ layers is parameterized by
the set of incoming weights and the threshold of its logistic-loss transfer function. The log-loss function
approximates a linear function with the slope of 1 as (x − t)!1.

doi:10.1371/journal.pcbi.1004927.g002
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HSM outperforms state-of-the-art methods
In the previous section we showed that the HSM can predict well the responses of many neu-
rons to novel natural stimuli. How does the prediction performance of our model compare to
other models, including a regularized variant of the linear-nonlinear model (rLN) [9], and the
Berkeley wavelet transform (BWT) model [29]? Due to its simplicity and interpretability, the

Fig 3. The distribution of linear RFs in the cortical space obtained from the first recorded region. Each linear RF is centered on the
corresponding neuron’s cell body in the cortical region where recordings took place (displayed in lower right corner). The color of the frame
indicates the NLI of the given neuron (blue-green scale bar). A wide variety of linear RFs were observed, and no specific ordering was
identified. Each RF was individually normalized to remove differences due to average firing rates. The color scale of the RF maps is shown on
the scale bar next to the neuron near the bottom right corner.

doi:10.1371/journal.pcbi.1004927.g003
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linear-nonlinear model is the standard approach for RF estimation and has been used in a wide
range of studies [30]. On the other hand, the recently proposed BWTmodel (together with the
closely related Gabor pyramid variant [18]) represents the state-of-the-art in neural response
prediction to naturalistic stimuli, as it can capture linear and non-linear components of the
neuronal responses and outperforms most RF identification methods [31].

Fig 5A compares the performance for the three models (measured as the correlation coeffi-
cients of measured and predicted responses to a novel set of natural images) averaged across all
neurons in the three recorded cortical regions, while the line-graphs show the performance for
the three cortical regions separately. The rLN and the BWTmethods achieved averaged perfor-
mances of R = 0.29 and R = 0.39 respectively, while the HSMs outperformed both consistently
across all three regions (P<0.001; Wilcoxon signed ranked test; data pooled across the three
regions) showing an average correlation of R = 0.47 (a 20% improvement over the BWTmodel).
Furthermore, if we fit the HSM to each neuron individually, we see that the prediction perfor-
mance drops to the levels shown by rLN (the HSM(SN) condition, R = 0.30). This indicates that
the predictive advantage of HSM largely arises from our ability to constrain the fitting problem by
the assumption of limited common feed-forward input into a local population of neurons in V1.

To quantify the proportion of the neuronal response captured by our model, we computed
the fraction of explained variance (FEV) [28]. Since high quality multi-trial data is required to

Fig 4. Responses predicted from the HSM are highly correlated with recorded neuronal responses. The measured mean activity (full circles)
and the predicted responses (empty circles) for a neuron with highest correlation (R = 0.90, P<0.001)(A) and a neuron with median correlation
(R = 0.53, P<0.001)(B). (C) The cumulative distribution functions of correlation coefficients across the population of 260 neurons in the three
measured regions. (D) Normalized noise power [28] and the performance of the model are negatively correlated (R = -0.63, -0.55 and -0.67 for the
three regions, P<0.001 for all regions). Higher normalized noise power implies lower and more variable prediction performance. The small dots
indicate neurons for which the model performance (correlation between predicted and recorded responses) was not statistically significant (based on
bootstrapped 95% confidence intervals).

doi:10.1371/journal.pcbi.1004927.g004
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reliably calculate FEV, for this analysis we excluded neurons with normalized noise power
greater than 70% (sparing 70 of the 260 imaged neurons). The average fraction of variance
explained by the rLN and the BWTmodels was 0.16 and 0.30 respectively, while the HSMs out-
performed both (P<0.001; Wilcoxon signed ranked test; data pooled across the three regions),
achieving an average of 0.43, representing a 43% improvement over the BWT model (Fig 5B).
Finally, the improvement in the average prediction (fraction of explained variance) of the HSM
was not restricted to subset of neurons, but spread almost across the entire measured popula-
tion (Fig 5C and 5D).

Effects of varying LGN input and hidden layer neuron number
The HSM contains two free meta-parameters that are not optimized during the fitting process:
the number of LGN units and the number of neurons in the hidden layer (which we express as
the fraction γ of recorded neurons in an imaged region). To assess the influence of these

Fig 5. RFs estimated by HSM explain neuronal responses significantly better than existingmethods.
(A) The average correlation coefficients of the rLN, BWT and HSMs, and of an HSM in which each neuron
has been fitted individually HSM(SN). (B) The average fraction of explained variance (FEV) for the three
compared models. (C) Scatter plot of the FEV of individual neurons by the rLN and HSMs. (D) Scatter plot of
the FEV of individual neurons under the BWT and HSMs. Data from individual regions are marked by the
colored lines and/or dots while the averages across regions are indicated as bars.

doi:10.1371/journal.pcbi.1004927.g005
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parameters on the performance of the HSM, we performed a parameter search. Due to the high
computational requirements of the fitting process and the large number of neurons in our data-
set we were not able to explore the full space of these two parameters. Instead we performed a
partial one-dimensional search through the parameter space, varying one parameter and fixing
the other to a value we found empirically to give good performance (9 for the number of LGN
units and 20% for the number of hidden units expressed as fraction of imaged neurons). We
limited the number of fitting restarts with different initial seeds for each explored value of the
meta-parameters to 20.

The performance of the model on the training set initially increased with the number of
LGN inputs (Fig 6A, full lines), however, beyond ~9 LGN units the performance saturated. We
observed a similar pattern in the relationship between hidden layer size and performance of
the model on the training set (see Fig 6B, full lines). Initially, the performance increased with
increasing hidden layer fraction, however, it quickly saturated at a value of ~0.2. A similar rela-
tionship between the performance of the model and the meta-parameter values exists when
measured against the validation set (Fig 6, dashed lines). Overall, surprisingly few LGN inputs
and hidden units are required to capture the responses of large local populations of neurons
(>100 neurons). This observation is consistent with the recent evidence showing limited vari-
ability in the location of RF subunits in local populations of mouse V1 neurons [19]. It should
however be emphasized that the values of these two parameters are very likely an underestima-
tion of the true number of LGN cells innervating the imaged cortical region, and the number of
linear (simple) cortical cells from which the imaged neurons receive inputs. These numbers are
a reflection of the number of parameters we can resolve given our limited training sets. We
expect that larger amounts of data would lead to a slight increase in the number of subunits,
and a more accurate correspondence between the fitted model parameters and the underlying
neural substrate.

Fig 6. Effect of meta-parameter choice onmodel performance. (A) Relationship between the performance of the
HSM and the number of LGN inputs for the training set (solid line) and the validation set (dashed line). (B)
Relationship between the performance of the HSM and the number of units in the hidden layer expressed as fraction
of measured neurons for the training set (solid line) and the validation set (dashed line). Note that the performance on
the training set is consistently poorer than on the validation set because the validation set is an average over multiple
trials while the training set is single-trial data (see Materials and Methods).

doi:10.1371/journal.pcbi.1004927.g006
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The nature of the fitted RFs
It is important to emphasize that the estimated HSM parameters are unlikely to reflect a direct
one-to-one relationship with the underlying biological substrate, but rather offer a functional
description of the system. To gain a insight into how the HSM captures the responses of the fit-
ted neurons, we show the linear RFs of all the units in the LGN and intermediate layer of the
fitted HSM (Fig 7A and 7B). Note that such linear visualization is not possible for the output
layer units, due to the non-linearity of the hidden layer unit transfer functions. Unsurprisingly,
as a direct consequence of their definition in the HSM, the LGN kernels have isotropic center-
surround structure, but some have very weak surround components. Some intermediate units
express RFs that can be well described by Gabor functions, yet others have more unusual
shapes, while we also observe multiple cells with similar RFs. This is not surprising given that
the number of hidden units used in the HSMmodels was much smaller (< = 20) than the num-
ber of linear (simple) cells that can be expected to reside in the corresponding region of V1.
Consequently, it is unlikely that the fitted HSM hidden units correspond to RFs of individual
neurons in the imaged area, but rather to a low-dimensional subspace in which neural
responses are generated. Advanced model regularization and selection methods could in future

Fig 7. Composition of RFs estimated by the HSM. (A) The kernels of LGN HSM units fitted to the 3 imaged regions in V1. (B) The linear kernels of the
hidden units of the HSM fitted to the 3 imaged regions in V1. These have been calculated as the sum of the difference-of-Gaussians kernel of the LGN
units weighted by the fitted connections from the LGN to hidden units. (C) The weight matrices between the hidden and output units for HSMs fitted to the
3 imaged regions. For each output neuron the weights were individually normalized. (D) The histograms of the weight matrices shown in C with
calculated kurtosis of the respective distributions. Overall, the RFs of the intermediate units in the fitted HSM differ somewhat from standard descriptions
of V1 simple cell RFs estimated by rLN (or similar) methods. However, it is possible that the RFs of the hidden units are combined in the HSM output layer
to form RFs that—when linearized—match those obtained via the rLN method. To verify this, we performed a rLN analysis using the training set of
images and the corresponding responses of the fitted HSM, thus obtaining a linear estimate of the HSM-derived RFs. Fig 8 shows the RFs obtained via
the rLN method directly from the data (A columns) and using the corresponding HSM predictions (B columns) for neurons in the first imaged region.
Neurons for which a linear RF could be estimated showed a close match between rLN and HSM estimations. This indicates that the fits of the HSM are
compatible with the previous rLN results. At the same time, the HSM significantly outperforms response predictions of the rLN model for most neurons,
indicating that non-linearities in the HSM, which cannot be captured by the inherently linear rLN model, provide significant performance improvements.

doi:10.1371/journal.pcbi.1004927.g007
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Fig 8. Linear components of RFs estimated with HSM are consistent with rLN-derived RFs. For neurons where RFs can be
discerned from the noise, the rLN model produces very similar RFs for both experimental responses (A columns) and HSM responses (B
columns), indicating that the HSM is compatible with the RFs estimated by rLN. The numbers above the rLN filters obtained directly from
data (A columns) show the performance (R) of the rLN model for the corresponding neuron. The two numbers above the rLN filters
obtained using the prediction of the HSM (B columns) indicate the performance of the rLN model derived from the HSM prediction (before
slash) and the performance of the full HSM for the corresponding neuron (after slash).

doi:10.1371/journal.pcbi.1004927.g008

Hierarchical Model of Mouse V1

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004927 June 27, 2016 11 / 22



improve the link between the HSM units and biological neurons, but these will require collec-
tion of substantially more data than available in our experiments to be effective.

How then are the hidden layer RFs combined to generate the fitted RFs of the measured
neurons in the HSM? Fig 7C shows the weight matrices between the hidden and output layer
for all three regions. Each weight matrix is relatively dense. Based on theories about complex
cell construction including the energy model [32] or the STC analysis, which suggest a rela-
tively limited number of linear filters in complex cells [7,10], one would expect these matrices
to be sparse. This does not appear to be the case in the HSM, as is suggested by the negative
kurtosis values of the weight distributions Fig 7D. One possibility is that these dense weight
matrices are the consequence of over-fitting. Another option is that the model hidden units
correspond to linear presynaptic cells (or linear combinations of a set of such cells) and the
dense weight matrices between the hidden and output layer reflect the fact that single cortical
neurons receive a large number of connections from other local cortical neurons [33]. Finally,
the small number of hidden HSM units means that a combination of larger numbers of them
might be needed to obtain the RFs of the individual recorded neurons, leading to a lack of
sparseness in the weight matrices. In the future, simultaneous imaging of layer 4 and 2/3 will
be required to resolve this question experimentally.

Finally, we examined the evidence for spatial organization of two model measures in the
local cortical network (Fig 9). We found no evidence for a relationship between cortical distance
and non-linearity index (Fig 9A and 9C; R< 0.05, P>0.1) or model prediction power (Fig 9B
and 9D; R< 0.05, P>0.1). These results are consistent with the findings of several previous
studies that—with the exception of retinotopic position—failed to find a spatially organized
arrangement of neurons of similar RF properties in local cortical networks of rodent V1 [21,34].

Discussion
In this study we introduce a novel model-based method for estimating RFs simultaneously in
large populations of V1 neurons, under the assumption that the population shares input from
a limited number of thalamo-cortical afferents. We applied the novel model (HSM) to record-
ings of local populations of neurons in L2/3 of mouse V1 in response to natural images. Our
model can explain significant proportions of signal variance of reliably responding neurons in
V1 and improves upon existing rLN [11] and BWT models [29] when applied to the same
data.

The improved performance of HSM in comparison to the rLN is due to its greater expres-
sive power. The two layers of non-linearity allow the HSM to account for responses of non-lin-
ear cells, such as the complex cells in V1. Furthermore, we have also tested an advanced linear
method, the automatic locality determination (ALD) [35], but when applied to our data this
method showed very similar performance to the rLN model, yielding correlations in the valida-
tion set of 0.31, 0.24 and 0.299 in the three recorded regions. When compared to the BWT
model, HSM still has the advantage in expressiveness for it allows constructions of RFs that
deviate from the stereotypical Gabor-like RFs imposed into BWT structure. Moreover, HSM
better constrains the optimization problem by assuming shared afferent input into a cortical
column. Thus, unlike rLN or BWT, HSM fits all recorded neurons simultaneously. This makes
the HSM parameters constrained by the responses of all recorded neurons, effectively increas-
ing the amount of data available for fitting. Finally, it should be noted that we have also
attempted to apply the STC method to the presented data. However, due to the dependence of
STC on very large datasets, when applied to our limited data, STC failed to identify any signifi-
cant eigenvectors for the majority of neurons [10]. This further highlights the advantages of
the HSM in estimation of non-linear RFs from limited data.

Hierarchical Model of Mouse V1
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Recent experimental studies have indicated that local populations of V1 neurons in cats and
mice share a limited number of inputs from LGN [19] [25]. Here we offer further support for
this hypothesis, by showing that a model assuming feed-forward convergence of thalamic affer-
ents, shared among a population of neighboring cortical neurons, resulted in RF estimates with
better predictive power than previous models (see Fig 5). Additionally, removing the assump-
tion of pooled hierarchical input resulted in dramatic drop in quality of estimated RFs (see Fig
5). We show that as few as 9 LGN-like units are sufficient to explain a significant proportion of
the stimulus dependent responses in a local population of L2/3 neurons within a ~300x300μm
field of view. This is particularly remarkable given the diversity of RFs observed in local popula-
tions of mouse V1 neurons (Fig 3) [34].

It is important to emphasize that the estimated structure of the HSM cannot be interpreted
as direct evidence of the underlying connectivity. This is obvious in the case of the hidden
model units which are orders of magnitude fewer in the HSMmodels used in this study than

Fig 9. Distribution of NLI index and HSM prediction power in cortical space. (A-B): The scatter plots of
the NLI index and HSM prediction power in cortical space from an example cortical region. The points
correspond to the positions of cell bodies in cortical coordinates and the gray levels correspond to the two
measures (first region shown, scale bar 50μm). (C-D) No correlation between cortical distance and NLI and
HSM prediction power. The three recorded cortical regions correspond to the black, blue and orange colors.
For both measures and all regions, all correlation coefficients were small (R<0.05) and their signs were not
consistent across regions.

doi:10.1371/journal.pcbi.1004927.g009
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the expected number of layer 4 neurons within the corresponding region of mouse V1. It is also
very likely that we underestimate the actual number of thalamic neurons innervating the imaged
regions of mouse V1. This might be because multiple LGN neurons with similar RFs will be
approximated with a single LGN DoGmodel, consistent with a recent study that directly
mapped the RFs of LGN axons in V1 [36]. Further advances in recording techniques that will
allow collection of more data (both in terms of image presentation and sampling ratio of the
local neural population) should impose more constraints on the fitting of HSM parameters and
thus offer a closer picture of the underlying neural substrate. Furthermore, additional prior
knowledge (if available), such as the cortical depth/layer membership of the neurons, or neural
type, could be incorporated into the HSMmodel to further constrain its parameter estimation.

Unlike most previous approaches to RF estimation, the optimization problem HSM poses is
not convex, and thus finding the global optimum is not guaranteed. But HSM still outperforms
other methods because the non-convexity of the optimization is favorably compensated by its
better expressive power. Importantly, the quality of the RF estimation is determined by the
optimization algorithm used to fit the HSM parameters. We found the truncated Newton con-
jugate method worked well for the present form of the model, but adding further nonlinearities
into the model dramatically decreased its performance. This is likely because adding nonlinear-
ities transformed HSM into a so-called “deep learning” problem which is known to be difficult
to optimize. However, the recent advances in optimization techniques applicable to deep-learn-
ing problems [37] could improve the fitting of HSM and allow inclusion of additional nonlin-
ear mechanisms.

The limited number of natural images that we could present during each imaging experi-
ment and the relatively slow time-course of spike-related calcium signals constrained this
study in three important ways. First, we did not consider the temporal properties of RFs,
because the slow sampling (7.6Hz) and kinetics (100s milliseconds) of the calcium signals did
not lend this dataset to the analysis of fine-scale temporal response properties of RFs. Second,
we did not utilize ‘early-stopping’ criteria to prevent over-fitting, as they require an extra data-
set to be separated out of—in our case very limited—training set. We found that such reduction
of the training set outweighed the gains due to early stopping. Third, estimation of couplings
between neurons using the GLMmethod has previously been shown to greatly improve predic-
tion power. However, we did not include coupling filters in HSM, as their estimation relies on
fine-scale temporal sampling of the recorded neural activity [2]. Improvements in functional
imaging, including higher sampling rates, improved signal-to-noise ratio, faster calcium indica-
tor kinetics, voltage-based indicators, and better spike estimation techniques, will allow for
more accurate reconstructions of underlying spike-trains in large populations of imaged neu-
rons. Moreover, recent applications of genetically encoded calcium indicators and chronic
preparations [38,39] could greatly increase the number of possible stimulus presentations in
anaesthetized and awake mice. Overall, such advances would make it possible to overcome all
the limitations discussed above, and thus provide a framework for further improvements in
understanding the relationship between connectivity and functional properties of V1 and
higher visual cortical areas.

Materials and Methods

Animals and surgical procedures
All experimental procedures were carried out in accordance with institutional animal welfare
guidelines and licensed by the UK Home Office. Experiments were performed on C57Bl/6
mice between postnatal day 30 and 40. Mice were anesthetized with a mixture of fentanyl (0.05
mg/kg), midazolam (5.0 mg/kg), and medetomidine (0.5 mg/kg). During Ca2+-imaging
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experiments, light anesthesia was maintained by Isoflurane (0.3–0.5%) in a 60:40% mixture of
O2:N2O delivered via a small nose cone. Surgically, a small craniotomy (1–2 mm) was carried
out over primary visual cortex and sealed after dye injection with 1.6% agarose in HEPES-buff-
ered artificial cerebrospinal fluid (ACSF) and a cover slip.

Dye-loading and Ca2+-imaging
For bulk loading of cortical neurons the calcium-sensitive dye Oregon Green Bapta-1 AM
(OGB-1 AM; Molecular Probes) was first dissolved in 4 μl DMSO containing 20% Pluronic,
and further diluted (1/11) in dye buffer (150 mMNaCl, 2.5 mM KCl and 10 mMHEPES (pH
7.4)) to yield a final concentration of 0.9 mM. Sulforhodamine-101 (50 μM, Molecular Probes)
was added to the solution for experiments in C57Bl/6 mice to distinguish neurons and astro-
cytes [40]. The dye was slowly pressure injected into the right visual cortex at a depth of 150–
200 μm with a micropipette (3–5 MO, 3–10 psi, 2–4 min) under visual control by two-photon
imaging (10x water immersion objective, Olympus). Activity of cortical neurons was moni-
tored by imaging fluorescence changes with a custom-built microscope and a mode-locked Ti:
sapphire laser (Mai Tai, Spectra-Physics) at 830 nm through a 40x water immersion objective
(0.8 NA, Olympus). Scanning and image acquisition were implemented in custom software
(Labview, NI). The average laser power delivered to the brain was<50 mW.

Data acquisition in Ca2+-imaging experiments
Imaging frames of 256x256 pixels were acquired at 7.6 Hz. After each recording the focal plane
and imaging position was checked and realigned with the initial image if necessary. Image
sequences were aligned for tangential drift and analyzed with custom programs written in Ima-
geJ (NIH), Matlab (Mathworks) and Labview (NI). Recordings with significant brain move-
ments, vertical drift, or both were excluded from further analysis. Cell outlines were detected
using a semi-automated algorithm based on morphological measurements of cell intensity,
size, and shape, and subsequently confirmed by visual inspection. After erosion of the cell-
based regions of interest, to minimize influence of the neuropil signal around the cell bodies,
all pixels within each region of interest were averaged to give a single time course (ΔF/F),
which was additionally high-pass filtered at a cut-off frequency of 0.02 Hz to remove slow fluc-
tuations in the signal. Unresponsive neurons during spontaneous and evoked conditions were
excluded from further analysis, by testing whether, for each cell, the distribution of all fluores-
cence values was not significantly different (i.e. positively long-tailed) from a random, normal
distribution (Kolmogorov-Smirnov goodness-of-fit test). Astrocytes labeled with Sulforhoda-
mine 101 (red fluorescence) were excluded from the analysis.

Spike trains were inferred from calcium signals using a fast non-negative de-convolution
method which approximates the most likely spike train for each neuron, given the observed
fluorescence [22]. The deconvolved traces represent estimates proportional to the number of
action potentials emitted during the corresponding period. These proportional estimates were
calibrated based on simultaneous cell attached recordings and calcium imaging in individual
neurons [23] to represent the estimated number of emitted spikes. The inferred spike trains
were further processed by computing the sliding average with a window of three frames. This
was done to offset the biases introduced by the temporal quantization due to the relatively slow
data acquisition rate.

Stimulus presentation protocol and data pre-processing
Stimuli were presented on 60 Hz LCDmonitors, at a resolution of 1024×768 pixels. A retinotopic
mapping protocol was used to ensure that the monitor covered the RF of recorded neurons: a
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patch of moving gratings was presented at 12 different locations on the screen, for 1.4 s in each
location with a gap of 1.5 s between locations. The monitor was repositioned such that the pre-
ferred retinotopic position of most imaged neurons was roughly in the middle of the monitor.

The stimulus set was composed of static scenes from David Attenborough’s BBC documen-
tary Life of Mammals, depicting natural scenes such as landscapes, animals or humans. Images
were scaled to have 256 equally spaced luminance steps, and were composed of 384×208 pixels,
and expanded to fill the screen. Each image appeared in the stimulus set four times, in the orig-
inal form, flipped horizontally and flipped vertically, and with reversed contrast. The onset of
image presentation was aligned with the frame rate of the scanning.

To account for the noise and the dynamics of somatic calcium signals, we applied a relatively
slow visual stimulation protocol (total time = 1974 ms per image presentation, i.e. 15 imaging
frames at 7.6 Hz) to obtain reliable responses of V1 neuronal populations to the naturalistic sti-
muli. Images were presented for 500 ms, and interleaved with blank grey screens presented for
1474 ms (see Fig 1A). Averaging of the resulting calcium traces across all stimulus presentations
and neurons revealed the typical onset and offset dynamics of the neural responses. We define
the response of a neuron to single image presentation as the average number of spikes inferred
by the spike extraction algorithm across imaging frames 3–7, which we identified to hold the
bulk of the onset signal, but likely also an early component of the offset response. This way, for
each imaged region, we obtained two datasets of values. The first is an n×mmatrix correspond-
ing to the responses of each of them recorded neurons to n single trial image presentations,
which we refer to as the training set (see Fig 1B). Additionally, in each region we recorded
responses to 8–12 presentations of another 50 images forming the second dataset, a 50×m×r
matrix, we will refer to as the validation set. Three regions in two animals were recorded, con-
taining 103, 55 and 102 neurons, while presenting sequences of 1800, 1260 and 1800 single trial
images, respectively. The images were presented in partially interleaved manner. The training
images were divided into 10 blocks. Additional blocks were formed by the 50 validation images,
in each of these blocks the 50 images were presented multiple times. During the experiment the
resulting stimulation blocks were presented in random order.

For each region, we ran a rLN fitting protocol with full-field stimuli to determine the rough
position and size of all the neurons' RFs. Consistent with retinotopic map in mouse V1, in all
three recorded regions all recovered RFs were located in a restricted region of visual space. This
allowed us to determine a region of interest in the visual space, centered on the set of initially
recovered RFs and spanning roughly two times the area they covered. The images were con-
strained to this region of interest and then down-sampled to 31×31 pixels to form the input sti-
muli set, which was used in all the subsequent analysis.

HSM
The HSM is a feed-forward network consisting of three fully connected layers (see Fig 2). The
first layer corresponds to units found in LGN, represented as difference-of-Gaussian kernels.
The output of the i-th unit in the LGN layer to an image I is computed as follows:
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where ψi1 is the output of the i-th unit in the first layer containing LGN units, Ikl is the image
intensity at coordinates k and l, σi and ρi are the widths of the center and surround Gaussians
of the i-th LGN unit, mx

i and m
y
i are the x and y center coordinates of the i-th LGN unit, and αi

and βi are the weights of the center and surround respectively.
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The two ‘cortical’ layers consist of simple linear integrators with a logistic-loss output non-
linearity:

cil ¼ f
X

j

wijcjðl�1Þ

0
@

1
A ð2Þ

where ψil, l 2 {2,3}is the output of the i-th unit in layer l, wij is the weight from unit j to unit i
and f is a logistic-loss transfer function:

fðxÞ ¼ logð1þ expðx� tiÞÞ ð3Þ

where ti is the threshold of unit i. Thus, the free parameters of the model are the 6 parameters
per LGN unit (αi,βi,m

y
i ; m

y
i ; si,ρi), one parameter per each cortical unit corresponding to its

threshold ti and the weights between the layers, totaling 6s1 + s2 + s3 +s1s2 + s2s3 parameters,
where Si is the size of the layer i. Assuming Poisson spiking, we fit the HSM via a maximum-
likelihood method by performing gradient descent on the corresponding log-likelihood func-
tion [41]:

log pðyjx; �Þ ¼
X

i

yilogMð�; xiÞ �
X

i

Mð�; xiÞ ð4Þ

where y are the measured neural responses, x are the input patterns, ϕ are the free parameters

of the model and Mð�; xiÞ ¼ ~c3 is the output of the model to image xi. To implement the
model and search for optima of its log-likelihood function we use the theano package [42,43]
in combination with the constrained truncated Newton conjugate method (implemented by
the Python scipy.fmin.tnc function). This optimization method allows constraining the param-
eters to lie within intervals, allowing us to enforce the centers of LGN units to lie within the
image, and the width of the center and surround Gaussians of LGN units to be positive and
smaller than the width of the image.

The model has two free meta-parameters that are not set by the fitting process: the number
of LGN units (s1) and the number of units in the hidden layer (s2 = γs3), where γ expresses the
number of hidden units as a fraction of the number of output units. We performed a systematic
search for these two parameters with respect to the performance of the model on the training
set. We found that the performance of the model on the training set quickly saturates when
increasing the number of LGN inputs and the fraction of hidden units, at values of about s1 = 9
and γ = 0.2 respectively. Therefore, in order to prevent over-fitting and facilitate simple com-
parison, we decided to use these low values of the two free meta-parameters for fitting of all the
three regions, in all the other analysis.

The optimization problem posed by the HSM log-likelihood function is not convex. There-
fore we are not guaranteed to find a global optimum and thus the solution found, and conse-
quently its performance, will be dependent on the initial parameter values. To lessen this
dependence on initial parameters, each fitting was run multiple times with different randomly
seeded initial parameter values, and followed by selecting the model with the best performance
on the training set. The initial model parameterizations were obtained by specifying ranges for
each HSM parameter, and then randomly selecting values uniformly from within these ranges.
For example for the position parameters of the LGN DoG kernels we set the ranges to corre-
spond to the extent of the input images. For the parameter search experiments we performed
20 restarts of the fitting algorithm for each meta-parameter combination, while for the rest of
the analysis with the selected meta-parameters we performed 50 restarts.
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To show that the initial parameter restarts are an effective method, we have fitted the HSM
model using 100 different initial parameterizations (S1 Fig). The performance of the fitted
HSMmodel on the training set was correlated with the performance on the validation set
across the set of initial seeds (panel A in S1 Fig). Even though the different initial conditions
lead to solutions with similar responses and prediction power (S1 Fig), these solutions corre-
spond to considerably different estimates of the HSM parameters (even if we account for some
basic ambiguities: see S1 Fig caption for details). We observe analogous results if we fix the ini-
tial conditions, but instead fit HSM on 100 sub-samples of the training set (S2 Fig). Overall, the
HSMmethod is successful in consistently finding good functional descriptions of a neuron’s
stimulus-response function, but these solutions are not unique, and many different HSM
parameterizations can lead to the same input-output relationships. Such many-to-one map-
pings between HSM parameterizations and input-output functions are consistent with previ-
ous observations in machine learning and computational neuroscience [44–47]. It remains to
be seen if incorporating additional constraints by increasing the amount of data for training, or
obtaining more complete samples of local neuronal populations, or obtaining other experimen-
tal observables (e.g. layer membership or cell type of the recorded neurons) or further extend-
ing the HSMmodel (eg. with coupling filters) could lead to HSM parameterization that is less
sensitive to initial conditions and more closely reflects the underlying biological substrate.

The exact time the model training took varied based on the free model parameters, the
number of output neurons, and the size of the training set. For the first region (103 neurons,
1800 training examples) and the values of the free parameters used in the model comparison
(see Fig 5) the fitting (a single initial condition) took approximately 3 hours on a modern
2.4MHz CPU with 4GB of memory.

To allow for visualization and comparison of the fitted model and to facilitate further analy-
sis we also performed linearization of the model. We did this by fitting the rLN model to the
HSM responses to the training set of images. Furthermore, in order to quantify the extent to
which the accounted-for portion of the neuronal response predicted by the HSM is linear or
non-linear, we define a non-linearity index (NLI) as:

NLI ¼ LC � maxðLLC; 0Þ
LC

ð5Þ

where LC corresponds for the correlation between the activities predicted by the HSM and
measured activities in response to the validation set of images, and LLC is the corresponding
value but for the linearized HSM. For 53 of the 259 neurons for which LC< LLC we set NLI to
zero. For a given neuron, NLI will be zero if the correlation between measured activities and
predicted activities by HSM is entirely accounted for by the linearized model alone, while the
value is 1 if the linear model does not account for any of the correlation—and thus the correla-
tions are due to non-linear aspects of the HSM.

rLN model and the wavelet decomposition model
In order to assess the performance of the HSM against other RF decoding methods we fitted the
same data with a regularized least-squares variant of the LNmodel [11], as well as with a recent
method using nonlinear Berkeley wavelet transform (BWT) decomposition of the stimuli [8,29].

rLN. We used a variant of the linear-nonlinear model with Laplacian regularization [11]
that has been shown to offer superior results over basic LN models, when applied to datasets
composed of naturalistic stimuli. Following the filter estimation, we have also fitted the point
non-linearity which significantly increased the performance of the rLN estimates. Briefly, the
method is similar to ridge-regression estimation; however, instead of imposing minimal values
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on individual pixels it imposes a minimal Laplacian in each pixel of the estimated kernel, thus
directly biasing the estimated kernels to be locally smooth:

k̂ ¼ pinvðST S þ aLÞST r ð6Þ
where k is the resulting kernel estimate, S is the stimulus matrix, L is the regularization matrix
expressing the Laplacian constraints, α is the regularization constant determining the strength
of the regularization, r is the measured responses of the neuron to the stimuli in S, and pinv is
the Moore-Penrose pseudoinverse of a matrix. We selected the value of the meta-parameter α
by measuring the performance of the model with respect to different values of the α parameter
on a portion (10%) of the training set set aside for testing. This yielded a smooth function with
a clear maximum. The value of the α parameter at this maximum was used in all the following
performance comparisons. Next, after obtaining the estimate of the linear kernel k we used the
training set to estimate the shape of the point non-linearity by doing a simple histogram fit at
20 regular intervals. To predict a response of a neuron given the output r of the estimated linear
kernel, we find the two bins closest to r and use a linear interpolation between these two with
respect to r to estimate the response of the neuron. Increasing or decreasing the number of bins
slightly did not change the performance significantly. Overall, we found that both Laplacian
regularization and the point non-linearity estimation greatly improved the performance of the
model in comparison to basic rLN or the ridge-regression variant.

Wavelet decomposition model. A detailed description of the wavelet decomposition
model can be found in [8,29]. Briefly, the model consists of two stages. First the stimuli are
decomposed using a bank of wavelet filters [29], and the response of each filter is half-rectified
taking the positive and negative responses separately, forming a vector of half-rectified wavelet
responses for each input. The second stage corresponds to a linear model where the final
response of the neuron is described as the weighted sum of the half-rectified wavelet responses.
This linear model is fitted by minimizing the standard mean-squares error loss function, using
the L2Boost algorithm [48]. This algorithm iteratively adjusts only a single weight along the
steepest gradient. Combined with early stopping to prevent over-fitting, this procedure tends
to provide a sparse representation of the linear model.

We used the implementation of the above wavelet decomposition method provided by the
freely available STRFLab package [49]. Due to the fact that our stimulation protocol suppressed
the temporal properties of the neuron’s RF, and because single points in our data set represent
the average activity over several hundred milliseconds, we set the temporal size and the number
of velocities in the BWT to one, and the list of delays at which the RF was fitted was set to zero.
Furthermore, the number of phases and the number of orientations in the BWT was set to 4
and 12 respectively and 2D Gaussians were also included in the set of pre-processing filters.
We experimented with several values of these meta-parameters, and picked those showing best
performance, to ensure that the BWT model is not disadvantaged in this comparison. The pre-
diction power of both the rLN and Wavelet decomposition model was evaluated on the same
separate validation data set as the HSM.

Supporting Information
S1 Dataset. Dataset of stimuli and corresponding population responses of recorded neu-
rons. The dataset contains the natural image stimuli used in this study, and the pre-processed
population responses of mouse V1 neurons recorded in the 3 cortical regions analyzed in this
study.
(ZIP)
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S1 Model. Python implementation of the HSMmodel.
(ZIP)

S1 Fig. Analysis of sensitivity of HSM to starting conditions. (A) The model performance on
the training vs. validation data set across 100 HSM fits using different initial conditions. The
three plots show results for each of the 3 imaged regions separately. The color coding of the
regions is the same as throughout the main paper. (B) The correlations between responses of
pairs of HSMmodel fits obtained from different initial conditions. (C) The RFs of matched
LGN units of three different fits of the HSM model using different initial conditions (the
selected initial conditions are marked in A as seed A,B and C). (D) Matched hidden unit RFs.
The ordering of the LGN and hidden units in the HSM is arbitrary which complicates compari-
son of fitted parameters from different initial conditions. When comparing two model parame-
terizations, in an ideal case, we would like to find a permutation of the LGN and hidden units
that maximizes the similarity (for example measured as the mean correlation across corre-
sponding units) between the two sets of units. Finding such permutation is however intracta-
ble. Here we have employed simple greedy strategy to match the two sets of units. In C and D
the units from seed B were matched to units from seed A and independently the units from
seed C were matched to units from seed A. Furthermore, there is redundancy in the HSM
model between the polarity of the LGN units and the weights from the LGN units to hidden
units, which are not required to be only positive. For this reason the matching of the LGN units
is based on the absolute values of their correlations, and for the visualization the LGN units are
flipped such that their polarity matches. (E) The weights from hidden to output units.
(TIF)

S2 Fig. Analysis of sensitivity of HSM to different re-samplings of training set. (A) The
model performance on training vs. validation data set across 100 HSM fits using different sub-
samples of the training set. Each sample was obtained by removing 100 random training stimuli.
The three plots show results for each of the 3 imaged regions separately. The color coding of the
regions is the same as throughout the main paper. (B) The correlations between responses of
pairs of HSMmodel fits obtained from different training set samples. (C) The RFs of matched
LGN units of three fits of HSM to three different samples of training set (the selected samples
are marked in A as seed A,B and C). (D) Matched hidden unit RFs. See panel D of S1 Fig caption
for details about the matching procedure. (E) The weights from hidden to output units.
(TIF)

Acknowledgments
We thank Maneesh Sahani for a helpful discussion, and Dylan R. Muir and Lee Cossell for
helpful suggestions and feedback on the manuscript.

Author Contributions
Conceived and designed the experiments: SBH JA TDMF. Performed the experiments: SBH.
Analyzed the data: JA. Contributed reagents/materials/analysis tools: JA TDMF. Wrote the
paper: JA TDMF JAB. Discussed the data and commented on the manuscript: JA SBH JAB
TDMF.

References
1. Ko H, Hofer SB, Pichler B, Buchanan KA, Sjöström PJ, Mrsic-Flogel TD. Functional specificity of local

synaptic connections in neocortical networks. Nature. Nature Publishing Group, a division of Macmillan
Publishers Limited. All Rights Reserved.; 2011 Apr 5; 473(7345):1–7.

Hierarchical Model of Mouse V1

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004927 June 27, 2016 20 / 22

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1004927.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1004927.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1004927.s004
http://dylan-muir.com/


2. Pillow JW, Shlens J, Paninski L, Sher A, Litke AM, Chichilnisky EJ, et al. Spatio-temporal correlations
and visual signalling in a complete neuronal population. Nature. 2008 Aug 21; 454(7207):995–9. doi:
10.1038/nature07140 PMID: 18650810

3. Carandini M, Demb JB, Mante V, Tolhurst DJ, Dan Y, Olshausen BA, et al. Do we know what the early
visual system does? J Neurosci. 2005; 25(46):10577–97. PMID: 16291931

4. DeAngelis GC, Ohzawa I, Freeman R. Spatiotemporal organization of simple-cell receptive fields in the
cat’s striate cortex. I. General characteristics and postnatal development. J Neurophysiol. Am Physio-
logical Soc; 1993; 69(4):1091.

5. Reid RC, Victor JD, Shapley RM. The use of m-sequences in the analysis of visual neurons: linear
receptive field properties. Vis Neurosci. 1997; 14(6):1015–27. PMID: 9447685

6. Jones JP, Palmer L a. The two-dimensional spatial structure of simple receptive fields in cat striate cor-
tex. J Neurophysiol. 1987 Dec; 58(6):1187–211. PMID: 3437330

7. Touryan J, Lau B, Dan Y. Isolation of Relevant Visual Features from Random Stimuli for cortical com-
plex cells. J Neurosci. Soc Neuroscience; 2002; 22(24):10811–8.

8. Willmore BDB, Prenger RJ, Gallant JL. Neural representation of natural images in visual area V2. J
Neurosci. 2010 Feb 10; 30(6):2102–14. doi: 10.1523/JNEUROSCI.4099-09.2010 PMID: 20147538

9. Smyth D, Willmore BDB, Baker GE, Thompson ID, Tolhurst DJ. The receptive-field organization of sim-
ple cells in primary visual cortex of ferrets under natural scene stimulation. J Neurosci. 2003 Jun; 23
(11):4746–59. PMID: 12805314

10. Touryan J, Felsen G, Dan Y. Spatial structure of complex cell receptive fields measured with natural
images. Neuron. 2005 Mar 3; 45(5):781–91. PMID: 15748852

11. Willmore BDB, Smyth D. Methods for first-order kernel estimation: simple-cell receptive fields from
responses to natural scenes. Network. 2003 Aug; 14(3):553–77. PMID: 12938771

12. Freeman J, Ziemba CM, Heeger DJ, Simoncelli EP, Movshon JA. A functional and perceptual signature
of the second visual area in primates. Nat Neurosci. Nature Publishing Group; 2013; 16(7):974–81.

13. Lau B, Stanley GB, Dan Y. Computational subunits of visual cortical neurons revealed by artificial neu-
ral networks. Proc Natl Acad Sci U S A. 2002 Jun 25; 99(13):8974–9. PMID: 12060706

14. Prenger R, WuMC-K, David S V, Gallant JL. Nonlinear V1 responses to natural scenes revealed by
neural network analysis. Neural Netw. 2004; 17(5–6):663–79. PMID: 15288891

15. Vintch B, Movshon J a., Simoncelli EP. A Convolutional Subunit Model for Neuronal Responses in
Macaque V1. J Neurosci. 2015; 35(44):14829–41. doi: 10.1523/JNEUROSCI.2815-13.2015 PMID:
26538653

16. Lehky, Sidney R.;Sejnowski, Terrence J.;Desimone R. Predicting responses of nonlinear neurons in
monkey striate cortex to complex patterns. J Neurosci. 1992; 12(9):3568–81. PMID: 1527596

17. McFarland JM, Cui Y, Butts DA. Inferring nonlinear neuronal computation based on physiologically
plausible inputs. PLoS Comput Biol. 2013 Jan; 9(7):e1003143. doi: 10.1371/journal.pcbi.1003143
PMID: 23874185

18. Kay KN, Naselaris T, Prenger RJ, Gallant JL. Identifying natural images from human brain activity.
Nature. Nature Publishing Group; 2008 Mar 20; 452(7185):352–5.

19. Smith SL, Häusser M. Parallel processing of visual space by neighboring neurons in mouse visual cor-
tex. Nat Neurosci. Nature Publishing Group; 2010 Sep; 13(9):1144–9.

20. Stosiek C, Garaschuk O, Holthoff K, Konnerth A. In vivo two-photon calcium imaging of neuronal net-
works. Proc Natl Acad Sci U S A. 2003; 100(12):7319–24. PMID: 12777621

21. Ohki K, Chung S, Ch’ng YH, Kara P, Reid RC. Functional imaging with cellular resolution reveals pre-
cise micro-architecture in visual cortex. Nature. 2005 Feb 10; 433(7026):597–603. PMID: 15660108

22. Vogelstein JT, Packer AM, Machado T a, Sippy T, Babadi B, Yuste R, et al. Fast nonnegative deconvo-
lution for spike train inference from population calcium imaging. J Neurophysiol. 2010 Dec; 104
(6):3691–704. doi: 10.1152/jn.01073.2009 PMID: 20554834

23. Hofer SB, Ko H, Pichler B, Vogelstein J, Ros H, Zeng H, et al. Differential connectivity and response
dynamics of excitatory and inhibitory neurons in visual cortex. Nat Neurosci. 2011 Aug; 14(8):1045–52.
doi: 10.1038/nn.2876 PMID: 21765421

24. Bonin V, Mante V, Carandini M. The suppressive field of neurons in lateral geniculate nucleus. J Neu-
rosci. 2005 Nov 23; 25(47):10844–56. PMID: 16306397

25. Jin J, Wang Y, Swadlow HA, Alonso J-M. Population receptive fields of ON and OFF thalamic inputs to
an orientation column in visual cortex. Nat Neurosci. Nature Publishing Group; 2011 Feb; 14(2):232–8.

26. Reid RC, Alonso J-M. Specificity of monosynaptic connections from thalamus to visual cortex. Nature.
1995 Nov 16; 378(6554):281–4. PMID: 7477347

Hierarchical Model of Mouse V1

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004927 June 27, 2016 21 / 22

http://dx.doi.org/10.1038/nature07140
http://www.ncbi.nlm.nih.gov/pubmed/18650810
http://www.ncbi.nlm.nih.gov/pubmed/16291931
http://www.ncbi.nlm.nih.gov/pubmed/9447685
http://www.ncbi.nlm.nih.gov/pubmed/3437330
http://dx.doi.org/10.1523/JNEUROSCI.4099-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20147538
http://www.ncbi.nlm.nih.gov/pubmed/12805314
http://www.ncbi.nlm.nih.gov/pubmed/15748852
http://www.ncbi.nlm.nih.gov/pubmed/12938771
http://www.ncbi.nlm.nih.gov/pubmed/12060706
http://www.ncbi.nlm.nih.gov/pubmed/15288891
http://dx.doi.org/10.1523/JNEUROSCI.2815-13.2015
http://www.ncbi.nlm.nih.gov/pubmed/26538653
http://www.ncbi.nlm.nih.gov/pubmed/1527596
http://dx.doi.org/10.1371/journal.pcbi.1003143
http://www.ncbi.nlm.nih.gov/pubmed/23874185
http://www.ncbi.nlm.nih.gov/pubmed/12777621
http://www.ncbi.nlm.nih.gov/pubmed/15660108
http://dx.doi.org/10.1152/jn.01073.2009
http://www.ncbi.nlm.nih.gov/pubmed/20554834
http://dx.doi.org/10.1038/nn.2876
http://www.ncbi.nlm.nih.gov/pubmed/21765421
http://www.ncbi.nlm.nih.gov/pubmed/16306397
http://www.ncbi.nlm.nih.gov/pubmed/7477347


27. HUBEL DH, WIESEL TN. Receptive fields, binocular interaction and functional architecture in the cat’s
visual cortex. J Physiol. 1962 Jan; 160:106–54. PMID: 14449617

28. Reid RC, Alonso J-M. Specificity of monosynaptic connections from thalamus to visual cortex. Nature.
1995 Nov 16; 378(6554):281–4. PMID: 7477347

29. Willmore BDB, Prenger RJ, WuMC-K, Gallant JL. The berkeley wavelet transform: a biologically
inspired orthogonal wavelet transform. Neural Comput. 2008 Jun; 20(6):1537–64. doi: 10.1162/neco.
2007.05-07-513 PMID: 18194102

30. Schwartz O, Pillow JW, Rust NC, Simoncelli EP. Spike-triggered neural characterization. J Vis. 2006
Jan; 6(4):484–507. PMID: 16889482

31. Gallant JL. The Neural Prediction Challange [Internet]. 2006. Available from: http://neuralprediction.
berkeley.edu/

32. Adelson EH, Bergen JR. Spatiotemporal energy models for the perception of motion. J Opt Soc Am A.
1985 Feb 1; 2(2):284. PMID: 3973762

33. Binzegger T, Douglas RJ, Martin K a C. A quantitative map of the circuit of cat primary visual cortex. J
Neurosci. 2004 Sep 29; 24(39):8441–53. PMID: 15456817

34. Bonin V, Histed MH, Yurgenson S, Reid RC. Local Diversity and Fine-Scale Organization of Receptive
Fields in Mouse Visual Cortex. J Neurosci. 2011 Dec 14; 31(50):18506–21. doi: 10.1523/JNEUROSCI.
2974-11.2011 PMID: 22171051

35. Park M, Pillow JW. Receptive field inference with localized priors. PLoS Comput Biol. 2011; 7(10).

36. Roth MM, Dahmen JC, Muir DR, Imhof F, Martini FJ, Hofer SB. Thalamic nuclei convey diverse contex-
tual information to layer 1 of visual cortex. Nat Neurosci. 2016; 19(2):148.

37. Martens J. Deep learning via Hessian-free optimization. Proceedings of the 27th International Confer-
ence on Machine Learning. 2010.

38. Andermann ML, Kerlin AM, Reid RC. Chronic cellular imaging of mouse visual cortex during operant
behavior and passive viewing. Front Cell Neurosci. 2010 Jan; 4(March):3.

39. Mank M, Santos AF, Direnberger S, Mrsic-Flogel TD, Hofer SB, Stein V, et al. A genetically encoded
calcium indicator for chronic in vivo two-photon imaging. Nat Methods. 2008 Sep; 5(9):805–11. doi: 10.
1038/nmeth.1243 PMID: 19160515

40. Nimmerjahn A, Kirchhoff F, Kerr JND, Helmchen F. Sulforhodamine 101 as a specific marker of astro-
glia in the neocortex in vivo. Nat Methods. 2004 Oct; 1(1):31–7. PMID: 15782150

41. Pillow JW. Likelihood-Based Approaches to Modeling the Neural Code Jonathan Pillow. In: Doya K,
Ishii S, Pouget A, Rao R, editors. Bayesian Brain: Probabilistic Approaches to Neural Coding. MIT
press; 2007. p. 53–70.

42. Bastien F, Lamblin P, Pascanu R, Bergstra J, Goodfellow IJ, Bergeron A, et al. Theano: new features
and speed improvements. NIPS. 2012.

43. Bergstra J, Breuleux O, Bastien F, Lamblin P, Pascanu R, Desjardins G, et al. Theano: a CPU and
GPUMath Expression Compiler. Proceedings of the Python for Scientific Computing Conference
(SciPy). 2010.

44. DiMattina C, Zhang K. How to modify a neural network gradually without changing its input-output func-
tionality. Neural Comput. 2010; 22:1–47. doi: 10.1162/neco.2009.05-08-781 PMID: 19842986

45. Prinz AA, Bucher D, Marder E. Similar network activity from disparate circuit parameters. Nat Neurosci.
2004; 7(12):1345–52. PMID: 15558066

46. Zhu M, Rozell CJ. Modeling Inhibitory Interneurons in Efficient Sensory Coding Models. PLoS Comput
Biol. 2015; 11:e1004353. doi: 10.1371/journal.pcbi.1004353 PMID: 26172289

47. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015; 521:436–44. doi: 10.1038/nature14539
PMID: 26017442

48. Friedman JH. Greedy Function Approximation: A Gradient Boosting Machine. Ann Stat. 2000;
29:1189–232.

49. STRFPAKMatlab Toolbox [Internet]. Available from: http://strfpak.berkeley.edu/

Hierarchical Model of Mouse V1

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004927 June 27, 2016 22 / 22

http://www.ncbi.nlm.nih.gov/pubmed/14449617
http://www.ncbi.nlm.nih.gov/pubmed/7477347
http://dx.doi.org/10.1162/neco.2007.05-07-513
http://dx.doi.org/10.1162/neco.2007.05-07-513
http://www.ncbi.nlm.nih.gov/pubmed/18194102
http://www.ncbi.nlm.nih.gov/pubmed/16889482
http://neuralprediction.berkeley.edu/
http://neuralprediction.berkeley.edu/
http://www.ncbi.nlm.nih.gov/pubmed/3973762
http://www.ncbi.nlm.nih.gov/pubmed/15456817
http://dx.doi.org/10.1523/JNEUROSCI.2974-11.2011
http://dx.doi.org/10.1523/JNEUROSCI.2974-11.2011
http://www.ncbi.nlm.nih.gov/pubmed/22171051
http://dx.doi.org/10.1038/nmeth.1243
http://dx.doi.org/10.1038/nmeth.1243
http://www.ncbi.nlm.nih.gov/pubmed/19160515
http://www.ncbi.nlm.nih.gov/pubmed/15782150
http://dx.doi.org/10.1162/neco.2009.05-08-781
http://www.ncbi.nlm.nih.gov/pubmed/19842986
http://www.ncbi.nlm.nih.gov/pubmed/15558066
http://dx.doi.org/10.1371/journal.pcbi.1004353
http://www.ncbi.nlm.nih.gov/pubmed/26172289
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://strfpak.berkeley.edu/

