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Abstract Impairments in metacognition, the ability to accurately report one’s performance, are

common in patients with psychiatric disorders, where a putative neuromodulatory dysregulation

provides the rationale for pharmacological interventions. Previously, we have shown how

unexpected arousal modulates metacognition (Allen et al., 2016). Here, we report a double-blind,

placebo-controlled, study that examined specific effects of noradrenaline and dopamine on both

metacognition and perceptual decision making. Signal theoretic analysis of a global motion

discrimination task with adaptive performance staircasing revealed that noradrenergic blockade (40

mg propranolol) significantly increased metacognitive performance (type-II area under the curve,

AUROC2), but had no impact on perceptual decision making performance. Blockade of dopamine

D2/3 receptors (400 mg amisulpride) had no effect on either metacognition or perceptual decision

making. Our study is the first to show a pharmacological enhancement of metacognitive

performance, in the absence of any effect on perceptual decision making. This enhancement points

to a regulatory role for noradrenergic neurotransmission in perceptual metacognition.

DOI: 10.7554/eLife.24901.001

Making a decision is often accompanied by a conscious feeling of confidence (Flavell, 1979). Subjec-

tive confidence reports typically show a good correspondence to actual task performance, reflecting

a metacognitive ability for accurate introspection (Fleming et al., 2010). Impairments in metacogni-

tion can compromise decision making and lead to misjudgements of actual performance, as found in

several psychiatric dimensions, such as schizophrenia, attention-deficit/hyperactivity disorder or com-

pulsivity (Frith, 1992; Knouse et al., 2005; Lysaker et al., 2010; Hauser et al., 2017).

The neurocognitive mechanisms from which confidence, and metacognitive ability in general,

arise are ill understood. While classic accounts see confidence as a mere extension of a perceptual

sampling process (Kiani and Shadlen, 2009; Pleskac and Busemeyer, 2010; Meyniel et al., 2015;

Moran et al., 2015), other evidence points to a non-trivial relationship between decision making

and confidence that invoke distinct decision making and metacognitive processes (Fleming et al.,

2010; Fleming and Dolan, 2012; Allen et al., 2016; Allen et al., 2017). Metacognition can thus be

understood as incorporating both decision-related and domain-general information (Fleming and

Daw, 2017) and frontopolar and hippocampal brain structures, for example, have been shown to

contribute specifically to metacognition but not to perceptual decision making (Fleming et al.,

2010, 2012; Allen et al., 2017). In our previous study, we provided evidence that arousal can bias

metacognition independently of decision accuracy (Allen et al., 2016), in accordance with other

studies showing confidence-accuracy dissociations (Fleming et al., 2015; Spence et al., 2016) and

suggested that these biases might be under neuromodulatory control via neural gain (Eldar et al.,

2013; Hauser et al., 2016).
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Two candidate neuromodulators likely to affect metacognition are the catecholamines noradrena-

line and dopamine. These neurotransmitters have their origin in brainstem nuclei that project

broadly to cortical and subcortical regions, including prefrontal cortex and hippocampus

(Hauser et al., 2016). Both dopamine and noradrenaline contribute to the regulation of arousal and

higher-order cognition (Usher et al., 1999; Aston-Jones and Cohen, 2005; Yu and Dayan, 2005;

Pessiglione et al., 2006; De Martino et al., 2008; Chowdhury et al., 2013; Eldar et al., 2013;

Rigoli et al., 2016), and their dysregulation is widely inferred to contribute to various manifestations

of psychiatric illness (Yamamoto and Hornykiewicz, 2004; Laruelle, 2013; Hauser et al., 2016).

However, whether and which of these neuromodulators influences metacognition is unknown.

Here we assessed whether noradrenaline or dopamine have a distinct influence on metacognition,

independent of any effect on perceptual decision making. The latter consideration is important

because differences in perceptual decision making can distort an assessment of metacognition

(Fleming and Lau, 2014). Consequently, we used an approach where we kept perceptual decision

making equivalent across subjects, using a staircase procedure. This, combined with a signal detec-

tion analysis (Green and Swets, 1966; Galvin et al., 2003), enabled us to measure drug effects on

metacognition while controlling for potential effects on perceptual decision making. This overcomes

a limitation of a previous study that assessed the impact of dopamine on confidence (Lou et al.,

2011).

To examine the influence of noradrenaline and dopamine we employed two pharmacological

manipulations. Many pharmacological agents have high affinity for both dopaminergic and noradren-

ergic receptors and synaptic function. On this basis, we selected drugs with selective high affinity,

the b-adrenoceptor antagonist propranolol in the case of noradrenaline, and the D2/3 receptor

antagonist amisulpride in the case of dopamine. In a double-blind, placebo-controlled design we

demonstrate that the noradrenergic agent propranolol uniquely improves metacognition in the

absence of an effect on perceptual performance, with no effect seen following administration of the

dopamine antagonist amisulpride.

Results

Noradrenaline blockade modulates metacognition
To examine effects of noradrenaline and dopamine (versus placebo) on metacognition we performed

a double-blind, between-subjects, placebo-controlled study. Each of the three groups consisted

of 20 subjects matched for gender, age, affect (Watson et al., 1988), and intellectual abilities

(Wechsler, 1999) (Table 1). Due to differences in their pharmacokinetic properties we administered

active drugs orally at two different time points. The dopamine group received 400 mg of amisulpride

(selective D2/3 antagonist) 110 min prior to a metacognition task and an additional placebo 30 min

Table 1. Group characteristics. The three groups did not differ in their gender, age, intellectual abili-

ties (IQ) (Wechsler, 1999) and their positive and negative affective states before and after drug

administration. PANAS: positive and negative affective schedule (Watson et al., 1988), PA: positive

affect, NA: negative affect, pre: before drug administration, post: after drug administration

(mean±SD).

Placebo Propranolol Amisulpride

gender (f/m) 10/10 10/10 10/10

age 24.50 ± 4.16 23.15 ± 4.31 22.35 ± 2.21 F(2,57)=1.74, p=0.185

IQ 112.45 ± 12.22 118.75 ± 8.55 114.60 ± 11.77 F(2,57)=1.70, p=0.191

PANAS PA pre 31.15 ± 10.08 27.70 ± 8.28 28.90 ± 6.60 F(2,57)=0.86, p=0.428

PANAS NA pre 11.70 ± 2.23 13.55 ± 5.48 13.10 ± 3.23 F(2,57)=1.23, p=0.300

PANAS PA post 29.22 ± 10.47 27.15 ± 7.75 27.80 ± 8.12 F(2,57)=0.286, p=0.752

PANAS NA post 11.45 ± 2.37 11.95 ± 4.87 11.25 ± 1.92 F(2,57)=0.236, p=0.790

DOI: 10.7554/eLife.24901.003
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after the amisulpride administration (Figure 1A). The noradrenaline group received a placebo at 110

min prior to the task and then 40 mg of propranolol (non-selective b-adrenoceptor antagonist) 30

min after placebo administration. The placebo group received placebo at the both time points to

match the administration schedules of the other groups. A post-experiment evaluation revealed that

subjects were not aware of whether and which drug they received (c2(4)=1.26, p=0.868; missing

data from two subjects). There were no effects of drug on mood (PANAS; Watson et al., 1988) rat-

ings (main effect of drug: F(2,57)=.16, p=0.852; time x drug: F(2,57)=.19, p=0.827; time x affect x

drug: F(2,57)=2.17, p=0.124).

Eighty minutes after the second drug administration, subjects performed a visual global motion

discrimination task that included confidence judgements (Figure 1B). Subjects decided whether the

overall motion of a short burst of randomly moving dots was directed to the left or right of the ver-

tex. Subsequently, and in the absence of feedback on whether they were correct or not, they indi-

cated confidence in their decision on that trial using a sliding visual analogue scale. To control for

potential drug effects on perceptual performance, we matched the subjects’ decision accuracy by

continuously adapting the global motion orientation using a staircase procedure (Cornsweet, 1962).

To examine metacognitive abilities, we analysed type-II performance as derived from signal

detection theory (Green and Swets, 1966; Galvin et al., 2003). This measures subjects’ awareness

into their own performance by assessing how well their confidence ratings match their true accuracy

(i.e., ‘how much more confident am I if I make a correct vs incorrect decision’). We calculated type-II

area under the receiver-operating-characteristics curve (AUROC2) (Fleming et al., 2010,

2012; Weil et al., 2013; Allen et al., 2017) for each subject and then compared this metric between

groups using an ANOVA with drug group as a between-subjects factor. The analysis revealed a sig-

nificant effect of drug on AUROC2 (Figure 2, F(2,55)=5.192, p=0.009, h
2=0.16), with follow up

Figure 1. Experimental design and metacognition task. (A) After filling out a baseline mood questionnaire (PANAS

pre), subjects received two different drugs 110 and 80 min prior to the metacognition task. A dopamine subject

group first received 400 mg amisulpride (dopamine D2/3 receptor antagonist) and subsequently placebo, whereas

the noradrenaline group first received placebo and then 40 mg propranolol (b-adrenoceptor antagonist). Subjects

of a placebo group received placebo at both times. Eighty minutes after the second drug administration, subjects

filled out a second mood questionnaire (PANAS post) and then performed a metacognition task. (B) To assess

subjects’ metacognitive abilities, we used a global motion discrimination task with subsequent confidence

judgements. After a fixation period, subjects saw 1100 dots moving randomly with an average motion pointing

either to the left or right. After 250 ms, subjects had to indicate the overall direction of the moving dots by using

keyboard arrows. Subsequently, they indicated their confidence about their decision using a sliding visual

analogue scale. Subjects were instructed to use the full width of the scale by indicating high confidence on the

right and low confidence on the left side of the scale.

DOI: 10.7554/eLife.24901.002
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t-tests showing the propranolol group performed significantly better than a placebo group (t(38)

=4.00, p<0.001, d = 1.26). The propranolol group also performed marginally better than an ami-

sulpride group (t(36)=2.02, p=0.051, d = 0.65) with the latter having an equal performance as the

placebo group (t(36)=.74, p=0.465, d = 0.23). To evaluate evidence for this null effect in the ami-

sulpride group, we additionally performed a Bayesian two-sample t-test comparing the placebo and

amisulpride groups (Rouder et al., 2009; Dienes, 2014). This analysis revealed a Bayes Factor of

3.31, corresponding to moderate evidence for the null hypothesis. These results indicate that inhibi-

tion of noradrenergic function improves metacognitive insight, in the absence of any effect of

amisulpride.

Figure 2. Propranolol improves metacognitive abilities. (A) Signal detection theoretic analysis revealed a

significantly increased metacognitive ability, as measured by the type-II area under the ROC curve (AUROC2). (B) A

highly significant effect of propranolol compared to placebo shows that propranolol increases metacognitive

abilities. The difference between propranolol and amisulpride suggests that this performance increase might be

specific to an influence on noradrenaline but not dopamine function. (C) Individual AUROC2 metrics show that

most subjects in the propranolol group perform above the median metacognitive performance (dotted line), while

perceptual decision making performance was relatively stable across all groups. mean ±1 SEM; fat line: ANOVA;

square brackets: t-tests.

DOI: 10.7554/eLife.24901.004

The following source data is available for figure 2:

Source data 1. Source data for Figures 2 and 3.

DOI: 10.7554/eLife.24901.005
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Improved metacognition mainly driven by confidence on error trials
To further understand the noradrenaline-induced metacognitive enhancement, we compared

median confidence ratings for correct and incorrect trials between the propranolol and placebo

group. A significant group-by-correctness interaction (F(1,38)=8.66, p=0.006, h
2=0.19) in the

absence of a group main effect (F(1,38)=1.83, p=0.185, h2=0.05) suggests that a confidence rating

difference between correct and incorrect trials underlies the observed group differences. Subse-

quent t-tests demonstrated that this effect was primarily driven by error trials (error trials: t(38)

=2.17, p=0.036, d = 0.69, correct trials: t(38)=-.193, p=0.848, d = 0.06), suggesting that the pro-

pranolol group exhibited lower confidence for error trials.

Metacognitive differences are not explained by perceptual
performance
Metacognitive measures, as used here, can be influenced by differences in perceptual performance

(Fleming and Lau, 2014). We deliberately used a staircase procedure to keep performance equiva-

lent between groups (mean accuracy: F(2,55)=1.60, p=0.212, h
2=0.05, cf. Figure 2C). A signal-

detection theoretic analysis confirmed these findings, revealing the absence of any significant

Figure 3. Drug effects on perceptual decision making. No drug effects were observed on the signal strength (A,

stimulus motion orientation) or the response speed (B). In line with no difference in accuracy, perceptual sensitivity

d’ did not differ between groups (C). Median confidence ratings (D) showed no difference revealing that there was

no bias in the average rating behaviour between groups. These findings suggest that noradrenaline blockade

selectively boosts metacognitive sensitivity in the absence of any effect on perceptual decision making. mean ±1

SEM; n.s. p>0.10.

DOI: 10.7554/eLife.24901.006
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differences in either perceptual sensitivity d’ (Figure 3C, F(2,55)=1.69, p=0.194, h
2=0.07) or

response bias c (F(2,55)=2.29, p=0.112, h2=0.08) (Green and Swets, 1966). To additionally ensure

that differences in AUROC2 were not influenced by any of these measures, we also compared

AUROC2 using an ANCOVA with d’, response bias c, and stimulus signal strength (mean orientation)

as covariates, revealing the same group difference for AUROC2 after controlling for these potential

biases (F(2,51)=4.99, p=0.010, h2=0.17).

No drug effect on perceptual decision making
To test whether perceptual decision making was affected by our drug interventions, we analysed

whether stimulus strength, measured by mean stimulus motion orientation, differed between

groups. There was no significant difference in stimulus strength (Figure 3A, F(2,55)=1.16, p=0.321,

h
2=0.04), indicating perceptual performance was not significantly affected by the drug manipula-

tions. Likewise, there was no drug effect on reaction times (Figure 3B, F(2,55)=.87, p=0.424,

h
2=0.03). Lastly, to test whether there were baseline differences in how the groups were utilising the

confidence scale, we examined the median confidence ratings, but found no difference (Figure 3D,

F(2,55)=.38, p=0.684, h2=0.01), supporting the result that an enhanced metacognitive ability under

propranolol is not due to a bias in use of the confidence rating scale.

Discussion
Confidence determines how much we trust our decisions and how strongly they influence future

behaviour. A read out of confidence in a decision that fails to reflect actual performance will lead to

poor decisions and long-term adverse outcomes. Impaired metacognition is reported in psychiatric

disorders (Frith, 1992; Knouse et al., 2005; Lysaker et al., 2010; Wells, 2011; Hauser et al.,

2017), and its pharmacological remediation could provide a target for treatment (Wells, 2011).

Here we show that inhibition of central noradrenaline (by means of propranolol) function enhances

perceptual metacognitive ability. A dopamine blockade (by means of amisulpride) had no impact on

metacognition and neither drug manipulation had an impact on core perceptual performance.

Noradrenaline is known to impact arousal and higher-order cognition, but the precise mecha-

nisms remain obscure. Influential accounts propose noradrenergic modulation of information proc-

essing, either through neural gain (Aston-Jones and Cohen, 2005; Eldar et al., 2013) or by

signalling unexpected uncertainty (Yu and Dayan, 2005; Dayan et al., 2006). Our finding that block-

ing noradrenaline leads to improved metacognitive performance can be understood within both

frameworks. Metacognition can be thought of as a higher-order process that follows a perceptual

decision making stage and integrates perceptual and other sources of information, such as intero-

ceptive states and general arousal (Allen et al., 2016), to form an overall confidence judgement.

The neural gain hypothesis (Aston-Jones and Cohen, 2005; Eldar et al., 2013) proposes that nor-

adrenaline amplifies strong and diminishes weak signals throughout the brain, with the effect of an

increased ‘contrast’ between strong and weak signals. Due to a nonlinearity in this amplification it is

likely to neglect subtle signal differences, and thus omit the breath and detail of information con-

veyed. This in turn means noradrenaline might render detailed stimulus properties unavailable to the

metacognitive process, impairing the precision of a metacognitive judgement. The latter theory

(Dayan et al., 2006) suggests phasic noradrenaline is elicited by unexpected uncertainty or arousal,

such as when making an erroneous choice (Ullsperger et al., 2010). This phasic burst acts by inter-

rupting ongoing processes and leads to a resetting and erasure of currently maintained information

to enable an orienting response (Sokolov et al., 2002; Dayan et al., 2006). In the context of our

paradigm, this suggests that following an incorrect response accumulated sensory information is

reset and unavailable for confidence judgement, leading to poorer metacognitive performance. This

is supported by our finding of a primary drug-effect on confidence in erroneous trials. On both

accounts, a blockade of noradrenaline by propranolol hinders the noradrenaline-related loss of infor-

mation to provide complete perceptual information to a confidence-related process. This is also in

line with our previous findings showing that unexpected arousal biases metacognition (Allen et al.,

2016), an effect possibly modulated by noradrenaline.

In our experiment, perceptual metacognition was solely influenced by manipulation of noradrena-

line, and not by blocking dopamine D2/3 receptors. This is of interest as both neuromodulators are

often ascribed similar functions including a role in exploration (Hauser et al., 2016), neural gain
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(Eldar et al., 2013; Fiore et al., 2016; Hauser et al., 2016), salience (Bromberg-Martin et al.,

2010; Kahnt and Tobler, 2013), (prediction) error signalling (Holroyd and Coles, 2002;

Hauser et al., 2014) and effort processing (Bouret et al., 2012). Likewise, neural recordings from

dopaminergic and noradrenergic brainstem nuclei have revealed surprisingly similar neural response

patterns (Bouret et al., 2012; Varazzani et al., 2015). Our finding of enhanced perceptual meta-

cognition with noradrenaline blockade might reflect a rare sensitivity to the actions of one of these

neuromodulators. Our findings also raise the possibility that a recent report of increased perfor-

mance and confidence ratings following dopaminergic enhancement (Lou et al., 2011) may reflect a

performance, but not a metacognitive, effect. This finding is akin to a previous report of specific tes-

tosterone effects, where there was an effect on perceptual performance but not metacognition

(Wright et al., 2012).

An important caveat for comparing the amisulpride and propranolol groups directly is that little is

known about the precise pharmacokinetics and how comparable the dosage effects are. We took

great care in the design of the study to render the two drug conditions as comparable as possible.

First, because of the slightly different absorption rates, we administered amisulpride 30 min before

propranolol, in keeping with previous drug schedules (Peretti et al., 1997; Ramaekers et al., 1999;

Strange et al., 2003; Silver et al., 2004; Strange and Dolan, 2004; Hurlemann et al., 2005;

Alexander et al., 2007; Gibbs et al., 2007; De Martino et al., 2008; Kahnt et al., 2015;

Kahnt and Tobler, 2017). Second, to render the cognitive effects of the drugs as similar as possible,

we selected dosages that were commonly reported in previous studies of neurocognition (i.e. 40 mg

propranolol, 400 mg amisulpride) (e.g., Ramaekers et al., 1999; Strange et al., 2003; Silver et al.,

2004; Strange and Dolan, 2004; Hurlemann et al., 2005; Alexander et al., 2007; Gibbs et al.,

2007; De Martino et al., 2008; Kahnt et al., 2015; Kahnt and Tobler, 2017). However, we know

little about the magnitude of these drug effects on the brain. A previous study of sulpiride, which

has a similar chemical formulation to amisulpride, but slightly different pharmacokinetics, suggests

that a single-dose of 400 mg leads to a occupancy of ~28% of D2 receptors (Mehta et al., 2008).

Unfortunately, there are no PET studies reporting on single-dose amisulpride, and there are no occu-

pancy studies of propranolol, thus rendering it difficult to directly quantify and compare our dosage

effects.

In this study, we show that noradrenaline specifically influences perceptual metacognition but not

perceptual decision making. It is interesting to speculate whether our findings are generalizable to

metacognition in non-perceptual domains. Recent studies show that a metacognitive ability is rela-

tively stable across different perceptual decision making tasks (Song et al., 2011; McCurdy et al.,

2013), even when probing different sensory modalities (de Gardelle et al., 2016; Garfinkel et al.,

2016). However, it is unclear whether metacognition within different cognitive domains (e.g., per-

ception vs memory) rely on the same processes, with evidence from neuroimaging suggesting that

these functions utilise unique neural networks (Baird et al., 2013; Fleming et al., 2014). Given that

noradrenaline modulates activity on a whole-brain level (Hauser et al., 2016), it is possible that nor-

adrenergic metacognition effects can be observed in domains other than perception, an interesting

area for future studies. Lastly, our previous findings of an embodied reflection of confidence by

means of cardiac and pupil responses (Allen et al., 2016) raise the question as to whether the

observed noradrenaline effects are purely a consequence of central changes, or whether peripheral

effects of this drug influence metacognitive performance independently. A drug that exclusively tar-

gets peripheral, but not central, noradrenaline (cf. De Martino et al., 2008) could provide insight

into the question of visceral contributions to metacognition as suggested in ideas on embodied cog-

nition (Allen and Friston, 2016).

In conclusion, using a double-blind, placebo-controlled drug manipulation we show that nor-

adrenaline has a controlling influence on metacognitive ability. Metacognition is enhanced following

a blockade of noradrenergic b-adrenoceptors an observation suggesting potential remedial avenues

for metacognitive insight deficits seen in psychiatric patients.
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Materials and methods

Subjects
Sixty subjects participated in this double-blind, placebo-controlled, between-subjects study. Each

subject was randomly allocated to one of three drug groups, controlling for an equal gender balance

in all groups. Candidate subjects with a history of neurological or psychiatric disorders, current

health issues, regular medications (except contraceptives), or prior allergic reactions to drugs were

excluded from the study. Subjects had normal or corrected-to-normal vision. The groups were

matched for age, mood (PANAS; before and after drug administration) (Watson et al., 1988) and

intellectual abilities (WASI abbreviated version) (Wechsler, 1999) (Table 1). Subjects were reim-

bursed for their participation on an hourly basis. The study was approved by the UCL research ethics

committee and all subjects gave written informed consent.

Drug manipulation and procedures
To attenuate noradrenergic function we administered 40 mg of propranolol, a non-selective b-adre-

noceptor antagonist. To attenuate dopamine function we administered 400 mg of amisulpride, a

selective D2/3 antagonist. These drugs were chosen because of their selective high affinity effects

on either one or the other of these two neuromodulators, enabling a specific dissociation of their

contribution to metacognitive ability. The dosage and timing of both propranolol and amisulpride

were based on previous studies that have investigated their effects on cognition (e.g.,

Ramaekers et al., 1999; Strange et al., 2003; Silver et al., 2004; Strange and Dolan, 2004;

Hurlemann et al., 2005; Alexander et al., 2007; Gibbs et al., 2007; De Martino et al., 2008;

Kahnt et al., 2015; Kahnt and Tobler, 2017).

Prior to the task the drugs were administered at two different time points, based upon pharmaco-

kinetic considerations (Figure 1A). The first drug was administered 110 min prior to the metacogni-

tion task. At that time, the dopamine group received amisulpride while the other groups received

placebo. After 30 min, subjects consumed a second drug. This time, the noradrenaline group

received propranolol, while the dopamine and placebo group consumed a placebo. A placebo

group received placebo at both times. The task was performed 80 min after the second drug

administration.

Experimental paradigm
To measure metacognitive ability we applied an adaptive visual global motion detection paradigm,

similar to the version in our previous study (Allen et al., 2016), implemented using Psychtoolbox-3

(www.psychtoolbox.org) for MATLAB (R2010a). On every trial, subjects viewed a brief burst of

motion (250 ms), followed by a forced choice to determine if the overall motion direction was to the

left or right of vertical. Subjects then rated their subjective confidence using a continuous sliding

scale marked at four equal intervals by horizontal lines. To prevent response preparation, the start-

ing point of the confidence marker was jittered up to 12% to the left or right of scale midpoint on

each trial. Subjects had up to 1500 ms to make their motion choice, and 2500 ms to report their

confidence.

At the start of the experiment, each subject was instructed that the goal of the task was to mea-

sure their perceptual and metacognitive sensitivity. This was operationally defined as their ability to

detect motion direction and how accurately their confidence ratings reflected their actual detection

performance. Subjects first completed a short training session of 140 detection-only trials to estab-

lish motion thresholds. All subjects achieved staircase stabilization before continuing to the main

experiment (the motion direction threshold reached in the final staircase of training was used as the

starting point for main task). Subjects were encouraged to use the entire scale to report their subjec-

tive feeling of confidence, and to carefully reflect on each trial on the decision they had just made.

Confidence reports were then binned into six equally sized bins for further analysis similar to previ-

ous reports (Fleming et al., 2010, 2012; Allen et al., 2017; Hauser et al., 2017).

On each trial subjects viewed a cloud of 1100 moving black dots of 0.08 degrees visual angle

(DVA), presented for 250 ms within a 15.69 DVA circular array at random starting positions and

advancing at a speed of 0.06 DVA per frame. Dots which moved beyond the stimulus aperture were

replaced at the opposite edge to maintain constant dot density. To prevent fixation on local motion
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directions, all dots had a randomized limited lifetime of maximum 93% (14 frames). Each motion

stimulus was defined by a global motion direction (‘orientation’) to the left or right of vertical. Fol-

lowing experiments investigating confidence with global motion stimuli, dot mean and variance

were manipulated independently of one another (Allen et al., 2016; Spence et al., 2016). To this

end, all dots were ‘signal’ dots and the standard deviation of the mean direction was adjusted across

conditions. On each trial the motion signal was thus calculated using the formula:

Dotdirection¼ ðLeftvsRightÞ*MeanOrientationþGaussianNoise �StandardDeviation

To control task difficulty and thus ensure an unbiased estimate of metacognitive sensitivity

(Fleming and Lau, 2014), the mean direction of motion was continuously adapted for each subject

using a 2-up-1 down staircase, which converges at the limit on a 71% detection accuracy. To render

the staircase opaque to subjects, and maximize confidence variability, we deployed two separate

staircase conditions with a fixed motion variance equal to either 20 or 30 degrees standard devia-

tion. Subjects completed a total of 144 trials (72 high variance, 72 low variance) divided evenly

between four blocks.

Statistical analysis and metacognition modelling
The goal of our analyses were two-fold: First, we wanted to ensure all groups expressed equivalent

perceptual decision making performance, as performance differences can influence estimates of

metacognitive ability (Fleming and Lau, 2014). Second, we wanted to test for differences in meta-

cognition using signal detection theory (SDT), examining the metacognitive detection performance

using an area under the curve for a type-II receiver-operating-characteristics (ROC) (AUROC2) metric

(Fleming et al., 2010, 2012).

To ensure homogeneous performance across all subjects, we excluded two outlier subjects who

performed worse than the rest (as measured using boxplots; both subjects belonged to the ami-

sulpride group). We omitted all trials from the first block to ensure staircase stabilisation, similar to

previous studies (Fleming et al., 2010, 2012; Allen et al., 2017; Hauser et al., 2017). Trials with

early (<100 ms), late (>1500 ms) or missing responses were excluded. We collapsed low and high

variance trials, leaving a total of 108 trials per subject, per recommended procedures, for optimal

estimation of SDT measures (Fleming and Lau, 2014). To compare perceptual abilities between

groups, we assessed their performance in terms of accuracy and signal strength (mean stimulus ori-

entation). We further assessed reaction times and the subjects’ average confidence ratings. We used

ANOVAs with a between-subject factor group (placebo, propranolol, amisulpride) and post-hoc

t-tests in SPSS (version 22, IBM). To evaluate the evidence for the null hypothesis that amisulpride

had no effect on AUROC2, we performed a Bayesian two-sample t-test using version 0.9.8 of the

BayesFactor package, computed using R version 3.3.2 (2016-10-31) on x86_64-w64-mingw32

(Rouder et al., 2009; Morey and Rouder, 2015). A unit-information Bayes Factor with r scale

parameter = 1 was calculated for the Placebo vs Amisulpride contrast (Rouder et al., 2009). This

Bayes factor expresses the continuous evidence for the null hypothesis of no drug effect, where

Bayes Factors > 3 correspond to ‘moderate’ evidence (Rouder et al., 2009; Dienes, 2014).

To examine subjects’ metacognitive abilities, we assessed the type-II performance using SDT. In

this framework, metacognition can be modelled as the sensitivity of subjective confidence to under-

lying ground truth discrimination performance. By defining metacognitive ‘hits’ (i.e., high confidence

for correct detections) and ‘misses’ (high confidence for incorrect detections), metacognitive sensi-

tivity can be expressed as the area under a type-II receiver-operating-characteristics curve

(AUROC2). In contrast to classical measures of metacognition (e.g., the correlation of confidence

and accuracy), AUROC2 is unbiased by a subject’s overall level of confidence (or metacognitive bias/

criterion) if detection performance is held constant across subjects (Fleming and Lau, 2014). Fur-

ther, being nonparametric, AUROC2 is not susceptible to issues such as non-normal confidence

distributions.

AUROC2 was calculated using the same metric as in Fleming et al. (2010), Kornbrot (2006):

AUROC2¼ 1

4

X

1

2
i

k¼1

hkþ1 � fk½ �2� hk � fkþ1½ �2
� �

þ 1

4

X

i

k¼1

2
i

hkþ1 � fk½ �2� hk � fkþ1½ �2
� �

(1.1)
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where i indicates the six confidence rating bins, h depicts the relative frequency of this rating for cor-

rect choices (hi ¼ p confidence¼¼ ijcorrectð Þ) and f describes the counterpart for incorrect responses

(fi ¼ p confidence¼¼ ijincorrectð Þ).
To ensure that the groups did not differ in their type-I detection performance (d‘) or response

bias (c), we additionally examined these metrics (Green and Swets, 1966; Fleming et al., 2010):

d0 ¼ 1
ffiffiffi

2
p z Hð Þ� z FAð Þð Þ (1.2)

c¼�:5 z Hð Þ� z FAð Þð Þ (1.3)

where z describes the inverse of a cumulative normal distribution, H is the correct hits and FA the

false alarms for two-alternative forced choice tasks.
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