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Abstract 

This paper describes the application of Atomic Force Microscopy (AFM) for the imaging of 

collagen denaturation as observed in parchment. This is prepared from processed animal skin 

and collagen is the main component. Large collections in national archives, libraries and 

religious institutions contain numerous documents written on parchment. Their preservation 

presents an unsolved problem for conservators. The main challenge is to assess the state of 

collagen and to detect what conservators refer to as the pre-gelatinised state which can cause 

surface cracking resulting in loss of text and can increase the vulnerability of parchment to 

aqueous cleaning agents. Atomic Force Microscopy (AFM) was first used within the IDAP 

project (Improved Damage assessment of Parchment) enabling the characterisation of 

collagen structure within parchment at the nanoscale. Damage categories were also 

established based on the extent of ordered collagen structure that was observed in the AFM 

images. This paper describes the work following the IDAP project where morphological 

changes in the fibres due to both artificial and natural ageing were observed and linked to 

observations made by AFM. It also explores merits and drawbacks of different approaches 
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used for sample preparation and the possibility of using a portable AFM for imaging directly 

on the surface of documents. A case study on a manuscript from the XVIII century is 

presented. 

 

Introduction  

 

Parchment was widely used in Europe as a writing medium from the 2nd century BC until the 

XVII century (1). Notable examples include the Dead Sea Scrolls, which are the oldest 

known parchment documents (2), the Magna Carta and the Faddan More Psalter (3). Current 

practice in British Parliament is to still use parchment as a writing medium for all Acts of 

Law. Parchment is a complex biological material obtained from processed animal skins, 

usually from calf, sheep or goats. It consists mostly of collagen Type I (95%) and other 

constituents are inorganic minerals and lipids (4,5). During the manufacturing process, the 

epidermis and subcutaneous layer of the skin are removed, leaving the dermis layer. The 

remaining skin is subsequently treated by liming, scraping and drying under tension (6). 

Although parchment has demonstrated its longevity as a bearer of our written history, it may 

still be prone to conservation issues such as surface damage with loss of text, wrinkling, and 

damage from unsuitable conservation treatment. All these occur as results of the ageing 

process of the parchments and therefore it become apparent for scientist and conservators 

alike that the impact of such ageing process onto parchment needs more attention.  

 

The structural and physico-chemical properties of parchment are directly linked to those of 

collagen. In most connective tissues ,such as skin from which parchment is derived, collagen 

exists in the form of  large fibres or sheets, composed of  smaller fibrils, which are 

themselves made of collagen molecules. A collagen molecule is composed of three 

polypeptide chains, with a left-handed twist, which combine together to form a right-handed 

triple helix (12). Collagen molecules are staggered axially relative to their nearest 

neighbours, in order to form fibrils via an entropic reaction in vivo.(13,14). The external 

appearance of the collagen fibrils present an annular periodicity (D-banding) which is 

conserved across all tissue types and species. The D-banding periodicity in skin is 

approximately 65 nm in tendon is about 67 nm. Collagen molecules fibrils are subjected to 

various post-translational modifications and glycation, whilst present in the body. These 

various chemical modifications change both the intermolecular and interfibrillar degree of 

crosslinking in collagen which result in a greater thermal stability and physical properties. 



 

However, the processes of parchment manufacture and subsequent ageing lead to irreversible 

changes in the collagen structure and degree of crosslinking (15–17). This results in change 

from an intact fibrillar arrangement of collagen molecules in a triple helix to a random 

conformation and a more disordered system. Detection of this change in collagen poses a 

challenge for conservators. Current practice involves heating of fibres in water using hot 

stage microscopy and then measuring the shrinkage temperature of the fibres (Ts); the lower 

the temperature the more gelatinised the sample (18–22).  

 

Two EU interdisciplinary projects, Microanalysis of Parchment MAP (4) and Improved 

Damage Assessment of Parchment IDAP (7), have focussed on characterising a large number 

of both accelerated aged and historical parchment samples. The two projects used a range of 

advanced analytical techniques but it was in the IDAP project that AFM was first used for 

damage assessment of parchment. Skin collagen displays a characteristic banded fibril 

structure on the submicron scale when visualised by Atomic Force Microscopy (AFM). 

Changes in the banded fibril structure were considered as useful damage markers (8,9). 

Damage assessment by AFM has also been used in the medical area for nano-scale structural 

characterization of (a) natural heart valves and bioprosthetic heart valve material under 

slightly altered physiological conditions (10)  (b) collagen-based tissues (including dentin, 

tendon, cartilage, skin, fascia, vocal cords, and cornea), and some studies have been 

undertaken on bone (11). 

 

In the IDAP project some correlation was observed between shrinkage temperature and 

extent of ordered collagen structure as recorded by AFM (23). Studies were initially 

performed on model rat tail to study the effect of collagen denaturation. On heating the 

samples to 70°C for 15minutes partially intact banding and fibril structure was observed. In 

other locations the characteristic structure for native collagen was not present and the surface 

developed a “glass-like appearance” (23,24). A Fourier transform-based algorithm was used 

to quantify changes in the AFM images and this provided a measure of the extent of intact 

collagen remaining in the parchment (23,25). 

 

Following the IDAP project (26,27), attention was focussed on changes in the morphology of 

fibres and a damage assessment protocol was established based on shape differences (28–30). 

One of the aims of this paper is to link these observations  with AFM imaging performed on 



fibres with varying morphology (31). Various methods of sample preparation are reviewed. A 

second aim is to present a case study where AFM imaging is performed directly on the 

surface of a historical document from the 18th century (National Archives, UK). 

 

Materials and Methods 

Samples  

 

The parchment samples analysed in this study included two new calfskin hide bought from 

different tanneries (Z.H. De Groot, The Netherlands and Pergamena, US) dehaired in 

Ca(OH)2 with the addition of sodium sulphide to speed up the dehairing process and a 

historical parchment document dating back to the reign of King George the third (XVIII 

century) from The National Archives UK (Kew, London) (Figure 1). The document is folded 

in three parts and written on the recto with carbon ink. Viewing with the naked-eye, it 

appears in good state of conservation and the surface is covered by a “patina” (layer of 

superficial dirt). No information on previous conservation treatments or storage conditions 

was provided. 

 

Atomic Force Microscopy (AFM) 

Imaging of fibres extracted from parchment was performed using a XE-100 (Park System, 

South Korea) and a Dimension 3100 (Bruker, USA) in contact mode with MSNL-10 probes 

(Bruker, USA). 

Generally, the imaging scan rate was kept between 0.5 and 2 Hz depending on sample surface 

and image scan size. Set-point and feedback gains were kept as small as possible (to avoid 

damaging to the sample and to reduce the noise) and were adjusted accordingly for each 

image. A Nanosurf EasyScan 2 AFM in dynamic mode was also used to collect images 

directly on the historical parchment document surface (Figure 1) using Nanosensors PPP-

NCLR-20 probes, spring constant of 48N/m, a resonance frequency of 190 kHz. 

 

Scanning Electron Microscopy (SEM) 

SEM imaging of parchment was performed using a Philips XL30 FEG SEM (FEI, 

Eindhoven, Netherlands) with an accelerating voltage of 5 keV and a spot size of 3. A small 

piece of approximately 0.5x0.5 cm was sampled, fixed on a standard SEM Al stub (Agar 

Scientific, UK) using carbon adhesive tabs or Araldite® glues and left air dry overnight. 



Samples were then gold-palladium sputter coated at 20mA and 1.25Kv for 90seconds 

(Palaron E5000 sputter coater). 

 

Direct surface measurements 

1. Proof of concept 

Before performing any direct measurement on parchment which present a very 

heterogeneous surface, a portable Nanosurf Easyscan 2 AFM operating in intermittent 

contact mode was used to image the varnished surface of a violin. (Figure 2). The proof of 

concept proved that it is possible to perform successful imaging on a rigid smooth surface 

and demonstrated the possibility of direct imaging with no sample preparation 

 

2. Imaging parchments 

A piece of modern parchment of approximately 5 X 5 mm was cut and mounted (with the 

flesh side up) on a microscope slide with double sided tape and imaged using the Dimension 

3100 in contact mode. Additionally, a portable Nanosurf Easyscan 2 AFM operating in 

intermittent contact mode was also place directly on the 18th cent. parchment document. 

Finally, SEM imaging was finally performed on a fragments of all parchments to 

corroborate the AFM imaging with SEM analysis.  

 

Histological preparation of parchment  

Cross-sections were prepared using a cryotome (Bright Instruments Co Ltd, Huntingdon, 

Cambridgeshire, United Kingdom). A sample (5 mm by 5 mm) was cut from the original 

parchment sample and embedded in OCT embedding matrix (Cellpath plc, Newtown Powys, 

Wales, United Kingdom), a water soluble glycol that quickly freezes below -10oC. Cross-

sections with a thickness of 10 μm were cut perpendicular to the head-tail direction of 

parchment with a disposable stainless steel knife. The obtained cross-sections were mounted 

on microscopical slides and stored at -80°C for 24 hours. After acclimatisation to ambient 

conditions (25 ± 5°C and 30 ± 20% RH), cross-sections were visually inspected at 200x 

magnification with an Olympus BX60 (Olympus Europe, Hamburg, Germany) and with a 

Dimension 3100 (Bruker, USA) AFM in contact mode. 

 

Sampling of fibres  

Fibres were scraped with a sharp scalpel from the flesh side of parchment. The scraping was 

performed over an area of approximately 5 by 5 mm and removed about 20 μm from the 



sample thickness; the accumulated fibres were centred on the glass slide with a scalpel and 

few drops of distilled water were added and fibres were left to physisorb onto the glass slide. 

The samples were dried for at least 24 hours at ambient conditions (25 ± 5°C and 30 ± 10% 

RH) before imaging with AFM (Dimension 3100) in contact mode. 

 

Microsampling 

The sampling protocol proposed by Dr Kathleen Mühlen Axelsson and Prof. René Larsen, 

formerly from the School of Conservation in Copenhagen (The Royal Danish Academy of 

Fine Arts, Schools of Architecture, Design and Conservation) for the microscopic assessment 

of collagen fibres (22,28) was slightly modified. A small piece of parchment (approximately 

1 mm2) is cut and placed in the depression of a concave microscope glass slide. Few drops of 

double distilled water are added and the sample is left soaking for ten minutes (Figure 3, 

panel A). After this wetting time, the grain side is separated from the flesh side (Figure 3, 

panel B) and bundles of fibres are pulled out from the flesh side with the help of a sharp 

needle and tweezers (Figure 3, panel C). The bundles of fibres are then placed on a clean, flat 

microscope slide in excess water, separated and left to physisorb onto a glass slide overnight 

at standard conditions (Figure 3, panel D). 

 

Results 

Application of AFM on parchment within the IDAP project 

Figure 4 shows AFM deflection images of unaged parchment sample prepared using different 

methods and compared to untreated rat tail tendon (Panel A). Panel B shows an AFM 

deflection image of a parchment fibre scraped from the flesh side and physisorbed onto a 

glass slide, panel C shows an AFM image recorded directly on the flesh side and panel D 

shows an image of a cross-section prepared using a cryotome. For measurements performed 

directly on the parchment surface or on scraped fibres, it was possible to observe the typical 

collagen banded fibril structure, with better results obtained by scraping fibres from the 

parchment surface. This structure was less clearly present in the AFM images of the cross-

sections. 

Improving the cross-section preparation might allow to obtain better results, however, this 

approach would require a larger amount of sample, compared to other approaches, and result 

in a partial alteration of the samples (32) and would be not possible to reuse the sample for 

further measurements. 

 



Although good results were obtained imaging directly on the parchment surface or scraped 

fibres, several drawbacks can be highlighted for these methods. Acquiring good AFM 

topographical images directly on the parchment surface can be challenging and time-

consuming. Parchments in fact display uneven surfaces (due to different manufacturing 

process, finishings applied and state of conservation) with an overall roughness at the meso- 

nanoscale, which might not be compatible with the z-range of commercial AFMs (12 μm for 

the Park XE 100, 6 μm for the Dimension 3100). 

As an example of how complex a parchment surface can be, representative FEG-SEM images 

for the new parchment and for the historical document are shown. Figure 5 panel A shows the 

flesh side of the new parchment; its surface appears uneven and it is covered by a matrix of 

sheared fibres that were not removed during the finishing of the parchment (the final stage of 

the parchment manufacture process) (15). In panel B, a SEM image of the recto of the 

historical document is presented: in this image, one can observe that the parchment surface is 

smooth, with a visible fibres network, and it is covered by deposits (both biological and 

mineral, panel C). 

 

Experimental work in the IDAP project was mainly performed on fibres scraped from the 

surface as this provided an optimum image. However, further refinements are needed in 

terms of sample preparation, especially for the analysis of historical parchment samples. For 

some of these, it is not always possible to distinguish between the grain and the flesh side and 

consequently the scraping of the fibres should be performed on both sides of the parchment 

and this may not be allowed and have an impact on the object. Moreover, the action of 

scraping itself might damage the sampled fibres. 

 

Combining the microscopic assessment of collagen fibres with AFM  

In more recent AFM microscopes, the improvement in the optical set up has made easier the 

possibility to track both the AFM probe and the sample surface at the same time. This is a 

significant technical improvement as it allows to position the probe on specific areas of 

interest. This also make possible the combination of the microscopic assessment of collagen 

fibres with AFM measurements. The modified protocol to the microsampling was used to 

prepare samples for AFM measurements by extracting bundles of collagen fibres from new, 

artificially aged and historical parchment. Subsequently, as for the microscopic assessment 

(22,28), three different locations containing between 10-20 fibres were digitally 



photographed under an optical microscope and specific fibres upon which perform AFM 

were selected. These areas were then relocated under the AFM. 

  

Figure 6 shows an example for the new parchment bought from Pergamena. In panel A, 

bundles of collagen fibres are shown at a magnification of 100x and the red dots indicate the 

areas that were analysed by AFM; in panel B an AFM image acquired on a specific fibre is 

shown. On this image, one can observe individual and well separated collagen fibres; 

according to the microscopic assessment of the collagen fibres, it is possible to recognise 

some of the characteristic features of damaged fibres. Flat fibres represent the majority of the 

fibre population under investigation, nevertheless one can also see the presence of split fibres 

and several “pearls on a string” structure (28). The application of AFM allows the user to 

increase the magnification of the area analysed and to see the ultrastructure of collagen fibres. 

In Figure 6 panel B, the AFM image was acquired on a fibre with an intact-like appearance. 

In the AFM images, it is possible to observe collagen fibrils aligned in register, which is one 

of the main characteristic of collagen scaffold morphology in “undamaged” parchments, as 

reported by de Groot and elsewhere (23,33,34). Additionally, individual fibrils display the 

characteristic D-banding periodicity that is expected from native collagen.  

 

AFM imaging can be performed on all the different damage fibres breakdowns morphologies 

and this has allowed to correlate the damage detected at the microscopic level with damage at 

the nanoscale (31). However, the characterisation of damage morphologies, such as the twist 

and pearls or the “butterfly” structures is particular challenging, especially when imaging in 

contact or intermittent contact mode. This is due to the nature of the sample in the twist 

region. The abrupt changes in the surface feature height cannot be easily handled by AFM, 

and this leads to a certain degree of image distortion (presence of lines or repeated geometric 

patterns across the image) or failure detection (due for example to tip convolution or too high 

differences in sample topography). An example is reported in Figure 7, where two AFM 

images of a twist region are presented. In Panel B, in fact, one can observe collagen structure 

on only half of the image, as the other half cannot be detect. By repositioning the probe 

(black rectangular) and reducing the scan size, it is now possible to observe the collagen 

structure in the twist region. In panel C, one can observe the presence of intact banded 

collagen fibrils (star), as well as the deteriorated structure (black arrows). Whilst thermal 

ageing induces the dehydration of the sample and this results in a shrinkage of the collagen 

structure (23,31), accelerated ageing involving temperature and RH leads to different 



alterations of the structure. This type of artificial ageing induces the swelling of the fibrils 

and a pre-gelatinised state characterised by the loss of structure and formation of spherical 

aggregates or bubble-like features (35). 

 

In Figure 8, an example of correlation between damaged fibres and deterioration at the 

nanoscale is presented for the historical parchment sample. In panel A, one can observe 

bundles of collagen fibres under an optical microscope at a magnification of 100x. All the 

fibres exhibit damaged morphological features: one can observe flat, split fibres and that the 

amount of flat fibres and “pearls on a string structure” has significantly increased, based on a 

qualitative assessment, if compared to the new parchment. The AFM images acquired on a 

damaged fibre (panel B) show that the typical collagen scaffold topology is completely lost. 

This kind of degradation has been previously reported in the IDAP project, where four 

damage categories were created based on the progressive loss of the banded fibril structure 

(24).  

 

However, historical parchments can still present an intact collagen scaffold. An example is 

given in Figure 9, where AFM images acquired on randomly selected fibres from the 

historical parchment are shown. Looking at these different AFM images, it is in fact possible 

to notice the presence of alterations of the collagen structure. These variations from the native 

structure can affect a single fibril or the entire area scanned and have also been observed on 

series of samples ranging from ‘model’ collagen sample (rat tail tendon) to modern 

parchment exposed to acetic acid vapour or inorganic pollutants and historical parchments 

within the MEMORI project (36). One can observe for example that the collagen scaffold is 

affected by a general disruption of its well organised structure, showing also a shrinkage of 

fibrils along their alignment direction resulting in the wrinkling of the surface (Panels C and 

D). Moreover, it is also possible to observe the presence of deposit on the surface: these can 

be either mineral deposits or extraneous materials that were deposited on the fibres, perhaps 

during the sample preparation. The presence of these and other alterations of the collagen 

scaffold were further characterised and are currently used to create a new protocol to 

calculate the extent of degradation in parchment at the nanoscale (31). 

 

 

Although the combination of the microscopic assessment of collagen fibres with AFM still 

requires to sample the original artefacts, there are several advantages of adopting such an 



approach. These include the possibility of linking AFM results with information from other 

techniques (and more familiar to conservators). Moreover, it would be possible to have a 

more complete understanding of the state of degradation of the parchment artefacts at the 

level with which physical deterioration starts occurring, as a result of chemical and other 

breakdown factors. 

 

Towards the application of portable AFM (Nanosurf Easyscan 2) on parchment 

 

With the advances in AFM instrumentation, small portable AFMs (such as NANOSURF 

EasyScan 2) are available on the market. These instruments present several advantages which 

make them suitable to be used also by conservators. Part of the setup of the instrument, such 

as laser alignment on the tip, is done automatically. Compared to Park XE-100 and 

Dimension 3100, which do not have the space in the sampling area to place a full document, 

the Nanosurf Easyscan 2 AFM be used directly onto the objects requiring examination 

(Figure 10 panel A). The use of soft plastic supports (red arrows in panel B) protects the 

document from damage and allows the AFM to be placed directly on the parchment surface 

and to be moved without damaging the artefact. There are two small optical lenses at the top 

of the instrument which allows side-on viewing of the approach of the tip to the surface and 

the other which allows viewing, at low magnification, of the tip on the sample. The z-range 

for this instrument is however still limited to 14 µm. 

 

Compared to the AFM images acquired from extracted collagen fibres from the same sample, 

direct imaging appears less clear. Difficulties are related, as previously mentioned, to the 

nature of the parchment surface, which as seen in the SEM images (Figure 5) shows 

differences in the topography of the sample with the presence of a fibre network and mineral 

deposits. One of the areas raster-scanned with AFM is highlighted by a black circle in Figure 

10 panel B; a handheld digital imaging accessory (http://www.supereyes.cc) was used to 

view the surface of the parchment. In this location, the parchment surface is characterised by 

the presence of a pre-gelatinised layer (Figure 11) (37). This is uneven, with evidence of 

holes in the layer showing the underlying white layer which results in tip convolutions and 

loss of contact between the probe and the sample. The corresponding AFM images acquired 

in this area shows the complete absence of the typical collagen structure.  

 

 

http://www.supereyes.cc/


 

The presence of this “pre-gelatinised” and underlying carbonate layer can cover the collagen 

scaffold, precluding its characterisation. There may be the occasional losses which may 

permit viewing the collagen scaffold below. Evidence of the “pre-gelatinised” layer was also 

confirmed by Rabin et al. (38) where measurements were performed directly on the surface 

of both new, artificially and naturally aged parchments. This revealed that damage first 

occurred on the parchment surface leading to the formation of a “glassy layer” or “pre-

gelatinised” layer. This film possibly has a protective function towards the bulk of the 

parchment, shielding the collagen structure lying underneath from further deterioration. Thus, 

in order to reveal the state of collagen in parchment this upper surface layer would have to be 

removed, with an impact on the document. 

 

In view of the difficulties of acquiring images directly on the sample surface, in the present 

study it was possible to observe some correlation between damaged structure as seen in 

images collected from extracted fibres and those directly on the parchment surface. In Figure 

12 for example, the image on the left (from extracted fibres) one can observe that the entire 

surface is characterised by the folding (or wrinkling as previously defined) of the collagen 

scaffold. This type of damage can also be observed in one of the image collected from the 

sample surface. In figure 12 on the right, the red circle highlights the presence of folding of 

the surface.  

 

Conclusions 

 

In this study, we have demonstrated that AFM is capable of characterising the degree of 

degradation of collagen in historical parchments. The approach is non-destructive and is 

minimally non-invasive in that fibre samples are extracted. We have demonstrated that fibre 

morphology does reflect the state of damage in the collagen fibres; damage described in 

terms of “twist” and “pearl” showed changes in the ordered structure of collagen with fibril 

swelling, surface wrinkling and localised areas of surface gelatinisation. We have also shown 

that the application of portable AFM for the characterisation of parchment documents is 

possible, however the information it provides might be limited due to the presence of 

gelatinised surface layer. The damaged surface, however, does not necessarily reflect the 

degradation state of the bulk, as previously reported (38). In the AFM images of fibres 

extracted from the historical parchment, intact portions of ordered collagen fibrils were 



observed in some of the analysed locations. The case study described here has shown that 

AFM does provides information on the state of the surface in a non-invasive way. There are 

also indications of structures in the preliminary AFM images recorded on the surface that 

were observed in both SEM and AFM images from extracted fibres. However, further work 

is required to develop a database of such images with comparison with those obtained from 

extracted fibres. This would provide a useful database which would enable the AFM to be 

used to study the surfaces of collagen-based documents in museum and archival collections. 
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Figure Legends 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Image of the recto of the 18th century document written on parchment provided by 

The National Archives UK for this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

Figure 2 Nanosurf Easyscan 2 AFM head on violin placed on an anti-vibration table (A) and 

AFM image of the surface of the violin (B) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Figure 3 Microsampling for the extraction of collagen fibres from parchment. (A) soaking of 

parchment in water. (B) separation of grain side from the flesh side with the help of 

sharp tweezers. (C) Pulling out of bundles of fibres from the flesh side. (D) Extracted 

bundles of collagen fibres, still in water, observed under an optical microscope at a 

magnification of 100x. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
Figure 4 AFM deflection images of untreated rat tail tendon (panel A) and unaged parchment 

sample (B-D) prepared using three different methods. Panel B shows an AFM image 

of a parchment fibres scraped from the flesh side, panel C shows an AFM image 

recorded directly on the flesh side and panel D shows an AFM image of a cross- 

section prepared using a cryotome. The red rectangular highlights the D-banding 

periodicity. The images are from de Groot’s PhD thesis (23). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
 

Figure 5 FEG-SEM image of the flesh side of the new parchment sample brought from 

Pergamena (panel A) and of the recto of the historical parchment (panels B and C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 
 

Figure 6 Panel A: Bundles of collagen fibres extracted from new parchment hide. The red 

dots indicate the area analysed by AFM, whilst the yellow arrows highlight the twist 

and pearls structure. The image was acquired with a light optical microscope at a 

magnification of 100x. Panel B: AFM deflection image acquired on a collagen fibre 

showing an intact-like appearance. The collagen scaffold is characterised by fibrils 

aligned in register with a visible D-banding. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 
 

Figure 7 Optical (magnification of 100x) and AFM images of twist and pearl structure. Panel 

(A) shows bundles of collagen fibres and the twist region that was analysed with AFM. 

Panel (B) is a first AFM image of the twist region, whilst panel C shows the 

corresponding AFM image acquired in the area highlighted by the black rectangular in 

panel B). These images were recorded from extracted collagen fibres from a new 

parchment hide, aged at 80°C and 60% RH for 28 days used in a collaboration project 

with Dr Kathleen Mühlen Axelsson and are also reported in her PhD thesis (original 

name sample A_p_Humox). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Figure 8 Panel A: Bundles of collagen fibres extracted from the historical parchment for The 

Kew National Archives (London, UK). The image was acquired with a light optical 

microscope at a magnification of 100x and the yellow arrows highlight the twist and 

pearls structure. Panel B: AFM deflection image acquired on a collagen fibre showing 

a damage morphology appearance. The collagen scaffold in this location is 

characterised by the complete loss of its characteristic features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Figure 9 Representative AFM deflection images for the historical parchment sample, 

showing intact banded collagen fibril aligned in register (panel A), disruption of the 

well-organised collagen structure and the wrinkling of the surface (red arrows). 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Figure 10 Panel A shows the setup of the EasyScan with the AFM safely placed directly on 

the parchment document thanks to the use of soft plastic supports to protect the document 

from damage due to AFM moving (highlighted with red dots in panel B). The black circle in 

panel B shows the area imaged with AFM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
Figure 11 The handheld digital image accessory shows the parchment surface in the area 

raster-scanned with AFM: the related image (on the left, magnification 50x) shows an area on 

parchment between two letters, characterised by a pre-gelatinised state. This is confirmed by 

the related AFM image (on the right, scan size 10 µm) where the collagen scaffold is 

characterised by a complete loss of its typical structure, similar to Figure 7c 
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Figure 12 Example of damage (folding or wrinkling) as seen in image recorded from an 

extracted fibre (on the left) and in image directly recorded on parchment surface of similar 

dimension and showing a similar folding pattern (on the right, highlighted by the red circle, 

scan size 5 µm). AFM image also shows problems with loss of contact between tip and 

sample in certain areas. 
 

 

 

 


