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Abstract

Prion diseases are lethal neurodegenerative disorders caused by infectious proteins

called prions. All known susceptibility variants in human prion disease are found

in the prion protein gene (PRNP), but there is evidence that additional, non-PRNP

susceptibility loci exist. Genome-wide association studies, an exome-sequencing

study and an exome-array study have been conducted by the MRC Prion Unit in

order to identify those loci. None of these studies have resulted in novel discov-

eries yet. Data integration could overcome the pitfalls of single-dataset analysis to

discover novel susceptibility factors. In this project, Integrative Causal Analysis

was adopted as a framework for data integration with the aim to identify all causal

relationships between variants and prion disease that are consistent with all prion

datasets and prior biological knowledge. Firstly, a theory of causal discovery from

genetic datasets was formulated and causal discovery was applied to the datasets

from the studies mentioned above. Secondly, an algorithm for causal meta-analysis

of genetic datasets with overlapping sets of variants was designed and applied to a

combination of the datasets in order to increase the power of learning causal rela-

tionships. Thirdly, a variant-filtering approach based on causal prior knowledge was

devised as another method to increase power: Publicly available biological data and

prior knowledge were integrated into a directed graph whose nodes comprise the

disease and molecular entities in the cell and are associated with genomic regions,

and whose edges denote causation. Candidate causal variants were subsequently

identified from the ancestors (causes) of the disease in the graph. The application of

the methods to prion disease resulted in a number of candidate susceptibility vari-

ants to be further investigated. The methods are also applicable to other diseases
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and have the potential to lead to novel discoveries in those diseases.
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Chapter 1

Introduction

1.1 Genome-wide association studies

Mendelian diseases are caused by mutations in a single gene. In contrast, com-

plex diseases are caused by a combination of genetic and/or environmental fac-

tors. The completion of The International HapMap Project and the advent of high-

throughput genotyping chips made it possible to conduct genome-wide association

studies (GWASs) of complex diseases [McCarthy et al., 2008]. The International

HapMap Project [Gibbs et al., 2003] genotyped common single nucleotide poly-

morphisms (SNPs), which occur in a population with a frequency of at least 1-5%,

in individuals from different human populations. Common SNPs close to each other

on the same chromosome tend to be associated and form a haplotype block; non-

randomly associated loci are said to be in linkage disequilibrium (LD). Genotyping

chips provide an inexpensive means to assess a large number (currently over four

million)1 of preselected SNPs in a cohort of individuals. A GWAS takes advantage

of LD by using chips that assess a set of tag common SNPs, interspersed across

the genome, and testing their association with a phenotype. To account for multiple

testing, usually the family-wise error rate (FWER), defined as the probability of a

false positive, is controlled at 0.05.

1http://www.illumina.com/techniques/popular-applications/genotyping/whole-genome-
genotyping.html

http://www.illumina.com/techniques/popular-applications/genotyping/whole-genome-genotyping.html
http://www.illumina.com/techniques/popular-applications/genotyping/whole-genome-genotyping.html
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1.2 Identifying causal variants
Correlation does not imply causation. For example, a non-causal variant may be

associated with the disease because it is in LD with a causal variant. Conditional

analysis is usually performed for each associated variant in order to discard (some

of the) variants that are definitely not causal. In conditional analysis, one variant is

selected at a time and the association of each other variant with the disease condi-

tional on the selected variant is tested; if there is no association, the other variant is

not a cause of the disease2 and is discarded. Variants that are conditionally indepen-

dent of the disease given a subset of the rest variants with cardinality greater than

one are also not causal; these conditional independences are not tested, however, in

a conditional analysis.

In contrast to association analysis, where marginal independence tests are per-

formed in order to detect associations, methods for causal discovery [Spirtes et al.,

2000] use conditional independence tests in order to directly elucidate causal re-

lationships from data. In the case of genetic data, conditional analysis is not re-

quired as a post-processing step, because causal discovery automatically discards all

definitely-non-causal associated variants. Although causal discovery has been ap-

plied to genetic data [Han et al., 2010, 2011, Alekseyenko et al., 2011], the (causal)

output of the methods is still difficult to interpret biologically, especially in the case

of case–control datasets; this is because there is no characterisation of the causal

models expected to be learned from genetic data. Furthermore, no multiple-testing

correction was performed and no causal effects were reported in those works. While

simulation studies of the performance of causal discovery algorithms have been per-

formed using general benchmark causal models [Aliferis et al., 2010a], no studies

have been conducted using realistic genetic causal models.

Causal discovery is not widely used in genetics or other areas. One possible

explanation could be that most researchers are unfamiliar with methods for causal

discovery; another might be the fact that it is less comprehensible than association

analysis.

2This is true under the so-called causal faithfulness condition (see Section 2.2).
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Irrespective of the approach used to identify candidate causal variants, func-

tional validation is subsequently performed in order to determine whether the vari-

ants are truly causal.

1.3 Finding missing heritability
Despite the fact that GWASs have identified hundreds of disease susceptibility loci,

only a small proportion of the estimated heritability of complex diseases can be

explained. The reasons behind missing heritability are under discussion [Eichler

et al., 2010].

Firstly, a large number of common variants may be associated with disease

but go undetected because their effect size is too small relative to the available

sample size. Several approaches can be used to increase the power to detect disease

associations from a GWAS dataset or any other type of genetic dataset:

• Genotype imputation refers to using a reference dataset (e.g. a HapMap one)

from the same population with a superset of the typed SNPs in order to im-

pute the genotypes of the untyped SNPs [Marchini and Howie, 2010]. Im-

puted SNPs may display a stronger association with the disease than the typed

SNPs.

• Increasing the sample size is the most obvious approach to increase power,

but it is not always possible, especially in the case of rare diseases. A mega-

analysis comprises concatenating datasets obtained using the same or com-

patible genotyping chips and testing for association in the resulting dataset.

Genotype imputation may be used to impute missing genotypes in the con-

catenated dataset when the original datasets are defined over different sets of

SNPs. When datasets are incompatible or data sharing restrictions apply, a

meta-analysis of GWASs may be conducted, where summary measures such

as p-values or effect sizes from the different studies are combined [Evangelou

and Ioannidis, 2013]. As in a mega-analysis, genotype imputation may be

performed. Meta-analyses have been in fact responsible for the majority of

recently identified disease susceptibility variants [Evangelou and Ioannidis,
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2013].

• Methods for pathway association analysis, which increase power by grouping

variants by pathway and testing their joint association with disease have been

used to implicate pathways in disease [Wang et al., 2010a].

• The error rate being controlled also affects power. In general, the choice of

error rate depends on the relative cost of false positives and false negatives.

When even a single false positive is unacceptable, it is appropriate to con-

trol the FWER. On the other hand, if some false positives can be tolerated in

order to increase power, it is appropriate to control the false discovery rate

(FDR). The FDR is loosely defined as the expected proportion of false pos-

itives among the rejected hypotheses (“discoveries”) (see Section 2.1 for the

exact definition). Although FDR is widely used in other scientific areas, it

is rarely used in genetic association analysis. This is probably due to the

very high cost of functionally validating a discovery, making the possibility

of false positives completely unacceptable. However, it might as well be the

case that not many practitioners are familiar with the FDR. When lack of

power is an issue, it is probably more appropriate to control the FDR instead

of the FWER.

• The lack of power could be overcome by easing the multiple-testing bur-

den through decreasing the number of hypotheses by variant filtering. One

approach to variant filtering is the use of prior knowledge [Ritchie, 2011].

Existing variant-filtering methods that use prior knowledge do not provide,

however, a causal interpretation of their results. When filtering the input

of causal-discovery algorithms, it would be appropriate to retain candidate

causal variants, that is, variants from which a potential causal path to the

disease is suggested by prior knowledge.

Secondly, missing heritability could be explained by the existence of epista-

sis (loosely defined as interaction between variants) with weak or absent marginal

effects, where a set of (common) variants is jointly strongly associated with the
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disease, but single variants are weakly associated or not at all associated with the

disease. When the marginal effect of a variant is weak (resp. absent), it might (resp.

will) be missed when testing for association of that variant with the disease. The

variant, however, might be discovered when testing for joint association of the vari-

ant and other variants with the disease. A logistic-regression-based likelihood-ratio

test is usually employed to this end [Cordell, 2009]. For a typical GWAS dataset,

testing for joint association of every subset of the variants with the disease is com-

putationally intractable. In addition, higher-order tests would require unrealistically

large samples to be reliable. Testing all pairs of variants in a medium-sized GWAS

dataset is feasible, though [Cordell, 2009]. Beyond joint-association analysis, a

large number of statistical and machine-learning methods for epistasis detection

with varying computational requirements have been devised [reviewed in Cordell,

2009, Niel et al., 2015].

Thirdly, rare variants (with a frequency less than 1% in the population) can

also confer disease susceptibility. Next-generation sequencing (NGS) technologies

[Goodwin et al., 2016] allow for fast and increasingly inexpensive identification

of both common and rare SNPs as well as short insertions and deletions (indels), in

the whole genome (whole-genome sequencing), the exome (exome sequencing), or a

target genomic region (targeted sequencing). Single-variant association analysis of

NGS data suffers from low power, and therefore collapsing methods that summarise

the variants within a region (e.g. a gene) before testing for association with the

phenotype have been devised [Dering et al., 2011]. Another approach is to prioritise

or filter variants based on their estimated deleteriousness [see Cooper and Shendure,

2011, for a review of such methods].

Other explanations of missing heritability include disease-causing large vari-

ants and copy-number variations, which are not readily identified with currently-

available technologies, and transgenerational epigenetic inheritance, whose mech-

anisms have only begun to be unraveled [Eichler et al., 2010].



1.4. Data integration 22

1.4 Data integration

Data integration is a general approach that has the potential to solve the problem of

missing heritability. Data integration refers to the combination of data from various

sources and providing the end user with a unified view of the data [Lenzerini, 2002].

In life sciences, data integration can be performed in numerous ways for different

purposes. For example, meta-analysis is a form of data integration. Variant-filtering

approaches may estimate variant deleteriousness based on multiple types of data

[e.g. evolutionary, biochemical, and structural; Cooper and Shendure, 2011]. Meth-

ods for gene prioritisation rank genes based on their similarity to genes already im-

plicated in disease (termed “seed” genes) and were originally developed to rank the

genes in a genomic region implicated in disease by linkage analysis [Moreau and

Tranchevent, 2012]; gene similarity is usually computed by integrating various data

sources. Finally, data integration may also refer to combining heterogeneous high-

throughput (e.g. genomic, transcriptomic, and proteomic) datasets from the same or

different individuals in order to model a phenotype [Ritchie et al., 2015]. Data inte-

gration in life sciences has been reviewed from different viewpoints [Hamid et al.,

2009, Lapatas et al., 2015].

From a data-analytic viewpoint, Hamid et al. [2009] view data integration as

the process of combining data and biological knowledge from different sources us-

ing statistical and bioinformatics tools in order to provide a unified view of the

genome; the motivation for data integration is that elucidation of the genome may

require more information than is provided by one type of data. Hamid et al.

[2009] provide a conceptual data-integration framework which comprises three

components— posing the statistical/biological problem, data type, and stage of in-

tegration. Identifying the problem (e.g. finding genotype–phenotype associations)

is the first step of the analysis. Data used in the analysis are of a similar type if

they stem from the same underlying source. An example is GWAS and exome-

sequencing datasets, which are both genetic datasets; another example is RNA-seq

and microarray datasets, which are both gene-expression datasets. The data are of a

heterogeneous type if they stem from two or more diverse sources. For example, a
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dataset used for discovering expression quantitative trait loci (eQTLs) (loci that are

associated with gene expression) contains both genotypes and gene-expression lev-

els from the same individuals, whilst a different kind of analysis may use separate

genetic and gene-expression datasets from different individuals. Finally, integra-

tion can be performed at either of three different stages— early, intermediate, or

late. Merging the data before the analysis is considered early-stage integration; one

example is mega-analysis, where datasets are concatenated before the analysis. If

the data are transformed before merging, integration is considered intermediate-

stage; when the problem is classification, for example, covariance matrices from

each dataset may be combined [Hamid et al., 2009]. If results from each data

source are combined, the integration is considered late-stage; meta-analysis is an

example of late-stage integration, as it is summary measures from each dataset that

are combined.

From a computational viewpoint, Lapatas et al. [2015] define data integration

as “the computational solution allowing users, from end user (GUI) to power users

(API), to fetch data from different sources, combine, manipulate and re-analyse

them as well as being able to create new datasets and share these again with the

scientific community”. Data-integration frameworks can be classified as eager or

lazy. In the eager approach, the data are copied and stored in a central data ware-

house; in the lazy approach, the data are integrated on demand. Each approach has

its advantages and shortcomings. For example, the eager approach allows for easy

replication of an analysis; however, the data need to be manually updated (or by

an automated pipeline) when needed. In the lazy approach, the most recent data

are used; this does not allow, however, for an analysis to be replicated. Which ap-

proach should be adopted depends on the problem at hand and the availability of the

data. Lapatas et al. [2015] identify six major data-integration methodologies across

these two approaches used in biology. Data centralisation, data warehousing, and

dataset integration are eager approaches, while hyperlinks, federated databases,

and linked data are lazy approaches. The UniProt database (see Section 5.2.2.2

for a description) is a case of data centralisation. The Pathway Commons database



1.5. Integrative causal analysis 24

[Cerami et al., 2011], which collects pathways from multiple databases and allows

queries on them, is an instance of data warehousing. Custom scripts accessing

online databases is a way to perform dataset integration. ExPASy [Artimo et al.,

2012], a portal to bioinformatics resources, is an example of hyperlinks. In fed-

erated databases, a translation layer exists between each (heterogeneous) database

and a central query service; a case in point is PSICQUIC [Aranda et al., 2011], a

web service for querying multiple molecular-interaction databases. Finally, linked

data is a collection of best practices for publishing and linking structured data on

the Web [Bizer et al., 2009]. An example of linked data is BIO2RDF [Belleau et al.,

2008], a system that converts several biological databases into Resource Description

Format (RDF) (a standard data model for the Web).3

1.5 Integrative causal analysis

Integrative causal analysis (INCA) is a data-integration approach whose goal is

to induce all causal models that are consistent with all relevant datasets and prior

knowledge [Tsamardinos et al., 2012]. INCA encompasses methods for induc-

ing causal models from datasets generated under different experimental conditions,

datasets with overlapping sets of variables, and datasets with semantically simi-

lar variables, as well as methods for inducing causal models consistent with prior

knowledge [Tsamardinos et al., 2012]. In genetics, INCA can be used to iden-

tify all causal relationships between variants and disease that are consistent with

all genetic datasets from the disease and prior biological knowledge. In terms of

the framework of Hamid et al. [2009], INCA methods are typically late-stage ap-

proaches, as the results of causal discovery from each dataset are combined. The

data which the algorithms are applied to can be of similar or heterogeneous type.

Among the methodologies identified by Lapatas et al. [2015], INCA is, obviously,

a dataset-integration methodology. In contrast to other data-integration approaches,

INCA produces an output with a causal interpretation. In addition, INCA may allow

for inferences that are impossible with non-causal methods: the INCA algorithm of

3https://www.w3.org/RDF/

https://www.w3.org/RDF/
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Tsamardinos et al. [2012], for example, is able to detect dependencies between vari-

ables that are never measured together.

1.6 Prion disease

The focus of this project is the identification of variants that confer susceptibility

to prion disease. Prion diseases are lethal neurodegenerative disorders in humans

and animals that are caused by infectious agents solely composed of protein called

prions (from “proteinaceous infectious particle” [Prusiner et al., 1982]). Specifi-

cally, prions consist of PrPSc (Sc for Scrapie, a prion disease in sheep), which is

a misfolded form of the host-encoded prion protein (PrP) and induces the conver-

sion of PrP into additional PrPSc aggregating mainly in the brain [Collinge, 2001,

Wadsworth and Collinge, 2007]. Prion diseases are also referred to as transmissi-

ble spongiform encephalopathies because of the spongiform appearance of diseased

brain tissue.

PrP is encoded by the prion protein gene (PRNP), which is located on chromo-

some 20 in humans and expressed mainly in the central nervous system [Collinge,

2001]. PrP is post-translationally processed to have an N-terminal signal peptide

and a C-terminal propeptide removed and a glycosylphosphatidyl inositol (GPI) an-

chor attached and is subsequently transported to the cell surface, where it is tethered

to the plasma membrane via its GPI anchor [Collinge, 2001]. PrP then cycles be-

tween the cell surface and early endosomes [Shyng et al., 1994]. The function of

PrP remains elusive; mice display normal development and behaviour if PRNP is

knocked out [Büeler et al., 1992], although several minor abnormalities (e.g. de-

myelinating neuropathy [Bremer et al., 2010]) have been seen.

The mechanism of neurodegeneration in prion disease is unknown. As PRNP-

null mice are seemingly normal, loss of PrP to PrPSc is most probably not the cause

of neurodegeneration. Since PRNP-null mice also do not develop prion disease

when inoculated with PrPSc [Büeler et al., 1993], conversion of PrP to PrPSc appears

to be necessary for the disease to occur. Therefore it has been suggested that a toxic

intermediate, termed PrPL (L for lethal) is formed during the conversion [Hill et al.,
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2000, Hill and Collinge, 2003]; to date, PrPL has not been identified.

Scrapie, chronic wasting disease, transmissible mink encephalopathy, feline

spongiform encephalopathy, and bovine spongiform encephalopathy (BSE) (collo-

quially known as “mad cow” disease) are prion diseases in sheep, deer, mink, fe-

lines, and cattle, respectively. An epidemic of BSE emerged in the UK in the 1980s

and declined a few years later after control measures were out into place [Smith and

Bradley, 2003]. BSE was linked to the meat-and-bone meal (MBM) used to feed

the affected cattle and produced from parts of sheep, cattle, and other animals that

are not suitable for human consumption. The epidemic is hypothesised to have been

caused by consumption of MBM produced from parts of sheep affected by scrapie

or cattle affected by a sporadic form of BSE.

Traditionally, human prion diseases have been classified into Creutzfeldt-Jakob

disease (CJD), Gerstmann-Straussler-Scheinker (GSS) disease, and kuru [Collinge,

2001]; aetiologically, they can be classified into sporadic, inherited, and acquired.

Sporadic Creutzfeldt-Jakob disease (sCJD) is a rapidly progressive dementia which

represents about 85% of the cases of human prion disease and occurs randomly in

the population with an annual mortality rate of 1–2 per million.4 The mean onset

of the disease is 60 years [Brown et al., 1994] and both sexes are equally affected

[Collins et al., 2006]. The aetiology of sCJD is unknown; hypotheses include spon-

taneous misfolding of PrP into PrPSc and somatic mutation of PRNP [Colby and

Prusiner, 2011].

Inherited prion diseases represent about 15% of the cases of human prion dis-

ease and comprise familial Creutzfeldt-Jakob disease, fatal familial insomnia, and

GSS. All of them are linked to specific mutations in PRNP [Mead, 2006], although

the exact causal mechanism is unknown.

Acquired human prion diseases comprise kuru, iatrogenic Creutzfeldt-Jakob

disease (iCJD), and variant Creutzfeldt-Jakob disease (vCJD). An epidemic of kuru

occurred in the 1950s in Papua New Guinea among the participants in cannibalistic

rituals and declined when cannibalism was banned by the Australian administration

4http://www.cjd.ed.ac.uk/documents/report23.pdf

http://www.cjd.ed.ac.uk/documents/report23.pdf
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at the time [Mead et al., 2003]. It is hypothesised that the epidemic was caused by

the consumption of an individual with sCJD [Alpers and Rail, 1970]. At the peak

of the epidemic in the late 1950s, 200 people were dying from kuru every year;

the number declined to 6 per year in the early 1990s and 1–2 per year in the early

2000s [Collinge et al., 2006]. The disease incubation time is estimated to be from

5 to more than 50 years [Collinge et al., 2006]. Clinically, kuru is a progressive

cerebellar ataxia with a disease onset between 5 and 60 years and a duration time

between 3 months and 2 years [Collinge et al., 2008].

iCJD is caused by accidental exposure to human prions during clinical proce-

dures; reported transmission routes include treatment with cadaver-derived growth

hormone, implantation of dura matter grafts, transplantation of corneas, and use

of contaminated neurosurgical instruments and electroencephalography electrodes

[Brown et al., 2000]. The clinical manifestation of iCJD depends on the route of

transmission [Wadsworth and Collinge, 2007].

Following the BSE epidemic, a new variant of CJD appeared in young people

in the UK [Will et al., 1996]; transmission experiments in mice [Hill et al., 1997,

Bruce et al., 1997] subsequently confirmed that variant CJD is caused by BSE pri-

ons, implying that the people acquired disease due to consumption of contaminated

beef. The age of onset for vCJD is between 12 and 74 years and the disease duration

between 6 and 39 months [Spencer et al., 2002]. The early stages of the disease are

dominated by psychiatric symptoms and many patients exhibit neurological symp-

toms within 4 months of clinical onset [Spencer et al., 2002]. To date, there have

been 176 documented cases of vCJD in the UK.5 The epidemic reached a peak in

the year 2000, when 27 cases were diagnosed; the number of cases diagnosed per

year has since declined to 1–2. The wide range of incubation times seen in kuru is

raising concerns about the possibility of an epidemic of vCJD in the future [Collinge

et al., 2006].

Only a few susceptibility variants have been identified in human prion disease,

and all of them are located in the PRNP gene. PRNP codon 129 (rs1799990), in

5http://www.cjd.ed.ac.uk/documents/cjdq72.pdf

http://www.cjd.ed.ac.uk/documents/cjdq72.pdf


1.7. Aim and contributions 28

particular, is a susceptibility variant in all prion diseases [Mead, 2006]; its strongest

effect is found in vCJD, where all but one patients are homozygous for methionine

[Kaski et al., 2009]. The fact that a third of the population exposed to bovine prions

is homozygous for methionine and unaffected suggests that there may be additional

susceptibility loci [Lukic and Mead, 2011]. The strongest evidence for non-PRNP

loci is provided by experiments in mice, which showed that the disease incubation

time is variable across mouse strains even if they have the same PRNP haplotype

[Lloyd et al., 2001].

In search of additional susceptibility factors, the MRC Prion Unit performed a

GWAS on multiple prion diseases and populations [Mead et al., 2012]. However,

no statistically-significant associations were found apart from SNP rs1799990 and

SNPs in LD with that locus. Conditional analysis showed that the association of the

latter SNPs with the disease is through rs1799990. The Unit has also undertaken an

exome-sequencing study in sCJD and vCJD, which has, so far, not resulted in any

novel discoveries. Finally, an exome-array study in sCJD was undertaken, whose

association-analysis stage was conducted by me (See Appendix B). Exome arrays

are chips that allow for inexpensive genotyping of SNPs that were previously iden-

tified in exome-sequencing studies [Grove et al., 2013]. The few SNPs that were

significantly associated with the disease did not pass post-association quality con-

trol (see Appendix B).

1.7 Aim and contributions

As it is the case with complex diseases, missing heritability is also a problem in

prion disease. Although there is evidence for the existence of additional suscepti-

bility variants, none have been identified (at least, not yet) by analysing the available

genetic datasets in isolation. Therefore, co-analysing the datasets may aid the dis-

covery of additional variants. In contrast to other approaches to data integration, the

output of INCA has a causal interpretation. For that reason, INCA was adopted as

a framework for data integration in prion disease. The aim of this project is there-

fore to identify all causal relationships between variants and prion disease that are
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consistent with all prion datasets and prior biological knowledge.

Towards reaching that aim, the following contributions have been made in each

chapter of the thesis:

• Chapter 3: Before using INCA to co-analyse a collection of genetic datasets,

causal discovery from a single genetic dataset needs to be characterised and

realistic simulations need to be conducted. In that chapter, a theory on causal

discovery from genetic datasets is formulated and specialised causal discov-

ery algorithms with biologically interpretable output are devised. Sufficient

conditions are given for the odds ratio in the sampled population to equal

the causal odds ratio in the general population. A simulation study that was

conducted for one of the algorithms using a causal model learned from real

genetic data demonstrates that the algorithm is capable of discovering causal

variants, while discarding variants that are definitely non-causal and control-

ling the FDR. Finally, the algorithm was applied to the genetic datasets in

prion disease. SNP rs1799990 was successfully rediscovered from the GWAS

dataset while SNPs in LD with rs1799990 were discarded; several SNPs were

discovered from the other two datasets.

• Chapter 4: Building on the theory developed in the previous chapter, INCA

algorithms for causal discovery from genetic datasets with overlapping sets

of variants are developed. Contrary to existing INCA algorithms, the algo-

rithms developed here have a biologically interpretable output. In addition,

one of the algorithms is able to learn all genotype–phenotype causal relation-

ships that are consistent with the data without having to learn the genotype–

genotype relationships as well; existing algorithms have to learn consistent

causal models over all variables. A version of that algorithm that controls

the FDR was applied to a combination of prion genetic datasets; however, no

novel discoveries were made.

• Chapter 5: A variant-filtering approach inspired by INCA that uses causal

prior knowledge is proposed. Publicly available biological data and prior
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knowledge were integrated into a directed graph with nodes comprising the

disease and molecular entities in the cell associated with genomic regions, and

with edges denoting causation. Candidate causal variants were subsequently

identified from the ancestors (causes) of the disease in the graph. The exome-

sequencing datasets from prion disease were filtered using the proposed ap-

proach and a well-established gene-prioritisation tool. Causal discovery from

the datasets filtered using the former approach resulted in discoveries that

were more statistically significant than when using the latter tool.

The necessary background information on causal discovery and INCA is pro-

vided in Chapter 2 and a summary of this work is given and future work is dis-

cussed in Chapter 6. All theorems in this work are proved in Appendix A, while the

exome-array association study in sCJD is presented in Appendix B. The code for the

experiments performed can be downloaded from http://www.angelosarmen.com.

http://www.angelosarmen.com


Chapter 2

Background

In this chapter, background information on association analysis, causal Bayesian

networks, structure learning from single samples, and structure learning from sam-

ples with overlapping sets of variables (an example of INCA) is provided.

In the following, random variables are denoted by capital letters (e.g. X) and

their observed values by the respective lowercase ones (e.g. x). Sets are in boldface

(e.g. S), graphs in blackboard bold (e.g. G), and probability distributions in calli-

graphic (e.g. P). |S| denotes the cardinality of set S. The symbol , stands for “is

defined as”. Pr(A) is the probability of event A. Finally, A∪̇B denotes the union of

disjoint sets A and B.

2.1 Association analysis
In an association analysis, the association of a target variable with every other vari-

able in a sample is tested. In genetics, the target variable is a phenotype P and the

rest variables correspond to genetic variants. In a case–control study of a disease, P

is a binary variable whose levels are unaffected and affected. Only autosomal vari-

ants are usually considered, if the prevalence of a disease is the same among males

and females. The observations are taken to be either (1) the gametes of the indi-

viduals (hence the sample size is doubled) or (2) the individuals themselves [Clarke

et al., 2011].

In the first case, the variants are logical variables I indicating the presence of

the rare allele and Pearson’s χ2 test or Fisher’s exact test are usually used [Balding,
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2006]. The statistical power is increased compared to the second case but additional

assumptions must be made [see Clarke et al., 2011]. In an association analysis, the

effect of each discovery on the target variable is typically reported along with the

p-value corresponding to the discovery. In a genetic association analysis, the allelic

relative risk (RR), which is the ratio of the probability of being affected by the

disease (“risk”) for carriers of the rare allele to that for non-carriers, is typically the

effect of interest:

RR ,
Pr(P = affected | I = true)
Pr(P = affected | I = false)

=
Pr(I = true | P = affected)/Pr(I = true)

Pr(I = false | P = affected)/Pr(I = false)
(2.1)

An allelic RR of 5 means that the risk is 5 times higher for carriers of the rare allele

compared to non-carriers. In order to estimate the RR, however, a random sample

from the population is needed. A related measure is the allelic odds ratio (OR),

which is the ratio of the odds of being affected by the disease for carriers of the rare

allele to that for non-carriers:

OR ,
Pr(P = affected | I = true)/Pr(P = unaffected | I = true)

Pr(P = affected | I = false)/Pr(P = unaffected | I = false)
(2.2)

=
Pr(I = true | P = affected)/Pr(I = true | P = unaffected)

Pr(I = false | P = affected)/Pr(I = false | P = unaffected)
(2.3)

An allelic OR of 5 means that the odds of being affected by the disease are 5 times

higher for carriers of the rare allele compared to non-carriers. In contrast to the RR,

the OR can be estimated from a case–control sample. Suppose that the sample is

a random sample from the conditional distribution of the variables given S = true,

where S is an unobserved logical variable, referred to as the selection variable. If I

is independent of S given P, then Pr(I | P,S = true) = Pr(I | P) and the OR can be

computed using Equation 2.3. This situation corresponds to the sample being the

concatenation of a random case sample and a random control sample. When the

disease is rare, Pr(I)≈ Pr(I | P = unaffected) and therefore RR≈ OR, as it can be
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seen from Equations 2.1 and 2.3. The OR is estimated by the sample OR:

ÔR ,
#{P = affected, I = true} ·#{P = affected, I = false}

#{P = unaffected, I = true} ·#{P = unaffected, I = false}

where #{. . .} denotes the number of observations taking on the enclosed values in

the sample. Clearly, ÔR can be zero, undefined, or infinite, depending on whether

its nominator and/or its denominator are zero. The logarithm of ÔR asymptotically

follows a normal distribution with mean log(OR) and standard error given by:

SE =

√
1

N11
+

1
N10

+
1

N01
+

1
N00

where N11 = #{P = affected, I = true}, N10 = #{P = affected, I = false}, N01 =

#{P = unaffected, I = true}, and N00 = #{P = unaffected, I = false} [Morris and

Gardner, 1988]. Hence, the 95% confidence interval for the OR is given by

[exp(logÔR−1.96SE),exp(logÔR+1.96SE)]

In the second case, the (autosomal) variants are ternary variables G with do-

main {AA,Aaaa}, where AA, Aa, and aa stands for homozygous for the common

allele, heterozygous, and homozygous for the rare allele, respectively. Pearson’s

χ2 test or the Cochran-Armitage trend test are typically employed [Balding, 2006].

Two “genotypic” ORs are reported. The first one (“heterozygote” OR) is the ratio

of the odds of the heterozygotes to those of the homozygotes for the common allele:

ORAa ,
Pr(P = affected | G = Aa)/Pr(P = unaffected | G = Aa)

Pr(P = affected | G = AA)/Pr(P = unaffected | G = AA)

=
Pr(P = affected | G = Aa) ·Pr(P = affected | G = AA)

Pr(P = unaffected | G = Aa) ·Pr(P = unaffected | G = AA)

The second one (“rare homozygote” OR) is the odds of the homozygotes for the
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rare allele to those of the homozygotes for the common allele:

ORaa ,
Pr(P = affected | G = aa)/Pr(P = unaffected | G = aa)

Pr(P = affected | G = AA)/Pr(P = unaffected | G = AA)

=
Pr(P = affected | G = aa) ·Pr(P = affected | G = AA)

Pr(P = unaffected | G = aa) ·Pr(P = unaffected | G = AA)

To account for multiple testing, the FWER is usually controlled at 0.05 using

the Bonferroni correction or a fixed p-value threshold such as 5 ·10−8, obtained by

estimating the effective number of independent tests in a GWAS through simula-

tions [Sham and Purcell, 2014]. As the FWER may be too strict an error rate to

control, the FDR [Benjamini and Hochberg, 1995] may be controlled instead:

FDR , E
[

V
R∨1

]
= E

[
V
R

∣∣∣∣ R > 0
]

Pr(R > 0)

where V is the number of rejected true null hypotheses, R is the number of rejec-

tions, and R∨1 corresponds to setting V/R to 0 when R= 0. When the the p-values

are independent, the procedure of Benjamini and Hochberg [1995] can be used to

control the FDR below the desired level. When the p-values are dependent, which

is usually the case, the more conservative procedure of Benjamini and Yekutieli

[2001] (here referred to as the BY procedure) can be employed.

2.2 Causal Bayesian networks
Elucidating causal relationships is of utmost importance in life sciences and other

physical sciences. The concept of causality has preoccupied philosophers and sci-

entists for centuries and while there is still no consensus on what constitutes a

cause, approaches to causality have been developed in computer science and statis-

tics [Kleinberg and Hripcsak, 2011]. These approaches include causal Bayesian

networks (CBNs) [Spirtes et al., 2000, Pearl, 2009], which represent the causal

and probabilistic relationships among a set of variables, structural equation models

(SEMs) [Pearl, 2009], which are related to CBNs, Granger causality for inferring

causal relationships between time series [Granger, 1969], and an approach based

on temporal logic [Kleinberg and Mishra, 2009] for inferring causal relationships
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from temporal observations. The SEM framework is the most comprehensive ap-

proach and subsumes other approaches such as the potential-outcome framework

of Rubin [1974] [Pearl, 2010]. The causal relationships in SEMs are expressed as

deterministic equations with stochastic error terms in contrast to CBNs, were the

causal relationships are stochastic; this representation allows for the computation

of counterfactual probabilities (probabilities of events contrary to fact), which re-

quires knowledge of the underlying process [Pearl, 2009]. As disease mechanisms

are largely unknown and computation of counterfactual probabilities is not of inter-

est in this work, the CBN approach is preferred here.

In the CBN approach to causality, the definition of causation is based on the

notion of manipulation (also called intervention). Manipulating a random variable

means forcing the variable to take on some value [Neapolitan, 2004]. A random

variable X is said to be a cause of random variable Y and Y an effect of X if there is

some manipulation of the value of X that changes the probability distribution of Y

[Cooper, 1999]. X is called a direct cause of Y and Y a direct effect of X relative to

a set of variables V when no instantiation of a subset of V\{X ,Y} cancels the effect

of the manipulation of X [Neapolitan, 2004]. The condition of causal transitivity

states that, if X is a cause of Y and Y is a cause of Z, then X is a cause of Z. The

causal relationships among a set of variables can be represented by a causal directed

acyclic graph.

In graph theory, a graph is a pair (V,E) of a set of nodes (also called vertices)

V and a set of edges E that connect pairs of nodes. If there is an edge between

nodes X and Y , X and Y are adjacent and the edge between X and Y is incident

to X and to Y . If {X1, . . . ,Xn} is an ordered set of nodes such that, for 2 ≤ i ≤ n,

Xi−1 and X are adjacent, the corresponding set of edges is a path from X1 to Xn

and is denoted by [X1, . . . ,Xn]; nodes X2, . . . ,Xn−1 are called interior nodes on the

path. Let p = [X1, . . . ,Xk] be a path. The subpath [Xi, . . . ,X j] of p from Xi to X j is

denoted by p(Xi,Yj). Let p1 = [X1, . . . ,Xk] and p2 = [Xk, . . . ,Xk+n−1] be two paths.

The concatenation [X1, . . . ,Xk+n−1] of p1 and p2 is denoted by [p1, p2].

A graph is called directed (resp. undirected) when its edges are directed (resp.
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undirected). If there is an edge X → Y in a directed graph, then X is a parent of Y

and Y a child of X ; the edge is said to be out of X and into Y . A path from X to Y

is out of (into) X and out of (into) Y if the first edge of the path is out of (into) X

and the last edge is out of (into) Y . A path from X to Y where all edges are directed

towards X is called directed. If there is a directed path from X to Y or X =Y , then X

is an ancestor of Y and Y a descendant of X . A directed cycle occurs if X is parent

of Y and Y is an ancestor of X . A directed acyclic graph (DAG) is a directed graph

without directed cycles.

A causal DAG is defined as a DAG whose nodes are random variables and

edge X → Y denotes that X is a direct cause of Y (and Y is a direct effect of X)

relative to the variables in the DAG [Neapolitan, 2004]. Therefore, X is a direct

cause (resp. a direct effect) of Y if and only if X is a parent (resp. a child) of

Y . Assuming that causal transitivity holds, X is a cause of Y (and Y is an effect

of X) if and only if there is a directed path from X to Y , that is, X is an ancestor

of Y (and Y is a descendant of X). A directed path is then termed a causal path.

In the rest of the thesis, the terms “node” and “variable” are used interchangeably.

A causal DAG defined over a set of variables merely makes assertions about the

causal relationships between the variables. The causal DAG which represents the

true causal relationships between the variables is referred to as the true causal DAG

over the variables. Figure 2.1a shows a biological causal DAG with four variables,

where G is a genotype, T1 and T2 are the transcript (mRNA) levels of two genes,

and P is a phenotype. According to the graph, G causes P through T1 and T2.

A causal DAG can also represent the probabilistic relationships (conditional

independencies), among a set of variables. The pair (G,P) of a causal DAG G =

(V,E) and the probability distribution P of the variables in V satisfies the causal

Markov condition (CMC) if every variable X is conditionally independent from the

set ND(X) of its non-effects (non-descendants) given the set PA(X) of its direct

causes (parents) [Neapolitan, 2004]:

X ‚ ND(X) | PA(X)
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G

T1 T2

P

(a) A causal DAG. G
causes P through T1
and T2. In a CBN
with this graph, G is
independent from P
given T1 and T2.

G

T1 T2

P

(b) A causal DAG that is
Markov equivalent to
the DAG in Figure 2.1a.

G

T1 T2

P

(c) The causal DAG pattern
of the Markov equiva-
lence class to which the
causal DAGs in Figures
2.1a and 2.1b belong to.

Figure 2.1: Example of a causal DAG, a Markov-equivalent causal DAG, and a causal DAG
pattern. G is the genotype at some locus, T1 and T2 are the transcript levels of
two genes, and P is a phenotype.

In order for the CMC to be satisfied, the following conditions must hold [Neapoli-

tan, 2004]:

1. Causal sufficiency: either there are no common causes of pairs of variables in

V that are not in V (referred to as hidden common causes or confounders), or

every such common cause is a constant.

2. There are no causal feedback loops: no pair of variables in V cause each

other.

3. Selection bias is absent: P is not conditional on an instantiation of a common

effect of a pair of variables in V.

A pair (G,P) that satisfies the CMC is called a CBN; G is called the causal struc-

ture of the network. In a CBN whose causal structure is the one in Figure 2.1a, G

is independent from P given T1 and T2 (the genotype is independent from the phe-

notype when the transcript levels of the two genes are known). In a CBN (G,P)

over set of variables V = {V1, . . . ,Vn}, P is decomposed into the product of the

conditionally probability distribution (CPD) of each node given its parents (direct

causes) in G [Pearl, 1988]:

P(v) =
n

∏
i=1

P(vi | pa(Vi))
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This allows for the CBN to be a compact representation of P . Computing

marginal/conditional distributions of P is referred to as performing Bayesian-

network inference. The junction tree algorithm [Huang and Darwiche, 1996] is

an efficient algorithm for that purpose.

The conditional independencies in the definition of the CMC entail additional

conditional independencies. Specifically, every conditional independence entailed

by the CMC corresponds to a d-separation in the DAG. Some definitions are needed

before introducing d-separation. In a graph, a triple is a path with three nodes. If

Z is an interior node on a path and X → Z ← Y on the path, Z is called a collider

on the path (the triple [X ,Y,Z] is also referred to as a collider). A path from X to

Y is blocked by a subset Z of the rest nodes if there is a collider on the path that is

not an ancestor of any node in Z, or there is a non-collider on the path that is in Z;

otherwise, the path is active given Z. In Figure 2.1a, path [G,T1,P] is active given /0

because T1 is not a collider on the path and T1 /∈ /0, while it is blocked by Z = {T1}

because T1 ∈ Z. [T1,P,T2] is blocked by /0 because P is a collider on the path and

P /∈ /0, while it is active given Z = {G,P} because P ∈ Z. When all paths between

X and Y are blocked by Z, X and Y are said to be d-separated by Z (denoted by

X ⊥ Y | Z); otherwise, X and Y are d-connected given Z (denoted by X 6⊥ Y | Z). Z

is termed a sepset of X and Y . When X and Y are d-separated by the empty set, X

and Y are simply said to be d-separated; when they are d-connected given the empty

set, they are d-connected. In Figure 2.1a, P and G are d-separated by Z = {T1,T2}

because both paths between P and G, [P,T1,G] and [P,T2,G], are blocked by Z. X

and Y are said to be strictly d-separated by Z if X and Y are d-separated by Z and

are d-connected given any proper subset of Z; Z is called a minimal sepset of G and

P. Clearly, every non-minimal sepset has a minimal subset.

Let I(G) and I(P) denote the set of d-separations in DAG G and conditional

independencies in probability distribution P , respectively. Suppose that (G,P)

is a CBN. If X and Y are d-separated by Z in G, then X and Y are conditionally
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independent given Z in P [see Verma and Pearl, 1990, for proof]:

X ⊥ Y | Z ∈ I(G) =⇒ X ‚ Y | Z ∈ I(P)

The reverse, however, is not always true, unless the causal faithfulness condition

(CFC) is satisfied [Spirtes et al., 2000]. The CFC states that all and only condi-

tional independencies in P are entailed by the CMC. Thus, when (G,P) satisfies

the CFC, X and Y are d-separated by Z in G if and only if they are conditionally

independent given Z in P:

X ⊥ Y | Z ∈ I(G) ⇐⇒ X ‚ Y | Z ∈ I(P)

Then G is called a perfect map of P and G and P are said to be faithful to each

other. If a CBN (G,P) satisfies the CFC, then the CBN is said to be faithful.

The justification for the CFC is this: if the parameters of the CPDs in (G,P) are

assigned randomly, it is unlikely that the resulting joint distribution violates the CFC

[Meek, 1995]. The CFC implies causal transitivity [Neapolitan, 2004].

Before concluding this section, note that there are also non-causal Bayesian

networks. A Bayesian network (BN) is defined as the pair of a DAG and a probabil-

ity distribution that satisfies the Markov condition: every variable is conditionally

independent from the set of its non-descendants given the set of its parents. Accord-

ingly, the faithfulness condition states that all and only conditional independencies

in the distribution are entailed by the Markov condition. Every distribution can

be encoded by a BN by ordering the variables and setting, for each variable, the

previous variables in the ordering as its parents in the DAG.

2.3 Causal structure learning

The goal of causal structure learning is to learn features of the true causal DAG over

a set of random variables given a random sample from the probability distribution

of the variables. The goal of constraint-based learning is to learn features of a DAG

given the set of d-separations in the DAG. When the DAG is causal, the task is called
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constraint-based causal learning. In practice, the d-separations are determined by

assuming that the CFC holds and performing hypothesis tests of conditional inde-

pendence on a random sample from the probability distribution of the variables (see

Section 2.3.2).

Causal structure learning can typically only learn features of the true causal

DAG and not the whole DAG because other DAGs may have the same d-separations.

These DAGs are called Markov equivalent and said to belong to the same Markov

equivalence class. The skeleton and the unshielded colliders are the same within

the class. In a directed graph, a link is an edge without regard of direction, and

the skeleton of a directed graph is the undirected graph whose edges corresponds to

links in the directed graph. A triple [X ,Z,Y ] is shielded if X and Y are adjacent. In

this work, a node Z is called shielded if no unshielded triple [X ,Z,Y ] exists. Figure

2.1b shows a causal DAG that is Markov equivalent to the one in 2.1a. A class of

Markov-equivalent DAGs can be represented by a DAG pattern, which is a graph

with two types of edges, directed and undirected; an undirected edge in the DAG

pattern indicates that the orientation of the edge varies within the class. A DAG pat-

tern that represents a Markov equivalence class of causal DAGs is called a causal

DAG pattern. The causal DAG pattern that represents the Markov equivalence class

of the true causal DAG over a set of variables is called the true causal DAG pat-

tern over the variables. Figure 2.1c shows the causal DAG pattern of the Markov

equivalence class to which the DAGs in Figures 2.1a and 2.1b belong to.

Constraint-based algorithms that learn DAG patterns consist of two phases,

skeleton identification and edge orientation. In the first phase, the skeleton is iden-

tified. In the second phase, the edges of the skeleton are oriented using the sepsets.

Skeleton identification (Algorithm 1) is based on the following theorem:

Theorem 2.1. In a DAG over V, nodes X and Y are adjacent if and only if there is

no Z⊆ V\{X ,Y} such that X and Y are d-separated by Z.

For each pair {X ,Y} of nodes, a search for a sepset is conducted. If no sepset

is found, then an edge between X and Y is added to the skeleton. Edge orientation

uses the sepsets and applies a set of four rules in order to orient the invariant edges
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in the DAG pattern [see Spirtes et al., 2000]. The first orients the unshielded triples

based on a result that states that if p = [X ,Y,Z] is an unshielded triple and S is a

sepset of X and Z, then p is a collider if and only if Y /∈ S. The rest of the rules are

then applied iteratively until no more edges can be oriented.

Algorithm 1 Basic skeleton identification. V is a set of random variables. G is a
DAG over V. I(G) is the set of d-separations in G. S is an undirected graph. Sepset
is a map from pairs of nodes to sets of nodes. X ⊥ Y | Z denotes that nodes X and
Y are d-separated given set of nodes Z. In the output, S is the skeleton of G and
Sepset is a map from pairs of nodes in V to sets of nodes in V that d-separate them
in G.
Input: I(G)
Output: S and Sepset

1: initialise S with the empty undirected graph over V
2: initialise Sepset with the empty map
3: for each pair {X ,Y} ∈ V do
4: if ∃Z⊆ V\{X ,Y} s.t. X ⊥ Y | Z ∈ I(G) then
5: Sepset({X ,Y})← Z
6: else
7: add edge X Y to S
8: end if
9: end for

In fact, it is not required to search among all subsets of the rest variables in

order to find a sepset of X and Y , owing to the following theorem [Spirtes et al.,

2000]:

Theorem 2.2. Let G be a DAG over V. If X and Y ∈V are d-separated by a subset

of V\{X ,Y}, then they are d-separated by the set of parents in G of X or the set of

the parents in G of Y .

The parents of X and Y are, of course, unknown. The skeleton-identification

phase (referred to as PC–skeleton; Algorithm 2) of the prototypical PC algorithm

[Spirtes et al., 2000] starts with the complete undirected graph, that is, the one

where every node is adjacent to all the others. Then, for increasing conditioning-set

cardinality k and for each undirected edge between variables X and Y , it searches

for a sepset with cardinality k among the subsets of the nodes currently adjacent to

X and the subsets of the nodes currently adjacent to Y . If a sepset is found, the edge

is discarded.
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Algorithm 2 PC–skeleton, the skeleton-identification phase of the PC algorithm
[Spirtes et al., 2000]. V is a set of random variables. G is a DAG over V. I(G) is
the set of d-separations in G. S is an undirected graph. Sepset is a map from pairs
of nodes to sets of nodes. X ⊥ Y | Z denotes that nodes X and Y are d-separated
given set of nodes Z. In the output, S is the skeleton of G and Sepset is a map from
pairs of nodes in V to sets of nodes in V that d-separate them in G. ADS(X) is the
set of nodes that are adjacent to X in S.

Input: I(G)
Output: S and Sepset

1: initialise S with the complete undirected graph over V
2: initialise Sepset with the empty map
3: k← 0
4: repeat
5: for each X ∈ V do
6: for each Y ∈ ADS(X) do
7: if ∃Z⊆ ADS(X)\{Y} s.t. |Z|= k and X ⊥ Y | Z ∈ I(G) then
8: remove edge X Y from S
9: Sepset({X ,Y})← Z

10: end if
11: end for
12: end for
13: k← k+1
14: until |ADS(X)| ≤ k for all X ∈ V

2.3.1 Local learning

It is not always of interest to learn the whole DAG pattern. Local learning algo-

rithms can be used to learn local structure around a target variable T [Aliferis et al.,

2010a]. Specifically, algorithms instantiating the Generalised Local Learning - Par-

ents and Children (GLL-PC) template [Aliferis et al., 2010a], such as the Max-Min

Parents and Children (MMPC) algorithm [Tsamardinos et al., 2006], can learn the

set AD(T ) of parents and children (direct causes and direct effects, in case of causal

learning) of T , or, in other words, the nodes adjacent to T . For example, MMPC tar-

geting T1 in Figure 2.1a outputs AD(T1) = {G,P}. GLL-PC comes in two versions,

symmetric and non-symmetric.

In an instantiation of non-symmetric GLL-PC (Algorithm 3), the set TA(T ) of

nodes tentatively adjacent to T is initialised to some subset U of V\{X}, depending

on the instantiation, and the set OPEN(T ) of nodes that are under consideration for

inclusion in TA(T ) is initialised to V \ (TA(T )∪{T}). Then, GLL-PC alternates
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between two phases. In the insertion phase, some subset of OPEN(T ) is moved to

TA(T ). The choice of subset depends on the instantiation. In the elimination phase,

every node in TA(T ) that is d-separated by T given a subset of the rest nodes in

TA(T ) is removed from TA(T ). In the end, TA(T ) contains all the nodes that are

not d-separated from T by a subset of the nodes adjacent to T .

Algorithm 3 Non-symmetric Generalised Local Learning - Parents and Children
(GLL-PC) [Aliferis et al., 2010a]. V is a set of random variables. G is a DAG over
V. I(G) is the set of d-separations in G. T ∈ V is the target variable. Sepset is a
map from pairs of nodes to sets of nodes. X ⊥Y | Z denotes that nodes X and Y are
d-separated given set of nodes Z. In the output, TA(T ) is a superset of the set of
nodes in V that are adjacent to T in G and Sepset is a map from pairs of nodes in V
to sets of nodes in V that d-separate them in G.

Input: I(G) and T
Output: TA(T ) and Sepset

1: . Initialisation
2: TA(T )← U for some U⊆ V\{T}
3: OPEN(T )← V\ (TA(T )∪{T})
4: initialise Sepset with the empty map
5: repeat
6: . Insertion phase
7: TA(T )← TA(T )∪W for some W⊆OPEN(T )
8: OPEN(T )←OPEN(T )\W
9: . Elimination phase

10: for each Y ∈ TA(T ) s.t. ∃Z⊆ TA(T )\{Y} s.t. T ⊥ Y | Z ∈ I(G) do
11: TA(T )← TA(T )\{Y}
12: Sepset({T,Y})← Z
13: end for
14: until OPEN(T ) = /0

The non-symmetric MMPC algorithm (Algorithm 4) is a popular instantiation

of non-symmetric GLL-PC. MMPC starts with an empty TA(T ). In the insertion

phase, nodes in OPEN(T ) that are d-separated from T by a subset of TA(T ) are

removed from OPEN(T ). Then the node W of OPEN(T ) with the maximal (among

all nodes in OPEN(T )) minimal (among all subsets Z of TA(T )) association with T

given Z (typically taken to be the negative p-value of the corresponding conditional

independence test) is moved to TA(T ) (hence the “max-min” in the name of the

algorithm). The elimination phase is the same as in Algorithm 3.

In the output of Algorithm 3, there may nodes in TA(T ) that are d-separated
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Algorithm 4 The non-symmetric Max-Min Parents and Children (MMPC) algo-
rithm [Tsamardinos et al., 2006]. V is a set of random variables. G is a DAG over
V. I(G) is the set of d-separations in G. T ∈ V is the target variable. Sepset is a
map from pairs of nodes to sets of nodes. assoc(X ,Y | Z) denotes the association of
variables X and Y given set of variables Z. X ⊥ Y | Z denotes that nodes X and Y
are d-separated given set of nodes Z. In the output, TA(T ) is a superset of the set
of nodes in V that are adjacent to T in G and Sepset is a map from pairs of nodes
in V to sets of nodes in V that d-separate them in G.

Input: I(G) and T
Output: TA(T ) and Sepset

1: . Initialisation
2: TA(T )← /0
3: OPEN(T )← V\{T}
4: initialise Sepset with the empty map
5: repeat
6: . Insertion phase
7: for each Y ∈OPEN(T ) s.t. ∃Z⊆ TA(T ) s.t. T ⊥ Y | Z ∈ I(G) do
8: OPEN(T )←OPEN(T )\{Y}
9: Sepset({T,Y})← Z

10: end for
11: W ← argmaxW∈OPEN(T )minZ⊆TA(T ) assoc(T,W | Z)
12: TA(T )← TA(T )∪{W}
13: OPEN(T )←OPEN(T )\{W}
14: . Elimination phase
15: for each Y ∈ TA(T ) s.t. ∃Z⊆ TA(T )\{Y} s.t. T ⊥ Y | Z ∈ I(G) do
16: TA(T )← TA(T )\{Y}
17: Sepset({T,Y})← Z
18: end for
19: until OPEN(T ) = /0

from T by a subset of the nodes adjacent to them. In symmetric GLL-PC (Algorithm

5), non-symmetric GLL-PC is initially applied to T and subsequently the symmetry

correction is performed: non-symmetric GLL-PC is also applied to all nodes in

TA(T ), and a node X is only inserted into AD(T ) if X is in TA(T ) and T is in

TA(X). The MMPC algorithm is symmetric GLL-PC with non-symmetric MMPC

as the instantiation of non-symmetric GLL-PC.

GLL-PC can be also used to learn the whole skeleton through local-to-global

learning (LGL) [Aliferis et al., 2010b]. In LGL (Algorithm 6), non-symmetric

GLL-PC is first applied to each variable X ; then a link between X and Y is created

if and only if Y is in TA(X) and X is in TA(Y ). Both skeleton identification and
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Algorithm 5 Symmetric Generalised Local Learning - Parents and Children (GLL-
PC) [Aliferis et al., 2010a]. V is a set of random variables. G is a DAG over V.
I(G) is the set of d-separations in G. T ∈ V is the target variable. AD(T ) is a set
of nodes in V. Sepset is a map from pairs of nodes to sets of nodes. In the output,
AD(T ) is the set of nodes in V that are adjacent to T in G and Sepset is a map from
pairs of nodes in V to sets of nodes in V that d-separate them in G.

Input: I(G) and T
Output: AD(T ) and Sepset

1: let TA(T ) and SepsetT be the output of Algorithm 3 with I(G) and T as input.
2: AD(T )← TA(T )
3: Sepset← SepsetT
4: for each Y ∈ AD(T ) do
5: let TA(Y ) and SepsetY be the output of Algorithm 3 with I(G) and Y as

input.
6: if T /∈ TA(Y ) then
7: AD(T )← AD(T )\{Y}
8: Sepset({T,Y})← SepsetY ({T,Y})
9: end if

10: end for

parent-and-children learning may be referred to as instances of link identification,

where the existence of certain links of interest is determined.

In a set of variables V, a Markov blanket of X ∈ V is a subset A of V \ {X}

such that for every subset B of V \ {X} \A, B is conditionally independent from

X given A [Pearl, 1988]. That means that a Markov blanket of X renders all the

subsets of the variables in V that are not in the Markov blanket of X independent

from X . A Markov boundary is a minimal Markov blanket (no proper subset of a

Markov boundary is a Markov blanket) and is an optimal solution to the problem

of variable (or feature) selection, where the goal is to find a subset of the variables

that are relevant for predicting the value of the response variable in classification

or regression models [Tsamardinos and Aliferis, 2003]. In a faithful CBN, each

node X has a unique Markov boundary, equal to the set of parents (causes), children

(effects), and parents of children (causes of effects) of X [Aliferis et al., 2010a].

Algorithms instantiating the Generalised Local Learning - Markov Blanket (GLL-

MB) template [Aliferis et al., 2010a] can learn the Markov boundary MB(T ) of a

target node T .
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Algorithm 6 Local-to-global learning (LGL) [Aliferis et al., 2010b]. V is a set of
random variables. G is a DAG over V. I(G) is the set of d-separations in G. S is
an undirected graph. Sepset is a map from pairs of nodes to sets of nodes. In the
output, S is the skeleton of G and Sepset is a map from pairs of nodes in V to sets
of nodes in V that d-separate them in G.

Input: I(G)
Output: S and Sepset

1: for each X ∈ V do
2: let TA(X) and SepsetX be the output of Algorithm 3 with I(G) and X as

input.
3: end for
4: initialise S with the complete undirected graph over V
5: initialise Sepset with the empty map
6: for each pair {X ,Y} ∈ V do
7: if X ∈ TA(Y ) and Y ∈ TA(X) then
8: add edge X Y to S
9: else if X /∈ TA(Y ) then

10: Sepset({X ,Y})← SepsetY ({X ,Y})
11: else
12: Sepset({X ,Y})← SepsetX({X ,Y})
13: end if
14: end for

2.3.2 Hypothesis tests of conditional independence

As mentioned above, the d-separations in the true causal DAG are typically deter-

mined by assuming that the CFC holds and performing hypothesis tests of condi-

tional independence on a random sample from the probability distribution of the

variables. When all variables are categorical, the G test is usually used [Tsamardi-

nos et al., 2006, Aliferis et al., 2010a]. The test uses the G statistic, which asymp-

totically follows the χ2 distribution with d f degrees of freedom when the null hy-

pothesis is true. In the absence of structural zeros (zeros in cells of the contingency

table that correspond to zeros in the probability distribution), the degrees of free-

dom corresponding to the hypothesis of conditional independence of X and Y given

Z are given by the following equation [Spirtes et al., 2000]:

d f = (|DX |−1)(|DY |−1) ∏
Z∈Z
|DZ|
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where DX is the domain of X . If the row where X = x or the column where Y = y

in the conditional contingency table where Z = z is comprised of structural zeros

(that is, if X 6= x or Y 6= y when Z = z), the cardinality of the domain (number

of levels) of X or Y , respectively, corresponding to that table must be reduced by

one. Tsamardinos et al. [2006] reduce the number of levels of X or Y correspond-

ing to each conditional contingency table by one for each all-zero row or column,

respectively, of the table:

d f = ∑
z∈DZ

max{|DX |−1− ∑
x∈DX

[1− I(Nxz)],0}·max{|DY |−1− ∑
y∈DY

[1− I(Nyz)],0}

where Nxz (Nyz) is the number of observations with X = x (Y = y) and Z = z in the

sample, and function I(x) is 1 when x > 0 and 0 otherwise. This practice is referred

to as the degrees of freedom adjustment heuristic. Tsamardinos et al. [2006] ignore

a test with d f = 0. Armen and Tsamardinos [2014] showed that this can only

happen in the case of deterministic relations (when the value of a variable is exactly

determined by the values of other variables) or the appearance of deterministic

relations due to insufficient sample size. They set the p-value of such a test to

one, which is referred to as determinism detection. Armen and Tsamardinos [2014]

found that determinism detection results in greatly reduced execution times and

more accurate estimation and control of the FDR (see Section 2.3.3) in some cases.

A test is usually performed only if it is reliable according to some reliability

criterion. A test is considered reliable if it satisfies the assumptions about the dis-

tribution of the statistic used and has sufficient power [Fast, 2010]. When a test

is unreliable, a default decision is made. In MMPC, the default decision is inde-

pendence when the conditioning set is empty; otherwise, it is dependence. [see

Tsamardinos et al., 2006, Section 1.1, for a detailed justification].

For categorical variables, Fienberg [1977] recommends that, on average, at

least five observations per cell of the contingency table occur for the test to be

reliable. The lower limit on the average number of observations per cell is called

the heuristic power size (denoted by h-ps) and the corresponding reliability criterion

is referred to as the heuristic power rule.
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2.3.3 Multiple testing

Beyond structure learning, it is important to assess the confidence on the learnt

structure. This can be achieved by viewing link identification as multiple hypoth-

esis testing, each null hypothesis being the absence of a link, and controlling an

appropriate error rate.

Let (G,P) be a CBN over V and X ,Y ∈V. The hypothesis of absence of a link

between X and Y in G is equivalent to the union of the hypotheses of d-separation

of X and Y given each subset of V \ {X ,Y} in G; the latter is equivalent to the

union of the hypotheses of d-separation of X and Y given each set in a collection

of subsets of V \ {X ,Y} in G that would include a sepset of X and Y if X and Y

were not adjacent. In the following, such a collection is called separation-sufficient

for X and Y in G. Clearly, the powerset of V \ {X ,Y}, a collection of subsets of

V\{X ,Y} that includes all subsets of the nodes adjacent to X and all subsets of the

nodes adjacent to Y in G, and a collection of subsets of V \ {X ,Y} that includes

a sepset of X and Y when X and Y are actually not adjacent, are all separation-

sufficient for X and Y in G. Under the CFC, d-separations in G are equivalent to

conditional independences in P . The p-value of the hypothesis of absence of a link

between X and Y in G is then upper-bounded by the maximal among the p-values

corresponding to the hypotheses of independence of X and Y given each set in a

collection that is separation-sufficient for X and Y in G, based on the following

theorem by Tsamardinos and Brown [2008]:

Theorem 2.3. Let V be a set of random variables, X ,Y ∈ V, and S be a collection

of subsets of V \ {X ,Y}. The p-value corresponding to the hypothesis that there

is no set in S that renders X and Y independent is upper-bounded by the maximal

among the p-values corresponding to the hypotheses that X and Y are independent

given Z for each Z ∈ S.

Suppose that Algorithm 1, 2, 5, or 6 is applied to the set of d-separations

in G determined by performing hypothesis tests of conditional independence to a

random sample from P in order to determine the existence of a link between X and

Y (among others) and that (1) all tests considered by the algorithm are reliable and
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(2) performed tests never produce a type II error. Then, it is not hard to see that

the algorithm identifies a link between X and Y if such a link exists. In addition,

Algorithm 1 performed the tests of conditional independence of X and Y given each

subset V\{X ,Y} when a link between X and Y is discovered and given a sepset of

X and Y when a link between X and Y is not discovered (and therefore X and Y are

not adjacent in G), while Algorithms 2, 5, and 6 performed the tests of conditional

independence of X and Y given each subset of the nodes adjacent to X (other than Y

if X and Y are adjacent) and each subset of the nodes adjacent to Y (other than X if

X and Y are adjacent) in G when a link between X and Y is discovered and given a

sepset of X and Y when a link between X and Y is not discovered. As the collection

of conditioning sets of the tests of conditional independence of X and Y performed

by each algorithm is separation-sufficient for X and Y in G, Theorem 2.3 implies

that the p-value corresponding to the hypothesis of absence of a link between X and

Y is upper-bounded by the maximal among the p-values from those tests. Condition

(2) above may seem unrealistic, but the type II error rate of likelihood-ratio tests

such as the G test actually approaches zero as the sample size approaches infinity

when the significance level of the test is fixed [see Li and Wang, 2009, Appendix

B].

Under the conditions above and the additional (unrealistic) condition that the

link-absence p-values are independent, Algorithms 1, 2, 5, or 6 control the false

positive rate (FPR) among the identified links. This is because a link-absence hy-

pothesis is accepted once a conditional-independence p-value exceeds α , the sig-

nificance level of the test, or, equivalently, if the maximal among the p-values of the

conditional-independence tests performed for the link exceeds α . When it is of in-

terest to have mostly true positives among the rejected hypotheses, it is appropriate

to control the FDR. Tsamardinos and Brown [2008] proposed performing parent-

and-children learning with significance level α and then estimating the FDR among

the learned parents and children using the maximal conditional-independence p-

values. Armen and Tsamardinos [2014] adapted the approach of Tsamardinos

and Brown [2008] to skeleton identification and unified it with FDR control, thus
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proposing to perform skeleton identification with significance level α and then to es-

timate or control the FDR among the identified links. This approach can be adapted

to any kind of link identification, including parent-and-children learning: perform

link identification with significance level α and estimate or control the FDR among

the identified links. Since the link-absence p-values are dependent, an appropriate

way to control the FDR is to apply the BY procedure.

After an appropriate error-controlling procedure has been applied, the sepsets

corresponding to the links that were discarded by the procedure need to be set. Such

a sepset can be simply set to the conditioning set corresponding to the maximal

conditional-independence p-value for the link.

2.3.4 Dealing with violations of the CFC

A violation of the CFC called triangle unfaithfulness occurs when the probability

distribution is not faithful to the true causal DAG but is faithful to some other causal

DAG. When this is the case, violations of the CFC are undetectable; the opposite

is true when triangle faithfulness holds [see Zhang and Spirtes, 2008, for the exact

definition]. A causal DAG G satisfies the causal minimality condition with prob-

ability distribution P if G satisfies the CMC with P and no longer satisfies the

CMC with P if an edge is removed from G. It can be proved that this is equiva-

lent to requiring that for each edge X → Y of G, Y is dependent to X given the set

PA(Y )\{X} of the parents of Y other than X . The CFC implies the causal minimal-

ity condition [Neapolitan, 2004]. Lemeire et al. [2012] showed that, when triangle

faithfulness and the causal minimality condition are satisfied, violations of the CFC

are of three types, namely pseudo-independent relations (PIRs), information equiv-

alences, and 2-1 conditional independence (CI) patterns. The first two types are

discussed below. 2-1 CI patterns are quite complicated and are not discussed here

[see Lemeire et al., 2012, for the exact definition].

Suppose that X and Y are adjacent in a causal DAG over V that satisfies the

causal minimality condition with some probability distribution. The edge between

X and Y is called a PIR if there is a subset S of V \ {X ,Y} such that X and Y are

independent given S and X and Y are strictly d-separated by S in the causal DAG
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without the edge [Lemeire et al., 2012]. Owing to the causal minimality condition,

if X is a parent of Y , X and Y are dependent given the parents of Y other than X , and

if Y is a parent of X , X and Y are dependent given the parents of X other than Y .

Thus, there is at least one subset D of V \ {X ,Y} such that X and Y are dependent

given D; if D is also minimal (that is, X and Y are conditional independent given

any proper subset of D), it is called a depset of X and Y . An example of a PIR is

the logical XOR (eXclusive OR) relationship: assume that X , Y , and Z are boolean

variables, X→ Z←Y is the true causal DAG over {X ,Y,Z}, and Z is the XOR of X

and Y . Then X and Z are marginally independent, which is a violation of the CFC,

but become dependent when conditioned on Y ; similarly, Y and Z are marginally

independent and dependent given X . Thus, X → Z and Y → Z are PIRs with depset

{Y} and {X}, respectively. Epistasis with absent marginal effects in genetics is

actually an example of a PIR (See Section 3.3).

Information equivalences occur when different sets of variables contain the

same information about a target variable [Lemeire et al., 2012]. Deterministic re-

lations are a simple form of information equivalence. Suppose that X → Y → Z is

a causal DAG and Y is a function of X (X exactly determines Y ). Then X and Y

contain the same information for Z, and Y and Z are independent given X , which a

violation of the CFC. In the presence of information equivalences, Markov bound-

aries are not necessarily unique: in the previous example, both {X} and {Y} are

Markov boundaries of Z. Algorithms instantiating the Target Information Equiva-

lence (TIE*) algorithm template [Statnikov et al., 2013] can learn all Markov bound-

aries of a target node in a CBN with information equivalences.

2.4 Structure learning under causal insufficiency and

selection bias
Causal sufficiency is the exception rather than the norm; variables in real-life sam-

ples often have hidden common causes. This means that the sample is from the

marginal of a distribution over the set of observed variables and their hidden com-

mon causes. Furthermore, the samples themselves are biased (selection bias is
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present), meaning that they are not random samples from the distribution of inter-

est, but random samples from the conditional distribution of the observed variables

given an instantiation of a set of hidden selection variables. A notable example of

non-random sampling is case–control sampling. The causal and probabilistic re-

lationships between a set of random variables in the presence of hidden common

causes and selection bias can be represented by a causal maximal ancestral graph

[Richardson and Spirtes, 2002].

A maximal ancestral graph (MAG) is a special type of a mixed graph, which

is a generalisation of undirected and directed graphs. A mixed graph has two types

of edge endpoints: tail (–) and arrowhead (>), and therefore three types of edges,

X → Y , X ↔ Y , and X Y . The definition of parent, child, directed path, ancestor,

and descendant carries on from directed graphs. If there is an edge X↔Y in a mixed

graph, then X and Y are called spouses. X and Y are said to be neighbours if there

is an edge X Y . The definition of anterior path and anterior in mixed graphs

is a generalisation of the definition of directed path and ancestor, respectively, in

directed graphs. A path from X to Y where all edges are either undirected or directed

towards Y is said to be anterior. If there is an anterior path from X to Y or X = Y ,

then X is anterior to Y . An almost directed cycle between X and Y occurs when X

is both a spouse and an ancestor of Y . A mixed graph is said to be ancestral (and

called an ancestral graph) if it satisfies the following conditions [Zhang, 2008]:

1. There is no directed cycle.

2. There is no almost directed cycle.

3. There is no undirected edge X Y such that X or Y has parents or spouses.

Clearly, DAGs are ancestral graphs. The generalisation of (strict) d-separation and

(strict) d-connection in mixed graphs is called (strict) m-separation and (strict) m-

connection, respectively, and their definition and notation are exactly the same. The

definition of collider is generalised, however. Let ∗ denote either type of edge end-

point. If Z is an interior node on a path p and X∗→ Z←∗Y on p, then Z is called a

collider on p (the triple [X ,Y,Z] is also referred to as a collider). An ancestral graph
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is called maximal if for every pair of non-adjacent nodes there is a subset of the rest

nodes that m-separates them.

A MAG can be obtained from another MAG through marginalisation and con-

ditioning [Richardson and Spirtes, 2002]. The marginal/conditional MAG over O

given S of a MAG M over O∪̇H∪̇S is a MAG where

• X and Y are adjacent if and only if there is no Z⊆O\{X ,Y} such that X and

Y are m-separated in M given Z∪S, and

• if X and Y are adjacent, then the edge between X and Y is into X (X ←∗Y ) if

and only if X is not anterior in M of Y , or of any node in S.

The nodes in O, H, and S are called observed, hidden, and selection nodes, respec-

tively. As it is the case with probability distributions, marginalisation/conditioning

of MAGs is commutative: Let M be a MAG over O1∪̇O2∪̇H∪̇S1∪̇S2. The

marginal/conditional over O1 ∪ O2 given S1 ∪ S2 of M is the same as the

marginal/conditional over O2 given S2 of the marginal/conditional over O1 given

S1 of M.

Let G be a DAG. It is clear that the edges in a marginal/conditional MAG M

imply the following ancestral relationships between the nodes in G:

• X → Y implies that X is a ancestor in G of Y or of some selection node, but

Y is not an ancestor in G of X or any selection node.

• X ↔ Y implies that X is not an ancestor in G of Y or of any selection node,

and Y is not an ancestor in G of X or of any selection node.

• X Y implies that X is an ancestor in G of Y or of some selection node, and

Y is an ancestor in G of X or of some selection node.

Suppose that G is a causal DAG and causal transitivity is satisfied. Then the edges

in a marginal/conditional MAG M imply the following causal relationships between

the variables, since X is a cause of Y if and only if there is a directed path from X

to Y in G:
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• X → Y implies that X is a cause of Y or of some selection variable, and Y is

not a cause of Y or of some selection variable.

• X ↔ Y implies that X is not a cause of Y or of any selection variable, and Y

is not a cause of X or of any selection variable.

• X Y implies that X is a cause of Y or of some selection variable, and Y is a

cause of X or of some selection variable.

A MAG which is a marginal/conditional of a causal DAG is called a causal MAG.

Figure 2.2a shows the causal MAG over the subset {T1,T2,P} of the causal DAG in

Figure 2.1a, assuming selection bias is absent. There is a bidirected edge between

T1 and T2, because T1 and T2 do not cause each other or any selection variable.

It is evident that the causal interpretation of the edges in causal MAGs is not as

straightforward as in causal DAGs. For example, in the absence of selection bias,

edge X → Y implies that X is a cause of Y ; X , however, is not necessarily a direct

cause of Y with respect to the set of variables in the MAG. Furthermore, X and Y

may or may not have a hidden common cause. Borboudakis et al. [2012] devised

algorithms for distinguishing between these cases. The presence of selection bias

further complicates the causal interpretation of the edges. Fortunately, the edges in

the special MAGs introduced in the next chapter to describe the causal relationships

between the variables in a genetic dataset have clear interpretations which follow

from domain assumptions.

An important property of the marginal/conditional N over O given S of a MAG

M is that X and Y are m-separated by Z in N if and only if X and Y are m-separated

by Z∪S in M [Richardson and Spirtes, 2002]:

X ⊥ Y | Z ∈ I(N) ⇐⇒ X ⊥ Y | Z∪S ∈ I(M)

Suppose that (G,P) is a CBN and let M be the marginal/conditional over O

given S of G. X and Y are m-separated by Z in M if and only if X and Y are
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T1 T2

P

(a) The causal MAG over
variables {T1,T2,P} of
the causal DAG in Fig-
ure 2.1a.

T1 T2

P

(b) A causal MAG that is
Markov equivalent to
the one in Figure 2.2a.

T1 T2

P

(c) The maximally-
informative causal
PAG of the Markov
equivalence class to
which the causal MAGs
in Figures 2.2a and 2.2b
belong to.

Figure 2.2: Example of a causal MAG, a Markov-equivalent causal MAG, and a
maximally-informative causal PAG. Ti is the level of the transcript of gene i
in the cell, and P is a phenotype.

m-separated by Z∪S in G:

X ⊥ Y | Z ∈ I(M) ⇐⇒ X ⊥ Y | Z∪S ∈ I(G)

Assuming that (G,P) satisfies the CFC, X and Y are m-separated by Z∪S in G if

and only if X and Y are independent given Z∪S in P:

X ⊥ Y | Z∪S ∈ I(G) ⇐⇒ X ‚ Y | Z∪S ∈ I(P)

Let Q be the marginal/conditional over O given S = s of P , where s is an instantia-

tion of S. If X and Y are independent given Z∪S in P then X and Y are independent

given Z in Q:

X ‚ Y | Z∪S ∈ I(P) =⇒ X ‚ Y | Z ∈ I(Q)

If we assume that the converse of the above is also true (which is the case for

Gaussian distributions [Richardson and Spirtes, 2002]), then

X ⊥ Y | Z ∈ I(M) ⇐⇒ X ‚ Y | Z ∈ I(Q)

M is then said to be a perfect map of Q. Equivalently, we may not assume that
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(G,P) satisfies the CFC and directly assume the following instead:

X ⊥ Y | Z∪S ∈ I(G) ⇐⇒ X ‚ Y | Z ∈ I(Q)

This is called the selection bias causal assumption [Spirtes et al., 1999].

The notion of inducing path is central to marginalisation and conditioning of

MAGs. In a mixed graph M over O∪̇H∪̇S, a path p between X and Y is said to

be inducing with respect to H and S if every interior node on p is either in H or a

collider on p, and every collider on p is an ancestor of X , of Y , or of some selection

node. An inducing path with respect to /0 and /0 is said to be primitive. The following

theorem relates relates inducing paths and m-separations in a MAG to adjacencies

and m-separations in a marginal/conditional MAG [Richardson and Spirtes, 2002]:

Theorem 2.4. Let M be a MAG over V = O∪̇H∪̇S. Then the following statements

are equivalent:

• X is adjacent to Y in the marginal of M over O given S.

• There is an inducing path in M between X and Y with respect to H and S.

• There is no Z ⊆ V \ (S∪H∪{X ,Y}) such that X and Y are m-separated in

M by Z∪S.

• There is no Z ⊆ V \ (S∪H∪{X ,Y}) such that X and Y are m-separated in

the marginal of M over O given S by Z.

The following lemma relates primitive inducing paths to maximality [Richard-

son and Spirtes, 2002]:

Lemma 2.1. An ancestral graph is maximal if and only if there is no primitive

inducing path between any two non-adjacent nodes in the graph.

Since many DAGs can have the same d-separations, many MAGs can have

the same m-separations. These MAGs are called Markov equivalent and said to

belong to the same Markov equivalence class. Markov equivalence for MAGs is
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based on the notion of discriminating path [Spirtes et al., 2000]. In a MAG, a path

p = [X , . . . ,W,Z,Y ] is said to be discriminating for triple [W,Z,Y ] if

• X is not adjacent to Y , and

• every interior node on p(X ,Z) is a collider on p and a parent of Y

In this work, node Z is also called discriminated if there is a discriminated triple

[W,Z,Y ]. The following theorem [Spirtes and Richardson, 1996] gives necessary

and sufficient conditions for Markov equivalence of MAGs:

Theorem 2.5. Two MAGs over the same set of variables are Markov equivalent if

and only if

• they have the same adjacencies,

• they have the same unshielded colliders, and

• if a path is discriminating for a triple in both MAGs, then the triple is a

collider on the path in one MAG if and only if it is a collider on the path in

the other MAG.

Figure 2.2b shows a causal MAG that is Markov equivalent to the one in Figure

2.2a.

A Markov equivalence class of MAGs can be represented by a so-called

maximally-informative partial ancestral graph (PAG), which is a type of partially-

oriented mixed graph. The latter is a graph with three types of edge endpoints: tail

(–), arrowhead (>), and circle (◦). A non-circle and a circle endpoint is called ori-

ented and unoriented, respectively. A PAG for a Markov equivalence class of MAGs

is a partially-oriented mixed graph that has the same skeleton as the MAGs in the

class, and every non-circle endpoint is invariant within the class. If every circle in

the PAG corresponds to a variant endpoint in the class, then the PAG is called the

maximally informative PAG for the class [Spirtes et al., 2000]. A PAG for a Markov

equivalence class of causal MAGs is called a causal PAG. A causal PAG for the

Markov equivalence class of the true causal MAG over a set of variables is called a
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true causal PAG over the variables. Figure 2.2c shows the maximally-informative

causal PAG for the Markov equivalence class to which the causal MAGs in Figures

2.2a and 2.2b belong to.

The Fast Causal Inference (FCI) algorithm [Spirtes et al., 2000, Zhang, 2008]

can be used to learn the maximally-informative causal PAG over a set of variables

given the set of m-separations in the causal MAG over the variables. In the skeleton-

identification phase, the skeleton of the PAG is first learnt as in the PC algorithm

(Algorithm 2). However, it is no longer sufficient to search among the subsets of

the nodes adjacent to X and the subsets of the nodes adjacent to Y in order to find a

sepset. Nevertheless, false positives in the skeleton can be eliminated by searching

among the subsets of the Possible D-SEP sets [see Spirtes et al., 2000, for definition]

for a sepset. In the orientation phase, a set of 11 rules is applied to orient the edges

in the PAG [Zhang, 2008]. The orientation rules are based on the following lemmas

[Spirtes et al., 2000], which are used in proofs in this work as well:

Lemma 2.2. Let p = [X ,Y,Z] be an unshielded triple and suppose that S is a sepset

of X and Z in a MAG. p is a collider if and only if Y /∈ S.

Lemma 2.3. Suppose that [X , . . . ,W,Y,Z] is a discriminating path for Y and S is a

sepset of X and Z in a MAG. [W,Y,Z] is a collider if and only if Y /∈ S.

Analogously to structure learning under causal sufficiency and no selection

bias, the d-separations are determined in practice by making the selection bias

causal assumption and performing hypothesis tests of conditional independence on

a random sample from the probability distribution of the variables.

2.5 Estimating causal effects
In contrast to an association effect of Y on X , which is some contrast between the

distributions of Y conditional on instantiations of X , a causal effect is some contrast

between the distributions of Y conditional on manipulations of X [Didelez et al.,

2010]. The probability of set of variables Y after manipulating set of variables X to

take on values x is represented by Pr(Y | do(X= x)). The causal DAG that describes
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the causal relationships between a set of variables V = {V1, . . . ,Vn} after a subset X

of the variables have been manipulated to take on values x is the pre-manipulation

causal DAG with all edges into the variables in X removed. The post-manipulation

distribution of the variables satisfies the CMC with the post-manipulation causal

DAG [Pearl, 2009] and therefore factorises according to that DAG:

P(v | do(X = x)) =
n

∏
i=1

P(vi | pa(Vi),X = x)

Thus, given a CBN, any causal effect of interest can be computed from the post-

manipulation CBN by performing Bayesian-network inference. Estimating causal

effects under causal insufficiency and selection bias has been the focus of recent

work [e.g. see Correa and Bareinboim, 2017]. In the case of genetic case–control

datasets, the allelic causal odds ratio (COR) is defined as follows [Didelez et al.,

2010]:

COR ,
Pr(P = affected | do(I = true))/Pr(P = unaffected | do(I = true))

Pr(P = affected | do(I = false))/Pr(P = unaffected | do(I = false))

=
Pr(P = affected | do(I = true)) ·Pr(P = affected | do(I = false))

Pr(P = unaffected | do(I = true)) ·Pr(P = unaffected | do(I = false))

The genotypic CORs are similarly defined. The following adaptation of a result by

Didelez et al. [2010] gives sufficient graphical conditions, assuming a single logical

selection variable, for a COR in the general population to equal the respective OR

in the sampled population. The former can therefore be estimated by the sample

estimate of the latter.

Theorem 2.6. Suppose that X and Y are categorical random variables, S is a log-

ical selection variable, P is the distribution of {X ,Y,S}, and Q is the conditional

of P given S = true. If the following conditions are true in every causal DAG that

includes X, Y , and S:

1. Y is not an ancestor of X.

2. X and T do not have a common ancestor.
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3. X and S are d-separated by Y .

then the following holds for every pair (x1,x2) of values of X and every pair (y1,y2)

of values of Y :

P(Y = y1 | do(X = x1))/P(Y = y2 | do(X = x2))

P(Y = y2 | do(X = x1))/P(Y = y1 | do(X = x2))

=
Q(Y = y1 | X = x1)/Q(Y = y2 | X = x2)

Q(Y = y2 | X = x1)/Q(Y = y1 | X = x2)

2.6 Structure learning from samples with overlap-

ping sets of variables
There are datasets in many scientific areas defined over the same variables. In ge-

netics, for example, several datasets may be available over the same set of SNPs

because the same genotyping chip was used. It is often desirable to analyse these

datasets together, usually as a means of increasing the power of detecting statistical

associations compared to analysing the datasets individually. One way to do this is

to conduct a mega-analysis of the datasets, as mentioned in the introduction. The

datasets, however, may be incompatible because they were generated from different

populations using different technologies and therefore follow different distributions

[Tillman, 2009]. A meta-analysis circumvents this problem by using some method

for combining the p-values (or other summary measures) from the single datasets.

Among such methods, Fisher’s method [Fisher, 1925] is considered the most reli-

able [Lazar et al., 2002].

The term causal mega-analysis could be used to refer to concatenating multi-

ple datasets and applying constraint-based causal learning to the resulting dataset.

Clearly, causal mega-analysis is affected by the same problems as association mega-

analysis. The term causal meta-analysis is used here to refer to constraint-based

causal learning from multiple datasets by combining the p-values from the single

datasets. This is a more general term than Bayesian-network meta-analysis, intro-

duced by Tsamardinos and Borboudakis [2010] to refer specifically to learning (not

necessarily causal) BNs from multiple datasets over the same (or semantically sim-
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ilar) variables. In Bayesian-network meta-analysis, structure learning is applied to

the set of variables at hand as usual but each conditional independence test is per-

formed on all datasets and the resulting p-values are combined. [Tillman, 2009]

compared several methods of combining p-values for the task of Bayesian-network

meta-analysis and concluded that Fisher’s method performs best.

It is not uncommon to have datasets defined not over exactly the same set of

variables but over overlapping sets of variables. For example, GWAS datasets from

the same disease may have been generated using different versions of a genotyp-

ing chip, each assessing a slightly different set of SNPs; a GWAS and an exome-

sequencing dataset from the same disease share the phenotype and some exonic

SNPs. If a set of datasets with the same phenotype are identically distributed, they

can be concatenated and association analysis can be conducted on the concatenated

dataset; each test of association of a SNP with the phenotype can use the observa-

tions of the SNP and the phenotype that have no values missing for the SNP. In

practice, genotype imputation is performed (see Introduction). If the datasets are

not identically distributed, it is possible to conduct meta-analysis instead.

In causal discovery, analysing datasets with overlapping sets of variables is

more complicated. Datasets can be concatenated if they are identically distributed.

In the concatenated dataset, however, observations of variables never observed to-

gether in the original datasets would always have some of their values missing,

rendering conditional-independence testing and therefore, constraint-based learn-

ing, impossible. As Danks et al. [2008] explain, imputation procedures may not be

applied before constraint-based learning from the concatenated dataset. These pro-

cedures assume some underlying model, estimate its parameters using the available

data, and set the missing values of each observation to their expected values given

the available values of the observation. Then conditional independencies in the

imputed dataset that involve only variables never observed together in the original

datasets are based solely on assumptions and may be incorrect.1 The application of

1Nevertheless, the application of genotype imputation to a concatenated genetic dataset may still
be justified, at it is based on a separate reference dataset that contains all the SNPs in the concatenated
dataset.
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the standard Bayesian algorithm for learning BNs from datasets with missing val-

ues, Bayesian Structural EM [Friedman, 1998], to a concatenated dataset is also not

justified, as the algorithm assumes that the data are missing in random. Danks et al.

[2008] showed that the algorithm is indeed highly unsuccessful when applied to

datasets resulting from concatenation of datasets with overlapping sets of variables.

Owing to these problems, applying causal discovery to a concatenated dataset is

not a viable option. An alternative option is to learn all the causal relationships of

interest that are consistent with the datasets.

The goal of constraint-based causal learning with overlapping sets of variables

is to learn features of a causal MAG given the sets of m-separations in marginals

over overlapping sets of variables of the causal MAG. For each set of variables that

are never observed together, it is unknown which m-separations that involve all the

variables in the set hold. Therefore, there are many possible sets of m-separations

over all variables and, subsequently, many possible Markov equivalence classes

of causal MAGs over the variables, each represented by a different maximally-

informative causal PAG. Each of these causal MAGs and maximally-informative

causal PAGs are said to be consistent with the marginals of the original causal MAG:

Definition 2.1 (Consistent causal MAG). Let M be a causal MAG over V,

O1, . . . ,On ⊆ V (n ≥ 1), and Mk be the marginal of M over Ok (1 ≤ k ≤ n). A

causal MAG N over V is said to be consistent with M1, . . . ,Mn if for each k, the

marginal of N over Ok is Markov equivalent to Mk.

Definition 2.2 (Consistent maximally-informative causal PAG). Let M be a causal

MAG over V, O1, . . . ,On ⊆ V (n ≥ 1), and Mk be the marginal of M over Ok

(1 ≤ k ≤ n). A maximally-informative causal PAG Q over V is called consistent

with M1, . . . ,Mn if the members of the class of causal MAGs represented by Q are

consistent with M1, . . . ,Mn.

The brute-force approach to identifying consistent maximally-informative

PAGs is to create every possible partially-oriented mixed graph over all variables

and check whether (a) it is a maximally-informative PAG and (b) the marginals of
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a MAG in the Markov equivalence class represented by the PAG are Markov equiv-

alent to the marginals of the original MAG. Algorithms for identifying consistent

maximally-informative PAGs improve on this approach. Such algorithms are sound

if they only identify consistent maximally-informative PAGs and complete if they

identify all consistent maximally-informative PAGs.

Figure 2.3 shows an example of constraint-based causal learning with over-

lapping sets of variables [adapted from Tsamardinos et al., 2012]. Figure 2.3a

shows an example of a causal DAG, where genotype G is a direct cause of dis-

ease P and a direct cause of the transcript level T1 of gene 1, while P is a direct

cause of the transcript level T2 of gene 2. Assume that one research group is in-

terested in discovering eQTLs. The group measures variables {G,T1,T2} (among

others) in healthy subjects. Figure 2.3b and 2.3d shows the causal MAG and the

maximally-informative causal PAG, respectively, over {G,T1,T2}. The group finds

that G is an eQTL for genes 1 and 2. Further assume that another research group

is interested in genes that are differentially expressed in disease P and measures

variables {P,T1,T2} (among others) in healthy and affected subjects. Figures 2.3b

and 2.3d show the causal MAG and the maximally-informative causal PAG, respec-

tively, over {P,T1,T2}. The group finds genes 1 and 2 to be differentially expressed

in disease. Figure 2.3f shows the maximally-informative PAGs consistent with the

MAGs in Figures 2.3b and 2.3c. Finally, Figure 2.3g shows the pairwise causal

graph over all variables. The pairwise causal graph (PCG) corresponding to the

set of maximally-informative causal PAGs consistent with a set of MAGs is a graph

over all variables with two kinds of links, solid ( ) and dashed ( ), and three kinds

of edge endpoints, tail (–), arrowhead (>), and circle (◦). A link in the PCG is

solid if it is present in all consistent PAGs; otherwise, the link is dashed. Non-circle

and circle endpoints correspond to variant and invariant edge endpoints, respec-

tively, within the subset of consistent MAGs where the link is present. PCGs were

introduced by Triantafilou et al. [2010] and referred to as summary graphs in Tri-

antafillou and Tsamardinos [2015]. The PCG in Figure 2.3g clearly shows that G

and P are dependent, even if they were never measured together.
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Figure 2.3: Example of constraint-based causal learning with overlapping sets of variables
[adapted from Tsamardinos et al., 2012]. G is the genotype at some locus, Ti is
the transcript level of gene i in the cell, and P is a phenotype.

The first algorithm for identifying consistent maximally-informative PAGs was

the Integration of Overlapping Networks (ION) algorithm [Danks et al., 2008].

The algorithm receives the set of maximally-informative PAGs over the overlap-

ping sets of variables (learned by an algorithm such as FCI) as input, and outputs

the set of consistent PAGs. The input PAGs are assumed to be correct. How-

ever, when the input PAGs are learnt from data, they often represent conflicting

(in)dependencies among their shared variables and ION fails. The Integration of

Overlapping Datasets (IOD) algorithm [Tillman and Spirtes, 2011], which directly

accepts datasets, solves this problem by applying each conditional-independence

test to all datasets that contain the test variables and combining the p-values using

Fisher’s method (Algorithm 7). IOD also conducts a more efficient search proce-

dure than ION. Unfortunately, neither ION or IOD scale beyond a few variables.

In Chapter 4, an algorithm inspired by IOD is presented that is specialised for ge-

netic datasets. Although that algorithm is also impractical, it is used as a basis for a
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practical local-learning algorithm that targets the phenotype.

Tillman and Spirtes [2011] did not use a reliability criterion for the conditional

independence tests in their experiments with IOD. Tsamardinos and Borboudakis

[2010] generalised the heuristic power rule for the task of Bayesian-network meta-

analysis. A test is now considered reliable if the sum of the average number of

observations per cell of the contingency table in each dataset is at least h-ps. This

criterion can be used with datasets with overlapping sets of variables by considering

only the datasets that contain all test variables.

Algorithm 7 Meta-analysis conditional-independence test [Tillman and Spirtes,
2011]. The independence of X and Y given Z is tested by performing the test on
all samples that contain the variables and combining the p-values using Fisher’s
method. D = {D1, . . . ,Dn} is a set of samples with corresponding sets of variables
V1, . . . ,Vn. pi

X‚Y |Z is the p-value from the test of conditional independence of X

and Y given Z in sample Di. F(x,d f ) is the value of the cumulative X 2 distribution
with d f degrees of freedom at x.
Input: D, X , Y , Z, α

Output: true or false
1: k← 0
2: for each Di ∈ D do
3: if {X ,Y}∪Z⊆ Vi then
4: pi← pi

X‚Y |Z
5: k← k+1
6: else
7: pi← 1
8: end if
9: end for

10: if F(−2∑
n
i=1 log pi,2k)> α then

11: return true
12: else
13: return false
14: end if

The cSAT+ algorithm [Triantafilou et al., 2010] converts the problem of iden-

tifying consistent maximally-informative PAGs to a constraint satisfaction problem

(CSP), and uses a general-purpose solver to solve it efficiently. cSAT+ is more

efficient that ION, but also assumes that the input is correct. If the input PAGs

are learnt from data, cSAT+ may generate conflicting constraints and the result-

ing CSP may be unsolvable. The recently-developed COmbINE (Causal discovery
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from Overlapping INtErventions) algorithm [Triantafillou and Tsamardinos, 2015]

directly accepts datasets over overlapping sets of variables that may as well come

from different experimental conditions (interventions). After applying FCI to the

datasets, COmbINE converts the resulting PAGs to appropriate constraints on the

form of the consistent PAGs. The constraints are then ranked using a score derived

from the p-values of the conditional independence tests performed, and a constraint

is not added to the CSP if it conflicts with another constraint higher in the ranking.

The resulting CSP is thus guaranteed to be solvable. COmbINE scales up to 100

variables for sparse networks and was successfully applied on four mass-cytometry

datasets with overlapping sets of variables under three interventions [Triantafillou

and Tsamardinos, 2015].

In terms of the data-integration framework provided by Hamid et al. [2009],

identifying consistent maximally-informative PAGs is a late-stage approach, as the

results of causal discovery (PAGs) from each dataset are combined. The data which

the algorithms are applied to can be of similar or heterogeneous type: each dataset

may contain data of similar or heterogeneous type, and the variables in common

contain data of a similar type. Among the data-integration methodologies identi-

fied by Lapatas et al. [2015], identifying consistent maximally-informative PAGs

is, obviously, a dataset-integration methodology.



Chapter 3

Causal discovery from genetic

datasets

In this chapter, a theory on causal discovery from genetic datasets that are random

samples from the population of interest is presented first. Owing to certain assump-

tions about the causal relationships between the variables in such datasets, causal

MAGs over the variables are of a certain form. This enables the clear interpretation

of the edges in the MAG and the development of specialised causal-discovery al-

gorithms. Learning from case–control samples is considered next. A local-learning

algorithm is devised for learning only the genotype–phenotype links in the causal

MAG that describes the causal relationships in such a sample. Specifically, the

algorithm learns the genotypes that are causes, indicators of a hidden cause, and

potential causes of the phenotype. An algorithm that learns the FDR-controlled

genotype–phenotype links is then designed. A simulation study of the algorithm’s

performance is conducted using realistic simulated genetic case–control datasets.

Finally, the algorithm is applied to datasets from prion disease.

3.1 Genetic random samples
A genetic set of variables is a set of genotypes and a phenotype. In addition to

causal transitivity, the following four assumptions are made regarding the causal

relationships between the variables in such a set:

Assumption 3.1. The phenotype is not a cause of any genotype.



3.1. Genetic random samples 68

Assumption 3.2. No genotype is a cause of another.

Assumption 3.3. If two genotypes have a common cause, then they are on the same

chromosome.

Assumption 3.4. If a variable is a common cause of a genotype and the phenotype,

then every causal path from the variable to the phenotype is through some genotype.

Assumption 3.1 follows from the central dogma of molecular biology, accord-

ing to which information does not flow from the phenotype to the genotype. When

selection bias is absent, Assumption 3.2 implies that two genotypes are in LD if

and only if they have a hidden common cause. No assumption is made about the

nature of the common cause; e.g., it could be the haplotype block where the variants

reside. In light of Assumption 3.2, Assumption 3.3 follows from the principle of

independent assortment, according to which genotypes on different chromosomes

are independent. In light of Assumptions 3.1 and 3.2, Assumption 3.4 implies that,

when selection bias is absent, a genotype is associated with the phenotype but is not

a cause of the phenotype if and only if the genotype is in LD with another genotype

which is a cause of the phenotype. Assumption 3.4 does not place any restriction on

the causal relationships between the variables but is made in order to aid the causal

interpretation of PAGs learned from a genetic dataset.

A causal DAG over the union of a genetic set of variables and another set of

variables is called a genetic causal DAG. Assuming that causal transitivity holds,

a genetic causal DAG that satisfies Assumptions 3.1–3.4 is said to be plausible.

Obviously, the true genetic causal DAG over a set of variables is plausible if the as-

sumptions hold. Clearly, under causal transitivity, a genetic causal DAG is plausible

if and only if the following conditions are satisfied:

1. The phenotype is not an ancestor of any genotype.

2. No genotype is an ancestor of another.

3. Any two genotypes that have a common ancestor are on the same chromo-

some.
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H1 H2 H3 H4 H5

G1 G2 G3 G4 G5 G6 G7 G8

P

(a) A plausible genetic causal DAG. G1, G2, G4, G6, and G7 are causes of P. G1 and
G2, G2 and G3, G4 and G5, G6 and G7, and G7 and G8 are on the same chromosome
and have a common cause H1, H2, H3, H4, and H5 respectively. {G1,G2}, {G2,G3},
{G1,G2,G3}, {G4,G5}, {G6,G7}, {G7,G8}, and {G6,G7,G8} are genetic chains rela-
tive to {G1,G2,G3,G4,G7,G8,P}.

G1 G2 G3 G4 G7 G8

P

(b) The plausible genetic causal
MAG which is the marginal over
{G1,G2,G3,G4,G7,G8,P} of the
DAG in Figure 3.1a. G1, G2, and
G7 are causes of P, G4 is a proxy
of a hidden cause of P, G8 is an
indicator of a hidden cause of P,
and G1 and G2, G2 and G3, and
G7 and G8 have a hidden common
cause. [G3,G2,G1,P] is a genetic
discriminating path for G1.

G1 G2 G3 G4 G7 G8

P

(c) A plausible genetic causal MAG
which is Markov equivalent to the one
in Figure 3.1b. G2, G3, and G4 are
the unshielded genotypes and each of
them is a parent of P in the other
MAG if it is a parent of P in this
one. G1 is genetically discriminated
in both MAGs and is a parent of P in
both MAGs. G4 is a spouse of P in
the other MAG and a parent of P in
this one. G7 is a parent of P in the
other MAG and a spouse of P in this
one.

G1 G2 G3 G4 G7 G8

P

(d) The maximally-informative plausible genetic causal PAG representing the class of plau-
sible genetic causal MAGs of which the MAGs in Figures 3.1b and 3.1c are members.

Figure 3.1: Example of a plausible genetic causal DAG, plausible genetic causal MAGs,
and a plausible genetic causal PAG. Gi (1 ≤ i ≤ 8) is a genotype and P is a
phenotype.

Figure 3.1a shows an example plausible genetic causal DAG.

The term genetic dataset is used here to refer to a dataset over a genetic set of

variables. A genetic dataset that is a random sample from an unconditional distri-

bution is called a genetic random sample. A MAG that is the marginal over a subset

of the genotypes and the phenotype of a (plausible) genetic causal DAG is called a
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(plausible) genetic causal MAG. The following definitions are central to the causal

interpretation of plausible genetic causal MAGs. P is used to denote a phenotype;

G is used to denote a genotype and G a set of genotypes.

Definition 3.1 (Genetic chain). A genetic chain from G1 to G2 relative to G∪{P}

is an ordered set {G1, . . . ,Gn} (n≥ 2) where G1 = G1, Gn = G2, Gi (2≤ i≤ n−1)

is a cause of P in G and Gi and Gi+1 (1 ≤ i ≤ n−1) have a common cause not in

G. G2, . . . ,Gn−1 are called interior genotypes in the genetic chain. G1 and G2 may

or may not be in G.

G1 and G2 are said to be genetically chained relative to G∪{P} if there is a

genetic chain between G1 and G2 relative to G∪{P}. In Figure 3.1a, {G1,G2},

{G2,G3}, {G1,G2,G3}, {G4,G5}, {G6,G7}, {G7,G8}, and {G6,G7,G8} are ge-

netic chains relative to {G1,G2,G3,G4,G7,G8,P}.

Definition 3.2 (Indicator of a hidden cause of a phenotype). G1 is an indicator of a

hidden cause of P relative to G∪{P} if G1 is in G, not a cause of P, and genetically

chained relative to G∪{P} to some cause G2 of P not in G. It is then said that the

presence of G2 is indicated by G1.

Definition 3.3 (Proxy of a hidden cause of a phenotype). G1 is a proxy of a hidden

cause of P relative to G∪{P} if G1 is in G, not a cause of P, and has a common

cause not in G with some cause G2 of P not in G.

Clearly, if G1 is a proxy of a hidden cause of P, then G1 is an indicator of a

hidden cause of P. The following theorem gives necessary and sufficient conditions

for the existence of each type of edge in a plausible genetic causal MAG. In the

forward direction, it states the causal interpretation of the edges; in the reverse

direction, it provides a way of constructing a plausible genetic causal MAG given

the causal relationships among a genetic set of variables. The proof of the theorem,

as well as the proofs of all other propositions in this work, can be found in Appendix

A.

Theorem 3.1. In a plausible genetic causal MAG over a set of variables G∪{P}

there are three types of edges: G→ P, G↔ P, and G1↔ G2, and
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• G→ P exists if and only if G is a cause of P,

• G↔ P exists if and only if G is an indicator of a hidden cause of P,

• G1↔ G2 exists if and only if G1 and G2 have a hidden common cause.

The following corollary of Theorem 3.1 gives sufficient conditions for an ob-

served genotype to be a proxy of a hidden cause the phenotype. Figure 3.1b shows

an example of a plausible genetic causal MAG, which is the marginal of the DAG

in Figure 3.1a.

Corollary 3.1. In a plausible genetic causal MAG over a set of variables G∪{P},

if G1 is a spouse of P and there is no G2 such that G2 is a parent of P and G2 and

G1 are adjacent, then G1 is a proxy of a hidden cause of P.

A genetic mixed graph is a mixed graph over a genetic set of variables. A

potential plausible genetic causal MAG is a genetic mixed graph which is to be

interpreted causally if it is a MAG, in which case it would be a genetic causal MAG

by definition. The following theorem gives necessary and sufficient conditions for

a potential plausible genetic causal MAG to be a plausible genetic causal MAG.

Theorem 3.2. A potential plausible genetic causal MAG over a set of variables

G∪{P} is a plausible genetic causal MAG if and only if the following conditions

are satisfied:

1. Edges incident to P are into P.

2. Genotype–genotype edges are bidirected.

3. Adjacent genotypes are on the same chromosome.

Markov equivalence of plausible genetic causal MAGs is based on the notion

of genetic discriminating path.

Definition 3.4. In a plausible genetic causal MAG over G ∪ {P}, a path p =

[Gn, . . . ,G2,G1,P] is called a genetic discriminating path for genotype G1 if the

following two conditions are satisfied:
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• Gn is not adjacent to P.

• Gi (2 ≤ i ≤ n− 1) is adjacent to P and the edge between Gi and P is out of

Gi.

A genotype for which there is genetic discriminating path is said to be

genetically-discriminated. In Figure 3.1b, [G3,G2,G1,P] is a genetic discriminat-

ing path for G1. The following theorem characterises Markov-equivalent plausible

genetic causal MAGs.

Theorem 3.3. Suppose that M1 and M2 are plausible genetic causal MAGs over

the same set of variables. M1 and M2 are Markov equivalent if and only if the

following conditions are satisfied:

1. M1 and M2 have the same skeleton.

2. Each unshielded genotype is a parent of the phenotype in M1 if and only if it

is a parent of the phenotype in M2.

3. Each genetically-discriminated genotype is a parent of the phenotype in M1

if and only if it is a parent of the phenotype in M2.

Figure 3.1c shows a plausible genetic causal MAG which is Markov equivalent

to the one in Figure 3.1b.

A (plausible) genetic causal PAG is defined as a PAG for a Markov equiva-

lence class of (plausible) genetic causal MAGs. A partially-oriented mixed graph

over a genetic set of variables is called a partially-oriented genetic mixed graph. A

potential plausible genetic causal PAG is a partially-oriented genetic mixed graph

which is a genetic causal PAG if it is a PAG. The following theorem gives neces-

sary and sufficient conditions for a potential plausible genetic causal PAG to be a

maximally-informative plausible genetic causal PAG.

Theorem 3.4. A potential plausible genetic causal PAG is a maximally-informative

plausible genetic causal PAG if and only if the following conditions are satisfied:

1. Edges incident to P are into P.
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2. Genotype–genotype edges are bidirected.

3. Adjacent genotypes are on the same chromosome.

4. Endpoints at G are oriented if and only if G is unshielded or genetically-

discriminated.

Figure 3.1d shows the maximally-informative plausible genetic causal PAG

representing the class of plausible genetic causal MAGs of which the MAGs in

Figures 3.1b and 3.1c are members.

3.1.1 Skeleton identification

In order to learn the skeleton of the true genetic causal MAG, PC–skeleton (Al-

gorithm 2) or local-to-global learning (Algorithm 6) can be used, followed by a

search for sepsets in the Possible D-SEP sets (see Section 2.4). Under Assumptions

3.1–3.4, however, the true genetic causal MAG is a plausible genetic causal MAG

whose special structure (Theorem 3.2) can be exploited by a specialised algorithm

such as Algorithm 8. The correctness of Algorithm 8 follows by the next theorem,

which characterises m-separation in a plausible genetic causal MAG:

Theorem 3.5. In a plausible genetic causal MAG over G∪{P}:

• G1 and P are adjacent if and only if they are not m-separated by any subset

of the genotypes adjacent to P on the same chromosome.

• G1 and G2 are adjacent if and only if they are not m-separated.

Owing to Theorem 3.5, it is sufficient to apply non-symmetric GLL-PC (Al-

gorithm 3) targeting the phenotype independently for each chromosome in order to

learn the genotype–phenotype links (lines 1–9 of Algorithm 8) and to determine the

pairwise m-separation of all genotypes on the same chromosome in order to learn

the genotype–genotype links (lines 10–18).

3.1.2 Edge orientation

After the skeleton of a plausible genetic causal PAG is identified, the 11 orienta-

tion rules of the FCI algorithm [Zhang, 2008] can be applied in order to obtain the
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Algorithm 8 Skeleton identification for plausible genetic causal PAGs. G is a set of
genotypes and P is a phenotype. M is a plausible genetic causal MAG over G∪{P}.
I(M) is the set of m-separations in M. S is an undirected graph. Sepset is a map
from pairs of nodes to sets of nodes. In the output, S is the skeleton of M and Sepset
is a map from pairs of nodes in G∪{P} to sets of nodes in G∪{P} that m-separate
them in M. n is the number of chromosomes. Gk is the subset of G on the k-th
chromosome. I(M)[Gk∪{P} is the subset of I(M) over Gk∪{P}. X ⊥ Y | Z denotes
that nodes X and Y are m-separated given set of nodes Z.

Input: I(M)
Output: S and Sepset

1: for each 1≤ k ≤ n do
2: . Learn genotype–phenotype links
3: let TAk(P) and SepsetP

k be the output of Algorithm 3 with I(M)[Gk∪{P} and
P as input.

4: for each G ∈ TAk(P) do
5: add edge G P to S
6: end for
7: for each G ∈Gk \TAk(P) do
8: Sepset({G,P})← SepsetP

k ({G,P})
9: end for

10: . Learn genotype–genotype links
11: for each {G1,G2} ⊆Gk do
12: if G1 ⊥ G2 /∈ I(M) then
13: add edge G1 G2 to S
14: else
15: Sepset({G1,G2})← /0
16: end if
17: end for
18: end for

maximally-informative genetic causal PAG. However, it can be shown that not all 11

rules are applicable. Furthermore, it is the maximally-informative plausible genetic

causal PAG which is of interest here. Algorithm 9, which uses 4 orientation rules,

returns the maximally-informative plausible genetic causal PAG (Theorem 3.6).

Theorem 3.6 (Correctness of Algorithm 9). If the input of Algorithm 9 is P and

Sepset, then in the output of Algorithm 9, P is the maximally-informative plausible

genetic causal PAG for the same Markov equivalence class as in the input.
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Algorithm 9 Edge orientation for plausible genetic causal PAGs. G is a set of
genotypes and P is a phenotype. In the input, P is an unoriented plausible genetic
causal PAG over G∪{P} and Sepset is a map from pairs of nodes in G∪{P} to
sets of nodes in G∪{P} that m-separate them in a MAG in the Markov equivalence
class of P. AdjP(X ,Y ) denotes that nodes X and Y are adjacent in P. In the output,
P is maximally-informative plausible genetic causal PAG over G∪{P}.
Input: P and Sepset
Output: P

1: for each edge G1 ∗ ∗ P in P do
2: . Rule (1)
3: orient G1 ∗ ∗ P as G ∗→ P
4: . Rule (2)
5: if ∃G2 ∈G\{G1} s.t. AdjP(G2,G1) and ¬AdjP(G2,P) then
6: if G1 ∈ Sepset({G2,P}) then
7: orient G1 ∗→ P as G1→ P
8: else
9: orient G1 ∗→ P as G1↔ P

10: end if
11: end if
12: end for
13: . Rule (3)
14: for each edge G1 ∗ ∗ G2 in P do
15: orient G1 ∗ ∗ G2 as G1↔ G2
16: end for
17: while more edges can be oriented in P do
18: . Rule (4)
19: for each edge G1 ›∗ P in P do
20: if ∃ genetic discriminating path [Gn, . . . ,G2,G1,P] for G1 in P then
21: if G1 ∈ Sepset({Gn,P}) then
22: orient G1 ›∗ P as G1 ∗ P
23: else
24: orient G1 ›∗ P as G1←∗ P
25: end if
26: end if
27: end for
28: end while
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3.1.3 Local learning

It is usually not of interest to learn the whole plausible genetic causal PAG. If only

the nodes adjacent to P are of interest, it is sufficient to apply non-symmetric GLL-

PC (Algorithm 3) targeting P. If the orientations of the edges incident to P are also

of interest, it is clear that it is only needed to learn the PAG over P, nodes adjacent

to P, and nodes adjacent to a node adjacent to P (that is, nodes at distance ≤ 2 from

P). The topic of local learning is not pursued any further in the unconditional case

since the main focus of this work is learning from the case–control datasets from

prion disease.

3.2 Conditional genetic random samples
It is impractical to obtain a random sample from the population of interest for the

purpose of identifying disease-susceptibility variants, especially for rare diseases.

For example, a random sample for sCJD, which has a prevalence of about one in

a million, would have to contain about one million controls for each sCJD case.

Therefore, most genetic datasets are case–control samples, containing about the

same number of cases and controls. In this section, in addition to causal transitivity

and Assumptions 3.1–3.4, the following assumption is made:

Assumption 3.5. A variable is a cause of some selection variable if and only if the

variable is a cause of the phenotype.

In a genetic case–control dataset, the observations are included based solely

on the phenotype. Therefore, it can be assumed that there is a single logical selec-

tion variable which is an effect of the phenotype and that every causal path from

a variable to the selection variable is through the phenotype. The more general

Assumption 3.5 is used for mathematical convenience.

A causal DAG over the union of a genetic set of variables, a set of selection

variables, and a set of other variables is called a genetic causal DAG with selection

nodes. Assuming that causal transitivity holds, a genetic causal DAG with selection

nodes that satisfies Assumptions 3.1–3.5 is said to be plausible. Obviously, the true

genetic causal DAG with selection nodes over a set of variables is plausible if the
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assumptions hold. It is easy to see that a genetic causal DAG with selection nodes

is plausible if and only if the following conditions are satisfied:

1. The phenotype is not an ancestor of any genotype.

2. No genotype is an ancestor of another.

3. Any two genotypes that have a common ancestor are on the same chromo-

some.

4. A node is an ancestor of the selection variable if and only if the node is an

ancestor of the phenotype.

Figure 3.2a shows an example of a plausible genetic causal DAG with selection

nodes.

A genetic dataset that is a random sample from the conditional distribution

given an instantiation of the selection variables is referred to as a conditional ge-

netic random sample. A MAG that is the marginal/conditional over a subset of the

genotypes and the phenotype of a (plausible) genetic causal DAG with selection

nodes given the selection variables is called a (plausible) conditional genetic causal

MAG.

The following theorem gives necessary and sufficient conditions for the exis-

tence of each type of edge in a plausible conditional genetic causal MAG. In the

forward direction, it states the causal interpretation of the edges; in the reverse

direction, it provides a way of constructing a plausible conditional genetic causal

MAG given the causal relationships among a genetic set of variables.

Theorem 3.7. In a plausible conditional genetic causal MAG, there are five types

of edges: G P, G← P, G1→ G2, G1↔ G2, and G1 G2, and

• G P exists if and only if G is a cause of P,

• G← P exists if and only if G is an indicator of a hidden cause of P,

• G1 G2 exists if and only if G1 is a cause of P and G2 is a cause of P,
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H1 H2 H3 H4 H5

G1 G2 G3 G4 G5 G6 G7

P

S

(a) A plausible genetic causal DAG with selection nodes. G2, G4, and G5 are causes of
P. G1 and G2, G2 and G3, G4 and G5, G5 and G6, and G6 and G7 are on the same
chromosome and have a common cause H1, H2, H3, H4, and H5 respectively. S is a
selection variable, and P is a cause of S. {G1,G2}, {G2,G3}, {G1,G2,G3}, {G5,G6},
{G4,G5,G6}, and {G6,G7} are genetic chains relative to {G1,G2,G3,G5,G6,G7,P}.

G1 G2 G3 G5 G6 G7

P

(b) The plausible conditional ge-
netic causal MAG which is
the marginal/conditional over
{G1,G2,G3,G5,G6,G7,P} given {S}
of the DAG in Figure 3.2a. G2 and
G5 are causes of P, G6 is an indicator
of a hidden cause of P, and G1 and
G2, G2 and G3, G1 and G3, and G6
and G7 are genetically chained.

G1 G2 G3 G5 G6 G7

P

(c) A plausible conditional genetic causal
MAG which is Markov equivalent to
the one in Figure 3.2b. G2 and G6
are the unshielded genotypes that are
adjacent to P and the edges incident
to each of them are into the genotype
in the other MAG if they are into the
genotype in this one. The edges in-
cident to G5 are into G5 in the other
MAG and out of G5 in this one.

G1 G2 G3 G5 G6 G7

P

(d) The maximally-informative plausible conditional genetic causal PAG representing the
class of plausible conditional genetic causal MAGs of which the MAGs in Figures 3.2b
and 3.2c are members.

Figure 3.2: Example of a plausible genetic causal DAG with selection nodes, plausible
conditional genetic causal MAGs, and a maximally-informative plausible con-
ditional genetic causal PAG. Gi (1≤ i≤ 7) is a genotype and P is a phenotype.

• G1→ G2 exists if and only if G1 is a cause of P, G2 is not a cause of P, and

either G2 is an indicator of a hidden cause of P or G1 and G2 are genetically

chained, and
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• G1 ↔ G2 exists if and only if G1 is not a cause of P, G2 is not a cause of

P, and either G1 and G2 are genetically chained, or G1 is an indicator of a

hidden cause of P and G2 is an indicator of a hidden cause of P.

The following corollary of Theorem 3.7 gives sufficient conditions for an

observed genotype to be a proxy of a hidden cause of the phenotype. Unfortu-

nately, the conditions are much stronger than in the unconditional case. Figure

3.2b shows an example of a plausible conditional genetic causal MAG, which is the

marginal/conditional of the DAG in Figure 3.2a.

Corollary 3.2. In a plausible conditional genetic causal MAG over G∪{P}, if G1

is a child of P and P has no neighbours, then G1 is a proxy of a hidden cause of P.

A potential plausible conditional genetic causal MAG over G∪{P} given S is

a genetic mixed graph over G∪{P} which is a plausible conditional genetic causal

MAG over G∪{P} given S if it is a MAG. The following theorem gives necessary

and sufficient conditions for a potential plausible conditional genetic causal MAG

to be a plausible conditional genetic causal MAG.

Theorem 3.8. A potential plausible conditional genetic causal MAG over G∪{P}

given S is a plausible conditional genetic causal MAG if and only if the following

conditions are satisfied:

1. Edges incident to P are out of P.

2. Edges incident to G adjacent to P are either all out of G or all into G.

3. Edges incident to G not adjacent to P are into G.

4. Genotypes adjacent to P are adjacent.

5. Each triple [G1,G3,G2] such that G1 and G2 are not adjacent to P, G3 is

adjacent to P, and the edge between G3 and P is out of G3 is shielded.

6. Every pair of adjacent genotypes that are not both adjacent to P are on the

same chromosome.
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The following theorem characterises Markov-equivalent plausible conditional

genetic causal MAGs.

Theorem 3.9. Two plausible conditional genetic causal MAGs M1 and M2 over

G∪{P} given S are Markov equivalent if and only if the following two conditions

are satisfied:

1. M1 and M2 have the same skeleton.

2. Edges incident to each unshielded G adjacent to P are into G in M1 if and

only if they are into G in M2.

Figure 3.2c shows a plausible conditional genetic causal MAG which is

Markov equivalent to the one in Figure 3.2b.

A (plausible) conditional genetic causal PAG is a PAG for a Markov equiva-

lence class of (plausible) conditional genetic causal MAGs. A potential plausible

conditional genetic causal PAG over G∪{P} given S is a partially-oriented genetic

mixed graph over G∪{P} which is a plausible conditional genetic causal PAG over

G∪ {P} given S if it is a PAG. The following theorem gives necessary and suf-

ficient conditions for a potential plausible conditional genetic causal PAG to be a

maximally-informative plausible conditional genetic causal PAG.

Theorem 3.10. A potential plausible conditional genetic causal PAG over G∪{P}

given S is a maximally-informative plausible conditional genetic causal PAG if and

only if the following conditions are satisfied:

1. Edges incident to P are out of P.

2. Edges incident to G adjacent to P are either all out of G or all into G.

3. Edges incident to G not adjacent to P are into G.

4. Genotypes adjacent to P are adjacent.

5. Each triple [G1,G3,G2] such that G1 and G2 are not adjacent to P, G3 is

adjacent to P, and the edge between G3 and P is out of G3 is shielded.
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6. Every pair of adjacent genotypes that are not both adjacent to P are on the

same chromosome.

7. Endpoints at G are oriented if and only if G is unshielded.

Figure 3.2d shows the maximally-informative plausible conditional genetic

causal PAG representing the class of plausible conditional genetic causal MAGs

of which the MAGs in Figures 3.2b and 3.2c are members.

3.2.1 Skeleton identification

As in the unconditional case, the special structure of plausible conditional genetic

MAGs (Theorem 3.8) is exploited by a specialised skeleton-identification algorithm

(Algorithm 10). The correctness of the algorithm follows by the next theorem,

which concerns m-separation and adjacencies in a plausible conditional genetic

MAGs:

Theorem 3.11. In a plausible conditional genetic causal MAG over G∪{P} given

S:

• G and P are adjacent if and only if they are not m-separated by any subset of

the genotypes adjacent to P on the same chromosome.

• If G1 and G2 are adjacent to P, then G1 and G2 are adjacent.

• If G1 and P are strictly m-separated by Z, then G1 and G2 are adjacent if and

only if G2 ∈ Z or G1 and G2 are not m-separated by Z.

• If G1 and P are strictly m-separated by Z1 and G2 and P are strictly m-

separated by Z2, then G1 and G2 are adjacent if and only if G1 and G2 are

not m-separated by the smallest among Z1 and Z2.

• If G1 and G2 are adjacent and G1 and P are not adjacent, then G1 and G2 are

on the same chromosome.

• If G1 is not adjacent to P or to a node adjacent to P, then G1 and G2 are

adjacent if and only if they are not m-separated.
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Owing to Theorem 3.11, it is sufficient to apply non-symmetric GLL-PC (Al-

gorithm 3) targeting the phenotype independently for each chromosome in order to

learn the genotype–phenotype links (lines 1–10 of Algorithm 10), as in the uncondi-

tional case. Genotype nodes adjacent to (at distance 1 from) the phenotype are then

adjacent (lines 12–15). All other genotype–genotype links are between genotypes

on the same chromosome. In order to determine whether a genotype at distance 2

from the phenotype (that is, a genotype that is not adjacent to the phenotype but is

adjacent to a node adjacent to the phenotype) is adjacent to a genotype adjacent to

the phenotype, it is sufficient to check whether the latter genotype is in the sepset

of the former genotype and the phenotype, and if this is not the case, determine

whether the genotypes are m-separated given the sepset (lines 17–26). In order to

determine whether two genotypes at distance 2 from the phenotype are adjacent, it

suffices to determine whether they are m-separated given the smallest among the

sepsets of each of the two genotypes and the phenotype (lines 27–39). Finally, in

order to determine whether a genotype at distance ≥ 3 from the phenotype (that

is, a genotype not adjacent to the phenotype or to some genotype adjacent to the

phenotype) is adjacent to another genotype, it is sufficient to determine whether the

genotypes are m-separated (part 3), as in the unconditional case.

3.2.2 Edge orientation

As in the unconditional case, it can be shown that not all 11 orientation rules of

the FCI algorithm are applicable to a plausible conditional genetic causal PAG.

Furthermore, it is the maximally-informative plausible conditional genetic causal

PAG which is of interest. Algorithm 11, which uses three orientation rules, returns

the maximally-informative plausible genetic causal PAG (Theorem 3.12).

Theorem 3.12 (Correctness of Algorithm 11). If the input of Algorithm 9 is P and

Sepset, then in the output of Algorithm 11, P is the maximally-informative plausible

conditional genetic causal PAG for the same Markov equivalence class as in the

input.
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Algorithm 10 Skeleton identification for plausible conditional genetic causal PAGs
— part 1 out of 3. G is a set of genotypes and P is a phenotype. M is a plausible
conditional genetic causal MAG over G∪{P}. I(M) is the set of m-separations in
M. S is an undirected graph. Sepset is a map from pairs of nodes to sets of nodes.
In the output, S is the skeleton of M and Sepset is a map from pairs of nodes in
G∪{P} to sets of nodes in G∪{P} that m-separate them in M. n is the number of
chromosomes. Gk is the subset of G on the k-th chromosome. I(M)[Gk∪{P} is the
subset of I(M) over Gk∪{P}. AdjS(X ,Y ) denotes that nodes X and Y are adjacent
in S.
Input: I(M)
Output: S and Sepset

1: for each 1≤ k ≤ n do
2: . Learn genotypes adjacent to (at distance 1 from) the phenotype
3: let TAk(P) and SepsetP

k be the output of Algorithm 3 with I(M)[Gk∪{P} and
P as input.

4: for each G ∈ TAk(P) do
5: add edge G P to S
6: end for
7: for each G ∈Gk \TAk(P) do
8: Sepset({G,P})← SepsetP

k ({G,P})
9: end for

10: end for
11: . Learn links between the genotypes adjacent to (at distance 1 from)
12: . the phenotype
13: for each {G1,G2} s.t. AdjS(G1,P) and AdjS(G2,P) do
14: add edge G1 G2 to S
15: end for

3.2.3 Local learning

As in the unconditional case, it is sufficient to apply non-symmetric GLL-PC (Al-

gorithm 3) targeting P if only the nodes adjacent to P in the plausible conditional

genetic causal MAG are of interest and learn the PAG over the nodes at distance

≤ 2 from P if the orientations of the edges incident to P are also of interest. In the

conditional case, learning these orientations is even simpler. For each G1 adjacent

to P, it is sufficient to find a G2 not adjacent to P such that G2 is in the sepset of

G1 and P in order to orient the edge out of G1, and if such G2 does not exist, it is

sufficient to find a G2 not adjacent to P and adjacent to G1 in order to orient the

edge into G1. Algorithm 12, whose correctness follows from Theorems 3.11 and

3.12, learns the neighbours, spouses, and potential neighbours of the phenotype in a
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Algorithm 10 Skeleton identification for conditional genetic causal PAGs — part 2
out of 3. X ⊥ Y | Z denotes that nodes X and Y are m-separated given set of nodes
Z. ADd

S(X) is the set of nodes at distance d from node X in S.

16: for each 1≤ k ≤ n do
17: . Learn genotypes at distance 2 from the phenotype
18: for each G1 ∈Gk∩ADS(P) do
19: for each G2 ∈Gk \ADS(P) do
20: if G1 ∈ Sepset({G2,P}) or G1 ⊥G2 | Sepset({G2,P}) /∈ I(M) then
21: add edge G1 G2 to S
22: else
23: Sepset({G1,G2})← Sepset({G2,P})
24: end if
25: end for
26: end for
27: . Learn links between the genotypes at distance 2 from the phenotype
28: for each {G1,G2} ⊆Gk∩AD2

S(P) do
29: if |Sepset({G1,P})| ≤ |Sepset({G2,P})| then
30: S← Sepset({G1,P})
31: else
32: S← Sepset({G2,P})
33: end if
34: if G1 ⊥ G2 | S /∈ I(M) then
35: add edge G1 G2 to S
36: else
37: Sepset({G1,G2})← S
38: end if
39: end for

plausible conditional genetic causal PAG. Node X is a potential neighbour of node

Y in a mixed graph if edge X › Y exists.

Algorithm 12, like Algorithm 8, accepts a set of m-separations that is assumed

to be the set of m-separations in a plausible conditional genetic causal MAG. In

practice, however, m-separations are determined by performing hypothesis tests of

conditional independence on a random sample from the distribution of the variables,

as explained in Chapter 2. Algorithm 13 directly accepts a conditional genetic ran-

dom sample and controls the FDR of the nodes adjacent to the phenotype. Since

it not clear what error rate to control for the orientations and how to control it,

differentiating the nodes adjacent to the phenotype is not attempted by Algorithm

13.
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Algorithm 10 Skeleton identification for conditional genetic causal PAGs — part 3
out of 3. n is the number of chromosomes.
40: . Learn genotypes at distance 3 from the phenotype
41: for each G1 ∈Gk∩AD2

S(P) do
42: for each G2 ∈Gk \AD≤2

S (P) do
43: if G1 ⊥ G2 /∈ I(M) then
44: add edge G1 G2 to S
45: else
46: Sepset({G1,G2})← /0
47: end if
48: end for
49: end for
50: . Learn links between genotypes at distance ≥ 3 from the phenotype
51: for each {G1,G2} ⊆Gk \AD≤2

S (P) do
52: if G1 ⊥ G2 /∈ I(M) then
53: add edge G1 G2 to S
54: else
55: Sepset({G1,G2})← /0
56: end if
57: end for
58: end for

Theorem 3.13 (Correctness of Algorithm 13). Let G be a genetic causal DAG

with selection nodes over V = G∪{P}∪̇H∪̇S, M be the marginal/conditional of

G given S, P be the probability distribution of the variables in V, and M be the

marginal/conditional of P over G∪{P} given S = s. Suppose that Algorithm 13 is

applied to a sample D from M with FDR threshold q. The FDR among the nodes

in ÂD(P) is not greater than q if the following conditions are satisfied:

1. G and M satisfy the selection bias causal assumption.

2. All tests considered by the algorithm are reliable.

3. Performed tests never produce a type II error.

3.2.4 Estimating genetic causal effects

It would be appropriate to accompany the (upper bound of the) link-absence p-value

corresponding to each genotype discovered by Algorithm 13 with some causal ef-

fect. The following theorem is based on Theorem 2.6 and gives sufficient causal
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Algorithm 11 Edge orientation for conditional genetic causal PAGs. G is a set of
genotypes and P is a phenotype. P is an unoriented plausible genetic causal PAG
over G∪{P} in the input and a partially-oriented mixed graph over G∪{P} in the
output. Sepset is a map from pairs of variables in G∪{P} to subsets of variables in
G∪{P}. AdjP(X ,Y ) denotes that nodes X and Y are adjacent in P
Input: P and Sepset
Output: P

1: for each G1 ∈G do
2: if AdjP(G1,P) then
3: . Rule (1)
4: orient G1 ∗ ∗ P as G1 ∗ P
5: . Rule (2)
6: if ∃G2 ∈G\{G1} s.t. AdjP(G2,G1) and ¬AdjP(G2,P) then
7: if G1 ∈ Sepset({G2,P}) then
8: for each edge G1 ∗ ∗ X do
9: orient G1 ∗ ∗ X as G1 ∗ X

10: end for
11: else
12: for each edge G1 ∗ ∗ X do
13: orient G1 ∗ ∗ X as G1←∗ X
14: end for
15: end if
16: end if
17: else
18: . Rule (3)
19: for each edge G1 ∗ ∗ G2 do
20: orient G1 ∗ ∗ G2 as G1←∗ G2
21: end for
22: end if
23: end for

conditions for the genotypic CORs in the general population to equal the respective

genotypic ORs in the sampled population when there is a single logical selection

variable.

Theorem 3.14. Let S be a logical selection variable, M be a plausible conditional

genetic causal MAG over G∪{P} given {S}, P be the distribution of G∪{P}, Q,

Q be the conditional of P given S = true, and G1 ∈G. The genotypic CORs for G1

in P equal the respective genotypic ORs in Q if the following conditions are true:

1. G1 does not have a common cause with some cause G2 of P.
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Algorithm 12 Learn the neighbours, spouses, and potential neighbours of the phe-
notype in a plausible conditional genetic causal PAG. G is a set of genotypes and
P is a phenotype. M is a plausible conditional genetic causal MAG over G∪{P}.
I(M) is the set of m-separations in M. NE(P), CH(P), and PNE(P) are the neigh-
bours, spouses, and potential neighbours, respectively, of P in M. n is the number
of chromosomes. Gk is the subset of G on the k-th chromosome. I(M)[Gk∪{P}
is the subset of I(M) over Gk ∪{P}. X ⊥ Y | Z denotes that nodes X and Y are
m-separated given set of nodes Z.

Input: I(M)
Output: NE(P), CH(P), and PNE(P)

1: NE(P)← /0
2: CH(P)← /0
3: PNE(P)← /0
4: for each 1≤ k ≤ n do
5: . Learn nodes adjacent to P
6: let TAk(P) and SepsetP

k be the output of Algorithm 3 with I(M)[Gk∪{P} and
P as input.

7: . Differentiate nodes adjacent to P
8: for each G1 ∈ TAk(P) do
9: if ∃G2 ∈G\TAk(P) s.t. G1 ∈ SepsetP

k ({G2,P}) then
10: NE(P)← NE(P)∪{G1}
11: else if ∃G2 ∈Gk \TAk(P) s.t. G1 ⊥G2 | SepsetP

k ({G2,P}) /∈ I(M) then
12: CH(P)← CH(P)∪{G1}
13: else
14: PNE(P)← PNE(P)∪{G1}
15: end if
16: end for
17: end for

2. G1 is not a cause of S.

3. S is not a cause of G1.

4. G1 and S do not have a common cause.

3.3 Epistasis with absent marginal effects
Epistasis with weak or absent marginal effects is considered as a possible explana-

tion for the lack of discoveries in genetic studies. However, the literature is incon-

sistent when it comes to the exact definition of epistasis. Here, a general definition

is adopted: epistasis is the scenario in which the effect of a variable X on another

variable Y depends on a set Z of other variables [McKinney et al., 2006]. If the
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Algorithm 13 Estimate the genotype–phenotype links from a conditional genetic
random sample. G is a set of genotypes and P is a phenotype. D is a conditional
random sample over G∪{P}. 0 < α < 1 is the significance level for the hypothesis
tests of conditional independence performed by the algorithm. 0 < q < 1 is an FDR
threshold. I(D) is the set of m-separations among the variables in D as determined
by performing conditional independence tests on D. ÂD(P) is the estimated set of
genotypes adjacent of P in the true causal MAG over G∪{P}. n is the number of
chromosomes. Gk is the subset of G on the k-th chromosome. I(D)[Gk∪{P} is the
subset of I(D) over Gk∪{P}.
Input: D, α , q
Output: ÂD(P)

1: for each 1≤ k ≤ n do
2: let TAk(P) be the first output of Algorithm 3 with I(D)[Gk∪{P} and P as

input.
3: end for
4: let ÂD(P) be the result of applying an appropriate FDR-controlling procedure

to the maximal conditional-independence p-values corresponding to the geno-
types in

⋃
1≤k≤n TAk(P) to control the FDR of the genotypes below q

marginal effect of X to Y is weak, X might be overlooked in a statistical or machine-

learning analysis that does not take Z into account; if the effect is absent, X will be

overlooked. X might be discovered, however, if Z is considered as well.

In structure learning, the effect of a variable X on another variable Y may be

defined as the union of the effects of X on Y conditional on subsets of the rest

variables. If some conditional effects are weak (resp. absent), structure learning

might (resp. will) miss a link between X and Y . Clearly, epistasis with absent

marginal effects is a PIR with a marginal independence. In this work, dealing with

PIRs, and unfaithfulness in general, is not attempted. Nevertheless, a few examples

of PIRs are provided in order to illustrate cases where the algorithms developed in

this chapter will fail to discover nodes adjacent to the phenotype. Figures 3.3a and

3.3b show an example of a PIR with a marginal and a conditional independence,

respectively, in a plausible genetic causal DAG.

The definition of PIR can be extended to MAGs, where it is possible for a PIR

to be a bidirected edge. After marginalisation of a causal DAG, it is possible for a

PIR to be replaced by a set of new PIRs with potentially different depsets (Figure

3.4), no longer be a PIR (Figure 3.5), or become undetectable (Figure 3.6).
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G1 G2

P

{G1}

(a) G2 is marginally independent from P
but conditioning on G1 renders them
dependent; this is an example of epis-
tasis with absent marginal effects.

G1 G2 G3

H

P

{G1}

(b) G2 is marginally dependent to P
(through H and G3), conditioning
on G3 renders them independent,
and conditioning on {G3,G1} renders
them dependent again.

Figure 3.3: Example of a PIR with a (a) marginal and a (b) conditional independence in
a plausible genetic causal DAG. An edge labelled with D denotes a PIR with
depset D. Gi (1≤ i≤ 3) is a genotype, H is a common cause of G2 and G3, and
P is a phenotype.

H1 H2

G1 G2 G3 G4

P

{G2}

G1 G4

P

{G1}

Figure 3.4: Example of a PIR that is replaced by another with a different depset after
marginalisation of a plausible genetic causal DAG. The graph on the left is
a plausible genetic causal DAG, while the graph on the right is the plausible
genetic causal MAG over {G1,G4,P}. An edge labelled with D denotes a PIR
with depset D. Gi (1 ≤ i ≤ 4) is a genotype, H1 is a common cause of G1 and
G2, H2 is a common cause of G3 and G4, and P is a phenotype. PIR G3→ P
with depset {G2} in the DAG is replaced by PIR G4↔ P with depset {G1} in
the MAG.

In a genetic association study, pure epistasis among a set of variants means that

every variant is marginally independent from the disease but the variants are jointly

dependent to the disease; in the worst case, namely strict epistasis, no proper subset

of the variants is dependent to the disease [Jiang and Neapolitan, 2012]. Both types

of epistasis can be explained in terms of PIRs. In pure epistasis, one or more variants

has a PIR with a marginal independence with the disease and the depset of each PIR

is a subset of the variants with the rest PIRs. In strict epistasis, each variant in a set

of variants has a PIR with a marginal independence with the disease with all the
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H

G1 G2 G3

P

{G1}

G2 G3

P

Figure 3.5: Example of a PIR that is no longer a PIR after marginalisation of a plausi-
ble genetic causal DAG. The graph on the left is a plausible genetic causal
DAG, while the graph on the right is the plausible genetic causal MAG over
{G1,G2,P}. Gi (1≤ i≤ 3) is a genotype, H is a common cause of G1 and G2,
and P is a phenotype. An edge labelled with D denotes a PIR with depset D.
PIR G2→ P in the DAG is not a PIR in the MAG because G1, the only variable
that renders G2 and P independent in the DAG, is not present in the MAG.

G1 G2

P

{G1}

G2

P

Figure 3.6: Example of a PIR that becomes undetectable after marginalisation of a plau-
sible genetic causal DAG. The graph on the left is a plausible genetic causal
DAG, while the graph on the right is the plausible genetic causal MAG over
{G2,P}. G1 and G2 are genotypes and P is a phenotype. An edge labelled with
D denotes a PIR with depset D. PIR G2→ P in the DAG is undetectable in the
MAG: G2 and P are independent but there is no depset in the MAG to render
them dependent again.

other variants in the set as its depset. Figures 3.7a and 3.7b show an example of

pure and strict epistasis, respectively.

3.4 Simulation study
Using standard benchmark BNs , Aliferis et al. [2010a] demonstrated that instantia-

tions of symmetric GLL-PC (Algorithm 5), including MMPC, are superior (in terms

of power and FPR) to non-causal feature-selection algorithms in the task of parent-

and-children learning. Also using standard benchmarks, Armen and Tsamardinos

[2014] showed that FDR control of the output of the instantiation of LGL (Al-

gorithm 6) with MMPC is achieved with sufficient sample size when the CFC is

satisfied. Nevertheless, it would be of great interest to specifically evaluate the per-

formance of Algorithm 13 using realistic simulated genetic case–control datasets.
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G1 G2 G3

P

{G2} {G3} {G1,G2}

(a) Example of pure epistasis. Each genotype in {G1,G2,G3} is marginally inde-
pendent from P, but conditioning on G2, G3, and {G1,G2} renders G1, G2, and
G3, respectively, dependent to P.

G1 G2 G3

P

{G2,G3} {G1,G3} {G1,G2}

(b) Example of strict epistasis. Each genotype in {G1,G2,G3} is marginally inde-
pendent from P, but conditioning on the rest genotypes renders them dependent
to P.

Figure 3.7: Example of (a) pure and (b) strict epistasis in a plausible genetic causal MAG.
Gi (1 ≤ i ≤ 3) is a genotype and P is a phenotype. An edge labelled with D
denotes a PIR with depset D.

There are several genome-simulation packages available [Ritchie and Bush,

2010], which usually simulate population samples; in order to simulate case–

control samples, a disease model is independently specified and used to assign

disease status to the observations in a population sample. Clearly, this is grossly

inefficient for rare diseases; for a disease as rare as sCJD, one million observa-

tions have to be generated, on average, to obtain a case. Another drawback of the

available methods is that the true causal MAG over the observed variables is not

available. These methods therefore cannot be used to evaluate the performance of

the algorithms presented in this chapter, in general, because the learned structure

needs to be compared with the true causal MAG; it is not hard to see that only Al-

gorithm 13 can be evaluated and only when all causes of the disease are observed

(although this is the case in this simulation study anyway). To overcome these

drawbacks, a different approach is followed here: a CBN with hidden variables is

learned from a real genetic dataset and a disease node is attached to it; case–control

samples are then generated from the network using Bayesian-network inference to

compute the conditional distribution of the variants given each disease status. Us-
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ing this approach, case–control samples from a disease of any prevalence can be

efficiently generated and the MAG over a subset of the variants and the disease can

be obtained via marginalisation of the DAG. The approach was used to perform a

simulation study of the performance of Algorithm 13, whose details are explained

in the following sections. The study was conducted in MATLAB using additional

tools for some computations. For Bayesian-network inference, the junction tree

algorithm was used.

3.4.1 Learning a causal Bayesian network from a real genetic

sample

Currently, there are no large exome-sequencing datasets available from a certain

population (for example, only about 100 individuals are sequenced per population

in The 1000 Genomes Project).1 For this reason, a combined autosomal exome-

sequencing dataset of 1013 prion disease, Alzheimer’s disease, Huntington’s dis-

ease, frontotemporal dementia, and glaucoma cases with a white British back-

ground was obtained from the Prion Unit and assumed to be a random sample of the

white British population. The dataset was post-processed as follows. Only exonic

non-synonymous variants were retained using ANNOVAR [Wang et al., 2010b] and

GATK [McKenna et al., 2010]. Genomic coordinates were converted from build

(version) 18 of the reference human genome to build 38 using liftover2 and variants

in non-reference chromosomes, duplicate variants (defined as variants with the same

genomic coordinates), variants with all values missing in the dataset, monomorphic

variants (that is, variants with only one allele specified), and constant variants (that

is, variants with only one allele in the dataset) were removed. The resulting dataset

had 89030 variants.

For each autosome, the skeleton of the MAG over the variants was learned

by performing hypothesis tests of marginal independence between pairs of variants

within 500 kilobases (kb) of each other; variants on different chromosomes were

assumed to be independent (Assumptions 3.2 and 3.3), and variants on the same

1http://browser.1000genomes.org/index.html
2https://genome.ucsc.edu/cgi-bin/hgLiftOver

http://browser.1000genomes.org/index.html
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chromosome but further than 500 kb apart were assumed to be independent due to

the observation that LD decays considerably within 500 kb in humans [e.g. see Fig-

ure 3 in Ke et al., 2004]; both assumptions help to reduce false negatives and the

computational burden of the method. The G test with the degrees of freedom ad-

justment heuristic and determinism detection was used for the tests and the heuristic

power rule with h-ps = 5 was used as the reliability criterion for the tests. The FDR

of the combined skeleton over all autosomes was controlled below 5% using the

permutation method of Storey and Tibshirani [2001] with 100 permutations. When

it is possible to simulate null p-values (as is the case here, by independently permut-

ing the observations of each variant), the method of Storey and Tibshirani [2001]

provides a less conservative alternative to the BY procedure for controlling the FDR

under p-value dependence.

In an undirected graph, a clique is a set of nodes that are all adjacent to each

other; a clique is maximal if it is not a subset of another. Owing to Assumption 3.2,

variants that are adjacent in the skeleton have a hidden common cause. In order

to reduce computational complexity, it was assumed that all variants that form a

maximal clique in the skeleton have the same hidden common cause. For each au-

tosome, the maximal cliques of the skeleton were identified using the modification

of the Bron–Kerbosch algorithm by Eppstein et al. [2010]. A DAG over the variants

and a hidden variable for each maximal clique was then created with each hidden

variable set as a parent of the variants in the corresponding maximal clique. The

number of parents of each variant varied between 0 and 7928. Learning the CPD

of a node with 7928 parents is impossible, so for each variant with more than 3

parents, the parents were sorted in descending order based on the mean association

of the variant with the other children of the parent and only the top 3 parents were

retained.

To simplify parameter learning, the hidden variables were assumed to be cat-

egorical. Ideally, the number of levels of each hidden variable would be optimised

as in Chen et al. [2012]. In order to reduce computational time, however, the hid-

den variables were assumed to be ternary. Moreover, parameter learning was per-
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formed for chromosome 22 only using the Expectation–Maximisation (EM) algo-

rithm within the random-restart scheme of Maxwell Chickering and Heckerman

[1997] with 8 restarts only (instead of 64). Learning was performed independently

for each weakly-connected component of the DAG (that is, sets of nodes that are

mutually reachable by violating edge directions).

3.4.2 Attaching a disease node

Following the approach of the SIMLA simulator [Schmidt et al., 2005], a binary dis-

ease variable P was modelled as a logistic regression in functions f1(g1), . . . , fn(gn)

of the values g1, . . . ,gn of causal genotypes G1, . . . ,Gn:

P(P = affected | G1 = g1, . . . ,Gn = gn) =
exp(β0 +∑

n
i=1 ln(rri) fi(gi))

1+ exp(β0 +∑
n
i=1 ln(rri) fi(gi))

(3.1)

where β0 is the intercept, rri (1 ≤ i ≤ n) is the rare homozygous RR for gi, and

fi(gi) is defined as follows:

fi(gi),


0 if gi = AA

wi if gi = Aa

1 if gi = aa

where wi specifies the mode of inheritance for genotype Gi. For example, setting

wi = 0 specifies a recessive model, where a single copy of the rare allele has no

effect on the disease, setting wi = 0 specifies a dominant model, where a single

copy has the same effect as two copies, and wi = (ln(rri)− ln(2))/ ln(rri) specifies

an additive model, where a single copy has half of the effect of two copies. If the

prevalence of the disease

P(P = affected) = ∑
g1∈{AA,Aa,aa}

· · · ∑
gn∈{AA,Aa,aa}

P(P = affected | G1 = g1, . . . ,Gn = gn)P(G1 = g1, . . . ,Gn = gn)
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and the joint distribution P(G1, . . . ,Gn) of the causal genotypes is specified, equa-

tion 3.1 can be solved for the intercept β0 by finding the root of the following func-

tion using a numerical method such as Newton’s:

g(β0), P(P = affected)

− ∑
g1∈{AA,Aa,aa}

· · · ∑
gn∈{AA,Aa,aa}

exp(β0 +∑
n
i=1 ln(rri) fi(gi))

1+ exp(β0 +∑
n
i=1 ln(rri) fi(gi))

P(G1, . . . ,Gn)

First, the marginal distribution P(Gi) of each genotype was computed from

the CBN and the minor allele frequency (MAF) mafi of each variant was calculated

using the formula mafi = P(Gi = aa)+P(Gi = Aa)/2. For each of three MAF

ranges (0,0.01), [0.01,0.05), and (0.05,1), one variant was randomly selected as

a causal variant. Table 3.1 contains information about the causal variants. For all

of them, the rare homozygous RR was set to 10 and the heterozygous RR was set

to 5. The disease prevalence was set to 1/1000000 and the joint distribution of the

causal genotypes was computed from the CBN. After solving for the intercept, a

disease node with the resulting CPD was added to the network as a child of the

causal variant.

# RS# Position MAF RR FM #CC nCC IN nLD PD (CD) PD (AA)
1 rs192851961 44786481 0.0060 10 0.006 3663 1 0 0 0.01 0.15
2 rs202154713 50120597 0.0316 10 0.003 4055 91 3 3 0.74 1.00
3 rs7235 20319733 0.4265 10 0.023 458 34 2 3 0.99 1.00

Table 3.1: Causal variants in the simulation study of the performance of Algorithm 13,
ordered by MAF. RS# is the RS number of the variant in dbSNP. Position is on
chromosome 22. RR (aa) is the rare homozygous RR. FMdenotes the missing-
value frequency. #CC is the number of weakly-connected component. nCC
denotes the number of variants in the component. IN is the number of parents of
the variant. nLD denotes the number of variants in LD with the causal variant,
which is equal to the number of siblings of the variant (that is, variants that
share a parent with the variant). PD (CD) and PD (AA) denote the probability of
discovery in causal discovery and association analysis, respectively (see Section
3.4.4).

3.4.3 Sampling

Clearly, only the distribution of the variants in the weakly-connected component of

the DAG that contains the disease node differs between cases and controls; these
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variants are said to be relevant to the disease. The distribution of the rest variants

is unaffected by the disease status and is equal to the population distribution (which

is encoded by the CBN) in both cases and controls. Therefore, 100 samples with

1000 observations each were first generated from the network. The conditional

distribution of the relevant variants given each disease status (the distribution in

controls and cases, respectively) was then computed from the network, and 1000

samples with 500 observations were generated from each distribution. The three

sets of samples were subsequently combined to create a set of 100 case–control

samples.

Real genetic datasets contain missing values. To learn the CBN, data were im-

plicitly assumed to be missing completely at random. Under the same assumption,

for each variant, the same proportion of missing values as in the original dataset

was randomly set to missing in every case–control sample.

3.4.4 Results

Algorithm 13 was applied to each sample using non-symmetric MMPC (Algorithm

4) as the instantiation of Algorithm 3, the G test as in Section 3.4.1, and the ap-

proach of Armen and Tsamardinos [2014] with the BY procedure in order to control

the FDR of the nodes adjacent to the disease below 5%. The average power (the

expected proportion of rejected true null hypotheses among the true null hypothe-

ses) and the FDR were computed by approximating expectations by the respective

means across the samples and the probability of discovery of each causal variant

(listed in Table 3.1) was approximated by the respective relative frequency in the

samples. The average power was 0.58 and the FDR was 0, implying successful

control. While the common variant, rs7235, is almost always discovered, the rare

variant, rs192851961, is almost always not. The other variant, rs202154713, is dis-

covered with probability 0.74. Although rs7235 and rs202154713 are in LD with 3

non-causal variants each, the latter are not discovered, as expected.

Algorithm 13 was also applied with a maximal conditioning-set cardinality of

zero, making it equivalent to association analysis with the same test and reliability

criterion, followed by application of the BY procedure. The average power and the
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FDR with regard to causal variants was 0.75 and 0.092, respectively. The aver-

age power of association analysis is higher than that of causal discovery, which is

expected, as only marginal tests are performed for each variant. The nonzero FDR

implies that additional, non-causal variants are discovered. It turns out that the FDR

is solely due to the discovery with probability 0.28 of a variant in LD with rs7235.

The results of this simulation study show that Algorithm 13 is capable of dis-

covering causal variants and discarding definitely-non-causal ones while controlling

the FDR, in expense of reduced average power compared to association analysis.

3.5 Application to prion disease

Three autosomal datasets from the GWAS, two autosomal datasets from the exome-

sequencing study, and three autosomal datasets from the exome-array study in

prion disease were post-processed as in Section 3.4.1; selection of exonic non-

synonymous variants was only performed for the exome-sequencing datasets. Table

3.2 contains information about the post-processed datasets. Algorithm 13 was ap-

plied to each dataset as in Section 3.4.4. Table 3.3 lists the discoveries made from

each dataset.

Only PRNP codon 129 (rs1799990) was discovered from the GWAS datasets.

This is expected, as the SNPs in LD with rs1799990 discovered in the GWAS were

found to be independent from the disease given rs1799990 in the subsequent con-

ditional analysis. Two SNPs were discovered (rs73460769 and rs755431752) from

the UK sCJD and 22 discoveries were made from the UK vCJD exome-sequencing

dataset, including rs1799990 but neither rs73460769 or rs755431752. In the sCJD

dataset, rs1799990 was rendered independent from the disease by three SNPs that

were not discovered either. There were one, five, and seven discoveries from the

UK, German, and US sCJD exome-array dataset, respectively. All but three SNPs

were also discovered in the exome-array study but failed post-association quality

control (see Section B.3). SNPs rs45458098, rs200992486, and rs41311333 were

discovered by Algorithm 13 but not discovered in the exome-array study. SNP

rs45458098 was discovered from the German and the US dataset; rs200992486
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and rs41311333 were discovered from the German and US dataset, respectively.

Although the significance level was lower in the exome-array study (10−6 vs.

5.54 · 10−9 and 1.87 · 10−8 in the sCJD and vCJD datasets, respectively, as deter-

mined by the FDR-controlling procedure) and thresholding was applied to associa-

tion, not link-absence p-values, these three SNPs did not achieve significance in the

exome-array study. In that study, however, the observations were taken to be the

gametes of the individuals, not the individuals themselves, and association analysis

was performed using Fisher’s exact test, not the G test.

The experiment was repeated with a maximal conditioning-set cardinality of

zero. There were 5, 3, 2, 469, 6407, 3, 7, and 16 discoveries from the respective

datasets in Table 3.2, highlighting the utility of causal-discovery methods in dis-

carding definitely-non-causal variants.

For each dataset, the SNPs discovered by Algorithm 13 were used as features

in training a support vector machine (SVM) [Cristianini and Shawe-Taylor, 2000]

using the default parameters in MATLAB. Since SVMs work with continuous fea-

tures, 1-of-k encoding (here k = 3) was used to convert genotypes to features: three

features were constructed per SNP, with AA, Aa, and aa represented as (1,0,0),

(0,1,0), and (0,0,1), respectively. Individuals with any of these genotypes missing

were removed, because SVMs cannot handle missing data. The number of cases,

controls, and individuals in each resulting dataset and the corresponding mean area

under the curve (AUC) [Fawcett, 2003] across 5 cross-validation folds is listed in

Table 3.4. The low AUCs indicate that the discovered SNPs are not good predictors

of the disease, which indicates that additional causal variants remain to be discov-

ered.

3.6 Related work

Three other works on constraint-based learning from genetic datasets are discussed

below. All of them assume causal sufficiency; the first two assume that the CFC

holds and the third one deals with information equivalences. Unlike Algorithm 13,

the algorithms in those works are not applied to each chromosome independently
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# Pop. Dis. Type Controls b n1 n2 n m
1 UK sCJD GWAS WTCCC2 18 524 5200 5724 499653
2 UK vCJD GWAS WTCCC2 18 125 5200 5325 499545
3 DE sCJD GWAS KORA-gen 18 634 815 1449 479379
4 UK sCJD ES HD+FTD+Glaucoma 19 224 663 887 381354
5 UK vCJD ES HD+FTD+Glaucoma 19 97 663 760 337069
6 UK sCJD EA GERAD 19 622 822 1444 84496
7 DE sCJD EA KORA-gen 19 719 2757 3476 103638
8 US sCJD EA Coriell 19 814 840 1654 91109

Table 3.2: Genetic case–control datasets from prion disease on which Algorithm 13 was ap-
plied. Pop. and Dis. stands for population and disease, respectively. ES and EA
stand for exome sequencing and exome array, respectively. The controls used are
indicated in the respective column. WTCCC2 refers to controls from Wellcome
Trust Case Control Consortium 2 [Burton et al., 2007], KORA-gen to controls
from the KORA-gen resource [Wichmann et al., 2005]. HD+FTD+Glaucoma
to Huntington’s disease, frontotemporal dementia, and glaucoma cases from the
Prion Unit, GERAD to controls from the GERAD Consortium (Genetic and Envi-
ronmental Risk in Alzheimer’s Disease), and Coriell to controls from the Coriell
Institute for Medical Research. All cases are from the Prion Unit. b denotes
the build of the human genome used in the datasets before conversion to build
38 (which is the successor of build 19). n1, n2, n, and m denote the number of
cases, controls, individuals, and variants, respectively.

and no multiple-testing correction is performed. Finally, no theory was formulated

about the causal relationships between the variables in the genetic datasets, causal

effects were not discussed, and no simulation was performed.

Like non-symmetric MMPC used here, DASSO-MB (Detection of ASSOcia-

tions using Markov Blanket) [Han et al., 2010] is an instantiation of non-symmetric

GLL-PC; however, no theoretical justification is given for the lack of symmetry

correction. Applied to simulated datasets with 100 SNPs and 2000 individuals from

three disease models with two causal SNPs, the output of DASSO-MB was cor-

rect (all true positives and no false positives were identified) more often than the

output of well-established methods Multifactor Dimensionality Reduction (MDR),

step-PLR, and Bayesian epistasis association mapping (BEAM), and a Support Vec-

tor Machine (SVM) approach. The algorithm was also applied to a real case–control

GWAS dataset from Age-related Macular Degeneration (AMD) with 91,495 SNPs

and 146 individuals from which association analysis had identified two associated

SNPs; one of the SNPs and some other SNP were identified.
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The FEPI-MB (Fast EPistatic Interactions detection using Markov Blanket)

algorithm [Han et al., 2011] assumes that the phenotype has no children. When

this is the case, it follows from the proof of Theorem 2.2 that, if the phenotype

P and genotype G are d-separated by a subset of the rest genotypes, then P and

G are d-separated by the set of parents of P. Therefore, non-symmetric GLL-

PC can be used and in the elimination phase it is sufficient to check whether

T ⊥ Y | TA(T ) \ {Y} ∈ I(G) in order to remove Y from TA(T ). FEPI-MB (Al-

gorithm 14) is an instantiation of this variation of non-symmetric GLL-PC. Based

on the results of this chapter, FEPI-MB is incorrect for both unconditional and con-

ditional genetic samples. Consider the plausible genetic causal MAG of Figure 3.8a.

If G2 enters TA(T ) first, then G1 and G3 would follow and would never be removed

from TA(T ). Therefore, FEPI-MB would incorrectly discover G3. The same is true

for the plausible conditional genetic causal MAG of Figure 3.8b. This shows the

importance of a solid theoretical basis for algorithms learning from real data. In

any case, FEPI-MB was shown to outperform BEAM, SVM, and MDR in the same

experimental setup as in Han et al. [2010] using one more model with three loci

and epistasis with weak marginal effects. Applied to an AMD dataset with 97,327

SNPs, FEPI-MB discovered one GWAS hit and one more SNP.

G1 G2 G3

P

(a) Example of a plausible genetic causal
MAG where the output of the FEPI-
MB algorithm may be incorrect.

G1 G2 G3

P

(b) Example of a plausible conditional
genetic causal MAG where the output
of the FEPI-MB algorithm may be in-
correct.

Figure 3.8: Example of a plausible genetic causal MAG (a) and a plausible conditional ge-
netic causal MAG (b) where the output of the FEPI-MB algorithm (Algorithm
14) may be incorrect. Gi (1≤ i≤ 3) is a genotype and P is a phenotype. If G2
enters TA(T ) first, then G1 and G3 would follow and would never be removed
from TA(T ).

Alekseyenko et al. [2011] applied an instantiation of TIE* to a case–control

GWAS dataset in rheumatoid arthritis with 490,073 SNPs and 2044 individuals.
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Algorithm 14 The FEPI-MB algorithm [Han et al., 2011]. V is a set of random
variables. G is a DAG over V. I(G) is the set of d-separations in G. T ∈ V is the
target variable. X ⊥ Y | Z denotes that nodes X and Y are d-separated given set of
nodes Z. assoc(X ,Y | Z) denotes the association of variables X and Y given set of
variables Z.
Input: I(G) and T
Output: TA(T )

1: . Initialisation
2: TA(T )← /0
3: OPEN(T )← V\{T}
4: repeat
5: . Insertion phase
6: for each Y ∈OPEN(T ) s.t. T ⊥ Y | TA(T ) ∈ I(G) do
7: OPEN(T )←OPEN(T )\{Y}
8: end for
9: W ← argmaxW∈OPEN(T ) assoc(T,W | TA(T ))

10: TA(T )← TA(T )∪{W}
11: OPEN(T )←OPEN(T )\{W}
12: . Elimination phase
13: for each Y ∈ TA(T ) s.t. T ⊥ Y | TA(T ) ∈ I(G) do
14: TA(T )← TA(T )\{Y}
15: end for
16: until OPEN(T ) = /0

They discovered two five-SNP Markov boundaries of the phenotype sharing four

SNPs and having six SNPs in total; the unique SNPs in each Markov boundary

were in perfect LD with each other, that is, their relation was deterministic. Five

of the SNPs are from a locus already implicated in the disease, and four of the

SNPs had achieved significance in a meta-analysis of the disease. The SNPs were

subsequently used to build a predictive model with an AUC of 0.81. Finally, the

SNPs rendered all other previously SNPs known to be associated with the disease

independent from the disease.

3.7 Summary and future work
The theoretical work in this chapter culminated in the development of a specialised

algorithm (Algorithm 13) for learning FDR-controlled genotype–phenotype links

from a genetic case–control sample. A Bayesian-network-based simulator of real-

istic genetic case–control datasets was created and used to evaluate the algorithm’s
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performance before its application to datasets from prion disease. In the case of the

GWAS datasets, the algorithm successfully discarded SNPs that are not causal of

the disease but associated with it through PRNP codon 129 (rs1799990). The algo-

rithms developed in the next chapter for learning from genetic datasets with over-

lapping sets of variants are based on the theory developed in this chapter. Note that

this theory is applicable, with minor modifications, to other types of cross-sectional

datasets (datasets whose variables are measured at a specific point in time) as well,

assuming that there is no instantaneous causation. For example, a case–control

gene-expression dataset is defined over a set of gene expressions and a phenotype.

Since expression is measured at a specific point in time for all genes, it may be

assumed that no gene expression is a cause of another.

Future work includes adapting Algorithm 13 to output the orientation of

genotype–phenotype edges after performing appropriate multiple-testing correc-

tions and developing algorithms that deal with PIRs and information equivalences

in genetic sets of variables. In addition, a CBN could be learned for all autosomes

from the exome-sequencing dataset of Section 3.4.1 performing more than 8 restarts

of the EM algorithm this time, in order to ensure a better fit. A network could be

also learned from a GWAS dataset. Further simulation studies would use samples

of various sizes from these networks and explore different disease models, where

some of the causal variants may be hidden. For additional realism, a molecular

entity of the cell may be chosen to be disrupted in the disease and only variants in

genes whose products have a known causal path to the entity may be selected as

causal. For this purpose the graph developed in Chapter 5 may be used.
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D# n1 n2 n m AUC
1 522 5197 5719 1 0.50
2 125 5197 5322 1 0.50
3 633 812 1445 1 0.63
4 139 439 578 2 0.62
5 7 3 10 22 N/A
6 622 822 1444 1 0.52
7 719 2757 3476 5 0.58
8 795 840 1635 7 0.68

Table 3.4: Datasets from which SVMs were trained and corresponding mean AUC across
5 cross-validation folds, with N/A denoting that the mean AUC could not be
computed due to the number of cases or controls being less than 5. The datasets
were constructed from the ones in Table 3.2 by selecting the SNPs discovered
by Algorithm 13, removing individuals with missing values for those SNPs, and
performing 1-of-3 encoding of the genotypes. D# is the dataset number in Table
3.2. n1, n2, n, and m denote the number of cases, controls, individuals, and SNPs
discovered by Algorithm 13, respectively.



Chapter 4

Causal discovery from genetic

datasets with overlapping sets of

variants

In this chapter, an algorithm is devised that, given a set of conditional genetic ran-

dom samples with the same phenotype and overlapping sets of variants, identifies

all conditional genetic causal PAGs over all variables that are consistent with the

samples. Since the causal relationships between the variants and the phenotype are

of primary interest, an algorithm is developed that identifies all causal relationships

between variants and phenotype that are consistent with the samples. Finally, an

algorithm that learns the FDR-controlled genotype–phenotype links that are con-

sistent with the samples is presented and applied to a combination of datasets from

prion disease.

4.1 Learning consistent plausible conditional genetic

causal MAGs
Given a set of conditional genetic random samples with the same phenotype and

overlapping sets of variants, an algorithm such as IOD can be used to learn the

PAGs that are consistent with the samples. However, it is the set of consistent plau-

sible conditional genetic causal PAGs that is of interest here. Consistent plausible

conditional genetic causal MAGs and PAGs are formally defined as follows.
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Definition 4.1 (Consistent plausible conditional genetic causal MAG). Let M be a

plausible conditional genetic causal MAG defined over a set of variables G∪{P},

G1, . . . ,Gn ⊆ G (n ≥ 1), and Mk is the marginal of M over Gk ∪{P} (1 ≤ k ≤ n).

A plausible conditional genetic causal MAG N over G∪{P} is said to be consistent

with M1, . . . ,Mn if for each 1 ≤ k ≤ n the marginal of N over Gk ∪{P} is Markov

equivalent to Mk.

Definition 4.2 (Consistent maximally-informative plausible conditional genetic

causal PAG). Let M be a plausible conditional genetic causal MAG defined over

a set of variables G∪{P}, G1, . . . ,Gn ⊆ G (n ≥ 1), and Mk is the marginal of M

over Gk∪{P} (1≤ k ≤ n). A maximally-informative plausible conditional genetic

causal PAG Q over G∪{P} is said to be consistent with M1, . . . ,Mn if the mem-

bers of the class of plausible conditional genetic causal MAGs represented by Q are

consistent with M1, . . . ,Mn.

Note that, by definition of plausible conditional genetic causal MAG and com-

mutativity of MAG marginalisation, the marginal of a plausible conditional genetic

causal MAG over a subset of the genotypes and the phenotype is itself a plausible

conditional genetic causal MAG. One way to obtain the consistent plausible condi-

tional genetic causal PAGs would be to filter the output of IOD. Another approach

would be to directly search for them. Algorithm 15 is inspired by IOD and proved

to be sound (Theorem 4.1) and complete (Theorem 4.2), in the sense that it returns

all and only consistent plausible conditional genetic causal PAGs. Each part of the

algorithm is described below.

• Part 1: Algorithms 10 and 11 are first used to learn the plausible conditional

genetic causal PAGs P1, . . . ,Pn over the sets of overlapping sets of variables

and then a partially-oriented mixed graph L over all variables is created which

provably contain a superset of the links and a subset of the orientations in

every consistent plausible conditional genetic causal PAG. Notably, edge G

P exists in L if it exists in some Pk (1≤ k ≤ n).

• Part 2: Edges that violate Condition (6) of Theorem 3.10 and edges whose



4.1. Learning consistent plausible conditional genetic causal MAGs 107

existence is provably equivalent to the existence of an inducing path with

respect to G\Gk and /0 between non-existent genotype–phenotype links in Pk

are removed from L.

• Part 3: A set R1 of “removable” genotype–phenotype links and a set R2 of

“removable” genotype–phenotype links are created; the other, “fixed” links

in L are provably present in every consistent plausible conditional genetic

causal PAG. It turns out that all G P edges in L are fixed.

• Parts 4 and 5: Every subgraph S of L containing the fixed links, a subset

of the links in R1, and a subset of the links in R2 such that Condition (4)

of Theorem 3.10 is not violated is considered; subgraphs that violate condi-

tions (5)–(7) of Theorem 3.10 are ignored and additional orientations are per-

formed in order to satisfy conditions (3) and (5) of Theorem 3.10 and prevent

edges whose existence is provably equivalent to the existence of an inducing

path with respect to G\Gk and /0 between non-existent genotype–phenotype

links in Pk. At the end of part 5, S provably contains the orientations at P, the

orientations at a subset of the unshielded genotypes adjacent to P, the orienta-

tions at the genotypes not adjacent to P, and no orientations at the remaining

genotypes.

• Part 6: All orientations at the remaining unshielded genotypes adjacent to

P that satisfy Condition (2) of Theorem 3.10 are considered, each provably

resulting in a plausible conditional genetic causal PAG Q. Q does not contain

any inducing path with respect to G\Gk and /0 corresponding to a non-existent

genotype–phenotype link in Pk or, as it turns out, any inducing path with

respect to G \Gk and /0 corresponding to a non-existent genotype–genotype

link in Pk. Q already contains an inducing path with respect to G \Gk and

/0 corresponding to every edge G P in Pk, since the edge also exists in Q.

If there is an inducing path with respect to G\Gk and /0 in Q corresponding

to every edge G← P or G › P in Pk, it turns out that Q also contains an

inducing path with respect to G\Gk and /0 corresponding to each genotype–
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genotype link in Pk. Thus, owing to Theorem 2.4, if N is a member of the

class of plausible conditional genetic causal MAGs represented by Q, then the

marginal Nk of N over Gk∪{P} has the same skeleton as Mk. In addition, Nk

provably has the same orientations as Mk at unshielded genotypes adjacent to

P. Theorem 3.9 therefore implies that Q is consistent with M1, . . . ,Mn; thus,

it is added to the output of the algorithm.

Correctness of Algorithm 15 follows directly from the two theorems below.

Theorem 4.1 (Soundness of Algorithm 15). In the output of Algorithm 15, Q is

a set of maximally-informative plausible conditional genetic PAG over O that are

consistent with M1, . . . ,Mn.

Theorem 4.2 (Completeness of Algorithm 15). In the output of Algorithm 15, Q

is a superset of the set of maximally-informative plausible conditional genetic PAG

over O that are consistent with M1, . . . ,Mn.

As a specialised algorithm, Algorithm 15 is expected to be faster than IOD

and cSAT+/COmbINE. A performance comparison, however, is not attempted here.

The reason for developing the algorithm was to get useful insights for devising the

local-learning algorithm of the next section.

4.2 Learning consistent genotype–phenotype rela-

tionships
It is not of much interest to learn whole consistent plausible conditional genetic

causal PAGs; only the consistent genotype–phenotype relationships can be learned

instead. As discussed above, G P edges in L at line 25 of Algorithm 15 are

fixed: they exist in every consistent plausible conditional genetic causal PAG. As

it turns out (see proof of Theorem 4.3), “removable” G← P and G › P edges in

L at line 25 (that is, edges between genotype–phenotype pairs in R1 constructed at

line 42) are truly removable in the sense that, for each such edge, some consistent

plausible conditional genetic causal PAGs contain the edge while the others do not.

Moreover, fixed G← P and G › P edges in L at line 25 (that is, edges between
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Algorithm 15 Learn consistent plausible conditional genetic causal PAGs — part 1
out of 6. G is a set of genotypes and P is a phenotype, O = G∪{P}, and M is a
plausible conditional genetic causal MAG defined over O. G1, . . . ,Gn ⊆G (n≥ 1).
Ok = Gk∪{P}, Mk is the marginal of M over Gk∪{P} and I(Mk) is the set of m-
separations in Mk (1≤ k≤ n). In the output, Q is the set of maximally-informative
plausible conditional genetic PAGs over O that are consistent with M1, . . . ,Mn.
AdjG(X ,Y ) denotes that nodes X and Y are adjacent in graph G. ADG(X) is the
set of nodes adjacent to node X in graph G. chr(G) is the chromosome of genotype
G.
Input: I(Mk), . . . ,I(Mk)
Output: Q

1: for each 1≤ k ≤ n do
2: let Pk be the output of Algorithm 11 applied to the output of Algorithm 10

with I(Mk) as input
3: end for
4: let L be the empty partially-oriented mixed graph over O
5: for each {X ,Y} ⊆O s.t. ∀ 1≤ k ≤ n : {X ,Y} ⊆Ok =⇒ AdjPk

(X ,Y ) do
6: add edge X ˛ Y to L
7: end for
8: for each G ∈ ADL(P) do
9: . Apply orientation Rule (1)

10: orient G ∗( P as G ∗ P
11: . Transfer orientations from P1, . . . ,Pn
12: if ∃k s.t. G ∈Gk and G ∗ P in Pk then
13: for each edge G ›∗ X in L do
14: orient G ›∗ X as G ∗ X
15: end for
16: else if ∃k s.t. G ∈Gk and G←∗ P in Pk then
17: for each edge G ›∗ X in L do
18: orient G ›∗ X as G←∗ X
19: end for
20: end if
21: end for
22: . Apply orientation Rule (3)
23: for each edge G1 ›∗ G2 in L s.t. ¬AdjL(G1,P) do
24: orient G1 ›∗ G2 as G1←∗ G2
25: end for
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Algorithm 15 Learn consistent plausible conditional genetic causal PAGs — part 2
out of 6. chr(G) is the chromosome of genotype G. IP stands for inducing path.
26: . Prevent violations of Condition (6) of Theorem 3.10
27: for each edge G1 ∗ ∗ G2 in L do
28: if {G1,G2} 6⊆ ADL(P) and chr(G1) 6= chr(G2) then
29: remove G1 ∗ ∗ G2 from L
30: end if
31: end for
32: . Prevent IPs corresponding to genotype–phenotype non-adjacencies
33: for each edge G1 ∗ G2 in L s.t. G1 /∈ ADL(P) do
34: if ∃k s.t. G1 ∈Gk, G2 /∈Gk, and G1 /∈ ADPk(P) then
35: remove G1 ∗ G2 from L
36: end if
37: end for

Algorithm 15 Learn consistent conditional genetic causal PAGs — part 3 out of
6. NEG(P), CHG(P), and PNEG(P) is the set of neighbours, children, and po-
tential neighbours, respectively, of node X in partially-oriented mixed graph G.
chrENEG

L(P) is the set of neighbours and potential neighbours (extended neigh-
bours) of P that are on the same chromosome as G in L.
38: R1← /0
39: . Find removable genotype–phenotype links
40: for each G ∈ CHL(P)∪PNEL(P) do
41: if ∀ 1≤ k ≤ n : {G}∪ chrENEG

L(P)* Gk then
42: add {G,P} to R1
43: end if
44: end for
45: . Find removable genotype–genotype links
46: R2← /0
47: for each {G1,G2} ⊆ ADL(P) s.t. {G1,P} ⊆ R1 or {G2,P} ⊆ R1 do
48: add {G1,G2} to R2
49: end for
50: for each {G1,G2} ⊆G s.t. {G1,G2} 6⊆ ADL(P) and AdjL(G1,G2) do
51: if ∀ 1≤ k ≤ n : {G1,G2}* Gk or {G1,G2} ⊆ ADPk(P) then
52: add {G1,G2} to R2
53: end if
54: end for



4.2. Learning consistent genotype–phenotype relationships 111

Algorithm 15 Learn consistent conditional genetic causal PAGs — part 4 out of 6.

55: for each E1 ∈ 2R1 do
56: E3←{{G1,G2} ⊆ ADL(P) s.t. {G1,P} /∈ E1 and {G2,P} /∈ E1}
57: for each E2 ∈ 2R2\E3 do
58: Let S be the subgraph of L without edges between pairs in E1∪E2
59: f lag← true
60: . Detect violations of Condition (5) of Theorem 3.10
61: for each edge G3 ∈ NES(P) do
62: if ∃{G1,G2} ⊆ (G\ADS(P))∩ADS(G3) s.t. ¬AdjS(G1,G2) then
63: f lag← f alse
64: break
65: end if
66: end for
67: if ¬ f lag then
68: continue
69: end if
70: . Detect violations of Condition (6) of Theorem 3.10
71: for each edge G1 ∗ ∗ G2 in S do
72: if {G1,G2} 6⊆ ADS(P) and chr(G1) 6= chr(G2) then
73: f lag← f alse
74: break
75: end if
76: end for
77: if ¬ f lag then
78: continue
79: end if
80: . Detect violations of Condition (7) of Theorem 3.10
81: if ∃ shielded G ∈ NES(P)∪SPS(P) then
82: continue
83: end if

genotype–phenotype pairs not in R1) are truly fixed in the sense that they exist in

every consistent plausible conditional genetic causal PAG. Algorithm 16 is based on

these results and outputs the fixed neighbours, fixed children, fixed potential neigh-

bours, removable children, and removable potential neighbours of the phenotype

in a plausible conditional genetic causal MAG. The fixed neighbours, fixed chil-

dren, and fixed potential neighbours of the phenotype are neighbours, children, and

potential neighbours, respectively, in every consistent plausible conditional genetic

causal PAG. The removable children and removable potential neighbours of the

phenotype are children and potential neighbours, respectively, in some but not all
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Algorithm 15 Learn consistent conditional genetic causal PAGs — part 5 out of 6.
84: . Apply orientation Rule (3) to satisfy Condition (3) of Theorem 3.10
85: for each edge G1 ›∗ G2 in S s.t. G1 /∈ ADS(P) do
86: orient G1 ›∗ G2 as G1←∗ G2
87: end for
88: . Prevent IPs corresponding to genotype–phenotype non-adjacencies
89: for each edge G1 ∗( G2 in S s.t. G1 /∈ ADL(P) do
90: if ∃k s.t. G1 ∈Gk, G2 /∈Gk, and G1 /∈ ADPk(P) then
91: for each edge G2 ›∗ X in S do
92: orient G2 ›∗ X as G2←∗ X
93: end for
94: end if
95: end for
96: . Prevent violations of Condition (5) of Theorem 3.10
97: for each edge G3 ∈ PNES(P) do
98: if ∃{G1,G2} ⊆ (G\ADS(P))∩ADS(G3) s.t. ¬AdjS(G1,G2) then
99: for each edge G3 ›∗ X in S do
100: orient G3 ›∗ X as G3←∗ X
101: end for
102: end if
103: end for

consistent plausible conditional genetic causal PAGs.

Theorem 4.3 (Correctness of Algorithm 16). Let M be a plausible conditional ge-

netic causal MAG defined over a set of variables G∪{P}, G1, . . . ,Gn ⊆G (n≥ 1),

and Mk is the marginal of M over Gk∪{P}. If I(Mk), . . . ,I(Mk) is the input of Al-

gorithm 16, then in the output, fNE(P), fCH(P), fPNE(P), rCH(P), and rPNE(P)

are the fixed neighbours, fixed children, fixed potential neighbours, removable chil-

dren, and removable potential neighbours, respectively, of P in the conditional ge-

netic causal PAGs consistent with M1, . . . ,Mn.

Algorithm 16, as Algorithm 15, accepts a set of sets of m-separations that

are assumed to be the sets of m-separations in marginals of a plausible conditional

genetic causal MAG. In contrast, Algorithm 17 directly accepts a set of conditional

genetic random samples and controls the FDR of the genotypes whose adjacency

with the phenotype is consistent with the samples. Compared to learning from

single genetic datasets, it is even less clear how to assess the confidence on the

orientations. Learning the orientations is, therefore, not attempted by Algorithm 17.
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Algorithm 15 Learn consistent conditional genetic causal PAGs — part 6 out of 6.

104: U←{unshielded G ∈ PNES(P)}
105: for each W ∈ 2U do
106: Q← S
107: for each edge G ›∗ X in Q s.t. G ∈W do
108: orient G ›∗ X as G ∗ X
109: end for
110: for each edge G ›∗ X in Q s.t. G ∈ U\W do
111: orient G ›∗ X as G←∗ X
112: end for
113: . Ensure there are IPs corresponding to G← P and G › P edges
114: f lag← true
115: for each 1≤ k ≤ n do
116: for each G1 ∈ CHPk(P)∪PNEPk(P) do
117: if G1 /∈ ADQ(P) and @ G1 ∗ G2 s.t. G2 /∈Gk in Q then
118: f lag← f alse
119: break
120: end if
121: end for
122: if ¬ f lag then
123: break
124: end if
125: end for
126: if f lag then
127: Q←Q∪Q
128: end if
129: end for
130: end for
131: end for

Since Algorithm 17 uses the meta-analytic test in Algorithm 7, there is a potential

for increased power.

Theorem 4.4 (Correctness of Algorithm 17). Let G be a genetic causal DAG with

selection nodes defined over a set of variables V = G ∪ {P}∪̇H∪̇S, M be the

marginal/conditional of G given S, G1, . . . ,Gn ⊆ G (n ≥ 1), Mk be the marginal

of M over G \Gk, P be the probability distribution of the variables in V, M be

the marginal/conditional of P over G∪{P} given S = s, and Mk be the marginal

of M over G\Gk. Suppose that Algorithm 17 is applied to D1, . . . ,Dn, where Dk is

a sample from Mk, with FDR threshold q. The FDR among the nodes in ĉAD(P) is

not greater than q if the following conditions are satisfied:
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Algorithm 16 Learn the fixed neighbours, fixed children, fixed potential neigh-
bours, removable children, and removable potential neighbours of the phenotype. G
is a set of genotypes and P is a phenotype, and M is a plausible conditional genetic
causal MAG defined over G∪{P}. G1, . . . ,Gn ⊆G (n≥ 1). Mk is the marginal of
M over Gk∪{P} and I(Mk) is the set of m-separations in Mk (1≤ k≤ n). fNE(P),
fCH(P), fPNE(P), rCH(P), and rPNE(P) is the set of fixed neighbours, fixed
children, fixed potential neighbours, removable children, and removable potential
neighbours, respectively, of P in the conditional genetic causal PAGs consistent
with M1, . . . ,Mn. Gk is the subset of G on the k-th chromosome.

Input: I(M1), . . . ,I(Mn)
Output: fNE(P), fCH(P), fPNE(P), rCH(P), and rPNE(P)

1: for each 1≤ k ≤ n do
2: let NEk(P), CHk(P), and PNEk(P) be the output of Algorithm 12 with

I(Mk) as input
3: end for
4: . Learn genotypes whose adjacency with P is consistent
5: cAD(P)← /0
6: for each G ∈G do
7: if ∀ 1≤ k ≤ n : G ∈Gk =⇒ G ∈ NEk(P)∪CHk(P)∪PNEk(P) then
8: cAD(P)← cAD(P)∪{G}
9: end if

10: end for
11: . Learn fixed neighbours of P; these are all the consistent neighbours of P
12: fNE(P)←

⋃
1≤k≤n NEk(P)

13: . Get consistent children of P
14: cCH(P)← cAD(P)∩

⋃
1≤k≤n CHk(P)

15: . Get consistent potential neighbours of P
16: cPNE(P)← cAD(P)\ fNE(P)\ cCH(P)
17: . Get consistent extended neighbours (neighbours and potential neighbours) of

P
18: cENE(P)← fNE(P)∪ cPNE(P)
19: . Differentiate between fixed and removable children of P
20: rCH(P)←{G ∈ cCH(P) s.t. ∀ 1≤ k≤ n : ({G}∪cENE(P))∩Gchr(G) * Gk}
21: fCH(P)← cCH(P)\ rCH(P)
22: . Differentiate between fixed and removable potential neighbours of P
23: rPNE(P)← {G ∈ cPNE(P) s.t. ∀ 1 ≤ k ≤ n : ({G}∪ cENE(P))∩Gchr(G) *

Gk}
24: fPNE(P)← cPNE(P)\ rPNE(P)
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Algorithm 17 Estimate the genotype–phenotype links consistent with a set of con-
ditional genetic random samples with overlapping sets of variants. G is a set of
genotypes and P is a phenotype. G1, . . . ,Gn ⊆ G (n ≥ 1). Di is a conditional ran-
dom sample defined over Gi∪{P}. 0 < α < 1 is the significance level for the hy-
pothesis tests of conditional independence performed by the algorithm. 0 < q < 1
is an FDR threshold. ĉAD(P) is the estimated set of genotypes whose adjacency
with P in the true causal MAG over G∪{P} is consistent with D1, . . . ,Dn. m is the
number of chromosomes. G j

i is the subset of Gi on the j-th chromosome. I(D) is
the set of m-separations among the variables in dataset D as determined by Algo-
rithm 7 applied to D with significance level α . I(Di)[G j

i∪{P}
is the subset of I(Di)

over G j
i ∪{P}.

Input: D1, . . . ,Dn, α , q
Output: ĉAD(P)

1: for each 1≤ i≤ n do
2: for each 1≤ j ≤ m do
3: let TA j

i (P) be the first output of Algorithm 3 with I(Di)[G j
i∪{P}

and P as
input

4: end for
5: TAi(P) =

⋃
1≤ j≤m TA j

i (P)
6: end for
7: ĉAD(P)← /0
8: for each G ∈G do
9: if ∀ 1≤ i≤ n : G ∈Gi =⇒ G ∈ TAi(P) then

10: ĉAD(P)← ĉAD(P)∪{G}
11: end if
12: end for
13: apply an appropriate FDR-controlling procedure to the maximal conditional-

independence p-values corresponding to the genotypes in ĉAD(P) to control
the FDR of the genotypes at q

1. G and M satisfy the selection bias causal assumption.

2. All tests considered by the algorithm are reliable.

3. Performed tests never produce a type II error.

4.3 Application to prion disease
Algorithm 17 cannot be directly applied to any combination of the datasets in Table

3.2, because Fisher’s method (used in Algorithm 7) assumes that the datasets are

independent and the datasets in Table 3.2 of each type from a certain population
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and disease happen to share cases. Therefore, duplicate cases across the datasets

must be removed prior to causal discovery. Figure 4.1 visualises the overlap of

cases between datasets of each type in Table 3.2 for each population and disease.

There is no value in co-analysing German sCJD or UK vCJD datasets since the

overlap between cases is quite large. Furthermore, it is preferable to co-analyse

the UK sCJD GWAS dataset with the UK sCJD exome-array dataset over the UK

sCJD exome-sequencing dataset, since the former contains 202 unique cases and

the latter contains 152. Thus, Algorithm 17 was applied to the UK sCJD GWAS,

German sCJD GWAS, UK sCJD exome-array, and US sCJD exome-array datasets

after removing cases from the UK sCJD exome-array dataset that are also present

in the UK sCJD GWAS dataset. The parameters used were the same as in Section

3.5. The list of discoveries can be found in Table 4.1.

(a) UK sCJD (b) DE sCJD (c) UK vCJD

Figure 4.1: Visualisation of the overlap of cases between datasets of each type in Table 3.2
for each population and disease. Exome-seq stands for exome sequencing.

Causal meta-analysis of the datasets resulted in one less discovery than

causal discovery from the single datasets and in no novel discoveries. All dis-

coveries were somewhat expected: rs114501427, rs41311333, rs45458098, and

rs151199705 were discovered from the US exome-array dataset by Algorithm 13

and are absent from the UK exome-array dataset and the GWAS datasets. There-

fore, tests involving these SNPs were only performed on the US exome-array

dataset by Algorithm 7. Similarly, rs142631461 was discovered from both exome-

array datasets by Algorithm 13 and is absent from the GWAS datasets. Finally,
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rs1799990 was discovered from every GWAS dataset by Algorithm 13 and is ab-

sent from the exome-array datasets. rs144218313 was discovered from the US

GWAS dataset by Algorithm 13 but was not discovered in the meta analysis. This

is because rs144218313 was rendered independent from the disease by the set

{rs78441178, rs148843120}. rs78441178 is present in both exome-array datasets

but rs148843120 is present in the UK dataset only. Therefore, the test with condi-

tioning set {rs78441178, rs148843120} could not be performed by Algorithm 13 on

the US exome-array dataset and render rs144218313 independent from the disease.

RS# C# Position
rs114501427 2 138568946
rs41311333 5 90619108
rs45458098 6 34858817

rs151199705 14 105392632
rs142631461 17 29249184

rs1799990 20 4699605

Table 4.1: Discoveries resulting from the application of Algorithm 17 to the set of datasets
in sCJD described in the text. RS# is the RS number of the variant in dbSNP. C#
is the chromosome number.

4.4 Summary and future work
The main contribution of this chapter is an algorithm that learns the FDR-controlled

genotype–phenotype links that are consistent with overlapping conditional genetic

samples (Algorithm 17). The algorithm has a potential for increased power due to

its use of a test that conducts meta-analysis of the samples (Algorithm 7). However,

when applied to a combination of datasets from prion disease, the algorithm did not

result in novel discoveries. As in case of single datasets, the algorithms developed

here may be applied, with minor modifications, to other types of cross-sectional

datasets as well (e.g. gene-expression datasets).

It would be of interest to conduct a simulation study of the performance of Al-

gorithm 17 like the one conducted for Algorithm 13. For such a study, a Bayesian

network would have to be learned from either a whole-genome dataset or a dataset

resulting from the concatenation of a GWAS and an exome-sequencing dataset from
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the same individuals. Sampling over tag SNPs would then be performed to gener-

ate simulated GWAS datasets and over exonic SNPs to generate simulated exome-

sequencing and exome-array datasets.

It would also be compelling to find out how applying Algorithm 17 to a com-

bination of datasets compares to applying Algorithm 13 to a dataset resulting from

the concatenation of the datasets, followed by genotype imputation. Although the

output of the latter approach is easier to interpret, it might be erroneous due to errors

in imputation. Accuracy might be even lower when combining exome-sequencing

and exome-array datasets, as imputation of rare variants is problematic [Evangelou

and Ioannidis, 2013]. Applying Algorithm 17 is the only choice between the two

approaches when no reference dataset for genotype imputation is available.



Chapter 5

Variant filtering using causal prior

knowledge

The lack of power in association analysis or causal discovery could be overcome

by easing the multiple-testing burden through decreasing the number of hypothe-

ses. In genetic studies, this corresponds to performing variant filtering. Variant

filtering also decreases the execution time of an analysis and may result in previ-

ously intractable analyses becoming tractable [e.g. searching for N-locus epistasis;

Ritchie, 2011]. One approach to performing variant filtering is to use prior knowl-

edge. Methods that use prior knowledge are biased towards well-studied genes and

are dependent on the quality of the knowledge; prior knowledge can assist, how-

ever, with the biological interpretation of the results [Ritchie, 2011]. In this chapter,

a variant-filtering method inspired by INCA is presented. Publicly available biolog-

ical data and prior knowledge are integrated into a special type of directed graph.

The nodes of the graph comprise a phenotype and molecular entities in the cell and

are associated with genomic regions, while the edges denote causation. Candidate

causal variants are identified from the ancestors (causes) of the phenotype.

5.1 Method

In this section, graphs for representing causal prior knowledge are discussed and

their use in variant filtering is described.
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5.1.1 Causal prior knowledge graphs

Following Borboudakis and Tsamardinos [2012], it is assumed that publicly-

available biological data and prior knowledge can be expressed as a set of statements

of the form “X is a cause of Y ” or “X is not a cause of Y ”. The causal prior knowl-

edge can be represented by a directed graph which is called causal prior knowledge

graph (CPKG) in this work. The graph has two types of edges. Edge X → Y is

said to be positive and denotes that there is at least one piece of evidence that X is

a cause of Y ; edge X 6→ Y is called negative and denotes that there is at least one

piece of evidence that X is not a cause of Y . Each pair of nodes X and Y can be con-

nected with at most two edges (X → Y or X 6→ Y and X ← Y or X 6← Y ). Directed

cycles (defined as in directed graphs) are allowed. The graph is accompanied by

a set of references (bibliography). A reference is typically comprised of the name

of a biological database and the identifier of an entry in the database. Each edge is

associated with a nonempty set of citations from the bibliography, so that the user

of the graph can track the evidence supporting the edge.

5.1.2 CPKGs for variant filtering

A CPKG used for variant filtering is study-specific and represents known causal

relationships between the phenotype P and the levels of molecular entities in a cell

of the cell type of interest in the population of interest. For example, in a case–

control disease study, the phenotype is the affected/unaffected status, the cell type

of interest is an affected cell type, and the population of interest is the union of the

population of healthy individuals and the individuals affected by the disease. In the

following, both a molecular entity and its level in the cell are referred to by the name

of the entity. In the case of a gene, its “level” is the number of copies of the gene.

A CPKG for variant filtering only contains positive edges. Every node in the

CPKG is associated with a set of genomic regions, which are then used to filter the

dataset(s) at hand. For example, a protein node is associated with the coding regions

of the corresponding transcript, a transcript node with the exons the transcript com-

prises, and a gene node with the gene. Entities that are not genes or gene products

(e.g. the phenotype) are associated with an empty set of regions. Variants within the
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regions associated with a node are considered to be candidate causes of the effects

of the node. For example, a variant within a gene is a candidate cause of the level of

the transcripts of the gene; for instance, the variant may disrupt the transcription of

the gene. Once a CPKG is built, the ancestors of P are identified. Assuming causal

transitivity, these are the known causes of P. Variants that fall within the associated

regions form the set of candidate causal variants for P and are the ones included

in the filtered dataset. In the end, the CPKG can aid the biological interpretation

of any discovery made from the filtered dataset. For every such discovery, every

directed (causal) path from an associated node to the phenotype node suggests a

possible causal biological mechanism.

Figure 5.1 illustrates an example of using a CPKG for variant filtering. Figure

5.1a shows an example of a CPKG for variant filtering. G1, G2, and G3 are genes,

T1, T2, and T3 are transcripts of the genes, I1, I2, and I3 are protein isoforms trans-

lated from the transcripts, C1 and C2 are protein complexes, and P is the phenotype.

The ancestors of P are highlighted in Figure 5.1b. The regions associated with them

are used to filter a genetic dataset with P. Suppose that a variant in G2 is discovered

from the filtered dataset. Figure 5.1c shows a causal path (the only one in this ex-

ample) from G2 to P. A potential causal mechanism is that the variant disrupts the

transcription of G2, resulting in the absence of T2 and I2. Subsequently, abnormally

levels of I1, which no longer interacts with I2 to produce C1, affect P.

If multiple cell types are relevant to the phenotype (e.g. both neurons and glial

cells are affected in prion disease), a separate CPKG must be built for each cell

type, and the causes of P must be found separately from each graph. The associated

regions can be subsequently merged and used for filtering. For each discovery,

causal paths to the phenotype have to be found separately in each CPKG. Having

separate graphs is necessary in order to avoid violations of causal transitivity. For

example, suppose that X is a cause of Y in cell type A and Y is a cause of Z in cell

type B; then X is not necessarily a cause of Y in cell types A and B. This is, of

course, true for different conditions in general. If X is a cause of Y in controls and

Y is a cause of Z in cases in a case–control study, X is not necessarily a cause of Y
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G1 G2 G3

T1 T2 T3

I1 I2

P C1 I3

C2

(a) A CPKG for variant fil-
tering.

G1 G2 G3

T1 T2 T3

I1 I2

P C1 I3

C2

(b) The CPKG with ances-
tors of P highlighted.

G1 G2 G3

T1 T2 T3

I1 I2

P C1 I3

C2

(c) The CPKG with a
causal path from G2 to
P highlighted.

Figure 5.1: Example of variant filtering using a CPKG. G1, G2, and G3 are genes, T1, T2,
and T3 are transcripts of the genes, I1, I2, and I3 are protein isoforms translated
from the transcripts, C1 and C2 are protein complexes, and P is the phenotype.

in the general population. It must be assumed that this does not occur if the method

is to be used at all for filtering case–control datasets.

If the causal variants of interest are not all included in the dataset to be filtered,

the filtering regions should be expanded to include variants that may be not causal

themselves but are in LD with causal variants inside the unexpanded regions but not

in the dataset. This is needed in order to capture the latter variants. For example,

if the available dataset originates from a GWAS and the causal variants of interest

are the common SNPs, the filtering regions should be expanded so that untyped

common SNPs inside the unexpanded regions is captured by typed common SNPs

outside of them. If however, the dataset originates from exome sequencing and the

causal variants of interest are exonic SNPs and short indels, the filtering regions

should be left intact; this is because the dataset contains, in principle, all exonic

SNPs and short indels.

Variant filtering using a directed graph such as a CPKG, should result in higher

specificity than using an undirected one [e.g. BioGraph; Liekens et al., 2011]. For

example, in directed graph P← P1 → P2, only P1 is an ancestor of P; P and P2

only share a common ancestor. In contrast, in the corresponding undirected graph

P P1 P2, both P1 and P2 are (directly or indirectly) connected to P. In addition,

a CPKG is, arguably, more helpful with the interpretation of the results than a non-
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causal graph.

5.2 Implementation
In this section, the implementation of CPKG-based variant-filtering for prion dis-

ease is discussed in detail. For each conceptual data source, real data sources are

used to build a CPKG. The CPKGs are then merged into a general CPKG. Post-

processing results into a post-processed general CPKG. Finally, adaptation to prion

disease results in a prion-disease CPKG to be used for variant filtering. Figure

5.2 illustrates the CPKG-building process, which was implemented in MATLAB.

Among the data-integration methodologies identified by Lapatas et al. [2015], the

methodology used to build the CPKG was data warehousing. On the downside,

several biological databases (some of them quite big) had to be downloaded and

installed locally; on the plus side, the analysis can be replicated at any time.

Transcription Translation MiRNA
biogenesis

Protein–
protein

interactions

MiRNA targets Reactions

Conceptual-data-source graphs

merging
General
graph

post-processing
Post-

processed
general
graph

adaptation
Prion-
disease
graph

Figure 5.2: Illustration of the process of building a CPKG.

5.2.1 Conceptual data sources

A conceptual data source can be thought of as a table or view corresponding to a re-

lationship between molecular entities or between molecular entities and phenotypes

in an imaginary centralised biological relational database. Every molecular entity is

associated with a species, a cell type, and a cellular compartment. Protein isoforms
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are also associated with a set of post-translational modifications. Every relationship

is associated with a certain condition. The condition may be, for example, the phase

of the cell or the affected/unaffected status of the individual for some disease.

The conversion of a conceptual data source to a CPKG is described in Algo-

rithm 18. For each conceptual data source, a CPKG is created that only contains

the phenotype node. For each record of the source, every object in the represented

relationship is first converted to a CPKG node. In the case of a molecular entity,

the node is identified by the name of the external table and the key of the external

record. In the case of a phenotype, the node is simply identified as the phenotype,

since there is only one such node per variant-filtering CPKG. Subsequently, a refer-

ence is created from the key of the source record. Edges between the nodes are then

created in a manner that depends on the data source. Every edge cites the newly

created reference. Finally, the nodes, edges, reference, and citations created are

then merged with the current CPKG.

The conceptual data sources used in this work and the conversion to causal

knowledge is discussed below, where it is assumed that the data sources are already

filtered so that they only contain relationships in humans between human molecular

entities in the cell type of interest under the condition(s) of interest:

• Transcription: Each record denotes that gene G has transcript T . Either G is

located in the nucleoplasm and T is located in the cytosol, or both G and T

are located in the mitochondrial matrix. The corresponding causal knowledge

is that G is a cause of T .

• Translation: Each record denotes that transcript T is translated to protein

isoform I. Either both T and I are located in the cytosol, or both T and I

are located in the mitochondrial matrix. Since I is newly translated, it is not

post-translationally modified. The corresponding causal knowledge is that T

is a cause of I.

• MiRNA biogenesis: MicroRNAs (miRNAs) are small, single-stranded non-

coding RNAs that regulate gene expression in animals and plants by binding
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Algorithm 18 Conversion of a conceptual data source to a CPKG. R is a set of
records representing a conceptual data source. V, E, and B is the set of nodes,
edges, and references, respectively, in the CPKG. C is a map from edges in E to
sets of references in B representing the citations in the CPKG.
Input: R
Output: V, E, B, C

1: V←{P}
2: E← /0
3: B← /0
4: Initialise C with the empty map
5: for each R ∈ R do
6: VR← /0
7: for each object X in R do
8: Convert X to node Vx
9: VR← VR∪{Vx}

10: end for
11: Create reference BR from R
12: Convert causal knowledge in R to set of edges ER among the nodes in VR
13: V← V∪VR
14: E← E∪ER
15: B← B∪{BR}
16: for each E in ER do
17: if C(E) is undefined then
18: C(E)←{BR}
19: else
20: C(E)← C(E)∪{BR}
21: end if
22: end for
23: end for

at target sites of mRNAs, leading to mRNA cleavage or translational repres-

sion [Bartel, 2004]. The following discussion pertains to animals, where the

target sites are located in the 3′ untranslated region (UTR). The primary tran-

script of a microRNA gene has a stem-loop (“hairpin”) structure with long

single-stranded tails. The tails are subsequently cleaved, resulting in the

miRNA precursor. The precursor is then transported to the cytosol, where

the loop is cleaved; the result is an RNA duplex termed the miRNA-miRNA*

duplex. One of the strands of each individual duplex ends up as the mature

miRNA and is loaded into a RNA-induced silencing complex (RISC), where

it performs its regulatory functions on target mRNA. The other strand, called
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miRNA*, is degraded. It is also possible that both strands of the duplex end

up as a mature miRNA: only one strand becomes the miRNA each time but

with similar frequency [Bartel, 2004]. A class of miRNAs called mirtrons

result from the processing of introns that have a structure similar to that of a

miRNA precursor [Ruby et al., 2007].

Each record in the miRNA biogenesis data source denotes that transcript T of

a miRNA gene is processed into miRNA MI. T and MI are both located in

the cytosol. The corresponding causal knowledge is that T is a cause of MI.

• Protein–protein interactions: A protein-protein interaction (PPI) commonly

refers to physical contact between proteins that occurs in vivo. Each record

in the conceptual PPI database denotes that proteins (when the exact isoform

is unknown) or protein isoforms I1, . . . , In (n≥ 1) participate in an interaction

indicated in experiment E. A participant may be post-translationally mod-

ified. If E was performed in vitro and the proteins were purified from the

contents of lysed cells, the subcellular location of the proteins is unknown

and has to be somehow estimated; it is even possible that the interaction does

not happen at all in vivo. Assuming that the proteins are localised, the con-

version of a PPI to causal knowledge is dictated by E and n. PPI experiments

can be classified into five classes according to their information content:

1. Experiments that show that two proteins bind to each other: These ex-

periments are performed in vitro and involve two pre-selected proteins I1

and I2 that are the only molecules in solution. Interaction is concluded

because some measurement indicates that the proteins are bound. An

example of such an experiment is enzyme-linked immunosorbent assay

(ELISA) [Gan and Patel, 2013], where one protein is attached to the bot-

tom of a well and a solution of the other protein is added, resulting in a

colour change if the two proteins bind to each other. The corresponding

causal knowledge is that I1 a cause of I2 and I2 a cause of I1.

2. Experiments that show that a bait protein binds to complexes composed
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of unknown subsets of prey proteins: These experiments are also per-

formed in vitro and involve a pre-selected bait protein I1 immobilised

on a column and used to “fish” free prey proteins P = I2, . . . , In from a

mixture, usually the contents of lysed cells. The prey proteins are then

identified by methods such as mass spectroscopy. An example of such

experiment is a pull-down assay [Vikis and Guan, 2004, Sambrook and

Russell, 2006], where a tagged protein is first immobilised on a column

coated with material that binds to the tag. These experiments cannot tell

the components of the complexes formed by the prey proteins before

binding to the bait protein. However, for each such complex Ci with un-

known components Pi ⊆ P, every Pi j ∈ Pi is a cause of Ci, Ci is a cause

of I1, and I1 is a cause of Ci. Therefore, each of I2, . . . , In is a cause of

I1, and, if n = 2, then also I1 is a cause of I2.

3. Experiments that show that a bait protein participates in complexes with

unknown subsets of prey proteins: The difference between this class and

the previous class of experiments is that the bait protein I1 is not im-

mobilised on the column but forms complexes with other (prey) pro-

teins I2, . . . , In in the mixture, and the material on the column is used

to “fish” the bait protein and its bound prey from the mixture. In co-

immunoprecipitation, for example, the column is coated with an anti-

body specific for the bait [Phizicky and Fields, 1995]. The causal knowl-

edge corresponding to such an experiment is that unknown subsets of

I1, . . . , In that include I1 are causes of unknown complexes C1, . . . ,Cm,

which is not very informative. If n = 2, however, I1 a cause of I2 and I2

a cause of I1.

4. Experiments that show that a set of proteins forms a complex: These

experiments usually conclude that proteins I1, . . . , In form a complex C

because they were detected in the same place after an attempt to sepa-

rate the contents of a mixture. In gel electrophoresis, for example, an

electric field is applied to a mixture of proteins in order to force them
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to move through a gel [Wittig and Schägger, 2009]. Shorter molecules

move faster, resulting in a set of discrete bands on the gel, each with dif-

ferent composition. If a set of proteins are identified in the same band,

participation in the same complex is concluded, as the electric field did

not manage to separate them. The causal knowledge corresponding to

an experiment in this class is that each of I1, . . . , In is a cause of C. The

causal relationships between I1, . . . , In are unknown because the steps of

the complex formation are unknown. The former causal relationships

are not of interest as an edge from every component of a complex node

to the complex node is added automatically in a post-processing step

of the CPKG (see section 5.2.10.1). However, I1 a cause of I2 and I2 a

cause of I1 if n = 2.

5. Experiments that show that two proteins participate in the same com-

plex: In two-hybrid systems, two pre-selected proteins I1 and I2 are ex-

pressed in cultured cells (usually yeast) [Legrain and Selig, 2000]. One

protein is fused to the first of two domains of a transcription factor of a

reporter gene and the other is joined with the second one. If expression

of the reporter gene is detected, it must be because I1 and I2, and sub-

sequently, the two domains of the transcription factor, came close and

the transcription factor initiated transcription of the gene. It is therefore

concluded that I1 and I2 interact. There may be, however, other pro-

teins in the complex formed by I1 and I2. Thus, two-hybrid experiments

only prove that two proteins participate in the same complex. The corre-

sponding causal knowledge is that I1 and I2 are causes of some unknown

complex C. As explained above, this knowledge is not useful here.

The three modes of conversion to causal knowledge encountered above are

summarised as follows:

0. no causal relationship is entailed

1. n = 2 and I1 a cause of I2 and I2 a cause of I1
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2. n≥ 2, I1 is bait, I2, . . . , In are prey, and each of I2, . . . , In is a cause of I1.

An experiment with non-zero mode of conversion is said to be eligible for

conversion to causal knowledge.

• MiRNA targets: Each record is the interaction of miRNA MI with target gene

G indicated in experiment E. The interaction is called a miRNA-target inter-

action (MTI). The corresponding causal knowledge depends on E. Experi-

ments for identifying MTIs can be classified in the following classes accord-

ing to their information content:

– Experiments that show that a miRNA forms a complex with an mRNA: In

a reporter assay, a reporter gene G′, which the fusion of the 3′ UTR of a

candidate target gene G and the gene of a fluorescent protein, is inserted

into the genome of cultured cells [Thomson et al., 2011]. The level of a

miRNA MI is manipulated in the cells, and the change in fluorescence

is measured. A change in fluorescence indicates that MI affects the

expression of G′, implying that MI also affects the expression of G.

Consequently, MI is a cause of T , for each transcript T of G (assuming

that the 3′ UTR of G′ is found in all transcripts of G).

– Experiments that show that differential expression of a miRNA re-

sults in differential levels of an mRNA in RISC precipitates: Co-

immunoprecipitation can be used to “fish” RISC components and bound

miRNA–mRNA pairs from the contents of lysed cells [Hendrickson

et al., 2008]; for every candidate target gene, the corresponding mRNA

levels can then be assessed in the precipitates using e.g. microarrays. If

a certain miRNA MI is differentially expressed between two sets of cul-

tured cells, the mRNA levels of its targets will be different in the RISC

precipitates from each set of cells, implying that they are different in the

cells. The corresponding causal knowledge is that MI is a cause of T ,

for each transcript T with differential levels in the RISC precipitates.

– Experiments that identify miRNA binding sites: In techniques such as
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HITS-CLIP, PAR-CLIP, and CLASH, co-immunoprecipitation of RISC

components is also performed but subsequently treatments are applied

that cut the parts of the mRNA that are not bound to miRNA and the

remaining mRNA is sequenced [Thomson et al., 2011, Vlachos et al.,

2015]; target genes have to be predicted from the sequenced miRNA

binding sites using bioinformatics approaches. As predictions are not of

interest here, these experiments are ignored.

– Experiments that show that differential expression of a miRNA results

in differential expression of a gene: In this class of experiments, the

effect of manipulating the level of a single miRNA MI on the level of

a single or multiple mRNAs is assessed using e.g. microarrays. The

corresponding causal knowledge is that MI is a cause of T , for each

transcript T whose level is altered in the experiment.

– Experiments that show that differential expression of a miRNA results in

differential levels of a protein: In this class of experiments, the effect

of manipulating the level of a single miRNA MI on the level of a single

or multiple proteins is assessed using e.g. western blotting. The corre-

sponding causal knowledge is that MI is a cause of I, for each protein

(if the exact isoform is unknown) or protein isoform I whose level is

altered in the experiment.

In summary, E dictates one of the following modes of conversion:

0. no causal relationship is entailed

1. MI is a cause of T for some transcript T of G

2. MI is a cause of I for some protein isoform I of G

MI and T are located in the cytosol. I may be post-translationally modified

and located in any compartment, but this knowledge is usually not available

from E. Therefore, it is assumed that I refers to the newly-translated form

of the isoform, which is located in the cytosol and is unmodified. An edge
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from each newly translated isoform to each of each of its derivatives is added

automatically in a post-processing step of the CPKG (see section 5.2.10.1).

• Biochemical reactions: Each record denotes a biochemical reaction I1 + ...+

In−−→O1+ ...+On, where each input Ii and each output Oi may be located in

any compartment and, in the case of protein isoforms, be post-translationally

modified. The corresponding causal knowledge is that Ii is a cause of I j for

each pair (Ii, I j) of inputs, and Ii is a cause of O j for each input/output pair

(Ii,O j).

5.2.2 Real data sources

The real data sources used to build the CPKG are presented below.

5.2.2.1 Ensembl

Ensembl [Yates et al., 2016] is a multi-species reference-genome database which

uses MySQL for data storage. There are four databases for each species: Core stores

sequences and genes, Compara (Comparative genomics) genomic alignments, Vari-

ation genetic variation, and Funcgen (Regulation) regulatory features. A Perl API

is provided for each database that offers programmatic access to an installation of

the database. In this work only the Core database is used.

Core stores coordinates systems (e.g. “chromosome”) and each coordinate sys-

tem contains sequence regions. The sequence regions within the “chromosome” co-

ordinate system are the chromosomes. Sequence regions contain genes, which have

a status (e.g. known or predicted), a biological type (e.g. protein coding, miRNA),

and zero or more transcripts. Transcripts also have a status and a biological type.

If a transcript is translatable, it has a canonical translation. A transcript usually has

a gene specified but this is not necessary, as transcripts can be stored independently

of genes. Both genes and transcripts are assigned a stable ID, are contained in a

sequence region, and have coordinates (start position, end position, and strand) in

the sequence region. Translations are also assigned a stable ID. Sequence regions,

genes, transcripts, and translations may have attributes. For sequence regions, the

“nonReference” and “lrg” attributes are of interest here. The former denotes that
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the region is non-reference; the latter that the region is Locus Reference Genomic

(LRG).1 Only reference, non-LRG regions in the “chromosome” coordinate system

are used in this work; genes and transcripts in these regions are said to be stan-

dard. For transcripts, the “TSL” attribute is of interest. TSL stands for Transcript

Support Level and is a measure of how well-supported a transcript is.2 The TSL

attribute takes takes values 1–5, 1 indicating best support, or N/A if the transcript

was not analysed because it is a pseudogene annotation, a human leukocyte anti-

gen transcript, an immunoglobin gene transcript, a T-cell receptor transcript, or a

single-exon transcript. Finally, Core contains mappings between Ensembl (gene,

transcript, or translation) stable IDs and external IDs in several major databases.

5.2.2.2 UniProt

UniProt [The UniProt Consortium, 2014] is a multi-species protein database.

UniProt consists of Swiss-Prot, which contains manually curated and reviewed en-

tries, and TrEMBL, which contains automatically-annotated, unreviewed entries.

Only Swiss-Prot is used in this work.

Each protein has at least one accession, a (canonical) sequence, zero or more

features, and zero or more isoforms. Features are annotations of the sequence, have

types and location (start and end position on the sequence), and may have an iden-

tifier. A position may be exact, approximate (preceded by < or >), or unknown.

Of interest here are features of type initiator methionine, signal peptide, propep-

tide, transit peptide, genetic chain, and peptide, which are collectively referred to

as molecule-processing features. Isoforms have an ID, which is the accession of the

protein followed by a dash and a number. The sequence of an isoform is described

with respect to the reference sequence using features of type variable sequence. If a

protein has isoforms, one of the isoforms is the canonical sequence, and all feature

locations refer to it.

UniProt also provides mappings between UniProt (protein or isoform) IDs and

external IDs in several major databases.

1See http://www.ensembl.org/Help/Faq?id=300 for explanation.
2See http://www.ensembl.org/Help/Glossary?id=492 for details.

http://www.ensembl.org/Help/Faq?id=300
http://www.ensembl.org/Help/Glossary?id=492
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5.2.2.3 Gene Ontology

Gene Ontology (GO) [The Gene Ontology Consortium, 2015] is a set of three on-

tologies (called aspects): molecular function, cellular component, and biological

process. Each ontology describes “is a” and “part of” relationships between molec-

ular functions, cellular components, and biological processes, respectively, in a

generic cell. In this work, only the cellular component aspect is used.

5.2.2.4 Gene Ontology Annotation

Gene Ontology Annotation (GOA) [Huntley et al., 2015] is a database of GO anno-

tations for proteins in UniProt, complexes in IntAct Complex Portal, and RNA in

RNACentral. Only protein annotations are used here.

Each annotation has a database, a database object ID, a possibly empty set

of qualifiers, a GO ID, an aspect, a database object type, one or two taxa, and up

to one gene product form ID. The database of the annotation is the database that

contains the annotated object. The database object ID is the ID of the canonical

version of the annotated object in the database; if a variant version of an object is

being annotated, the gene product form ID is the ID of the variant version. The

qualifiers can be “not”, “contributes to”, and “co-localizes with”. The GO ID is the

GO term the object is annotated with. The aspect is biological process, molecular

function, or cellular component. The database object type is the type of object being

annotated (e.g. protein, complex, RNA). The first taxon is the species that encodes

the annotated object. If a second taxon is specified, it is the other species in a cross-

species interaction. For proteins, the database is UniProt, the database object ID is

a UniProt protein ID, and the gene product form ID is a Uniprot isoform ID.

Note that GOA mostly includes computationally inferred annotations [Škunca

et al., 2012], and their use is the only time that predictions are used, instead of

knowledge, for building the CPKG. Using GOA is necessary in order to localise the

proteins in protein-protein interactions (see Section 5.2.8.4).
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5.2.2.5 miRBase

miRBase [Kozomara and Griffiths-Jones, 2014] is a multi-species miRNA database.

The main type of entry in miRBase is the hairpin, which is a predicted hairpin

portion of a miRNA transcript. Each hairpin has an accession number, a name, and

one or two mature miRNAs. Each miRNA also has a name and an accession, as well

as a start and an end position on the hairpin.

5.2.2.6 The Molecular Interaction ontology

The Proteomics Standards Initiative - Molecular Interaction (PSI-MI) ontology was

developed by the Proteomics Standards Initiative (PSI) of the Human Proteome

Organization [Kerrien et al., 2007] for the annotation of molecular interaction ex-

periments. As in GO, a relationship between two terms is either “part of” or “is

a”.

Ontology terms include “interaction detection method” (MI:0001), “interac-

tion type” (MI:0190), “interactor type” (MI:0313), “experimental role” (MI:0495),

“biological role“ (MI:0500), “feature type” (MI:0116), and “feature range status”

(MI:0333). An interaction detection method is the method used to determine an

interaction. An interaction type can be an “association” (MI:0914), “colocaliza-

tion” (MI:0403), a “genetic interaction” (MI:0208), and “predicted interaction”

(MI:1110). Only associations are of interest here. An association denotes that

the interaction participants are components of one or more complexes. A “phys-

ical association” (MI:0915) is an association where the participants are components

of the same complex, but they are not necessary in direct contact with each other

in the complex. Finally, a “direct interaction” (MI:0407) is a physical associa-

tion where the participants are in direct contact with each other. There are also

subclasses of direct interaction but they are not of interest here. When describ-

ing PPIs, the interactor type is either “protein” (MI:0326) or “peptide” (MI:0327).

An experimental role is the role of a participant in a an experiment, and is usu-

ally “bait” (MI:0496), “prey” (MI:0498), “fluorescence acceptor” (MI:0584), “fluo-

rescence donor” (MI:0583), “neutral component” (MI:0497), or “unspecified role”

(MI:0499). A biological role is the role of a participant in its cell of origin. Biolog-
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ical roles of interest here are “enzyme” (MI:0501), “enzyme target” (MI:0502), and

“unspecified role” (MI:0499). A feature type is the type of a participant sequence

feature, and can be a “biological feature” (MI:0252) or a “experimental feature”

(MI:0505). Experimental features are not used in this work. Biological features of

interest are “mutation” (MI:0118), “polyprotein fragment” (MI:0828), and “variant”

(MI:1241). A feature range status assesses the certainty on the location of a feature.

Examples of feature range statuses are “certain sequence position” (MI:0335) and

“greater-than” (MI:0336).

5.2.2.7 The Protein Modification ontology

The Proteomics Standards Initiative - Protein Modification (PSI-MOD) ontology

[Montecchi-Palazzi et al., 2008], also developed by the PSI, is an ontology of pro-

tein chemical modifications.

5.2.2.8 IMEx

There are several protein–protein interaction databases, which use different curation

strategies and file formats, and often contain redundant interactions. The Interna-

tional Molecular Exchange (IMEx) consortium [Orchard et al., 2012] is a collab-

oration between providers of molecular interaction data with the goal of making a

non-redundant and deeply and homogeneously curated set of molecular interactions

available in a standard file format. The unit of curation is the publication; each pa-

per is only found once in the IMEx dataset, and it is curated in full. IMEx currently

focusses on PPIs.

The IMEx dataset is available in two formats developed by the PSI, PSI-MI,3 an

XML format, and MITAB, a simplified tabular format [Kerrien et al., 2007]. Both

formats use the PSI-MI ontology. MITAB can only describe binary interactions

and does not contain all information needed for conversion to causal knowledge;

therefore, it not used here. The PSI has developed Java parsers for both formats.4

The central class in the data model of the PSI-MI format is the entry. Entries

are associated with a list of experiments, a list of interactors, and a list of interac-

3http://www.psidev.info/node/60
4https://code.google.com/archive/p/psimi/

http://www.psidev.info/node/60
https://code.google.com/archive/p/psimi/
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tions. Each experiment uses an interaction detection method, which is specified by

a subclass of the namesake term (MI:0001) from the PSI-MI ontology. Interactors

have an interactor type and may have an organism. The interactor type is speci-

fied by a subclass of the namesake term (MI:0313) from the PSI-MI ontology. An

organism is linked to an NCBI Taxonomy ID and may have a compartment speci-

fied by a GO cellular component term. Interactions have a list of participants, may

be associated with a list of experiments and a list of interaction types, and may be

modelled, intramolecular, and/or negative:

• A modelled interaction has been inferred from another species.

• An intramolecular interaction has only one participant.

• A negative interaction has been shown not to occur in the experiments.

Participants reference an interactor and may have a list of experimental roles (each

in a certain experiment), a list of features, and a biological role. An experimental

role and a biological role is specified by a subclass of the namesake term (MI:0495

and MI:0500, respectively) from the PSI-MI ontology. Each feature has a feature

type, a list of feature ranges, and is associated with a list of experiments where it is

present. The feature type is either a subclass of the namesake term (MI:0116) from

the PSI-MI ontology or a PSI-MOD term. A feature range is specified by a start

status and either a start position or a start interval, and an end status and either an

end position or an end interval. A start status or end status is specified by a subclass

of “feature range status” (MI:0333).

IMEx has adopted a “deep” curation model, whose goal is to provide all the

details of an interaction experiment [Orchard et al., 2012]. As these details are

essential for the conversion of the interaction to causal knowledge, the IMEx dataset

was chosen instead of the other databases. The IMEx curation rules can be found

online.5 The following rules are relevant:

• Negative interactions are out of scope.

5http://www.imexconsortium.org/sites/imexconsortium.org/files/documents/imex curation rules.pdf

http://www.imexconsortium.org/sites/imexconsortium.org/files/documents/imex_curation_rules.pdf
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• The interaction type is a subclass of “direct interaction” (MI:0407) only if the

interaction occurs in vitro and the number of participants is 2. An interaction

which has 1 bait and whose interaction detection method is a subclass of

“affinity chromatography technology” (MI:0004) must have interaction type

“physical association” (MI:0915) if it has 1 prey and “association” (MI:0914)

if it has more than 1 prey.

• Participants must have a biological role and exactly one experimental role per

experiment.

• When a participant is a protein that has isoforms, if the curated paper does not

clearly specify which isoform is the interactor, the UniProt canonical isoform

must be used in the annotation; otherwise, the specified isoform must be used.

• A post-translational modification required for an interaction to occur must be

added in the annotation.

5.2.2.9 Chemical Entities of Biological Interest

Chemical Entities of Biological Interest (ChEBI) [Hastings et al., 2013] is an ontol-

ogy of small chemical compounds that are relevant to biology and are not encoded

directly by the genome.

5.2.2.10 miRTarBase

miRTarBase [Kozomara and Griffiths-Jones, 2014] stores validated MTIs for mul-

tiple species. Each MTI has a miRBase miRNA name, an Entrez gene ID, a set of

free-text experiment names, and a support type. The support type is “Functional

MTI”, “Functional MTI (Weak)”, “Non-functional MTI”, or “Non-Functional MTI

(Weak)”, depending on whether the evidence suggests that the interaction occurs

or does not occur (“functional” vs. “non-functional”) and whether the evidence

strongly suggests or opposes a direct interaction of the miRNA with the target.
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5.2.2.11 Reactome

Reactome [Fabregat et al., 2016] is a pathway database. The central classes in the

Reactome data model6 are reaction-like event (RLE) and physical entity.

Each RLE has inputs, outputs, and catalysts. Inputs, outputs, and catalysts are

physical entities (see next paragraph). Some input components (e.g. protein do-

mains) may be as flagged as required. An RLE is associated with a set of species,

and possibly a set of diseases. Finally, an RLE can be chimeric (that is, involv-

ing entities from more than one species), computationally inferred, and/or inferred

from another species. Each RLE is either a reaction, a black box event (BBE), a

polymerisation, or a depolymerisation:

• A reaction represents an actual chemical reaction, one that has balanced in-

puts and outputs.

• A BBE is used to describe a reaction that is unbalanced for some reason, or

a more complex process that is not understood entirely or has intermediate

steps that need not be described.

• A polymerisation describes the addition of a unit to a polymer and a depoly-

merisation describes the removal of a unit to a polymer. Polymerisation and

depolymerisation are inherently unbalanced processes.

A physical entity is any entity that can interact with other entities in the cell,

or a set of such entities; sets are used to prevent combinatorial explosion. A physi-

cal entity can be a complex, entity set, genome-encoded entity (GEE), other entity,

polymer, or simple entity:

• A complex has a set of components, which are physical entities.

• An entity set has a set of members. An entity set can be either a defined set, a

candidate set, or an open set.

– The members of a defined set are physical entities with interchangeable

function.
6http://www.reactome.org/pages/documentation/data-model/

http://www.reactome.org/pages/documentation/data-model/
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– A candidate set has both members and candidate members; the latter are

hypothesised to perform the function performed by the former.

– An open set is a set of entities that cannot be counted in practice, e.g.

mRNA; the members of an open set are merely examples.

• A GEE can be a gene, protein, or RNA molecule. An entity with accessioned

sequence (EWAS) is a GEE with a reference entity. A reference entity repre-

sents an entry in some database and has an identifier and a reference database.

An EWAS represents a gene, protein, protein isoform (when the specific iso-

form is unknown), and RNA molecule when its reference entity is a reference

DNA sequence, reference gene product, reference isoform, and reference RNA

sequence, respectively. An EWAS can also be a fragment and/or a modifica-

tion of the accessioned sequence. Fragments are specified by a start coordi-

nate and an end coordinate in the coordinate system of the reference database.

Modifications are specified by a set of abstract modified residues (see below).

• An other entity is used to describe a complex structure in the cell that cannot

or needs not be described on the molecular level.

• A polymer has a set of repeated units, which are physical entities.

• A simple entity is a molecule not encoded by the genome (e.g. ATP). Each

simple entity has a reference entity of class reference molecule. The reference

database is always ChEBI.

An abstract modified residue is either a genetically modified residue or a trans-

lational modification. The former is not of interest here, since it is found in disease

RLEs, which are not used (see Section 5.2.8.6). A translational modification has

a coordinate and a PSI-MOD term that describes the translational modification. A

translational modification can be a modified residue, a group-modified residue, or a

cross-linked residue:

• A modified residue has no additional properties.
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• A group-modified residue describes the attachment of a chemical group or a

polymer. Because this cannot be represented by a PSI-MOD term alone, the

PSI-MOD term is used to describe the link, and an additional modification

property is used to describe the attached group or polymer. The modification

is a reference group, a subclass of reference entity, if the attached entity is a

chemical group. The reference database is always ChEBI. The modification

is a polymer if the attached entity is a polymer.

• A cross-linked residue describes a cross-link within a protein or with other

proteins. The PSI-MOD term is used to describe half of the link. The second

coordinates property is the list of coordinates, in the same or another protein,

of the residues at the other side of the link. A cross-linked residue can be

either an intrachain cross-linked residue or an interchain cross-linked residue.

– An intrachain cross-linked residue has only one second coordinate in the

same protein.

– An interchain cross-linked residue has an additional second reference

sequences property that specifies the linked proteins (in UniProt), and

the second coordinates are in those proteins.

5.2.3 Cellular compartments

As mentioned in Section 5.2.1, the molecular entities in the conceptual database,

and therefore the corresponding CPKG nodes, are localised. In this implementa-

tion, each localised CPKG node is associated with a compartment from (an edited

version of) the set of GO cellular compartments in Reactome (123 compartments

in total). The compartments are listed in Table 1 of Supplementary Information I –

Cellular Compartments and are meant to be non-overlapping;7 however, it turns out

that this not the case. For example, both “mitochondrion” (GO:0005739) and “mito-

chondrial matrix” (GO:0005759) are in the set. Nevertheless, each localised Reac-

tome entity was converted to a CPKG node with the same compartment. The “nu-

cleoplasm” (GO:0005654), “cytosol” (GO:0005829), and “mitochondrial matrix”
7http://wiki.reactome.org/index.php/Glossary Data Model#EntityCompartment.3D

http://wiki.reactome.org/index.php/Glossary_Data_Model#EntityCompartment.3D
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(GO:0005759) terms in the Reactome set where used for Ensembl, UniProt, and

miRBase objects. Compartment overlaps had to be taken into account when assign-

ing compartments to the participants of an IMEx interaction (see Section 5.2.8.4).

A drawback of using Reactome’s compartments is that the CPKG is confined to the

biology covered by Reactome.

5.2.4 CPKG node types

The objects of real data sources are converted to CPKG nodes of certain types. Ta-

ble 5.1 lists the general CPKG node types, that is, the ones that are not specific

to any data source. Note that sometimes the GO cellular compartment is used in

the name of a node and sometimes is not. In the latter case the entity is always

localised in one compartment (e.g. a miRNA in the cytosol); therefore, the com-

partment is not required to uniquely identify the node. In order for isoforms and

proteins to be uniquely identified, their post-translational modifications need to be

specified. A post-translational modification is a pair of a coordinate and a modified

residue. Table 5.2 lists the general modified-residue types. Table 5.3 and 5.4 lists

the Reactome-specific node types and modified-residue types, respectively. Finally,

Table 5.5 lists the IMEx-specific node types. There are no node types or modified-

residue types specific to the rest real data sources used.

5.2.5 CPKG reference types

The edges in the CPKG of each conceptual data source have a different reference

type, shown in Table 5.6. The edges created in each post-processing and adaptation

step also have a different reference type, shown in Table 5.7 and 5.8, respectively.

5.2.6 ID mapping

The various ID mappings that are performed when building the CPKG are discussed

below.
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Name Description Identifier(s)
group-
linked
residue

residue linked to a chemical
group

PSI-MOD term and ChEBI term

interchain
cross-
linked
residue

residue cross-linked to residues
in other proteins

PSI-MOD term, UniProt IDs,
coordinates on the correspond-
ing UniProt canonical sequences

intrachain
cross-
linked
residue

residue cross-linked to another
residue in the same protein

PSI-MOD term, coordinate of
the other residue

singly-
modified
residue

residue undergone a single mod-
ification

PSI-MOD term

Table 5.2: General modified-residue types.

5.2.6.1 Mapping UniProt isoform IDs to sets of Ensembl transcript

stable IDs

A mapping from a UniProt isoform ID to a set of Ensembl transcript stable IDs is

performed in order to identify the genomic regions associated with an isoform node.

Both the UniProt isoform ID and the corresponding UniProt protein ID are first

mapped to a set of Ensembl transcript stable IDs using the UniProt ID mappings.

IDs corresponding to translatable standard transcripts with TSL = 1 or N/A whose

translation sequence matches that of the isoform are then returned.

5.2.6.2 Mapping Ensembl transcript stable IDs to sets of UniProt

isoform IDs

When building the Translation CPKG (see Section 5.2.8.2), mapping an Ensembl

transcript stable ID to a set of UniProt isoform IDs is necessary for identifying the

isoforms that correspond to a transcript. Using the UniProt ID mappings, the En-

sembl transcript stable ID is first mapped to a set of UniProt IDs. For each UniProt

ID that is a valid protein ID, the IDs of the protein’s isoforms whose sequence

matches that of the translation are returned. UniProt IDs that correspond to iso-

forms whose sequence matches that of the translation are also returned.
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Name Description Genomic regions
Reactome
candidate
set

Reactome candidate set with only candidate
members

none

Reactome
complex

Reactome complex genomic regions of
the components

Reactome
EWAS

Reactome EWAS with an invalid database or
invalid ID in a valid database

none

Reactome
entity set

Reactome defined set or candidate set with at
least one non-candidate member

genomic regions of
the members

Reactome
GEE

Reactome GEE none

Reactome
isoform

Reactome EWAS whose reference entity is
a reference isoform and either with coor-
dinates that do not correspond to UniProt
molecule-processing features or with invalid
modified-residue coordinates

isoform-fragment
regions of each gene

Reactome
miRNA
hairpin

Reactome EWAS with valid miRBase acces-
sion but invalid (miRNA) coordinates

miRNA gene(s)

Reactome
open set

Reactome open set none

Reactome
other entity

Reactome other entity none

Reactome
polymer

Reactome polymer genomic regions of
the repeated units

Reactome
protein

Reactome EWAS whose reference entity is
a reference gene product and either with co-
ordinates that do not correspond to UniProt
molecule-processing features or with invalid
modified-residue coordinates

genomic regions of
the isoforms

Reactome
simple
entity

Reactome simple entity with invalid ChEBI
term

none

Table 5.3: Reactome-specific node types. The node identifier is always the Reactome stable
identifier.

5.2.6.3 Mapping UniProt protein IDs to sets of Ensembl gene stable

IDs

In order to delete nodes by gene expression as a post-processing step of the graph

(see Section 5.2.11.3), each gene-product node is associated with a set of genes. A
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Name Description Identifier(s)
Reactome
polymer-linked
residue

residue linked to a Reactome
polymer

PSI-MOD term and Reac-
tome stable identifier

Table 5.4: Reactome-specific modified-residue types.

Name Description
IMEx isoform IMEx participant with valid UniProt isoform ID but with

either undetermined coordinates or invalid feature coordi-
nates

IMEx participant IMEx participant with invalid UniProt ID
IMEx protein IMEx participant with valid UniProt protein ID but with

either undetermined coordinates or invalid feature coordi-
nates

Table 5.5: IMEx-specific node types. The node identifiers are always IMEx ID, participant
ID, and GO cellular compartment term.

mapping from a UniProt protein ID to a set of Ensembl gene stable IDs is performed

when associating a protein node with a set of genes. First, the UniProt protein ID

Conceptual data
source

Reference type Reference identifier(s)

Transcription transcription reference Ensembl transcript stable ID
Translation translation reference Ensembl transcript stable ID
miRNA biogenesis miRNA-biogenesis reference Ensembl transcript stable ID
miRNA targets miRTarBase experiment

miRNA-target interaction
(MTI) reference

miRTarBase ID, miRTarBase
experiment name

Reactions Reactome reaction-like event
reference

Reactome stable identifier

Table 5.6: Reference type for each conceptual data source.

Post-processing step Reference type Reference identifier(s)
addition of derivation
edges

derivation reference name of the newly-translated-
isoform node, name of the
derivative node

addition of set member-
ship edges

set membership ref-
erence

name of the member node, name
of the set node

addition of subset rela-
tionship edges

subset relationship
reference

name of the subset node, name
of the set node

Table 5.7: Reference types for each post-processing step.
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Adaptation step Reference type Reference identifier(s)
addition of protein-
phenotype edges

protein phenotype causation
reference

protein-node name

Table 5.8: Reference types for each adaptation step.

is mapped to a set of Ensembl gene stable IDs using the UniProt ID mappings.

Subsequently, IDs corresponding to standard genes are returned.

5.2.6.4 Mapping Ensembl gene stable IDs to sets of miRBase hair-

pin accessions

When building the miRNA biogenesis CPKG (see Section 5.2.8.3), mapping an

Ensembl gene stable ID to a set of miRBase hairpin accessions is needed in order

to identify the hairpins that correspond to a miRNA gene. The miRBase hairpin

accessions that correspond to an Ensembl gene stable ID are first identified using

the Ensembl Core ID mappings. Accessions that correspond to hairpins whose

genomic coordinates and sequence match those of the gene are then returned.

5.2.6.5 Mapping Entrez gene IDs to sets of Ensembl gene stable IDs

Mapping Entrez gene IDs to sets of Ensembl gene stable IDs is performed when

building the MiRNA Target CPKG (see Section 5.2.8.5). Using the Ensembl Core

ID mappings, the Ensembl gene stable IDs that correspond to the Entrez gene ID

are identified and IDs corresponding to standard genes are returned.

5.2.6.6 Mapping miRBase hairpin accessions to sets of Ensembl

gene stable IDs

In order to identify the genomic regions and genes of a miRNA or Reactome miRNA

hairpin node, a mapping from a miRBase hairpin accession to a set of Ensembl

gene stable IDs is performed. The Ensembl gene stable IDs corresponding to a

miRBase hairpin accession are first found using the Ensembl Core ID mappings.

IDs corresponding to standard genes whose coordinates and sequence match those

of the hairpin are subsequently returned.
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5.2.6.7 Mapping HGNC symbols to sets of Ensembl gene stable IDs

The HUGO Gene Nomenclature Committee (HGNC) assigns unique symbols to hu-

man genes. Mapping HGNC symbols to Ensembl gene stable IDs is performed

when removing nodes from the CPKG based on gene expression (see Section

5.2.11.3). The HGNC symbol is first mapped to a HGNC ID using the mappings

from the HGNC website.8 If the mapping is unsuccessful, alias and previous sym-

bols are also searched. If a symbol is found, the HGNC ID is mapped to a set of

Ensembl gene stable IDs using the Ensembl Core ID mappings and the IDs corre-

sponding to standard genes are returned.

5.2.7 Conversion of real-data-source objects to CPKG nodes

For each real data source, the details of the conversion of its objects to CPKG nodes

are described below.

5.2.7.1 Ensembl records

Each gene and transcript is converted to a gene and transcript node, respec-

tively. Gene nodes of genes and transcript nodes of transcripts on the “MT” se-

quence region are associated with GO cellular compartment “mitochondrial ma-

trix” (GO:0005759); gene nodes of genes and transcript nodes of transcripts on

other sequence regions are associated with GO cellular component “nucleoplasm”

(GO:0005654) and “cytosol” (GO:0005829), respectively.

5.2.7.2 miRBase entries

Each miRNA is converted to a miRNA node.

5.2.7.3 IMEx-interaction participants

In order for a participant in an IMEx interaction to be converted to a CPKG node,

a GO cellular compartment must be supplied. The assignment of participant com-

partments is discussed in Section 5.2.8.4. The conversion depends on the form of

the UniProt ID of the participant’s interactor:

• The ID has the form of a protein or peptide ID: If the ID is invalid, the par-

8http://www.genenames.org/

http://www.genenames.org/
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ticipant is converted to an IMEx participant node. Otherwise, the participant

coordinates are determined as follows:

– Proteins: If the participant has a feature of type “polyprotein fragment”

(MI:0828), the coordinates are set to the feature range if it corresponds

to molecule-processing features in UniProt, otherwise they are left un-

determined. If the participant has no such feature, the coordinates are

set to the location of the sole genetic chain in UniProt, if such a genetic

chain exists, otherwise they are left undetermined.

– Peptides: The coordinates are set to the location of the corresponding

molecule-processing feature in Uniprot.

If the participant coordinates cannot be determined or there are invalid PSI-

MOD feature ranges, the participant is converted to an IMEx protein node.

Otherwise, the PSI-MOD features of the participant are converted to singly-

modified residues, and the participant is converted to a protein node.

• The ID has the form of an isoform ID: If the ID is invalid, the participant is

converted to an IMEx participant node. Otherwise, the participant coordinates

are set to the isoform translation of the location of the sole genetic chain in

UniProt, if such a genetic chain exists, and are left undetermined otherwise

(no polyprotein-fragment features were found for isoform participants). If

the participant coordinates cannot be determined or there are invalid PSI-

MOD feature ranges, the participant is converted to an IMEx isoform node.

Otherwise, the PSI-MOD features of the participant are converted to singly-

modified residues, and the participant is converted to an isoform node. The

experimental features of the participants are ignored.

5.2.7.4 Reactome entities

Each complex is converted to a Reactome complex node and each defined set is

converted to a Reactome entity set node. Each candidate set is converted to a Re-

actome entity set node if it has at least one non-candidate member; otherwise, it
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is converted to a Reactome candidate set node. For each EWAS, the conversion

depends on the class of the reference entity:

• The reference entity is a reference DNA sequence: The EWAS is converted to

a gene node if the reference database is human Ensembl gene and the refer-

ence entity identifier is a valid Ensembl gene stable ID; otherwise, the EWAS

is converted to a Reactome EWAS node.

• The reference entity is a reference gene product: If the reference entity iden-

tifier is not a valid Ensembl protein ID, the EWAS is converted to a Reactome

EWAS node; otherwise, the EWAS coordinates and the modified-residue co-

ordinates are checked. If the EWAS coordinates do not correspond to UniProt

molecule-processing features or there are invalid modified-residue coordi-

nates, the EWAS is converted to a Reactome protein node; otherwise, the

EWAS is converted to a protein node. The EWAS coordinates are required to

match UniProt molecule-processing features as the former are not versioned;

thus, they may refer to an older version of UniProt and no longer be valid.

• The reference entity is a reference isoform: If the reference entity identifier

is not a valid Ensembl isoform ID, the EWAS is converted to a Reactome

EWAS node; otherwise, the EWAS coordinates and the modified-residue co-

ordinates are checked. If the EWAS coordinates do not correspond to UniProt

molecule-processing features or there are invalid modified-residue coordi-

nates, the EWAS is converted to a Reactome isoform node; otherwise, the

EWAS is converted to an isoform node.

• The reference entity is a reference RNA sequence: The conversion depends

on the reference database:

– The reference database is human Ensembl transcript: The EWAS is

converted to a transcript node if the reference entity identifier is a valid

Ensembl transcript stable ID; otherwise, the EWAS is converted to a

Reactome EWAS node.
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– The reference database is miRBase: The EWAS is converted to a

miRNA node if the reference entity identifier is a valid miRBase hairpin

accession and the EWAS coordinates match the coordinates of a miRNA

on the miRBase hairpin. If the reference entity identifier is a valid miR-

Base hairpin accession but the EWAS coordinates do not match the coor-

dinates of any miRNA on the miRBase hairpin, the EWAS is converted

to a Reactome miRNA hairpin node. Finally, if the reference entity iden-

tifier is not a valid miRBase hairpin accession, the EWAS is converted

to a Reactome EWAS node.

– The reference database is neither human Ensembl transcript nor miR-

Base: The EWAS is converted to a Reactome EWAS node.

Each polymer is converted to a Reactome polymer node. Each simple entity is

converted to a simple entity node if the reference entity identifier is valid ChEBI

term; otherwise, it is converted to a Reactome simple entity node. Finally, each

open set, GEE, and other entity, is converted to a Reactome open set node, Reactome

GEE node, and Reactome other entity node, respectively.

The abstract modified residues are converted to CPKG modified residues as

follows. Each modified residue is converted to a singly modified residue. Each

group-modified residue is converted to a group-linked residue and to a Reactome

polymer-linked residue if the modification is a reference group and a polymer, re-

spectively. Finally, each interchain cross-linked residue and intrachain cross-linked

residue is converted to the namesake CPKG modified residue.

5.2.8 Conversion of conceptual data sources to CPKGs

In this section, the conversion of conceptual data sources to CPKGs is discussed.

Table 5.9 lists the real data sources used for each conceptual data source.

5.2.8.1 Transcription

Ensembl is used as the sole data source for building the transcription CPKG. For

each known standard gene, the known (standard) transcripts with TSL = 1 or N/A

are identified. If at least one transcript is identified, a transcription reference is
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Conceptual data source Real data source
Transcription Ensembl
Translation Ensembl, UniProt
MiRNA biogenesis miRBase, Ensembl
MiRNA targets miRTarBase, Ensembl, miRBase, Uniprot
Protein-protein interactions IMEx, MI, PSI-MOD, GO, GOA, Uniprot,

Ensembl
Reactions Reactome, Ensembl, miRBase, Uniprot,

ChEBI, PSI-MOD, GO

Table 5.9: Real data sources used for each conceptual data source. For each conceptual
data source, the main real data source used is in boldface.

created, the gene and the transcripts are converted to nodes, and an edge citing the

reference is created from the gene node to each transcript node. The resulting graph

contained 113157 nodes and 68699 edges.

5.2.8.2 Translation

The translation CPKG is built using Ensembl and UniProt. For each known trans-

latable standard transcript with TSL = 1 or N/A in Ensembl, the corresponding

UniProt isoforms are identified. If at least one isoform is identified, a translation

reference is created, the transcript and the isoforms are converted to nodes, and an

edge citing the reference is created from the transcript node to each isoform node.

The resulting graph contained 51175 nodes and 27241 edges.

5.2.8.3 MiRNA biogenesis

miRBase and Ensembl are the data sources used for building the miRNA-biogenesis

CPKG. For each known miRNA standard gene in Ensembl, the corresponding miR-

Base hairpins are identified using the Ensembl gene stable ID to miRBase acces-

sion mappings. If at least one hairpin is identified, the transcript corresponding to

the gene and the miRNAs corresponding to the hairpin are identified, a miRNA-

biogenesis reference is created, the transcript and the miRNAs are converted to

nodes, and an edge citing the reference is created from the transcript node to each

miRNA node. The resulting graph contained 3730 nodes and 2314 edges.
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5.2.8.4 Protein-protein interactions

IMEx is the main data source used for building the PPI CPKG. The IMEx dataset

is not currently available as a single download. Therefore, the IMEx interactions in

the IntAct database and its hosted databases [Orchard et al., 2013] were filtered from

the file in PSI-MI format that is available to download from the IntAct website9 and

contains all interactions in those databases. The Database of Interacting Proteins

(DIP) [Salwinski et al., 2004] offers its IMEx subset as a single file in PSI-MI

format.10 MatrixDB [Launay et al., 2014], a database specialised in extracellular

matrix interactions, is, unfortunately, only available to download in MITAB format

and was not used. The files were processed in MATLAB using the Java parser

provided by the PSI and the MATLAB Java interface. An interaction is eligible for

conversion to causal knowledge if it is neither negative nor intramolecular, it has

at least two participants, all participants are eligible, and at least one experiment is

eligible for the interaction. A participant is eligible if all the following conditions

are satisfied:

• The interactor type is “bioactive entity” (MI:1100), defined as “molecules

showing activity in a living system but not encoded by a genomic sequence”,

or the interactor organism is human.

• The participant has a biological role that is a term in the PSI-MI ontology.

• The participant has exactly one experimental role per experiment.

• All feature types are terms in the PSI-MOD or PSI-MI ontology.

• No feature has type “mutation” (MI:0118) or “variant” (MI:1241).

An experiment is eligible for an interaction if the mode of conversion to causal

knowledge is nonzero. The mode of conversion depends on the experimental de-

tection method, the number of participants, their experimental and biological roles,

and the interaction type. For each experimental detection method, only the stan-

dard protocol is considered. For example, in a pull-down assay, one participant is
9http://www.ebi.ac.uk/intact/downloads

10http://dip.doe-mbi.ucla.edu/dip/Download.cgi?SM=10

http://www.ebi.ac.uk/intact/downloads
http://dip.doe-mbi.ucla.edu/dip/Download.cgi?SM=10
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expected to be bait, the rest participants are expected to be prey, and the participants

have no special biological roles. If any of these conditions are false, the experiment

is not a standard pull-down experiment and the mode of conversion is zero. The

mode of conversion is determined as follows:

• The experimental detection method is a subclass of “display technology”

(MI:0034): Typically, this means that the binding of a single bait protein

to complexes composed of unknown subsets of a set of prey proteins was

demonstrated. If one participant of the interaction is bait and the rest are prey

and all participants have unspecified biological role, the mode of conversion

is 1 if there are only two participants and the interaction is direct and 2 oth-

erwise. In all the other cases the mode of conversion is 0. Note that the

definition of “pull down” (MI:0096) includes experiments where the bait pro-

tein is either immobilised on the column or “fished” from the mixture. Since

it is not possible to distinguish between the two cases without consulting the

respective publication, the method is treated as one that shows that a single

bait protein participates in complexes composed of unknown subsets of a set

of prey proteins (see below).

• The experimental detection method is a subclass of “pull down” (MI:0096),

a subclass of “coimmunoprecipitation” (MI:0019), or “tandem affinity pu-

rification” (MI:0676): This regularly implies that a single bait protein was

shown to participate in complexes with unknown subsets of a set of prey pro-

teins. If there are only two participants in the interaction, one is bait and

the other is pray, both have unspecified biological role, and the interaction is

direct, the mode of conversion is 1; otherwise, the mode of conversion is 0.

• The experimental detection method is a subclass of “surface plasmon res-

onance” (MI:0107), a subclass of “solid phase assay” (MI:0892), “pep-

tide array” (MI:0081), “protein array” (MI:0089), or “competition binding”

(MI:0405): Normally, this means that the binding of a single bait protein to a

single prey protein was demonstrated. If there are only two participants in the
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interaction, one is bait and the other is pray, both have unspecified biological

role, and the interaction is direct, the mode of conversion is 1; otherwise, the

mode of conversion is 0.

• The experimental detection method is a subclass of “enzymatic study”

(MI:0415): Typically, what has been shown is that a single enzyme binds

to a single enzyme target. If there are only two participants in the interaction,

one is enzyme and the other is enzyme target, the experimental role of each

participant is either neutral or unspecified, and the interaction is direct, the

mode of conversion is 1; otherwise, the mode of conversion is 0.

• The experimental detection method is a subclass of “cross-linking”

(MI:0030), a subclass of “cosedimentation” (MI:0027), a subclass of “elec-

trophoretic mobility-based method” (MI:0982, a subclass of “comigration in

gel electrophoresis”, MI:0807), a subclass of “ion exchange chromatogra-

phy” (MI:0226), or “molecular sieving” (MI:0071): What has been normally

shown is that a set of proteins participate in the same complex because they

were detected in the same place after an attempt to separate the contents of

a mixture. If there are only two participants, the experimental role of each

participant is either neutral or unspecified, their biological role is unspecified,

and the interaction is direct, the mode of conversion is 1; otherwise, the mode

of conversion is 0.

• The experimental detection method is a subclass of “light scattering”

(MI:0067), a subclass of “classical fluorescence spectroscopy” (MI:0017),

“isothermal titration calorimetry” (MI:0065), or “fluorescence polarization

spectroscopy” (MI:0053): This commonly implies that two proteins that were

the only proteins in solution in an in-vitro experiment directly interact be-

cause some measurement indicated that the proteins must be bound. If there

are only two participants in the interaction, the experimental role of each par-

ticipant is either neutral or unspecified, their biological role is unspecified,

and the interaction is direct, the mode of conversion is 1; otherwise, the mode
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of conversion is 0.

• The experimental detection method is “fluorescent resonance energy trans-

fer” (MI:0055): Typically, this means that two proteins, a fluorescence donor

and a fluorescence acceptor, came really close together either in vitro or in

vivo. If there are only two participants in the interaction, one is fluorescence

donor and the other is fluorescence acceptor, their biological role is unspec-

ified, and the interaction is direct (indicating that the in vitro version of the

experiment was performed), the mode of conversion is 1; otherwise, the mode

of conversion is 0.

• The experimental detection method is a subclass of “protein complementa-

tion assay” (MI:0090) (a superclass of “two hybrid”, MI:0018), or “lumi-

nescence based mammalian interactome mapping” (MI:0729): These exper-

iments are ignored because they can normally only show that two proteins

participate in the same complex [see Blasche and Koegl, 2013, for a descrip-

tion of luminescence based mammalian interactome mapping].

• The experimental detection method is a subclass of “imaging technique”

(MI:0428), “x-ray crystallography” (MI:0114), or “nuclear magnetic res-

onance” (MI:0077): These experiments are ignored because, even if a binary

interaction is deemed to be direct, there could be other proteins in the com-

plex.

• The experimental detection method is a subclass of “affinity chromatogra-

phy technology” (MI:0004) or “fluorescence technology” (MI:0051): These

experiments are ignored because the experimental detection method is too

general.

• The experimental detection method is “proximity ligation assay“ (MI:0813):

These experiments are ignored because they normally only show that two

proteins came close in vivo [Weibrecht et al., 2014].

• The experimental detection method is none of the above: Experiments with
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other experimental detection methods are ignored because there are too few

(less than 100) interactions for each of the methods.

For each eligible experiment of each eligible IMEx interaction, the mode is checked.

If the mode is 1, the binary interaction between the two participants is processed

with mode 1 (see below). If the mode is 2, the binary interaction between the bait

and each prey protein is processed with mode 2. The resulting graph contained 4659

nodes and 12673 edges.

Processing of binary interactions. A binary interaction between participants X and

Y is processed with mode M as follows. First, a set of cellular compartment pairs

is identified as explained in the next paragraph. Then, for each pair {Cx,Cy} of

compartments, X and Y are converted to CPKG nodes Vx and Vy with compartment

Cx and Cy, respectively. If the nodes are distinct (they may not be for distinct par-

ticipants), an IMEx interaction reference is created. If M = 1, edges Vx → Vy and

Vy → Vx citing the reference are created. If M = 2, only edge Vy → Vx citing the

reference is created, where Y is prey and X is bait.

Identification of interaction compartments. Experimental methods for detecting

molecular interactions can rarely identify the compartments of the participants. In-

deed, only just a few interactor organisms have a compartment specified in the IMEx

dataset. However, CPKG nodes need to be localised. Therefore, if PPIs are to be

converted to a CPKG at all, compartments for the participants must be somehow

identified. The protein GO-cellular-component annotations in GOA are used to

achieve this. First, the GOA annotations without any qualifiers and with a cellular

component aspect, a protein database object type, and a single human taxon are

selected. For each participant, the form of the interactor UniProt ID is checked. If

the ID has the form a protein or peptide ID, the annotations with a database ob-

ject ID matching the protein ID or the protein ID corresponding to the peptide ID,

respectively, are identified. If the ID has the form of an isoform ID, the annota-

tions with a matching gene product form ID or a database object ID matching the

protein ID corresponding to the isoform ID are identified. The GO IDs of the an-

notations have then to be mapped to the set of Reactome compartments. However,
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as mentioned in Section 5.2.3, there are overlapping compartments in that set. In

addition, some compartments are too general (e.g. “cytoplasm”; GO:0005737) or

too specific (e.g. “integrin complex”; GO:0008305). Furthermore, there are non-

human (e.g. “plastid”; GO:0009536) and disease-related (e.g. “host cell cytosol”;

GO:0044164) compartments. Finally, the inclusion or non-inclusion of organelle,

membrane, and lumen terms of membrane-bounded organelles is inconsistent in

the set. For example, “late endosume lumen” (GO:0031906) and “late endosome

membrane” (GO:0031902) are in the set, but “late endosome” (GO:0005770) is

not; “azurophil granule lumen” (GO:0035578) is in the set, but “azurophil granule

membrane” (GO:0035577) and “azurophil granule” (GO:0042582) are not. In order

for the set of Reactome compartments to be used for interaction-participant local-

isation, compartments that are general, too specific, non-human, or disease-related

were removed. For each membrane-bounded organelle such that the corresponding

membrane, lumen, or organelle term is in the set, the other terms were added as

well. Then the set was split into a set of non-overlapping (specific) compartments

and a set of overlapping (general) compartments, which are listed in Table 2 and 3,

respectively, of Supplementary Information I – Cellular Compartments. The gen-

eral compartments are used to facilitate the merging of IMEx nodes with Reactome

nodes. A specific compartment is assigned to a participant if the compartment is

in the set of participant compartments identified earlier or it is a superterm of some

compartment in that set; a general compartment is assigned to a participant if the

compartment is in the set of participant compartments. After both participants have

compartments assigned, the cartesian product of the compartments can be used as

the set of interaction compartment pairs. However, some of the pairs could be bi-

ologically implausible (e.g. nucleoplasm and extracellular region). Alternatively,

participants can be required to be in the same compartment. However, interactions

that happen in adjacent compartments will be missed. Therefore, a set of compart-

ment adjacencies was created based on basic understanding of cell biology and used

to filter the cartesian product of the participant compartments. The adjacencies are

listed in Table 4, Supplementary Information I – Cellular Compartments.
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5.2.8.5 MiRNA targets

The main data source used for building the miRNA-target CPKG is miRTarBase.

Ignoring experiments with < 100 MTIs and ChIP-seq experiments, the experiments

in miRTarBase can be classified according to their information content as in Sec-

tion 5.2.1. Table 5.10 lists indicative experiment names in miRTarBase for the ex-

periments of each class, as well as the mode of conversion to causal knowledge.

ChIP-seq experiments are ignored as their aim is to identify transcription factors

regulating the expression of genes (in this case, miRNA genes) [Yang et al., 2013].

Experiment class Indicative experiment names in miRTarBase Mode
reporter assays B-globin reporter assay, EGFP reporter assay, GFP

reporter assay, GLuc reporter assay, GUS reporter
assay, LacZ reporter assay, luciferase reporter as-
say, reporter assay

1

immunoprecipitation
of RISC components

Coimmunoprecipitation, immunoprecipitation 1

identification of
miRNA binding
sites

CLASH, HITS-CLIP, PAR-CLIP 0

techniques for mea-
suring mRNA levels

In situ hybridization, microarray, Next Generation
Sequencing, northern blot, qPCR, qRT-PCR, RT-
PCR, semi-qRT-PCR, Sequencing

1

techniques for mea-
suring protein levels

ELISA, flow cytometry, immunocytochemistry,
immunofluorescence, immunohistochemistry, im-
munostaining, proteomics, pSILAC, quantitative
proteomic approach, SILAC, Western blot (im-
munoblot)

2

Table 5.10: Experiment classes, indicative experiment names in miRTarBase, and mode of
conversion to causal knowledge (see Section 5.2.1).

For each MTI, the following conditions must be satisfied in order for conver-

sion to causal knowledge to be considered:

• The support type is “Functional MTI” or “Functional MTI (Weak)”.

• There is at least one eligible experiment.

• The miRBase miRNA name is valid.
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• The Entrez gene ID maps to at least one Ensembl gene stable ID of a standard

gene.

• At least one of the mapped standard genes has at least one known (standard)

transcript with TSL = 1 or N/A.

If all of the above are true, the miRNA is converted to a miRNA node, the transcripts

are converted to transcript nodes if any experiment has mode 1, and the UniProt

isoforms corresponding to each transcript are identified and converted to isoform

nodes if any experiment has mode 2. For each experiment, a miRTarBase MTI

reference is created. If the experiment has mode 1, an edge citing the reference is

created from the miRNA node to each transcript node. If the experiment has mode

2 and there is at least one isoform, an edge citing the reference is created from the

miRNA node to each isoform node. The resulting graph contained 23598 nodes and

54532 edges.

It is worth appreciating the fact that even “weak” MTIs can be converted to

causal knowledge, as it is the information content of the experiment that matters

and not the strength of the evidence regarding a direct MTI. In contrast, non-causal

graph-based methods [e.g. see Emily et al., 2009] may discard “weak” relationships

in order increase confidence in the resulting graph.

5.2.8.6 Reactions

The reaction CPKG is built using Reactome as the main data source. Catalysts are

considered to be both inputs and outputs. Non-human, chimeric, computationally-

inferred, and/or disease reaction-like events are ignored (only prion-disease disease

RLEs would be of interest, and there is no one in Reactome). Finally, BBEs are ig-

nored because treating them like reactions may lead to incorrect causal knowledge.

For example, assume that X+Y+Z−−→U+V is a BBE. Then, Z→X , Z→Y , and

Z→U will be among the edges created in the CPKG. However, the BBE may actu-

ally be a shortcut for two reactions, X+Y−−→U+W and W+Z−−→V. Clearly,

edges Z→ X , Z→ Y , and Z→U would not be created from these reactions.

An RLE involving entity sets is equivalent to a set of “concrete” RLEs,
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i.e, RLEs involving concrete entities. For example, RLE A + B + C −−→ D,

where A = {A1,A2}, B = {B1,B2}, and D = {D1,D2,D3,D4}, is equivalent to

RLEs A1 + B1 + C −−→ D1, A1 + B2 + C −−→ D2, A2 + B1 + C −−→ D3, and

A2 +B2 +C −−→ D4. However, automatically resolving the concrete RLEs is not

possible since it is not possible to know which concrete outputs correspond to which

concrete inputs without manual inspection. In the previous example, it is not known

that D1 corresponds to A1 and B1, unless D, A, and B are manually inspected. Also,

resolving the concrete RLEs will lead to combinatorial explosion. Therefore, entity

sets are used as is, and the definition of causation is extended from single variables

to sets of variables:

Definition 5.1. A set A is said to be a cause of another set B when there is a variable

A in A and a variable B in B such that A is a cause of B.

Since it is unknown to which isoform(s) a protein EWAS corresponds to, it is

assumed that it corresponds to all isoforms in UniProt and protein EWAS are treated

as sets of isoform EWAS. Finally, candidate members of candidate sets are ignored.

The resulting graph contained 12661 nodes and 50245 edges.

5.2.9 Merging the graphs

The graphs from each conceptual data source are merged in order to create a general

graph, which contained 156186 nodes and 215677 edges.

5.2.10 General-graph post-processing

The general graph goes through three post-processing steps in order to further fur-

ther its connectivity, resulting in the processed general graph.

5.2.10.1 Addition of derivation edges

In order to make sure that all gene-product nodes are connected to their correspond-

ing gene nodes, edges are added from each newly-translated-isoform node (which is

already connected to the corresponding gene node) to each of its derivative nodes.

A derivative of a newly-translated isoform is defined as another (post-translationally

modified and/or transported) version of (part of) the isoform, or a complex, poly-
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mer, or set that contains some version of the isoform. 65647 edges, each citing a

different derivation reference, were added, resulting in a graph with 281324 edges.

5.2.10.2 Addition of set-membership edges

Set variables are instant effects of their members. Therefore, edges are added to

each set node from each of its member nodes in the graph. 2619 edges, each citing

a different set-membership reference, were added, resulting in a graph with 283943

edges.

5.2.10.3 Addition of subset-relationship edges

Set variables are instant effects of their subsets. Therefore, edges are added to each

set node from each of its subset nodes in the graph. 615 edges, each citing a different

subset-relationship reference, were added, resulting in a graph with 284558 edges.

It is worth noting that set-membership and subset-relationship edges are not found

even in Reactome’s pathway browser.

5.2.11 Adaptation of the post-processed general graph to prion

disease

The post-processed general graph is cell-type-agnostic and the phenotype node is

an orphan. The graph is adapted for variant filtering in prion disease in three steps.

5.2.11.1 Addition of protein-phenotype edges

Gene knockout experiments in model organisms can elucidate genotype–phenotype

relationships. The causal knowledge corresponding to an experiment showing that

knocking gene G out affects phenotype P is that G is a cause of P. This is not very

useful, though, since the connectivity of G in the graph is limited. Therefore, is it

assumed that I is a cause of P for each protein-isoform version I of G.

As mentioned in the introduction, knocking PRNP out in mice prevents prion

disease. Therefore, edges are added from each protein node corresponding to a

version of PrP to the phenotype node. Three edges, each citing a different protein-

phenotype-causation reference, were added, resulting in a graph with 284561 edges.
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5.2.11.2 Deletion of nodes by compartment

Although prion disease affects multiple cell types, including neurons and glial cells,

the focus of this work is on neurons. Therefore, localised nodes with a compartment

not found in neurons were removed. Table 5 and 6 in Supplementary Information I

– Cellular Compartments lists the compartments in the general CPKG and the re-

moved compartments, respectively. Reactome complexes and Reactome polymers

are removed if any of their components and repeated units, respectively, are re-

moved. Reactome entity sets are removed if all their members are removed. 190

nodes were removed in total, resulting in a graph with 155996 nodes and 283496

edges.

5.2.11.3 Deletion of nodes by gene expression

A set of 131 RNA-seq datasets, each measuring the gene expression of 22085 genes

in a different healthy human cortical neuron, was obtained from the Gene Expres-

sion Omnibus database (accession number: GSE67835). The neurons were ob-

tained from tissue that was deemed to be healthy during brain surgery of patients

with medical refractory seizures [Darmanis et al., 2015]. Following the recommen-

dation of the edgeR software’s manual,11 a gene was deemed to be non-expressed

if it had a CPM (counts per million) value of 1.12 On average, 16560 genes were

deemed non-expressed in each neuron. 1261 genes were deemed non-expressed in

all neurons. Their HGNC symbols in the datasets were converted to 1140 Ensembl

gene stable IDs that were used to delete nodes from the CPKG. Gene products (tran-

scripts, proteins, protein isoforms, miRNA hairpins, and miRNA) are removed if all

their associated Ensembl gene stable IDs are among the Ensembl gene stable IDs

of the non-expressed genes. Reactome complexes, Reactome polymers, and Reac-

tome entity sets are removed as described in the previous section. 3196 nodes and

36283 edges were removed, resulting in a the final CPKG having 152800 nodes and

247213 edges. Ideally, case–control gene-expression datasets from human prion

11http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
12The state-of-the-art method of Hart et al. [2013] for detecting non-expressed genes could not

be used because it uses FPKM (fragments per kilobase of exon per million reads mapped) values,
which are not available.

http://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf
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disease should have been used, as a gene may be not expressed in controls but ex-

pressed in cases. However, no such datasets are available.

5.3 Evaluation
In order to evaluate a variant-filtering approach, some performance measure must

be chosen. It is important that the method is able to identify novel disease variants,

not merely re-discover known ones. Therefore, the performance measure of interest

is the increase in power of discovering novel disease variants from a filtered dataset

compared to the original, unfiltered dataset. There are two main approaches to esti-

mating this measure. The first approach is to apply the method to a disease or set of

diseases using the most recent data sources and perform functional studies to deter-

mine which of the discovered novel variants are true positives [Aerts et al., 2006].

This is, of course, laborious and expensive. The second approach is to “mimic”

novel discoveries by using archived data sources and determine whether filtering

enables the discovery of disease variants reported afterwards in the literature. This

can be done prospectively [Börnigen et al., 2012] or retrospectively [Aerts et al.,

2006].

In order for a disease to be used for the evaluation of the CPKG-based variant-

filtering method using the second approach, the disease must satisfy two require-

ments: It must be influenced by at least one molecular entity, because otherwise the

phenotype would have no ancestors in the CPKG, and have some recently-reported

disease variants, because otherwise data sources used in building the CPKG may be

unavailable. Prion disease cannot be used because there is only one known disease

variant, PRNP codon 129, which was reported back in 1991 as a susceptibility vari-

ant for sCJD [Palmer et al., 1991]. In contrast, Parkinson’s disease satisfies both

requirements, as it is is influenced by the levels of the α-synuclein protein [Martin

et al., 2011] and has a number of variants reported relatively recently in the Clin-

Var database.13 Unfortunately, evaluation using genetic datasets from Parkinson’s

disease could not be performed due to data-access restrictions. In any case, evalu-

13http://www.ncbi.nlm.nih.gov/clinvar/

http://www.ncbi.nlm.nih.gov/clinvar/
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ation can be performed in the future by studying the function of the novel variants

discovered from the filtered datasets from prion disease (see Section 5.5).

5.4 Suggesting causal mechanisms
Once a discovery is made from the filtered dataset, the causal paths from the asso-

ciated nodes to the phenotype can be inspected in the CPKG (see Section 5.1.2);

every such path suggests a causal biological mechanism. However, finding all paths

between two nodes in a large directed graph is computationally intractable [specifi-

cally, the problem is #P-complete; Valiant, 1979] and finding a arbitrary set of k≥ 1

paths is not satisfactory. Another approach is to inspect sequences of edges from

each associated node to the phenotype; a sequence of edges is the multiset of edges

that corresponds to an ordered multiset of nodes such that, for 2≤ i≤ n, Xi−1 and X

are adjacent. Clearly, a path is a sequence of edges whose corresponding multiset of

nodes is a set. The nodes on a sequence of edges from X to Y are easily identifiable,

since they comprise the intersection of the descendants of X and the ancestors of Y .

However, sequences of edges are hardly useful compared to paths: in the sequence

of edges X → Y → Z → Y → P, where X is a node associated with the hit and P

is the phenotype, Z is irrelevant since path X → Y → P already suggests a causal

mechanism. Therefore, highlighting sequences of edges in the CPKG will result

in a lot of noise and make the graph uninterpretable. Owing to these problems,

investigation of hits using the CPKG was not attempted in this work.

5.5 Results
The prion-disease CPKG had 33343 weakly-connected components. This means

that the graph actually consisted of 33343 isolated graphs. Most of these graphs

were gene-transcript-protein graphs generated from Ensembl, with none of the en-

tities participating in Reactome reactions. There were 68494 nodes in the weakly

connected component that contained the phenotype. 33897 (49.49%) of those nodes

(22.18% of all nodes) were ancestors of the phenotype. The fact that not all nodes

weakly connected to the phenotype were its ancestors demonstrates that using a

directed graph results in higher specificity than using an undirected one.
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The genomic regions associated with the ancestors of the phenotype were used

to filter the exome-sequencing datasets in Table 3.2. PRNP codon 129 was retained

in both datasets. Table 5.11 contains the results of filtering. The reduction in the

number of variants was ≈ 70%. In contrast, filtering using the genomic regions

associated with all nodes in the CPKG (that is, all regions for which there is some

prior knowledge) resulted in a reduction of only ≈ 6%. This demonstrates that

filtering using the causal ancestors of the phenotype is not trivial, as it results in a

much smaller dataset than simply using all regions for which there is some prior

knowledge.

A well-established gene-prioritisation tool, Endeavour [Aerts et al., 2006], was

also used to filter the datasets. Endeavour accepts a set of seed genes and a set of

candidate genes as its input. For each of several data sources, the seed genes are

used to train a model for ranking candidate genes according to their similarity to the

seed genes which is then used to rank the candidate genes. The rankings from each

data source are combined using order statistics in order to create the overall ranking.

Endeavour was used to identify candidate genomic regions as follows. PRNP and

the known standard genes in Ensembl (56091 in total) were given as the sole seed

gene and the set of candidate genes, respectively. 19515 genes were considered

valid and ranked by Endeavour. Because the output of Endeavour consists of HGNC

symbols, the symbols were mapped back to Ensembl gene stable IDs as described

in Section 5.2.6.7. 18789 genes had an Ensembl gene stable ID, and the top 10%

of them was selected (1879 genes in total). The corresponding gene regions were

subsequently obtained from Ensembl and used to filter the datasets, resulting, as

expected, in a reduction of ≈ 89%.

Algorithm 13 was applied to the datasets filtered by the CPKG and Endeav-

our. Table 5.12 and 5.13 lists the discoveries made from each dataset filtered

by the CPKG and Endeavour, respectively. In sCJD, there were no discoveries

from the CPKG-filtered dataset and four discoveries from the Endeavour-filtered

dataset. rs1071727 was discovered from both the vCJD and sCJD Endeavour-

filtered datasets. In vCJD, there were 17 discoveries from the CPKG-filtered
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dataset and 16 discoveries from the Endeavour-filtered dataset. rs201076736 and

rs11558171 were not discovered in the original dataset but were discovered from

both filtered datasets. rs78810484 was discovered from the original and the CPKG-

filtered dataset. Finally, rs150910818 was discovered from the original and both

filtered datasets. Overall, there was little overlap between the discoveries from

the three datasets. However, the discoveries made from the CPKG-filtered dataset

were, on average, more significant than the ones made from the Endeavour-filtered

dataset, and slightly less significant, on average, than the ones made from the orig-

inal dataset: the mean discovery link-absence p-value was 2.24 ·10−8, 5.82 ·10−8,

and 2.85 ·10−7 in the original, CPKG-filtered, and Endeavour-filtered vCJD dataset,

respectively. Note that the link-absence p-value of the same discovery varies across

the datasets, as it depends on the other variables in the dataset. A link-absence p-

value is smaller in datasets with fewer variables, as fewer tests are performed. This

does not explain, however, the smaller p-values in the CPKG-filtered vCJD dataset,

as it is much bigger than the Endeavour-filtered vCJD dataset.

# Dis. m m (C) r (C) m (CA) r (CA) m (E) r (E)
1 sCJD 381354 113088 70.35% 359923 5.62% 41993 88.99%
2 vCJD 337069 99188 70.57% 317862 5.70% 36457 89.18%

Table 5.11: Exome-sequencing case–control datasets from prion disease filtered by the
CPKG, the CPKG using all nodes, and Endeavour. Dis. stands for disease.
m denotes the number of variants in the original dataset. m (X) denotes the
number of variants in the dataset filtered by method X. C refers to the CPKG,
CA refers to the CPKG using all nodes, and E refers to Endeavour. r (X) de-
notes the reduction in the number of variants in the dataset filtered by method
X compared to the original dataset.

5.6 Related work
Any gene-prioritisation method can be used for the purpose of variant filtering in the

same way as Endeavour was used in the previous section. Methods that prioritise or

filter variants based on their estimated deleteriousness can be used alternatively or as

a post-processing step after candidate genomic regions have been identified by the

CPKG-based or some other variant-filtering method. Another body of work [Pat-

tin and Moore, 2008, Bush et al., 2009, Emily et al., 2009, Ritchie, 2011] focusses
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on using biological databases to filter pairs of variants before epistasis detection;

a pair of variants is retained if a “strong” connection between the corresponding

genes is supported by the databases, where the strength of the connection is cal-

culated based on some scoring scheme. In contrast to the links in a CPKG, these

connections do not have a causal interpretation. In addition, as mentioned in Sec-

tion 5.2.8.5, methods like these may ignore “weak” connections that have a causal

interpretation nonetheless. Other works are related to certain aspects of CPKG-

based variant filtering. ComPPI [Veres et al., 2014] is a PPI database created by

filtering binary PPIs from other databases based on the compartments of the inter-

acting proteins. The latter are obtained from several sources, but they are mapped to

only six major compartments (cytosol, nucleus, mitochondrion, secretory-pathway,

membrane, extracellular). Furthermore, only interactions with participants in the

same compartment are retained. In at least one publication [Jonsson et al., 2006]

PPIs are filtered using a list of adjacent compartments, but only 6 compartments are

used (Extracellular, Intracellular, Cytoplasm, Nucleus, Mitochondrion, Membrane).

Schaefer et al. [2013] devised a method for adapting a general PPI network to a cer-

tain context (e.g. disease, tissue) using gene expression, functional and disease

annotations, and pathways. Finally, Novershtern et al. [2011] introduced physical

module networks (PMNs) and devised a search-and-score approach to learn them

from data. A PMN is the combination of a module network and a physical inter-

action network that are consistent with each other. The former is a BN over sets

of co-expressed genes (referred to as modules). The latter is a graph over genes

and proteins with three types of edges: (1) undirected protein-protein edges corre-

sponding to protein-protein interactions, (2) directed edges from proteins to genes

corresponding to protein-DNA interactions, and (3) directed edges from genes to

their protein products corresponding to transcription interactions. The two are con-

sistent if for each gene G in a module M1 that is a parent of module M2 in the BN

there is a path from the protein product of G to a transcription factor for all genes in

M2 in the physical interaction network. This is reminiscent to retaining a variant if

there is a (causal) path from a node associated with the variant to the phenotype in
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the CPKG. Also note that the transcription edges in the physical interaction network

are shortcuts to the transcription and translation paths in the CPKG.

5.7 Summary and future work
A variant-filtering method based on the use of a CPKG was developed. The main

strength of the method is the causal interpretation of the results: for each variant in

the filtered dataset, there is at least one possible disease-causing mechanism, corre-

sponding to a causal path from a node associated with the variant to the phenotype.

The method was used to filter two exome-sequencing datasets from prion disease

and causal discovery was subsequently applied to the filtered datasets as well as

to the datasets filtered by the Endeavour gene-prioritisation tool. Notably, the dis-

coveries made from the former datasets were more significant than the discoveries

made from the latter datasets.

Future work includes devising a method for identifying a suitable subset of the

causal paths between a node associated with a variant and the phenotype, as finding

all such paths is intractable in practice. In addition, CPKG-based variant-filtering

needs to evaluated using either of the approaches discussed in Section 5.3 in order

to prove its effectiveness.



5.7. Summary and future work 169

D
#

R
S#

C
#

Po
si

tio
n

M
(A

)
M

(U
)

G
F

(A
)

G
F

(U
)

P-
va

lu
e

O
R

(A
a)

O
R

(A
a)

95
%

C
I

O
R

(a
a)

O
R

(a
a)

95
%

C
I

2
rs

72
90

90
30

1
17

19
39

3
0.

46
2

0.
04

2
0.

07
6/

0.
92

4/
0.

00
0

0.
91

6/
0.

08
4/

0.
00

0
4.

33
·1

0−
36

13
2.

62
[5

8.
27

,3
01

.8
1]

N
/A

[N
/A

,N
/A

]
2

rs
37

49
07

3
2

23
09

10
37

9
0.

06
5

0.
39

3
0.

88
2/

0.
10

6/
0.

01
2

0.
27

6/
0.

66
3/

0.
06

1
1.

46
·1

0−
12

0.
05

[0
.0

2,
0.

11
]

0.
06

[0
.0

1,
0.

48
]

2
rs

29
11

27
2

3
19

57
83

90
2

0.
55

3
0.

14
3

0.
08

5/
0.

72
3/

0.
19

1
0.

78
8/

0.
13

8/
0.

07
4

6.
99
·1

0−
12

48
.4

0
[2

2.
17

,1
05

.6
5]

24
.0

7
[9

.7
3,

59
.5

6]
2

rs
20

00
75

07
1

4
10

29
05

61
2

0.
48

8
0.

04
1

0.
02

3/
0.

97
7/

0.
00

0
0.

91
8/

0.
08

2/
0.

00
0

2.
46
·1

0−
10

46
9.

15
[1

11
.8

5,
19

67
.7

6]
N

/A
[N

/A
,N

/A
]

2
rs

20
15

01
8

5
13

01
85

43
3

0.
70

0
0.

22
0

0.
08

2/
0.

43
5/

0.
48

2
0.

70
9/

0.
14

2/
0.

14
9

4.
55
·1

0−
15

26
.4

3
[1

0.
39

,6
7.

24
]

27
.9

5
[1

1.
10

,7
0.

42
]

2
rs

20
10

76
73

6
8

10
07

09
58

9
0.

34
2

0.
03

2
0.

31
6/

0.
68

4/
0.

00
0

0.
93

6/
0.

06
4/

0.
00

0
1.

77
·1

0−
14

31
.4

4
[1

8.
40

,5
3.

74
]

N
/A

[N
/A

,N
/A

]
2

rs
79

07
52

95
11

10
82

44
02

2
0.

37
9

0.
02

9
0.

24
2/

0.
75

8/
0.

00
0

0.
94

2/
0.

05
8/

0.
00

0
7.

76
·1

0−
8

50
.7

8
[2

6.
35

,9
7.

85
]

N
/A

[N
/A

,N
/A

]
2

rs
78

56
24

67
12

11
03

11
23

0.
49

4
0.

05
5

0.
01

2/
0.

98
8/

0.
00

0
0.

89
1/

0.
10

9/
0.

00
0

1.
59
·1

0−
7

68
3.

79
[9

3.
40

,5
00

5.
94

]
N

/A
[N

/A
,N

/A
]

2
rs

78
81

04
84

13
36

43
87

29
0.

47
1

0.
07

2
0.

05
9/

0.
94

1/
0.

00
0

0.
85

6/
0.

14
4/

0.
00

0
6.

91
·1

0−
31

95
.3

3
[3

6.
73

,2
47

.4
5]

N
/A

[N
/A

,N
/A

]
2

rs
20

11
52

81
3

13
75

28
91

09
0.

32
2

0.
03

7
0.

35
6/

0.
64

4/
0.

00
0

0.
92

5/
0.

07
5/

0.
00

0
5.

35
·1

0−
9

22
.3

5
[1

3.
05

,3
8.

26
]

N
/A

[N
/A

,N
/A

]
2

rs
75

75
69

57
6

13
19

43
25

76
0.

00
0

0.
56

6
1.

00
0/

0.
00

0/
0.

00
0

0.
43

4/
0.

00
0/

0.
56

6
2.

41
·1

0−
7

N
/A

[N
/A

,N
/A

]
0.

00
[0

.0
0,

N
/A

]
2

rs
75

55
46

47
15

72
75

24
88

0.
33

0
0.

05
4

0.
34

0/
0.

66
0/

0.
00

0
0.

89
4/

0.
10

5/
0.

00
2

4.
10
·1

0−
8

16
.5

7
[1

0.
16

,2
7.

03
]

0.
00

[0
.0

0,
N

/A
]

2
rs

11
63

58
70

15
78

77
18

01
0.

35
2

0.
03

9
0.

44
3/

0.
40

9/
0.

14
8

0.
93

6/
0.

04
8/

0.
01

5
1.

24
·1

0−
8

17
.8

8
[9

.3
7,

34
.1

2]
20

.4
4

[7
.3

6,
56

.8
2]

2
rs

62
02

86
47

16
55

82
87

79
0.

36
8

0.
03

2
0.

26
3/

0.
73

7/
0.

00
0

0.
93

6/
0.

06
4/

0.
00

0
1.

97
·1

0−
10

41
.2

7
[2

3.
73

,7
1.

77
]

N
/A

[N
/A

,N
/A

]
2

rs
62

05
09

78
16

70
14

84
87

0.
33

5
0.

02
6

0.
33

0/
0.

67
0/

0.
00

0
0.

94
9/

0.
05

1/
0.

00
0

3.
71
·1

0−
7

37
.4

6
[2

1.
70

,6
4.

68
]

N
/A

[N
/A

,N
/A

]
2

rs
11

55
81

71
16

58
73

42
25

0.
06

5
0.

44
9

0.
91

3/
0.

04
3/

0.
04

3
0.

16
4/

0.
77

4/
0.

06
2

8.
22
·1

0−
8

0.
01

[0
.0

0,
0.

04
]

0.
13

[0
.0

3,
0.

64
]

2
rs

15
09

10
81

8
17

16
16

50
82

0.
50

0
0.

04
4

0.
00

0/
1.

00
0/

0.
00

0
0.

91
2/

0.
08

8/
0.

00
0

1.
39
·1

0−
51

∞
[N

/A
,∞

]
N

/A
[N

/A
,N

/A
]

Ta
bl

e
5.

12
:D

is
co

ve
ri

es
re

su
lti

ng
fr

om
th

e
ap

pl
ic

at
io

n
of

A
lg

or
ith

m
13

to
th

e
da

ta
se

ts
in

Ta
bl

e
5.

11
fil

te
re

d
by

th
e

C
PK

G
.D

#
is

th
e

da
ta

se
tn

um
be

r.
R

S#
is

th
e

R
S

nu
m

be
ro

ft
he

va
ri

an
ti

n
db

SN
P.

C
#

is
th

e
ch

ro
m

os
om

e
nu

m
be

r.
M

(A
/U

)i
s

th
e

m
in

or
al

le
le

fr
eq

ue
nc

y
in

ca
se

s/
co

nt
ro

ls
.G

F
(A

/U
)

ar
e

th
e

re
la

tiv
e

fr
eq

ue
nc

ie
s

of
ho

m
oz

yg
ot

es
fo

r
th

e
co

m
m

on
al

le
le

,h
et

er
oz

yg
ot

es
,a

nd
ho

m
oz

yg
ot

es
fo

r
th

e
ra

re
al

le
le

in
ca

se
s/

co
nt

ro
ls

.
P

-v
al

ue
is

(a
n

up
pe

rb
ou

nd
of

)t
he

lin
k-

ab
se

nc
e

p-
va

lu
e.

O
R

(A
a)

an
d

O
R

(a
a)

is
th

e
he

te
ro

zy
go

te
an

d
ra

re
ho

m
oz

yg
ot

e,
re

sp
ec

tiv
el

y,
O

R
,

w
ith

N
/A

de
no

tin
g

an
un

de
fin

ed
O

R
.O

R
(A

a)
95

%
C

I
an

d
O

R
(a

a)
95

%
C

I
ar

e
th

e
co

rr
es

po
nd

in
g

95
%

co
nfi

de
nc

e
in

te
rv

al
s.

T
he

O
R

s
eq

ua
lt

he
re

sp
ec

tiv
e

C
O

R
s

un
de

rt
he

co
nd

iti
on

s
of

T
he

or
em

3.
14

.



5.7. Summary and future work 170

D
#

R
S#

C
#

Po
si

tio
n

M
(A

)
M

(U
)

G
F

(A
)

G
F

(U
)

P-
va

lu
e

O
R

(A
a)

O
R

(A
a)

95
%

C
I

O
R

(a
a)

O
R

(a
a)

95
%

C
I

1
rs

20
04

96
97

4
1

15
58

68
73

3
0.

00
7

0.
10

7
0.

98
6/

0.
01

4/
0.

00
0

0.
78

5/
0.

21
5/

0.
00

0
5.

87
·1

0−
9

0.
05

[0
.0

2,
0.

16
]

N
/A

[N
/A

,N
/A

]
1

rs
76

44
47

37
4

3
10

04
67

20
0.

10
1

0.
02

4
0.

79
7/

0.
20

3/
0.

00
0

0.
95

2/
0.

04
8/

0.
00

0
2.

60
·1

0−
7

5.
05

[2
.8

9,
8.

82
]

N
/A

[N
/A

,N
/A

]
1

rs
75

22
29

61
4

4
15

03
15

60
2

0.
12

9
0.

28
3

0.
74

8/
0.

24
8/

0.
00

5
0.

44
1/

0.
55

3/
0.

00
6

3.
03
·1

0−
7

0.
26

[0
.1

9,
0.

38
]

0.
45

[0
.0

5,
4.

07
]

1
rs

10
71

72
7

12
12

49
11

94
2

0.
47

8
0.

18
4

0.
47

3/
0.

09
7/

0.
43

0
0.

78
8/

0.
05

6/
0.

15
6

3.
40
·1

0−
7

2.
90

[1
.2

1,
6.

98
]

4.
59

[2
.6

9,
7.

83
]

2
rs

75
79

90
3

2
18

89
97

37
1

0.
15

1
0.

45
1

0.
73

3/
0.

23
3/

0.
03

5
0.

18
7/

0.
72

4/
0.

08
9

1.
40
·1

0−
7

0.
08

[0
.0

4,
0.

15
]

0.
10

[0
.0

3,
0.

36
]

2
rs

73
20

58
42

3
19

68
03

14
2

0.
13

4
0.

43
5

0.
73

2/
0.

26
8/

0.
00

0
0.

12
9/

0.
87

1/
0.

00
0

9.
05
·1

0−
14

0.
05

[0
.0

3,
0.

09
]

N
/A

[N
/A

,N
/A

]
2

rs
12

33
03

69
3

10
04

80
39

0.
41

2
0.

14
7

0.
17

5/
0.

82
5/

0.
00

0
0.

70
5/

0.
29

5/
0.

00
0

1.
97
·1

0−
6

11
.2

6
[6

.5
0,

19
.5

2]
N

/A
[N

/A
,N

/A
]

2
rs

77
47

03
08

3
19

68
03

05
5

0.
16

5
0.

01
2

0.
67

0/
0.

33
0/

0.
00

0
0.

97
5/

0.
02

5/
0.

00
0

9.
94
·1

0−
8

19
.4

4
[1

0.
08

,3
7.

48
]

N
/A

[N
/A

,N
/A

]
2

N
/A

4
13

97
30

43
0

0.
70

4
0.

04
8

0.
29

6/
0.

00
0/

0.
70

4
0.

95
1/

0.
00

2/
0.

04
8

3.
96
·1

0−
7

0.
00

[0
.0

0,
N

/A
]

47
.6

2
[2

5.
50

,8
8.

91
]

2
N

/A
6

29
94

29
16

0.
04

1
0.

54
7

0.
94

2/
0.

03
5/

0.
02

3
0.

14
5/

0.
61

5/
0.

24
0

1.
22
·1

0−
10

0.
01

[0
.0

0,
0.

03
]

0.
01

[0
.0

0,
0.

06
]

2
rs

20
10

76
73

6
8

10
07

09
58

9
0.

34
2

0.
03

2
0.

31
6/

0.
68

4/
0.

00
0

0.
93

6/
0.

06
4/

0.
00

0
7.

19
·1

0−
20

31
.4

4
[1

8.
40

,5
3.

74
]

N
/A

[N
/A

,N
/A

]
2

rs
10

71
72

7
12

12
49

11
94

2
0.

75
8

0.
18

4
0.

07
9/

0.
32

6/
0.

59
6

0.
78

8/
0.

05
6/

0.
15

6
2.

60
·1

0−
12

58
.7

8
[2

2.
31

,1
54

.8
4]

38
.1

9
[1

6.
31

,8
9.

42
]

2
rs

74
74

89
12

6
13

32
33

28
46

0.
24

2
0.

01
7

0.
51

5/
0.

48
5/

0.
00

0
0.

96
6/

0.
03

4/
0.

00
0

3.
84
·1

0−
7

26
.7

0
[1

4.
91

,4
7.

82
]

N
/A

[N
/A

,N
/A

]
2

rs
11

55
81

71
16

58
73

42
25

0.
06

5
0.

44
9

0.
91

3/
0.

04
3/

0.
04

3
0.

16
4/

0.
77

4/
0.

06
2

8.
22
·1

0−
8

0.
01

[0
.0

0,
0.

04
]

0.
13

[0
.0

3,
0.

64
]

2
rs

15
09

10
81

8
17

16
16

50
82

0.
50

0
0.

04
4

0.
00

0/
1.

00
0/

0.
00

0
0.

91
2/

0.
08

8/
0.

00
0

5.
49
·1

0−
48

∞
[N

/A
,∞

]
N

/A
[N

/A
,N

/A
]

2
rs

20
06

91
51

3
18

31
54

59
54

0.
32

0
0.

03
3

0.
36

1/
0.

63
9/

0.
00

0
0.

93
4/

0.
06

6/
0.

00
0

1.
73
·1

0−
21

24
.9

2
[1

4.
89

,4
1.

71
]

N
/A

[N
/A

,N
/A

]
2

rs
20

06
21

86
2

18
23

93
93

40
0.

27
8

0.
03

2
0.

44
3/

0.
55

7/
0.

00
0

0.
93

5/
0.

06
5/

0.
00

0
4.

73
·1

0−
13

18
.0

8
[1

0.
90

,2
9.

98
]

N
/A

[N
/A

,N
/A

]
2

rs
56

13
10

56
19

60
36

34
0.

11
1

0.
44

2
0.

81
1/

0.
15

6/
0.

03
3

0.
25

3/
0.

61
0/

0.
13

6
5.

63
·1

0−
8

0.
08

[0
.0

4,
0.

16
]

0.
08

[0
.0

2,
0.

27
]

2
rs

20
20

94
58

1
21

14
38

15
34

0.
15

3
0.

02
6

0.
69

3/
0.

30
7/

0.
00

0
0.

94
7/

0.
05

3/
0.

00
0

1.
15
·1

0−
6

7.
98

[4
.4

9,
14

.2
0]

N
/A

[N
/A

,N
/A

]
2

rs
20

05
93

80
5

22
39

67
08

68
0.

16
7

0.
01

6
0.

66
7/

0.
33

3/
0.

00
0

0.
96

8/
0.

03
2/

0.
00

0
2.

78
·1

0−
7

14
.9

0
[7

.6
8,

28
.9

3]
N

/A
[N

/A
,N

/A
]

Ta
bl

e
5.

13
:D

is
co

ve
ri

es
re

su
lti

ng
fr

om
th

e
ap

pl
ic

at
io

n
of

A
lg

or
ith

m
13

to
th

e
da

ta
se

ts
in

Ta
bl

e
5.

11
fil

te
re

d
by

E
nd

ea
vo

ur
.

D
#

is
th

e
da

ta
se

tn
um

be
r.

R
S#

is
th

e
R

S
nu

m
be

ro
ft

he
va

ri
an

ti
n

db
SN

P,
w

ith
N

/A
de

no
tin

g
th

at
th

e
va

ri
an

ti
s

no
ti

n
db

SN
P.

C
#

is
th

e
ch

ro
m

os
om

e
nu

m
be

r.
M

(A
/U

)
is

th
e

m
in

or
al

le
le

fr
eq

ue
nc

y
in

ca
se

s/
co

nt
ro

ls
.G

F
(A

/U
)a

re
th

e
re

la
tiv

e
fr

eq
ue

nc
ie

s
of

ho
m

oz
yg

ot
es

fo
rt

he
co

m
m

on
al

le
le

,h
et

er
oz

yg
ot

es
,

an
d

ho
m

oz
yg

ot
es

fo
rt

he
ra

re
al

le
le

in
ca

se
s/

co
nt

ro
ls

.P
-v

al
ue

is
(a

n
up

pe
rb

ou
nd

of
)t

he
lin

k-
ab

se
nc

e
p-

va
lu

e.
O

R
(A

a)
an

d
O

R
(a

a)
is

th
e

he
te

ro
zy

go
te

an
d

ra
re

ho
m

oz
yg

ot
e,

re
sp

ec
tiv

el
y,

O
R

,w
ith

N
/A

de
no

tin
g

an
un

de
fin

ed
O

R
.O

R
(A

a)
95

%
C

I
an

d
O

R
(a

a)
95

%
C

I
ar

e
th

e
co

rr
es

po
nd

in
g

95
%

co
nfi

de
nc

e
in

te
rv

al
s.

T
he

O
R

s
eq

ua
lt

he
re

sp
ec

tiv
e

C
O

R
s

un
de

rt
he

co
nd

iti
on

s
of

T
he

or
em

3.
14

.



Chapter 6

Summary and Future Work

Although GWASs resulted in the discovery of thousands of variant-disease associa-

tions, the vast majority of genetic causes of disease remain to be found. Genetic

studies in prion disease have, so far, not lead to any discoveries other than the

known PRNP codon 129. A general approach to discovering additional suscepti-

bility variants is to perform data integration. In this work, INCA was adopted as a

data-integration framework for identifying all causal relationships between variants

and prion disease that are consistent with all genetic datasets from prion disease and

prior biological knowledge. Towards that goal, a theory of causal discovery from

genetic datasets was formulated, algorithms for causal discovery from single and

multiple genetic datasets were devised, and a variant-filtering method based on a

CPKG that represents causal relationships from several biological data sources was

developed. The methods were applied to datasets from prion disease, resulting in

the discovery of variants to be further investigated.

The FDR-controlled local-learning algorithm devised for conditional genetic

samples does not currently output the orientations of the genotype–phenotype

edges. As differentiating between causal variants, potentially-causal variants and

variants that are merely indicators of hidden causal variants is of utmost importance

for prioritising the variants for further investigation, it is highly desirable to extend

the algorithm to perform this function while taking multiple testing into account.

Furthermore, PIRs, which are a case of epistasis with absent marginal effects, and

information equivalences, which are both violations of the CFC, are not taken into
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account by the algorithm, possibly resulting in links missing from the output. Fu-

ture extensions of the algorithm should be able to handle these violations and may

uncover additional susceptibility variants in prion disease and other diseases.

The performance of the algorithm was evaluated using simulated exome-

sequencing datasets of a fixed size over chromosome 22 with all causal variants be-

ing observed. Future simulation studies should use exome-sequencing and GWAS

datasets of various sizes over all autosomes, generated using disparate disease mod-

els and excluding some of the causal variants.

As in the single-dataset case, the FDR-controlled local-learning algorithm for

multiple conditional genetic samples can be extended to estimate the orientation

of the edges and deal with unfaithfulness. A simulation study of the performance

of the algorithm should be conducted. It would be also interesting to compare the

performance of the multiple-dataset algorithm to that of the single-dataset algorithm

applied to the concatenation of the datasets, followed by genotype imputation.

The CPKG-based variant-filtering approach was shown to result in more sig-

nificant discoveries from the filtered datasets compared to using the well-established

Endeavour gene-prioritisation tool. Although the approach is able to suggest possi-

ble disease-causing mechanisms for the discovered variants in principle by finding

all causal paths from the nodes associated with a discovery to the phenotype, find-

ing all such paths is intractable in practice. Therefore, additional work is needed

on identifying a suitable subset of the paths. Moreover, the filtering approach was

not evaluated by either performing functional studies of the discovered variants or

mimicking novel discoveries using archived data sources. In order to prove the

effectiveness of the approach, either type of evaluation should be conducted.

The causal-discovery algorithms developed here can be applied to any pheno-

type, not just prion disease. The algorithms may be also applied, with minor mod-

ifications, to other types of cross-sectional datasets as well (e.g. gene-expression

datasets). Furthermore, the process of adapting the causal-discovery theory and al-

gorithms to genetic sets of variables can serve as an example for developing domain-

specific algorithms in other domains. In addition, the CPKG-based filtering method



173

can be applied to any disease with at least one known molecular cause, e.g. Parkin-

son’s disease. It is hoped that the methods devised here, and causal discovery in

general, will play a role not only in the discovery and interpretation of susceptibility

variants in prion disease and other diseases, but in elucidating genotype–phenotype

relationships in general.



Appendix A

Proofs

Chapter 3

Theorem 3.1

The proof of Theorem 3.1 is based on the following lemmas. The first two lemmas

give necessary and sufficient conditions for the existence of the different types of

links in a plausible genetic causal MAG. The term “underlying causal structure” is

used to refer to any plausible genetic causal DAG whose marginal is the plausible

genetic causal MAG at hand. Inducing paths in the underlying causal structure

are with respect to the nodes in the underlying causal structure that are not in the

plausible genetic causal MAG, and /0. Genetic chains are relative to the variables

of the plausible genetic causal MAG. In a causal DAG over O∪̇H, a hidden-cause

path between X and Y (X ,Y ∈O∪̇H) relative to O is a path of the form X ← ·· · ←

H→ ··· → Y for some H ∈H.

Lemma A.1. Let M be a plausible genetic causal MAG over G∪{P} and G ∈ G.

G and P are adjacent in M if and only if one of the following holds:

1. G is a cause of P.

2. G is an indicator of a hidden cause of P.

Proof.

Forward direction: Due to Theorem 2.4, there is an inducing path p between

G and P in the underlying causal structure. There are two cases:
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1. There are no colliders on p: Then either G is a cause of P, P is a cause of

G, or P and G have a hidden common cause. The second possibility is ruled

out by Assumption 3.1. If P and G have a hidden common cause H, then

there is some genotype on p(H,P) due to Assumption 3.4. Therefore, unless

Condition (1) is satisfied, Condition (2) is satisfied.

2. There are m ≥ 1 colliders on p: It will be first proved by induction on 1 ≤

i ≤ m that, for each collider C(i) on p, where C(1) is the collider closer to G,

either Condition (1) or (2) is satisfied, (3) C(i) is an ancestor of G, or (4) G is

not a cause of P and C(i) is an ancestor of some observed cause G(k) (k ≥ 1)

of P that is genetically chained to G.

Base case: Since selection bias is absent, C(1) is an ancestor of either G

or P. If C(1) is an ancestor of G, then Condition (3) is satisfied for C(1).

Suppose that C(1) is an ancestor of P and let p(1) be a directed path from C(1)

to P. If p is out of G, then [p(G,C(1)), p(1)] is a directed path from G to P.

That is, Condition (1) is satisfied. If p is into G, then G and P have some

hidden common cause H(1) that is an interior node on p(G,C(1)). Owing to

Assumption 3.4, there is some G(1) on [p(H(1),C(1)), p(1)]. If G(1) is hidden,

then Condition (2) is satisfied unless Condition (1) is satisfied. If G(1) is

observed, then G(1) is on p(1). Therefore, Condition (4) is satisfied for C(1),

unless Condition (1) is satisfied.

Inductive step: Since selection bias is absent, C(i) is an ancestor of either G or

P. If C(i) is an ancestor of G, then Condition (3) is satisfied for C(i). Suppose

that C(i) is an ancestor of P and let p(i) be a directed path from C(i) to P. If

Condition (3) is satisfied for C(i−1), then G and P have some hidden common

cause H(i) that is an interior node on p(C(i−1),C(i)). Owing to Assumption

3.4, there is some G(1) on [p(H(i),C(i)), p(i)]. If G(1) is hidden, then Condition

(2) is satisfied unless Condition (1) is satisfied. If G(1) is observed, then G(1)

is on p(i). Therefore, Condition (4) is satisfied for C(i) unless Condition (1)

is satisfied. If Condition (4) is satisfied for C(i−1), then G(k) and P have some

hidden common cause H(k+1) that is an interior node on p(C(i−1),C(i)). Due
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to Assumption 3.4, there is some G(k+1) on [p(H(k+1),C(i)), p(i)]. If G(k+1) is

hidden, then Condition (2) is satisfied. If G(k+1) is observed, then G(k+1) is

on p(i). Therefore, Condition (4) is satisfied for C(i).

If Condition (3) is satisfied for C(m), then G and P have some hidden com-

mon cause H(1) that is an interior node on p(C(m),P) due to Assumption

3.1. Assumption 3.4 therefore implies that there is some hidden genotype on

p(H(1),P), which means that Condition (2) is satisfied unless Condition (1)

is satisfied. If Condition (4) is satisfied for C(m), then G(k) and P have some

hidden common cause H(k+1) that is an interior node on p(C(m),P). Owing to

Assumption 3.4, there is some hidden genotype on p(H(k+1),P). Therefore,

Condition (2) is satisfied.

Reverse direction: There are two cases:

1. Condition (1) is satisfied: Let p be a directed path from G to P in the under-

lying causal structure. Owing to Assumption 3.2, there cannot be any interior

nodes on p that are genotypes, which means that all interior nodes on p are

hidden. Therefore, p is an inducing path between G and P. Theorem 2.4 then

says that G and P are adjacent in M.

2. Condition (2) is satisfied: Let G′ be a hidden cause of P whose presence is

indicated by G, {G(1), . . . ,G(n)} be a genetic chain between G1 to G′, where

G(1) = G and G(n) = G′, p(i) (1 ≤ i ≤ n− 1) be a hidden-cause path from

Gi to Gi+1 in the underlying causal structure, and pn be a hidden-cause path

from G(n) to P in the underlying causal structure. There cannot be any interior

nodes on p(i) that are genotypes due to Assumption 3.2, which means that all

interior nodes on p(i) are hidden. Owing to Assumption 3.1, there cannot be

any interior nodes on pn that are genotypes, which implies that all interior

nodes on pn are hidden too. Let X (i) (2 ≤ i ≤ n− 1) be the first node on

p(i−1) that is also on p(i). Then [p1(G,X (2)), . . . , pn−1(X (n−1),G(n)), pn] is an

inducing path between G and P and Theorem 2.4 implies that G and P are

adjacent in M.
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Lemma A.2. Let M be a plausible genetic causal MAG over G∪{P} and G1,G2 ∈

G. Then G1 and G2 are adjacent in M if and only if they have a hidden common

cause.

Proof.

Forward direction: Owing to Theorem 2.4, there is an inducing path p between

G1 and G2 in the underlying causal structure. There are three cases:

• There are no colliders on p: Then either G1 is a cause of G2, G2 is a cause

of G1, or G1 and G2 have a hidden common cause. The first two possibilities

are ruled out by Assumption 3.2.

• There are colliders on p and all of them are ancestors of G1: Let X be the

collider closest to G2 on p and p1 be a directed path from X to G1. Then p is

into G2 owing to Assumption 3.2, there is some hidden common cause of G1

and G2 that is an interior node on p(X ,G2), and path [p(G2,X), p1] satisfies

the condition of the lemma.

• There are colliders on p and some of them are not ancestors of G1: Let X

be the collider closest to G1 on p that is not an ancestor of G1. If there

are no colliders on p between G1 and X , let p1 = p(G1,X); otherwise, let

Y be the collider preceding X on p, p2 a directed path from Y to G1, and

p1 = [p2(G1,Y ), p(Y,X)]. Since selection bias is absent, X is an ancestor of

G2. Let p3 be a directed path from X to G2. Then path [p1, p3] satisfies the

condition.

Reverse direction: Let p be a hidden-cause path from G1 to G2 in the under-

lying causal structure. There are no interior nodes on p that are genotypes due to

Assumption 3.2. Therefore, all interior nodes on p are hidden, which means that p

is an inducing path between G1 and G2. Hence, G1 and G2 are adjacent in M due to

Theorem 2.4.
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The next two lemmas concern the orientation of the edges in a plausible genetic

causal MAG.

Lemma A.3. In a plausible genetic causal MAG over G∪{P}, edges incident to P

are into P.

Proof. The proof follows from Assumption 3.1 and the absence of selection bias.

Lemma A.4. In a plausible genetic causal MAG over G∪{P}, genotype–genotype

edges are bidirected.

Proof. The proof follows from Assumption 3.2 and the absence of selection bias.

The next three lemmas give necessary and sufficient conditions for the exis-

tence of the different types of edges in a plausible genetic causal MAG.

Lemma A.5. In a plausible genetic causal MAG over G∪{P}, edge G→ P exists

if and only if G is a cause of P.

Proof.

Forward direction: G→ P implies that G is a cause of P or of some selection

variable. The latter possibility is ruled out by the absence of selection bias.

Reverse direction: If G is cause of P, then G and P are adjacent due to Lemma

A.1. Owing to Lemma A.3, the edge between G and P is oriented as G→ P.

Lemma A.6. In a plausible genetic causal MAG over G∪{P}, edge G↔ P exists

and only if G is an indicator of a hidden cause of P.

Proof.

Forward direction: G↔ P implies that G is not a cause of P or of any selection

variable. Since selection bias is absent, G is not a cause of P. Owing to Lemma

A.1, G is an indicator of a hidden cause of P.

Reverse direction: If G is an indicator of a hidden cause of P, Lemma A.1 says

that G and P are adjacent. The edge between G and P is oriented as G↔ P due to

Lemma A.3.
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Lemma A.7. In a plausible genetic causal MAG over G∪{P}, edge G1↔G2 exists

if and only if G1 and G2 have a hidden common cause.

Proof.

Forward direction: The proof follows directly from Lemma A.2.

Reverse direction: If G1 and G2 have a hidden common cause, then G1 and P

are adjacent due to Lemma A.2. Owing to Lemma A.4, the edge between G1 and P

is bidirected.

Proof of Theorem 3.1. The proof follows from Lemmas A.3–A.7.

Proof of Corollary 3.1. If G1 is a spouse of P, then G1 is an indicator of a hidden

cause of P due to Theorem 3.1. If G1 is not a proxy of a hidden cause of P, then

there is an observed G2 such that G2 is a cause of P and G2 and G1 have a hidden

common cause. Theorem 3.1 therefore implies that G2 is a parent of P and G2 and

G1 are adjacent.

Theorem 3.2

The proof of Theorem 3.2 requires the following lemmas and definition. The first

lemma pertains to the genomic location of adjacent genotypes in a plausible genetic

causal MAG.

Lemma A.8. In a plausible genetic causal MAG over G∪{P}, if G1 and G2 are

adjacent, then G1 and G2 are on the same chromosome.

Proof. If G1 and G2 are adjacent, then G1 and G2 have a hidden common cause due

to Lemma A.2. Assumption 3.3 therefore implies that G1 and G2 are on the same

chromosome.

The second lemma gives sufficient conditions for a potential plausible genetic

causal MAG to be a genetic causal MAG.

Lemma A.9. Let M be a potential plausible genetic causal MAG over G∪{P}. M

is a genetic causal MAG if the following two conditions are satisfied:

1. Edges incident to P are out of P.
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2. Genotype–genotype edges are bidirected.

Proof. Suppose that M satisfies the conditions above. There are no directed paths

from P to any genotype or from a genotype to another in M, since there are no di-

rected genotype–genotype edges or edges out of P. Therefore, there are no directed

cycles, almost directed cycles, or primitive inducing paths between any two non-

adjacent nodes in M. Furthermore, there are no undirected edges incident to nodes

with parents or spouses in M, since there no undirected edges. Thus, M is a genetic

causal MAG due to Lemma 2.1.

The canonical genetic causal DAG of a genetic causal MAG is defined as fol-

lows.

Definition A.1 (Canonical genetic causal DAG). Suppose that M is a genetic causal

MAG over G∪{P}. Then the canonical genetic causal DAG D(M) is the genetic

causal DAG that is obtained from M by the following procedure:

1. Initialise D(M) with the nodes in M.

2. For each edge G→ P in M, create edge G→ P in D(M) and let pG = [G,P].

3. For each edge G↔ P in M, create node XG and path pG = G← XG→ P in

D(M).

4. For each edge G1 ↔ G2 in M, create node YG1,G2 and path qG1,G2 = G1 ←

YG1,G2 → G2 in D(M).

The following lemma gives sufficient conditions for a genetic causal MAG to

be the marginal of its canonical genetic causal DAG.

Lemma A.10. Let M be a genetic causal MAG over G∪ {P}. Then M is the

marginal of D(M) over G∪{P} if it satisfies the following two conditions:

1. Edges incident to P are into P.

2. Genotype–genotype edges are bidirected.
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Proof. Let H be the set of nodes in D(M) that are not in M. It will be first proved

that for each edge between X and Y in M, there is an inducing path between X

and Y with respect to H and /0 in D(M) and the edge endpoints match the ancestral

relationships in D(M).

• For each edge between G and P in M, pG is an inducing path with respect to

H and /0. Condition (1) says that the edge is into P, which agrees with the fact

that P is not an ancestor of G in D(M). If the edge is out of G, then G is an

ancestor of P in D(M); otherwise, G is not an ancestor of P in D(M).

• For each edge between G1 and G2 in M, qG1,G2 is an inducing path between

G1 and G2 with respect to H and /0 in D(M). Owing to Condition (1), the

edge is bidirected. This is in accordance with G1 not being an ancestor of G2,

and G2 not being an ancestor of G1 in D(M).

It will now be proved that for each pair of nodes X and Y that are not adjacent

in M, there is no inducing path between X and Y with respect to H and /0 in D(M).

• If G and P are not adjacent in M, suppose that there is an inducing path

p between G and P with respect to H and /0 in D(M). p is of the form

[G(1),H(1), . . . ,G(i),H(i), . . . ,G(n),H(n),P], where n ≥ 2, G(i) (2 ≤ i ≤ n) is

a collider on p, G(1) = G, and H(i) ∈ H (1 ≤ i ≤ n) is a non-collider on p.

G(n) is not an ancestor of G or P in D(M), which is a contradiction. There-

fore, there is no inducing path between G and P with respect to H and /0 in

D(M).

• If G1 and G2 are not adjacent in M, suppose that there is an inducing path p

between G and P with respect to H and /0 in D(M). There are two cases:

1. p is of the form [G(1),H(1), . . . ,G(i),H(i), . . . ,G(n),H(n),P,H(n+1),

G(n+1), . . . ,H( j),G( j), . . . ,H(n+m),G(n+m)], where n ≥ 1, m ≥ 1, G(i)

(1≤ i≤ n), G( j) (n+1≤ j≤ n+m), and P are colliders on p, G(1)=G1,

G(n+m) =G2, and H(i) ∈H (1≤ i≤ n) and H( j) ∈H (n+1≤ j≤ n+m)

are non-colliders on p. P is not an ancestor of G(1) or G(n+m) in D(M),

which is a contradiction. Therefore, p is not of this form.
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2. p is of the form [G(1),H(1), . . . ,G(i),H(i), . . . ,G(n),H(n),G2], where n≥

2, G(i) (2≤ i≤ n) is a collider on p, G(1) = G1, and H(i) ∈H (1≤ i≤ n)

is a non-collider on p. G2 is not an ancestor of G(1) or G2 in D(M),

which is a contradiction. Thus, p is not of this form either. Hence, there

is no inducing path between G and P with respect to H and /0 in D(M).

The proof therefore follows from Theorem 2.4.

The following lemma gives a sufficient condition for a canonical genetic causal

DAG to be plausible.

Lemma A.11. Let M be a genetic causal MAG over G∪{P}. If adjacent genotypes

in M are on the same chromosome, then D(M) is plausible.

Proof. There are no directed paths from P to any genotype or from a genotype to

another in D(M). Therefore, D(M) is a genetic causal DAG that satisfies Assump-

tions 3.1 and 3.2. If two genotypes G1 and G2 have a common ancestor in D(M),

then G1 and G2 are adjacent in M. By hypothesis, G1 and G2 are on the same chro-

mosome. Thus, D(M) satisfies Assumption 3.3. Since Assumption 3.4 places no

restriction on D(M), D(M) is plausible.

Proof of Theorem 3.2.

Forward direction: Condition (1), (2), and (3) is satisfied for plausible genetic

causal MAGs due to Lemma A.3, A.4, and A.8, respectively.

Reverse direction: Owing to Lemma A.9, M is a genetic causal MAG. Lemma

A.11 therefore implies that D(M) is a plausible genetic causal DAG. Due to Lemma

A.10, M is the marginal of D(M) over G∪{P}. Thus, M is a plausible genetic

causal MAG.

Theorem 3.3

The proof of Theorem 3.3 is based on the following lemmas. According to the first

one, the notion of genetic discriminating path is equivalent to that of discriminating

path in a plausible genetic causal MAG:
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Lemma A.12. In a plausible genetic causal MAG over G ∪ {P}, p = [Xn, . . . ,

X3,X2,X1] is a genetic discriminating path for X2 if and only if p is a discriminating

path for [X3,X2,X1].

Proof.

Forward direction: If p = [Gn, . . . ,G2,G1,P] is a genetic discriminating path

for G1, then Gi (2 ≤ i ≤ n− 1) is a collider on p due to Lemma A.4 and Gi is a

parent of P due to Lemma A.3. Therefore, p is a discriminating path for [G2,G1,P].

Reverse direction: If p = [Xn, . . . ,X3,X2,X1] is a discriminating path for triple

[X3,X2,X1], then Xi (3≤ i≤ n−1) is a parent of X1. Therefore, Xi ∈G (3≤ i≤ n−1)

and X1 = P due to Theorem 3.1. Thus, Xn,X2 ∈ G as well. Hence, p is a genetic

discriminating path for X2.

The next three lemmas pertain to Markov equivalence of plausible genetic

causal MAGs.

Lemma A.13. If plausible genetic causal MAGs M1 and M2 are Markov equiva-

lent, then an unshielded genotype is a parent of the phenotype in M1 if and only if

it is a parent of the phenotype in M2.

Proof. The proof follows from Theorems 3.2 and 2.5.

Lemma A.14. If two plausible genetic causal MAGs are Markov equivalent, then

they have the same genetic discriminating paths.

Proof. Suppose that plausible genetic causal MAGs M1 and M2 are Markov equiva-

lent. If [Gn, . . . ,G2,G1,P] is a genetic discriminating path for G1 in M1, then there is

a path [Gn, . . . ,G2,G1,P], Gn is not adjacent to P, and every node G on p(Gn−1,G2)

is adjacent to P in M2 due to Theorem 2.5. [Gn, . . . ,G2,G1,P] will be proved to be

a genetic discriminating path for G1 in M2 by induction on 1≤ i≤ n−2:

Base case: Gn−1 is a parent of P due to Lemma A.13. Therefore,

[Gn,Gn−1,Gn−2,P] is a genetic discriminating path for Gn−2 in M2.

Inductive step: Suppose [Gn, . . . ,Gi,P] is a genetic discriminating path for Gi

in M2. Since [Gn, . . . ,Gi,P] is a genetic discriminating path for Gi and Gi is parent
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of P in M1, Gi is parent of P in M2 due to Lemma A.12 and Theorem 2.5. Therefore,

[Gn, . . . ,Gi+1,P] is a genetic discriminating path for Gi in M2.

Lemma A.15. If plausible genetic causal MAGs M1 and M2 are Markov equiva-

lent, then a genetically-discriminated genotype is a parent of the phenotype in M1

if and only if it is a parent of the phenotype in M2.

Proof. The proof follows from Lemmas A.4 and A.14.

Proof of Theorem 3.3. The proof follows from Theorem 2.5 and Lemmas A.3, A.4,

A.13, A.12, and A.15.

Theorem 3.4

Proof of Theorem 3.4.

Forward direction: Conditions (1)-(3) are satisfied for maximally-informative

plausible genetic causal PAGs due to Theorem 3.2. Condition (4) is satisfied due to

Theorem 3.3.

Reverse direction: Let P be a potential plausible genetic causal PAG that satis-

fies Conditions (1)–(4). Owing to Theorem 3.2, orienting the genotype–phenotype

edges incident to shielded and non-genetically-discriminated genotypes in P in ei-

ther way results in a plausible genetic causal MAG. Let M1 and M2 be two members

of the class of plausible genetic causal MAGs represented by P. Owing to Theo-

rem 3.3, M1 and M2 are Markov equivalent, which means that P is a maximally-

informative plausible genetic causal PAG.

Theorem 3.5

The proof of Theorem 3.5 is based on the following lemmas. The first one gives a

necessary condition for strict m-separation.

Lemma A.16. Suppose that X and Y are strictly m-separated by Z in a MAG. Then

for every Z ∈ Z there is a path p that satisfies the following conditions:

• Z is a noncollider on p.

• There is no Z′ 6= Z such that Z′ is a noncollider on p.
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• Every collider on p is in Z.

Proof.

Suppose that there is some Z0 ∈Z such that no path that satisfies the conditions

above exists. Then X and Y are m-separated by Z\{Z0}, which is a contradiction.

The requirement for Z to lie on a path between X and Y in Lemma A.16 is

called the necessary path condition and is used in a variant of the PC algorithm as

a means to reduce false negatives [Steck and Tresp, 1999].

The lemmas below characterise m-separation in a plausible genetic causal

MAG.

Lemma A.17. In a plausible genetic causal MAG over G∪{P}, if G1 and P are

strictly m-separated by Z, then Z is a subset of the parents of P on the same chro-

mosome.

Proof. If G1 and P are strictly m-separated by Z, G1 and P are not adjacent and for

each G2 ∈ Z there is a path p from G1 to P such that G2 is a noncollider on p due

to Lemma A.16. Owing to Theorem 3.2, p is of the form G1↔ ·· · ↔ G2→ P and

G1, . . . ,G2 are on the same chromosome.

Lemma A.18. In a plausible genetic causal MAG over G∪ {P}, G1 and P are

adjacent if and only if they are not m-separated by any subset of the genotypes

adjacent to P on the same chromosome.

Proof.

Forward direction: If G1 and P are adjacent, then they are not m-separated by

any subset of the rest variables.

Reverse direction: If G1 and P are not m-separated by any subset of the geno-

types adjacent to P on the same chromosome, then they are not strictly m-separated

by any subset of the parents of P on the same chromosome. Owing to Lemma A.17,

G1 and P are not m-separated by any subset of the rest variables, which implies that

G1 and P are adjacent.
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Lemma A.19. In a plausible genetic causal MAG over G∪{P}, G1 and G2 are

adjacent if and only if they are not m-separated.

Proof.

Forward direction: If G1 and G2 are adjacent, then they are not m-separated

by any subset of the rest variables.

Reverse direction: If G1 and G2 are not m-separated, then there is a path with-

out colliders from G1 to G2. Theorem 3.2 therefore implies that edge G1 ↔ G2

exists.

Proof of Theorem 3.5. The proof follows from Lemmas A.18 and A.19.

Theorem 3.6

It will be first proved that Algorithm 9 is sound, in the sense that it only creates

orientations in the Markov equivalence class of plausible genetic causal MAGs.

Lemma A.20 (Soundness of Algorithm 9). If the input of Algorithm 9 is P and

Sepset, then in the output of Algorithm 9, P is a plausible genetic causal PAG for

the same Markov equivalence class as in the input.

Proof. The soundness of each rule in Algorithm 9 is proved separately. The proof

follows by induction.

Rule (1): Soundness follows directly from Lemma A.3.

Rule (2): When G1 /∈ Sepset({G2,P}), edge G1 ∗ ∗ P must be oriented as

G1←∗ P due to Lemma 2.2. Otherwise, triple [G2,G1,P] must be oriented either

as G2 ∗→ G1 ∗ P, G2 ∗ G1←∗ P, or G2 ∗ G1 ∗ P, again due to Lemma 2.2.

The second and third case are ruled out by Assumption 3.2.

Rule (3): Soundness follows directly from Lemma A.4.

Rule (4): Soundness follows from Lemmas A.12 and 2.3.

The following lemma is used in the proof of Theorem 3.6.

Lemma A.21. In the output of Algorithm 9, the endpoint at the genotype end of a

genotype–phenotype edge is oriented if and only if the genotype is unshielded or

discriminated.
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Proof. There are no P ›∗ G or G1 ›∗ G2 edges in the output PAG, since they are

all oriented by Rules 1 and 3, respectively. Therefore, the only circle endpoints are

in G ›→ P edges. G is shielded because otherwise G ›→ P would have been ori-

ented by Rule (2), and non-discriminated because otherwise Rule (2) and successive

applications of Rule (4) would have resulted in the orientation of G ›→ P.

Proof of Theorem 3.6. The proof follows from Theorem A.20, Lemma A.21, and

Theorem 3.4.

Theorem 3.7

The proof of Theorem 3.7 is based on the following lemmas. The first two lemmas

give necessary and sufficient conditions for the existence of the different types of

links in a plausible conditional genetic causal MAG. The term “underlying causal

structure” is used to refer to any plausible genetic causal DAG whose marginal and

conditional is the plausible conditional genetic causal MAG at hand. Inducing paths

in the underlying causal structure are with respect to the nodes in the underlying

causal structure that are not in the plausible conditional genetic causal MAG, and

S. Genetic chains are relative to the variables of the plausible conditional genetic

causal MAG.

Lemma A.22. Let M be a plausible conditional genetic causal MAG over G∪

{P} and G ∈ G. G and P are adjacent in M if and only if either of the following

conditions are satisfied:

1. G is a cause of P.

2. G is an indicator of a hidden cause of P.

Proof.

Forward direction: Owing to Assumption 3.5, if C is a collider on some induc-

ing path between G and P in the underlying causal structure, then C is an ancestor

of either G or P in the underlying causal structure. The proof is therefore the same

as in Lemma A.1.

Reverse direction: The proof is the same as in Lemma A.1.
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Lemma A.23. Let M be a plausible genetic causal MAG over G∪{P} and G1,G2 ∈

G. G1 and G2 are adjacent in M if and only either of the following conditions are

satisfied:

1. G1 and G2 are genetically chained.

2. G1 is a cause of P or an indicator of a hidden cause of P, and G2 is a cause

of P or an indicator of a hidden cause of P.

Proof.

Forward direction: Owing to Theorem 2.4, there is an inducing path p between

G1 and G2 in the underlying causal structure. There are two cases:

• There are no colliders on p: Then either G1 is a cause of G2, G1 is a cause

of G2, or G1 and G2 have a hidden common cause. The first two possibilities

are ruled out by Assumption 3.2. Therefore, Condition (1) is satisfied.

• There are m ≥ 1 colliders on p: It will be first proved by induction on 1 ≤

i≤ m that, for each collider C(i) on p, where C(1) is the collider closer to G1,

either Condition (1) is satisfied, (3) G1 is a cause of P or an indicator of a

hidden cause of P, (4) C(i) is an ancestor of G1, or (5) C(i) is an ancestor of

an observed cause G(k) of P genetically chained to G1.

Base case: Owing to Assumption 3.5, C(1) is an ancestor of G1, G2, or P. If

C(1) is an ancestor of G1, then Condition (4) is satisfied for C(1). Suppose that

C(1) is an ancestor of G2 and p1 be a directed path from C(1) to G2. Then p

is into G1 because otherwise Assumption 3.2 would be violated. Therefore,

Condition (1) is satisfied for C(1). Suppose that C(1) is an ancestor of P. If p is

out of G1, then Condition (3) is satisfied for C(1). If p is into G1, then G1 and

P have a hidden common cause H(1) that is an interior node on p(G1,C(1)).

Let p1 be a directed path from C(1) to P. Owing to Assumption 3.4, there

is some G(1) that is an interior node on [p(H(1),C(1)), p1]. If G(1) is hidden,

then Condition (3) is satisfied for C(1). If G(1) is observed, then G(1) is on p1.

Therefore, Condition (5) is satisfied for C(1).
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Inductive step: If Condition (1) or (3) is satisfied for C(i−1), then it is satisfied

for C(i) as well. Owing to Assumption 3.5, C(i) is an ancestor of G1, G2,

or P. If C(i) is an ancestor of G1, then Condition (4) is satisfied for C(i).

Suppose that C(1) is an ancestor of G2. If Condition (4) or (5) is satisfied

for C(i−1), then Condition (1) is satisfied for C(i). Suppose that C(i) is an

ancestor of P and let p(i) be a directed path from C(i) to P. If Condition (4)

is satisfied for C(i−1), then G1 and P have a hidden common cause H(1) that

is an interior node on p(C(i−1),C(i)). Due to Assumption 3.4, there is some

G(1) on [p(H(1),C(i)), p(i)]. If G(1) is hidden, then Condition (3) is satisfied

for C(i). If G(1) is observed, then G(1) is on p(i). Therefore, Condition (5) is

satisfied for C(i). If Condition (5) is satisfied for C(i−1), then G(k) and P have

a hidden common cause H(k+1) that is an interior node on p(C(i−1),C(i)). Due

to Assumption 3.4, there is some G(k+1) on [p(H(k+1),C(i)), p(i)]. If G(k+1)

is hidden, then Condition (3) is satisfied for C(i). If G(k+1) is observed, then

G(k+1) is on p(i). Therefore, Condition (5) is satisfied for C(i).

If Condition (1) or (3) is satisfied for C(m), then it is satisfied overall. If

Condition (4) or (5) is satisfied for C(m), then Condition (1) is satisfied over-

all. Therefore, either Condition (1) or (3) is satisfied. Applying the proof

in the reverse direction (that is, when C(1) is the collider closer to G2), it is

concluded that either Condition (1) is satisfied or 6) G2 is a cause of P or

an indicator of a hidden cause of P. Therefore, either Condition (1) or both

conditions 4 and 6 are satisfied. Thus, either Condition (1) or (2) is satisfied.

Reverse direction: There are two cases:

1. Condition (1) is satisfied. Let {G(1), . . . ,G(n)}, where G(1) = G1 and

G(n) = G2, be a genetic chain between G1 and G2 , and p(i) be a hidden-

cause path between G(i) and G(i+1) (1 ≤ i ≤ n − 1) in the underlying

causal structure. There are no interior nodes on p(i) that are genotypes

due to Assumption 3.2. Therefore, all interior nodes on p(i) are hid-

den. Let X (i) (2 ≤ i ≤ n) the first node on p(i−1) that is also on p(i).

[p(1)(G(1),X (2)), . . . , p(n−1)(X (n−1),X (n)), p2(X (n),G(n))] is an inducing path
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between G1 and G2. Hence, G1 and G2 are adjacent in M due to Theorem

2.4.

2. Condition (2) is satisfied. If G1 is a cause of P, let p1 be a directed path from

G1 to P in the underlying causal structure. If G1 is an indicator of a hidden

cause of P, let G′ be a hidden cause of P whose presence is indicated by G1,

{G(1), . . . ,G(n)} be a genetic chain between G1 to G2 , where G(1) = G1 and

G(n) = G′, r(i) (1 ≤ i ≤ n− 1) be a hidden-cause path from G(i) to G(i+1) in

the underlying causal structure, r(n) be a directed path from G(n) to P in the

underlying causal structure, X (i) (2 ≤ i ≤ n− 1) be the first node on r(i−1)

that is also on r(i), p1 = [r(1)(G1,X (2)), . . . ,r(n−1)(X (n−1),G′),r(n)], p2 be the

path corresponding to p1 for G2, X the first node on p1 that is also on p2, and

p = [p1(G1,X), p2(X ,G2)]. Then p is an inducing path between G1 and G2.

Therefore, G1 and G2 are adjacent in M due to Theorem 2.4.

The next lemma follows from the previous two.

Lemma A.24. In a plausible conditional genetic causal MAG over G∪{P} given

S, if G1 and G2 are adjacent to P, then G1 and G2 are adjacent.

Proof. If G1 and G2 are adjacent to P, then G1 is a cause of P or an indicator of a

hidden cause of P, and G2 is a cause of P or an indicator of a hidden cause of P due

to Lemma A.22. Therefore, G1 and G2 are adjacent due to Lemma A.23.

The next five lemmas pertain to the orientation of the edges in a plausible

genetic causal MAG.

Lemma A.25. In a plausible conditional genetic causal MAG over G∪{P} given

S, edges incident to P are out of P.

Proof. The proof follows directly from Assumption 3.5.

Lemma A.26. In a plausible conditional genetic causal MAG over G∪{P} given

S, edge G ∗ X implies that G is cause of P.
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Proof. G ∗ X implies that G is a cause of X or of some selection variable. If

X = P, then G is a cause of P due to Assumption 3.5. If X ∈ G, then G is a cause

of some selection variable due to Assumption 3.2. Due to Assumption 3.5, G is a

cause of P.

Lemma A.27. In a plausible conditional genetic causal MAG over G∪{P} given

S, edge G←∗ X implies that G is not a cause of P.

Proof. G←∗ X implies that G is not a cause of X or of any selection variable.

Owing to Assumption 3.5, G is not a cause of P.

Lemma A.28. In a plausible conditional genetic causal MAG over G∪{P} given

S, if X ∗ G ∗ ∗ Y is a triple, then the edge between G and Y is out of G.

Proof. Due to Lemma A.26, G is a cause of P. Suppose that the edge between

G and Y is into G. Then, due to Lemma A.27, G is not a cause of P, which is a

contradiction. Therefore, the edge between G and Y is out of G.

Lemma A.29. In a plausible conditional genetic causal MAG over G∪{P} given

S, if G1 and G2 are adjacent and G1 and P are not adjacent, then the edge between

G1 and G2 is into G1.

Proof. Suppose that the edge between G1 and G2 is out of G1. Then G1 is a cause of

P due to Lemma A.26. Lemma A.23 therefore implies that G1 and P are adjacent,

which is a contradiction. Therefore, the edge is into G1.

The next five lemmas give necessary and sufficient conditions for the existence

of the different types of edges in a plausible conditional genetic causal MAG.

Lemma A.30. Let M be a plausible conditional genetic causal MAG over G∪{P}

and G ∈G. Edge G P exists if and only if G is a cause of P.

Proof.

Forward direction: The proof follows from Lemma A.26.

Reverse direction: If G is cause of P, then G and P are adjacent due to Lemma

A.22. Owing to Assumption 3.5, the edge between G and P is undirected.
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Lemma A.31. Let M be a plausible conditional genetic causal MAG over G∪{P}

and G ∈G. Edge G← P exists if and only if G is an indicator of a hidden cause of

P.

Proof.

Forward direction: The proof follows from Lemmas A.22 and A.27.

Reverse direction: If G is an indicator of a hidden cause of P, then Lemma

A.22 says that G and P are adjacent. The edge between G and P is into G due to

Lemma A.26 and out of P due to Lemma A.25.

Lemma A.32. Let M be a plausible genetic causal MAG over G∪{P} and G1,G2 ∈

G. Edge G1 G2 exists if and only if G1 and G2 are both causes of P.

Proof.

Forward direction: The proof follows from Lemma A.26.

Reverse direction: If G1 and G2 are both causes of P, then G1 and G2 are

adjacent due to Lemma A.23. Owing to Lemma A.27, the edge between G1 and G2

is undirected.

Lemma A.33. Let M be a plausible genetic causal MAG over G∪{P} and G1,G2 ∈

G. Edge G1→ G2 exists if and only if the following three conditions are satisfied:

1. G1 is a cause of P.

2. G2 is not a cause of P.

3. Either G2 is an indicator of a hidden cause of P or G1 and G2 are genetically

chained .

Proof.

Forward direction: If edge G1→ G2 exists, then G1 is a cause of P and G2 is

not a cause of P due to Lemma A.26 and A.27, respectively. The proof therefore

follows from Lemma A.23.

Reverse direction: If G1 is a cause of P and either G2 is an indicator of a hidden

cause of P or G1 and G2 are genetically chained, then G1 and G2 are adjacent to due
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to Lemma A.23. Owing to Lemma A.27, the edge between G1 and G2 is out of G1.

If also G2 is not a cause of P, then the edge between G1 and G2 is into G2 due to

Lemma A.26.

Lemma A.34. Let M be a plausible genetic causal MAG over G∪{P} and G1,G2 ∈

G. Edge G1↔ G2 exists if and only if the following three conditions are satisfied:

1. G1 is not a cause of P.

2. G2 is not a cause of P.

3. either (a) G1 and G2 are genetically chained or (b) G1 is an indicator of a

hidden cause of P and G2 is an indicator of a hidden cause of P.

Proof.

Forward direction: Owing to Lemma A.27, G1 and G2 are not causes of P.

The proof therefore follows from Lemma A.23.

Reverse direction: If either (a) G1 and G2 are genetically chained or (b) G1 is

an indicator of a hidden cause of P and G2 is an indicator of a hidden cause of P,

then G1 and G2 are adjacent to due to Lemma A.23. If also G1 and G2 are not causes

of P, then Lemma A.26 implies that the edge between G1 and G2 is bidirected.

Proof of Theorem 3.7. The proof follows from Lemmas A.25, A.29–A.34.

Proof of Corollary 3.2. If G1 is a child of P, then G1 is an indicator of a hidden

cause of P due to Theorem 3.7. If G1 is not a proxy of a hidden cause of P, then

there is an observed cause G2 of P. Owing to Theorem 3.7, G2 is a neighbour of

P.

Theorem 3.8

In order to prove Theorem 3.8, the following lemmas and definition are needed.

The first lemma gives sufficient conditions for two adjacent genotypes in a plausible

conditional genetic causal MAG to be genetically chained.

Lemma A.35. In a plausible conditional genetic causal MAG over G∪{P} given

S, if G1 and G2 are adjacent and G1 and P are not adjacent, then G1 and G2 are

genetically chained .
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Proof. If G1 and P are not adjacent, then Lemma A.22 implies that G1 is neither a

cause of P nor an indicator of a hidden cause of P. If also G1 and G2 are adjacent,

then G1 and G2 are genetically chained to due to Lemma A.23.

The next lemma follows from the above.

Lemma A.36. In a plausible conditional genetic causal MAG over G∪{P} given

S, if [G1,G3,G2] is a triple such that G1 and G2 are not adjacent to P, G3 is adjacent

to P, and the edge between G3 and P is out of G3, then the triple is shielded.

Proof. If [G1,G3,G2] is a triple such that G1 and G2 are not adjacent to P, then

G1 and G3 are genetically chained and G3 and G2 are genetically chained due to

Lemma A.35. Let C1 = {G1,G(1), . . . ,G(k),G3} (k≥ 0) be a genetic chain from G1

to G3 and C2 = {G3,G(k+1), . . . ,G(n),G2} (n≥ k) be a genetic chain from G3 to G2.

If edge G3 ∗ P exists, then Lemma A.26 says that G3 is a cause of P. Therefore,

ordered set {G1,G(1), . . . ,G(k),G3,G(k+1), . . . ,G(n),G2} is a genetic chain from G1

to G2. Thus, G1 and G2 are adjacent due to Lemma A.23.

The next lemma pertains to the genomic location of genetically-chained geno-

types.

Lemma A.37. If G1 and G2 are genetically chained, then they are on the same

chromosome.

Proof. Let {G(1), . . . ,G(n)}, where n ≥ 2, G(1) = G1, and G(n) = G2, be a genetic

chain from G1 to G2. The fact that G1 and G(i) (1≤ i≤ n) are on the same chromo-

some will proved by induction on i:

Base case: G(1) and G2 are on the same chromosome due to Assumption 3.3.

Inductive step: Suppose that G(i−1) (2 ≤ i ≤ n) is on the same chromosome

as G1. Owing to Assumption 3.3, G(i−1) and G(i) are on the same chromosome.

Therefore, G1 and G(i) are on the same chromosome by Assumption 3.3.

Thus, G1 and G2 are on the same chromosome.

The lemma below concerns the genomic location of adjacent genotypes in a

plausible conditional genetic causal MAG.
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Lemma A.38. In a plausible conditional genetic causal MAG over G∪{P} given

S, if G1 and G2 are adjacent and G1 and P are not adjacent, then G1 and G2 are on

the same chromosome.

Proof. The proof follows from Lemmas A.35 and A.37.

The next lemma gives sufficient conditions for a potential plausible conditional

genetic causal MAG to be a conditional genetic causal MAG.

Lemma A.39. Let M be a potential plausible conditional genetic causal MAG over

G∪ {P} given S. M is a conditional genetic causal MAG if the following two

conditions are satisfied:

1. Edges incident to P are out of P.

2. Edges incident to G are either all out of G or all into G.

Proof. There are no directed cycles, almost directed cycles, undirected edges inci-

dent to nodes with parents or spouses in M. Therefore, M is an ancestral graph. In

addition, there are no primitive inducing paths between any two non-adjacent nodes

in M, since there are no edges out of a genotype with incoming edges or edges into

P and therefore no colliders in M. Thus, M is a MAG due to Lemma 2.1. Hence,

M is a conditional genetic causal MAG.

The canonical genetic causal DAG with selection nodes of a conditional ge-

netic causal MAG is defined below.

Definition A.2 (Canonical genetic causal DAG with selection nodes). Suppose that

M is a conditional genetic causal MAG over G∪{P} given S. The canonical genetic

causal DAG with selection nodes D(M) is the genetic causal DAG with selection

nodes that is obtained from M by the following procedure:

1. Initialise D(M) with the nodes in M and S

2. For each S ∈ S, create edge P→ S in D(M)

3. For each edge G P in M, create edge G→ P in D(M) and let pG = [G,P]
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4. For each edge G← P in M, create node HG and path pG = G← HG→ P in

D(M)

5. For each edge between G1 and G2 such that G1 and G2 are not both adjacent

to P in M, create node YG1,G2 and path qG1,G2 = G1← YG1,G2 → G2 in D(M)

The following lemma gives sufficient conditions for a conditional genetic

causal MAG to be the marginal of its canonical genetic causal DAG with selection

nodes.

Lemma A.40. Let M be a conditional genetic causal MAG over G∪ {P} given

S. M is the marginal/conditional of D(M) over G∪{P} given S if it satisfies the

following four conditions:

1. Edges incident to P are out of P.

2. Edges incident to each G not adjacent to P are into G.

3. Genotypes adjacent to P are adjacent.

4. Each triple [G1,G3,G2] such that G1 and G2 are not adjacent to P, G3 is

adjacent to P, and the edge between G3 and P is out of G3 is shielded.

Proof. Let H be the set of nodes in D(M) that are not in M or S. It will be first

proved that for each edge between X and Y in M, there is an inducing path be-

tween X and Y with respect to H and S and the edge endpoints match the ancestral

relationships in D(M).

• For each edge between G and P in M, pG is an inducing path with respect to

H and S. Owing to Condition (1), the edge is out of P. This is in agreement

with P being an ancestor of of all nodes in S in D(M). If the edge is out of

G, then G is an ancestor of all nodes in S in D(M); otherwise, G is not an

ancestor of P or any node in S.

• For each edge between G1 and G2 in M:
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– If G1 and G2 are adjacent to P in M, then [pG1, pG2(P,G2)] is an inducing

path between G1 and G2 with respect to H and S in D(M).

– If G1 is not adjacent to P in M, then qG1,G2 is an inducing path between

G1 and G2 with respect to H and S in D(M). Condition (2) says that the

edge is into G1.

If the edge is out of G1, then G1 and G2 are adjacent to P in M and G1 is an

ancestor of all nodes in S in D(M); otherwise, G1 is not an ancestor of G2 or

any node in S in D(M).

It will now be proved that for each pair of nodes X and Y that are not adjacent

in M, there is no inducing path between X and Y with respect to H and S in D(M).

• If G and P are not adjacent in M, then pG does not exist in D(M). Suppose

that there is an inducing path p between G and P with respect to H and S

in D(M). p is of the form [G(1),H(1), . . . ,G(i),H(i), . . . ,G(n),H(n),P], where

n≥ 2, G(i) (2≤ i≤ n) is a collider on p, G(1) = G, and H(i) ∈H (1≤ i≤ n)

is a non-collider on p. G(n) is not an ancestor of G, P, or any node in S, which

is a contradiction. Therefore, there is no inducing path between G and P with

respect to H and S in D(M).

• If G1 and G2 are not adjacent in M, then qG1,G2 does not exist in D(M).

Suppose that there is an inducing path p between G1 and G2 with respect to

H and S in D(M). There are three cases:

1. p = G1→ P← G2: Then edges G1 P and G2 P exist in M. Con-

dition (3) therefore implies that G1 and G2 are adjacent in M. This

contradiction shows that p 6= G1→ P← G2.

2. p is of the form [G(1),H(1), . . . ,G(i),H(i), . . . ,G(n),H(n),P,H(n+1),

G(n+1), . . . ,H( j),G( j), . . . ,H(n+m),G(n+m)], where n ≥ 1, m ≥ 1, G(i)

(2 ≤ i ≤ n), G( j) (n + 1 ≤ j ≤ n + m− 1), and P are colliders on

p, G(1) = G1, G(n+m) = G2, and H(i) ∈ H (1 ≤ i ≤ n) and H( j) ∈ H

(n+ 1 ≤ j ≤ n+m) are non-colliders on p: It must be the case that
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n = 1 because otherwise G(n) is not an ancestor of G(1), G(n+m), or

any node in S in D(M). Similarly, m = 1 must hold because otherwise

G(n+1) is not an ancestor of G(1), G(n+m), or any node in S in D(M).

Therefore, p = [G1,H(1),P,H(2),G2], which means that edges G1→ P

and G2→ P exist in M. Condition (3) therefore says that G1 and G2 are

adjacent in M, which is a contradiction. Thus, p is not of this form.

3. p is of the form [G(1),H(1), . . . ,G(i),H(i), . . . ,G(n),H(n),G2], where n ≥

2, G(i) (2≤ i≤ n) is a collider on p, G(1) =G1, and H(i) ∈H (1≤ i≤ n)

is a non-collider on p: Since no genotype is an ancestor of another in

D(M), for each 2≤ i≤ n, edge G(i)→ P exists in D(M), which means

that edge G(i) P exists in M. Suppose that n > 2. Owing to Condition

(3), G(2) and G(3) are adjacent in M. Therefore, path qG(2),G(3) does not

exist in D(M), which is a contradiction. Thus, n = 2. Suppose that G1

and P are adjacent in M. Condition (3) then implies that G1 and G(2) are

adjacent in M, which means that path qG1,G(2) does not exist in D(M).

This contradiction shows that G1 is not adjacent to P in M. Similarly,

G2 is not adjacent to P in M. Condition (4) therefore implies that G1

and G2 are adjacent in M, which is a contradiction. Thus, p is not of

this form either. Hence, there is no inducing path between G and P with

respect to H and S in D(M). The proof therefore follows from Theorem

2.4.

The following lemma gives a sufficient condition for a canonical genetic causal

DAG with selection nodes to be plausible.

Lemma A.41. Let M be a conditional genetic causal MAG over G∪{P} given S.

D(M) is a plausible genetic causal DAG with selection nodes if every pair of adja-

cent genotypes that are not both adjacent to P in M are on the same chromosome.

Proof. There are no directed paths from P to any genotype or from a genotype to

another in D(M), since D(M) has no paths out of P or paths without colliders from
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a genotype to another. Therefore, D(M) is a genetic causal DAG with selection

nodes that satisfies Assumption 3.1 and Assumption 3.2. If two genotypes G1 and

G2 have a common ancestor in D(M), then G1 and G2 are adjacent and at least

one of them is not adjacent to P in M. By hypothesis, G1 and G2 are on the same

chromosome. Therefore, D(M) satisfies Assumption 3.3. In D(M), a node is an

ancestor of all nodes in S if and only if the node is an ancestor of P. Hence, D(M)

satisfies Assumption 3.5. Since Assumption 3.4 places no restriction on D(M),

D(M) is plausible.

Proof of Theorem 3.8.

Forward direction: Condition (1), (2), (3), (4), (5), and (6) is satisfied for

plausible conditional genetic causal MAGs due to Lemma A.25, A.28 and A.29,

A.29, A.24, A.36, and A.38, respectively.

Reverse direction: Owing to Lemma A.39, M is a conditional genetic causal

MAG. Lemma A.40 therefore implies that M is the marginal/conditional of D(M)

over G∪{P} given S. D(M) is then a plausible genetic causal DAG with selection

nodes due to Lemma A.41. Thus, M is a plausible conditional genetic causal MAG.

Theorem 3.9

The proof of Theorem 3.9 is based on the following two lemmas concerning Markov

equivalence of plausible conditional genetic causal MAGs.

Lemma A.42. If two plausible conditional genetic causal MAGs M1 and M2 over

G∪{P} are Markov equivalent, then the edges incident to an unshielded genotype

G adjacent to P are into G in M1 if and only if they are into G in M2.

Proof. The proof follows from Lemma A.28 and Theorem 2.5.

Lemma A.43. There are no discriminating paths in a plausible conditional genetic

causal MAG.

Proof. Owing to Lemma A.25, the phenotype cannot be a collider and a parent

at the same time. Due to Lemma A.28, a genotype cannot be a collider and a
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parent at the same time. Therefore, there are no discriminating paths in a plausible

conditional genetic causal MAG.

Proof of Theorem 3.9. The proof follows from Theorem 2.5 and Lemmas A.25,

A.42, A.29, and A.43.

Theorem 3.10

Proof of Theorem 3.10.

Forward direction: Conditions (1)–(6) are satisfied for maximally-informative

plausible conditional genetic causal PAGs due to Theorem 3.8. Condition (7) is

satisfied due to Theorem 3.9.

Reverse direction: Let P be a potential plausible conditional genetic causal

PAG that satisfies conditions (1)–(7). Orienting the edges incident to each shielded

genotype G in P either all out of G or all into G results in a plausible conditional

genetic causal MAG due to Theorem 3.8. Let M1 and M2 be two members of

the class of plausible conditional genetic causal MAGs represented by P. Ow-

ing to Theorem 3.9, M1 and M2 are Markov equivalent, which means that P is

a maximally-informative plausible conditional genetic causal PAG.

Theorem 3.11

The proof of Theorem 3.11 is based on the following propositions characterising

m-separation in a plausible conditional genetic causal MAG.

Lemma A.44. In a plausible conditional genetic causal MAG over G∪{P} given

S, if edge G ∗ X exists, then edge G P exists.

Proof. If edge G ∗ X exists, G is a cause of P due to Lemma A.26. Edge G P

exists due to Lemma A.30.

Lemma A.45. In a plausible conditional genetic causal MAG over G∪{P} given

S, if G1 and P are strictly m-separated by Z, then for each G2 ∈ Z, edge G1 ∗ G2

exists.

Proof. If G1 and P are strictly m-separated by Z, then for each G2 ∈ Z, there is a

path p that satisfies the conditions of Lemma A.16. Suppose that there is a collider
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G3 on p. Then G3 ∈ Z. Owing to Lemma A.28, G3 is a collider on every path

between G1 and P. Therefore, G1 and P are m-separated, which is a contradiction.

Thus, there are no colliders on p. Since there are no noncolliders on p other than G2,

p is of the form G1 ∗ G2 P by Lemma A.28. Hence, edge G1 ∗ G2 exists.

Lemma A.46. In a plausible conditional genetic causal MAG over G∪{P} given

S, if G1 and P are strictly m-separated by Z, then Z is a subset of the neighbours of

P on the same chromosome.

Proof. If G1 and P are strictly m-separated by Z, then G1 and P are not adjacent by

the definition of MAG and Lemma A.45 says that for each G2 ∈ Z, edge G1 ∗ G2

exists. Owing to Theorem A.38, G1 and G2 are on the same chromosome. Due to

Lemma A.26, G2 is a cause of P, and due to Lemma A.30, G2 is a neighbour of

P.

Corollary A.1. In a plausible conditional genetic causal MAG over G∪{P} given

S, G and P are adjacent if and only if they are not m-separated by any subset of the

genotypes adjacent to P on the same chromosome.

Proof. The proof follows from Lemma A.46.

Lemma A.47. Suppose that G1 and P are strictly m-separated by Z in a plausi-

ble conditional genetic causal MAG over G∪{P} given S. If G1 and G2 are not

adjacent, then they are m-separated by Z.

Proof. By the definition of MAG, G1 and P are not adjacent. Therefore, there is

no path [G1,P, . . . ,G2]. If G1 and G2 are not adjacent, there is no path [G1,G2].

Suppose that there is a path p = [G1,G3, . . . ,G2]. If G3 is a collider on p, then

G3 /∈ Z due to Lemma A.45 and G3 is not an ancestor of any node in Z due to

Lemma A.28. Therefore, p is blocked by Z. If G3 is not a collider on p, then the

edge between G1 and G3 is out of G3 due to Lemma A.28 and edge G3 P exists

due to Lemma A.44. Therefore, G3 ∈ Z, because otherwise G1 and P would be

m-connected given Z. Thus, p is blocked by Z. Hence, G1 and G2 are m-separated

by Z.
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Lemma A.48. Suppose that G1 and P are strictly m-separated by Z and G2 is not

adjacent to P in a plausible conditional genetic causal MAG over G∪{P} given S.

Then G1 and G2 are adjacent if and only if G2 ∈Z or G1 and G2 are not m-separated

by Z.

Proof.

Forward direction: By the definition of MAG, if G1 and G2 are adjacent, then

they are not m-separated by Z.

Reverse direction: There are two cases:

1. G2 ∈ Z. Owing to Lemma A.45, edge G1 ∗ G2 exists. Therefore, G1 and G2

are adjacent.

2. G2 /∈ Z. Due to Lemma A.47, if G1 and G2 are not m-separated by Z, then

G1 and G2 are adjacent.

Lemma A.49. Suppose that G1 and P are strictly m-separated by Z1 and G2 and

P are strictly m-separated by Z2 in a plausible conditional genetic causal MAG

over G∪{P} given S. G1 and G2 are adjacent if and only if G1 and G2 are not

m-separated by the smallest among Z1 and Z2.

Proof.

Forward direction: By the definition of MAG, if G1 and G2 are adjacent, then

they are not m-separated by the smallest among Z1 and Z2.

Reverse direction: Suppose that G2 ∈ Z1. Then edge G1 ∗ G2 exists due to

Lemma A.45. Lemma A.44 therefore implies that edge G2 P exists, which is a

contradiction. Therefore, G2 /∈ Z1. Similarly, G1 /∈ Z2. Owing to Lemma A.47, if

G1 and G2 are not m-separated by the smallest among Z1 and Z2, then G1 and G2

are adjacent.

Lemma A.50. Suppose that G1 is not adjacent to P or to a node adjacent to P in

a plausible conditional genetic causal MAG over G∪{P} given S. G1 and G2 are

adjacent if and only if they are not m-separated.
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Proof. By the definition of MAG, G1 and P are strictly m-separated by some set Z.

Suppose that Z 6= /0. Lemma A.45 then says that G1 ∗ G3 exists. Owing to Lemma

A.44, edge G3 P exists. This contradiction shows that Z = /0. Due to Lemma

A.47, G1 and G2 are adjacent if and only if they are not m-separated.

Proof of Theorem 3.11. The proof follows from Corollary A.1, and Lemmas A.24,

A.48, A.49, A.38, and A.50.

Theorem 3.12

Towards proving Theorem 3.12, the soundness of Algorithm 11 is proved first.

Lemma A.51 (Soundness of Algorithm 11). If the input of Algorithm 11 is P and

Sepset, then in the output of Algorithm 11, P is a plausible conditional genetic

causal PAG for the same Markov equivalence class as in the input.

Proof.

Rule (1). Soundness follows directly from Lemma A.25.

Rule (2). When G1 /∈ Sepset({G2,P}), edge G1 ∗ ∗ P is oriented as G1←∗ P

due to Lemma 2.2. Therefore, edge G1 ∗ ∗ G2 is oriented as G1 ←∗ G2 due to

Lemma A.28. Otherwise, triple [G2,G1,P] is oriented either as G2 ∗→ G1 ∗ P,

G2 ∗ G1←∗ P, or G2 ∗ G1 ∗ P, again due to Lemma 2.2. The first two cases

are ruled out by Lemma A.28. Therefore, edge G1 ∗ ∗G2 is oriented as G1 ∗G2.

Rule (3). Soundness follows directly from Lemma A.29.

The following lemma is used in the proof of Theorem 3.12.

Lemma A.52. In the output of Algorithm 11, the endpoints at genotypes adjacent

to P are oriented if and only if the genotype is unshielded.

Proof. There are no P ∗( G edges, G ›∗ X edges such that G is unshielded and

adjacent to P, or G1 ›∗ G2 edges such that G1 and P are not adjacent in the output

PAG, since they are all oriented by Rule (1), Rule (2), and Rule (3), respectively.

Therefore, there are only G ›∗ X edges such that G is shielded and adjacent to

P.
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Proof of Theorem 3.12. The proof follows from Lemmas A.51 and A.52, and The-

orem 3.10.

Theorem 3.13

Proof of Theorem 3.13. Owing to Conditions (1)–(3), Algorithm 13 discovers G if

G is adjacent to P. When G is discovered, the algorithm performed the tests of

conditional independence of P and G given each subset of the genotypes adjacent

to P on the same chromosome as G (other than G if P and G are adjacent) in M again

due to Conditions (1)–(3). When G is not discovered, the algorithm performed the

tests of conditional independence of P and G given a sepset of X and Y due to

Corollary A.1 and Conditions (1)–(3). Therefore, the conditioning sets of the tests

of conditional independence of G and P performed by the algorithm are separation-

sufficient for G and P in M due to Corollary A.1. Theorem 2.3 and Condition (1)

therefore imply that the p-value corresponding to the hypothesis of absence of a link

between P and G is upper-bounded by the maximal among the p-values from the

tests of conditional independence of G and P performed by the algorithm. Thus,

an appropriate FDR-controlling procedure applied to the upper bounds of the link-

absence p-values corresponding to the genotypes in
⋃

1≤k≤n TAk(P) controls the

FDR of the genotypes below q.

Theorem 3.14

Proof of Theorem 3.14. Suppose that the conditions of the theorem are satisfied. P

is not an ancestor of G1 in the underlying causal structure due to Assumption 3.1.

Suppose that G1 and P have a common ancestor. Owing to Assumption 3.4, G1

has a common cause with some cause G2 of P, which contradicts Condition (1).

Therefore, G1 and P do not have a common ancestor. Owing to Assumption 3.5,

P is a ancestor of S. Therefore, every path from G1 to S through P is blocked by

P. Suppose that there is path p from G1 to S that is not through P. Owing to

Conditions (2)–(4), there are colliders on p. Therefore, p is blocked by P. Thus, the

proof follows from Theorem 2.6.
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Chapter 4

Theorem 4.1

In order to prove Theorem 4.1, the following lemmas are needed. The first two

lemmas are used in the proof of the third one, which states that Algorithm 15 outputs

maximally-informative plausible conditional genetic PAGs.

Lemma A.53. In L at line 7 of Algorithm 15, if G1 and G2 are adjacent to P, then

G1 and G2 are adjacent.

Proof. If G1 and G2 are adjacent to P in L at line 7 of Algorithm 15, then G1 and

G2 became adjacent to P in L at line 6. Therefore, G1 and P are adjacent in Pk for

every k such that G1 ∈ Gk and G2 and P are adjacent in Pk for every k such that

G2 ∈Gk. Therefore, for every k such that {G1,G2} ⊆Gk, G1 and G2 are adjacent in

Pk due to Lemma A.24. Thus, G1 and G2 also became adjacent in L at line 6.

Lemma A.54. In S at line 58 of Algorithm 15, if G1 and G2 are adjacent to P, then

G1 and G2 are adjacent.

Proof. Since S is set to the subgraph of L without edges between pairs in E1∪E2

at line 58, if G1 and G2 are adjacent to P in S, then they are adjacent to P in L at

line 58 and neither {G1,P} nor {G2,P} is in E1 constructed at line 55. Since G1

and G2 are adjacent to P in L at line 58 and no edge between genotypes adjacent

to P is removed at lines 29 and 35, G1 and G2 are adjacent in L at line 56 due to

Lemma A.53. Therefore, {G1,G2} ∈ E3 constructed at line 56, and {G1,G2} /∈ E2

constructed at line 57. Thus, G1 and G2 are adjacent in S.

Lemma A.55. In the output of Algorithm 15, Q is a set of maximally-informative

plausible conditional genetic PAG over O.

Proof. Let Q∈Q. It will be proved that Q satisfies the conditions of Theorem 3.10.

Q is derived by orientation of the edges in S, which is derived by a subgraph of L.

• Condition (1): Edges incident to P in Q were oriented out of P at line 10 of

the algorithm.
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• Condition (2): Edges incident to each unshielded G adjacent to P were all

oriented either all out of G or all into G at line 14, 18, 92, 100, 108, or 111.

• Condition (3): Edges incident to each G not adjacent to P were oriented into

G at line 24 or 86.

• Condition (4): Genotypes adjacent to P in S are adjacent in S due to Lemma

A.54. Since no edges are removed from Q once it is set to S at line 106,

genotypes adjacent to P in Q are adjacent in Q.

• Condition (5): Owing to lines 62 and 100, there is no unshielded triple

[G1,G3,G2] such that G1 and G2 are not adjacent to P, G3 is adjacent to

P, and the edge between G3 and P is out of G3 in Q.

• Condition (6): Owing to lines 29 and 72, there are no adjacent genotypes not

both adjacent to P in Q that are not on the same chromosome.

• Condition (2): There is no shielded G adjacent to P such that the endpoints at

G were oriented at line 14 or 18 owing to line 81, and no shielded G adjacent

to P such that the endpoints at G were oriented at lines 92, 100, 108, and 111.

Therefore, endpoints at each G adjacent to P are oriented if and only if G is

unshielded.

Theorem 3.10 therefore implies that Q is a maximally-informative plausible

conditional genetic PAG over O.

The following lemmas characterise graph L at different lines of Algorithm 15.

Lemma A.56. Let Q′ be a maximally-informative plausible conditional genetic

PAG over O that is consistent with M1, . . . ,Mn. At line 7 of Algorithm 15, L con-

tains a superset of the links in Q′.

Proof. Let N′ a member of the Markov equivalence class of plausible conditional

genetic MAGs represented by Q′ and Nk′ be the marginal of N′ over Gk∪{P}. For

every pair {X ,Y}⊆O such that edge X ˛Y is not added to L at line 6 of Algorithm
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15, there is some k such that X and Y are not adjacent in Pk and, subsequently, in

Nk′ . There is no inducing path between X and Y with respect to G\Gk and /0 in N′

due to Theorem 2.4. Therefore, X and Y are not adjacent in N′ or in Q′.

Lemma A.57. Let Q′ be a maximally-informative plausible conditional genetic

PAG over O that is consistent with M1, . . . ,Mn. If the edges incident to G in L

are oriented out of G at line 14 of Algorithm 15, then edge G ∗ P exists in Q′.

Proof. Let N′ a member of the Markov equivalence class of plausible conditional

genetic MAGs represented by Q′ and Nk′ be the marginal of N′ over Gk ∪{P}. If

the edges incident to G in L are oriented out of G at line 14 of Algorithm 15, then

there is some k such that edge G ∗ P exists in Pk and, subsequently, in Nk′ . Owing

to Lemma A.66, edge G ∗ P exists in N′, and, subsequently, in Q′.

Lemma A.58. Let Q′ be a maximally-informative plausible conditional genetic

PAG over O that is consistent with M1, . . . ,Mn. If the edges incident to G in L

are oriented out of G at line 14 of Algorithm 15, then the edges incident to G in Q′

are out of G.

Proof. If the edges incident to G in L are oriented out of G at line 14 of Algorithm

15, then edge G ∗ P exists in Q′ due to Lemma A.57. Lemma A.28 therefore

implies that the edges incident to G in Q′ are out of G.

Lemma A.59. Let Q′ be a maximally-informative plausible conditional genetic

PAG over O that is consistent with M1, . . . ,Mn. If the edges incident to G in L

are oriented into G at line 18 of Algorithm 15, then the edges incident to G in Q′

are into G.

Proof. Let N′ be a member of the Markov equivalence class of plausible conditional

genetic MAGs represented by Q′ and Nk′ be the marginal of N′ over Gk∪{P}. If the

edges incident to G in L are oriented into G at line 18 of Algorithm 15, then there

is some k such that edge G←∗ P exists in Pk and, subsequently, in Nk′ . Owing to

Lemma A.66, edge G ∗ P does not exist in N′. If edge G←∗ P exists in N′ and,

therefore, in Q′, then the edges incident to G are into G in Q′ due to Lemma A.28.
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If G and P are not adjacent in N′, and, subsequently, in Q′, then the edges incident

to G are into G in Q′ due to Lemma A.29.

Lemma A.60. Let Q′ be a maximally-informative plausible conditional genetic

PAG over O that is consistent with M1, . . . ,Mn. At line 25 of Algorithm 15, L

contains a superset of the links, the orientations at P, the orientations at a subset

of the unshielded genotypes adjacent to P, and the orientations at a subset of the

genotypes not adjacent to P in Q′, and no orientations at the remaining genotypes.

Proof. Lemma A.56 says that L at line 7 of Algorithm 15 contains a superset of the

links in Q′. At line 25, orientations in L have been performed at lines 10, 14, 18,

and 24. It will be shown that these orientations are present in Q′.

• At line 10, edges incident to P in L are oriented out of P. Owing to Lemma

A.25, edges incident to P in Q′ are out of P.

• If the edges incident to G in L are oriented out of G at line 14, then the edges

incident to G in Q′ are out of G due to Lemma A.58.

• If the edges incident to G in L are oriented into G at line 18, then Lemma

A.59 says that the edges incident to G in Q′ are into G.

• At line 24, edges incident to each genotype G not adjacent to P are oriented

into G in L. Since these genotypes are also not adjacent to P in Q′, Lemma

A.29 implies the edges incident to the genotypes in Q′ are into the genotypes.

Since no links are removed from L at lines 7–25, L also contains a superset of the

links in Q′ at line 25.

Lemma A.61. Let Q′ be a maximally-informative plausible conditional genetic

PAG over O that is consistent with M1, . . . ,Mn. At line 37 of Algorithm 15, L

contains a superset of the links, the orientations at P, the orientations at a subset

of the unshielded genotypes adjacent to P, and the orientations at a subset of the

genotypes not adjacent to P in Q′, and no orientations at the remaining genotypes.
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Proof. At line 25 of Algorithm 15, L contains a superset of the links, the orienta-

tions at P, the orientations at a subset of the unshielded genotypes adjacent to P,

and the orientations at a subset of the genotypes not adjacent to P in Q′, and no

orientations at the remaining genotypes due to Lemma A.60. Let N′ be a member

of the Markov equivalence class of plausible conditional genetic MAGs represented

by Q′ and Nk′ be the marginal of N′ over Gk∪{P}. Between lines 25 and 37, edges

are removed from L at lines 29 and 35. It will be shown that edges removed at those

lines are not in N′.

• Edge G1 ∗ ∗ G2 is removed from L at line 29 if G1 and G2 are not both

adjacent to P in L and they are not on the same chromosome. Therefore, G1

and G2 are not both adjacent to P in N′. Suppose that G1 and G2 are adjacent

in N′. Then G1 and G2 are on the same chromosome due to Lemma A.38,

which is a contradiction. Therefore, G1 and G2 are not adjacent in N′.

• Edge G1 ∗ G2 is removed from L at line 35 if G1 is not adjacent to P in L

and there is some k such that G1 is not adjacent to P in Pk, and, subsequently,

in Nk′ , and G2 is not in Gk. Suppose that edge G1 ∗ G2 exists in N′. Then

edge G2 ∗ P exists in N′ due to Lemma A.44 and [G1,G2,P] is an inducing

path between G1 and P with respect to G\Gk and /0 in N′. Owing to Theorem

2.4, G1 and P are adjacent in N′k, which is contradiction. Therefore, edge

G1 ∗ G2 does not exists in N′, and, subsequently, in Q′.

Since the removed edges are not N′, they are not in Q′ either.

The next lemma is used in the proof of the subsequent two lemmas, which char-

acterise inducing paths with respect to Gh and /0 in a plausible conditional genetic

MAG over Go∪̇Gh∪{P}.

Lemma A.62. In a plausible conditional genetic MAG over Go∪̇Gh∪{P}, if Z is

an interior node on an inducing path between X and Y with respect to Gh and /0,

then Z ∈Gh, edges incident to Z are out of Z, and edge Z P exists.

Proof. Let p be an inducing path between X and Y with respect to Gh and /0. Sup-

pose that Z is a collider on p. Due to Lemma A.25, Z 6= P. Therefore, Z ∈G. Due
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to Lemma A.28, Z is not an ancestor of X or Y . Therefore, p is not an inducing path

with respect to Gh and /0, which is a contradiction. Hence, Z is a noncollider on p

and Z ∈Gh. Edge Z P exists due to Lemma A.44.

Lemma A.63. In a plausible conditional genetic MAG over Go∪̇Gh∪{P}, there is

an inducing path between G1 and P with respect to Gh with respect to Gh and /0 if

and only if either G1 and P are adjacent or edge G1 ∗ G2 such that G2 ∈Gh exists.

Proof.

Forward direction: Let p be an inducing path between G1 and P with respect

to Gh and /0. If there are no interior nodes on p, then G1 and P are adjacent. If there

are interior nodes on p, let G2 be the node adjacent to G1 on p. Owing to Lemma

A.62, G2 ∈Gh and the edge between G1 and G2 is out of G2.

Reverse direction: If G1 and P are adjacent, [G1,P] is an inducing path between

G1 and P with respect to Gh and /0. If edge G1 ∗ G2 such that G2 ∈Gh exists, then

path G1 ∗ G2 ∗ P exists due to Lemma A.44 and is an inducing path between G1

and P with respect to Gh and /0.

Lemma A.64. In a plausible conditional genetic MAG over Go∪̇Gh∪{P}, there is

an inducing path between G1 and G2 with respect to Gh and /0 if and only if G1 and

G2 are adjacent or there is a path G1 ∗ G3 ∗ G2 such that G3 ∈ Gh or a path

G1 ∗ G3 G4 ∗ G2 such that {G3,G4} ⊆Gh.

Proof.

Forward direction: Let p be an inducing path between G1 and G2 with respect

to Gh and /0. If there are no interior nodes on p, then G1 and G2 are adjacent. If there

are interior nodes on p, let Z be such a node. Due to Lemma A.62, Z ∈Gh, all edges

incident to Z are out of Z, and edge Z P exists. If G3 is the only interior node on p,

then path G1 ∗ G3 ∗G2 exists. If there are more than one interior nodes on p, let

G3 and G4 be the nodes adjacent to G1 and G2, respectively, on p. Due to Lemmas

A.24 and A.28, edge G3 G4 exists. Therefore, path G1 ∗ G3 G4 ∗ G2 exists.

Reverse direction: G1 ∗ ∗G2, G1 ∗ G3 ∗G2 such that G3 ∈Gh, and G1 ∗

G3 G4 ∗ G2 such that {G3,G4} ⊆ Gh are inducing paths between G1 and G2

with respect to Gh and /0.
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The following lemma gives necessary and sufficient conditions for a plausible

conditional genetic MAG to be consistent with a set of marginal MAGs.

Lemma A.65. A plausible conditional genetic MAG N over O is consistent with

M1, . . . ,Mn if the following conditions are satisfied for every Mk (1≤ k ≤ n):

1. For each edge G ∗ P such that G is unshielded in Mk, edge G ∗ P exists in

N.

2. For each edge G1 ∗ ∗ P such that either G1 is shielded or the edge is into G1

in Mk, G1 and P are adjacent or edge G1 ∗ G2 such that G2 ∈G\Gk exists

in N.

3. For each edge between G1 and G2 in Mk such that G1 and P are not adjacent

in Mk, G1 and G2 are adjacent in N.

4. For each G1 not adjacent to P in Mk, G1 and P are not adjacent and edge

G1 ∗ G2 such that G2 ∈G\Gk does not exist in N.

5. For each G1 and G2 not adjacent in Mk, G1 and G2 are not adjacent in N.

6. For each edge G←∗ P such that G is unshielded in Mk, edge G ∗ P does

not exist in N.

Proof. Let Nk be the marginal of N over Gk ∪{P} for some k and suppose that N

satisfies the above conditions with Nk. It will be first proved that, for each type of

edge in Mk, there is an inducing path with respect to G\Gk and /0 in N.

• For each edge G ∗ P such that G is unshielded in Mk, Condition (1) implies

that G and P are adjacent in N. Therefore, [G,P] is an inducing path with

respect to G\Gk and /0 in N.

• For each edge G ∗ ∗ P such that either G is shielded or the edge is into G in

Mk, there is an inducing path between G and P with respect to G\Gk and /0

in N due to Condition (2) and Lemma A.63.
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• For each edge G1 G2 in Mk such that G1 and G2 are unshielded, edges

G1 P and G2 P exist in Mk due to Lemma A.44 and G1 and G2 are

adjacent in N due to Condition (1). Lemma A.24 therefore implies that G1

and G2 are adjacent in N. [G1,G2] is then an inducing path between G1 and

G2 with respect to G\Gk and /0 in N.

• For each edge G1 ∗ G2 in Mk such that G1 and G2 are adjacent to P, G2 is

unshielded, and either G1 is shielded or the edge is into G1, the edge between

G2 and P in Mk is out of G2 due to Lemma A.28, and edge G2 ∗ P exists in

N due to Condition (1). Furthermore, either edge G1←∗ P or edge G1 ›∗ P

exists in Pk due to Lemma A.42. Owing to Condition (2), either G1 and P

are adjacent in N or edge G1 ∗ G3 such that G3 ∈G\Gk exists in N. In the

former case, Lemma A.24 says that G1 and G2 are adjacent in Q. In the latter

case, edge G3 ∗ P exists in N due to Lemma A.44, G2 and G3 are adjacent

in N due to Lemma A.24, and the edge between G2 and G3 in N is out of G3

due to Lemma A.28. Therefore, path G1 ∗ G3 ∗ G2 exists in N. Lemma

A.64 therefore implies that there is an inducing path between G1 and G2 with

respect to G\Gk and /0 in N.

• For each edge G1 ∗ ∗G2 in Mk such that G1 and G2 are adjacent to P, either

G1 is shielded or the edge is into G1, and either G2 is shielded or the edge is

into G2, either edge G1←∗ P or edge G1 ›∗ P and either edge G2←∗ P or

edge G2 ›∗ P exists in Pk due to Lemma A.42. Therefore, either G1 and P

are adjacent in N or edge G1 ∗ G3 such that G3 ∈ G \Gk exists in N, and

either G2 and P are adjacent in N or edge G2 ∗ G4 such that G4 ∈ G \Gk

exists in N due to Condition (2).

– If G1 and P are adjacent and G2 and P are adjacent in N, then G1 and

G2 are adjacent in N due to Lemma A.24.

– If G1 and P are adjacent in N and edge G2 ∗ G4 such that G4 ∈G\Gk

exists in N, then edge G4 ∗ P exists in N due to Lemma A.44, G1 and

G4 are adjacent in N due to Lemma A.24, and the edge between G1 and



213

G4 in N is out of G4 due to Lemma A.28. Therefore, path G1 ∗ G4

∗ G2 exists in N. Thus, there is an inducing path between G1 and G2

with respect to G\Gk and /0 in N due to Lemma A.64.

– Suppose that edge G1 ∗ G3 such that G3 ∈G\Gk and edge G2 ∗ G4

such that G4 ∈G\Gk exist in N. If G3 = G4, then path G1 ∗ G3 ∗G2

exists in N. Therefore, there is an inducing path between G1 and G2

with respect to G \Gk and /0 in N due to Lemma A.64. If G3 6= G4,

then G3 and G4 are adjacent in N due to Lemma A.24, and the edge

between G3 and G4 in N is undirected due to Lemma A.28. Therefore,

path G1 ∗ G3 G4 ∗G2 exists in N. Lemma A.64 then says that there

is an inducing path between G1 and G2 with respect to G\Gk and /0 in

N.

• For each edge G1 ∗ ∗ G2 in Mk such that G1 and P are not adjacent in Mk,

Condition (3) says that G1 and G2 are adjacent in N. Thus, [G1,G2] is an

inducing path with respect to G\Gk and /0 in N.

It will be subsequently proved that, for each type of non-adjacency in Mk, there

is no inducing path with respect to G\Gk and /0 in N.

• For each G1 not adjacent to P in Mk, there is no inducing path between G1

and P with respect to G \Gk and /0 in N due to Condition (4) and Lemma

A.63.

• If G1 and G2 are not adjacent in Mk, then either G1 or G2 is not adjacent

to P in Mk because otherwise G1 and G2 would be adjacent due to Lemma

A.24. Without loss of generality, suppose that G1 is not adjacent to P in Mk.

Condition (4) then says that there is no edge G1 ∗ G3 such that G3 ∈G\Gk

in N. Therefore, there is no path G1 ∗ G3 ∗ G2 such that G3 ∈ G \Gk

or path G1 ∗ G3 G4 ∗ G2 such that {G3,G4} ⊆ G \Gk in N. Owing

to Condition (5), G1 and G2 are not adjacent in N. Lemma A.64 therefore

implies that there is no inducing path between G1 and G2 with respect to

G\Gk and /0 in N.
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Owing to Theorem 2.4, Mk and Nk have the same skeleton. It will be now

shown that the edges incident to unshielded genotypes adjacent to P in Mk and Nk

have the same orientation at the genotype in Mk and Nk. Due to Lemma A.28, the

edges at a genotype G in Mk are either all into or all out of G.

• For each unshielded genotype G that is adjacent to P and the edges incident

to G are out of G in Mk, Condition (1) implies that edge G ∗ P exists in

N. Lemma A.66 therefore implies that edge G ∗ P exists in Nk. The other

edges incident to G in Nk are also out of G due to Lemma A.28.

• For each unshielded genotype G that is adjacent to P and the edges incident

to G are into G in Mk, edge G ∗ P does not exist in N due to Condition (6).

Owing to Lemma A.66, edge G ∗ P does not exist in Nk. Thus, the edge

between G and P in Nk is into G. The other edges incident to G in Nk are also

into G due to Lemma A.28.

Therefore, Mk and Nk are Markov equivalent due to Theorem 3.9. Thus, N is

consistent with M1, . . . ,Mn.

The lemmas below are needed in the proof of soundness of Algorithm 15, that

follows after.

Lemma A.66. Let M be a plausible conditional genetic causal MAG over Go∪̇Gh∪

{P} and Mo be the marginal of M over Go∪{P}. Edge G ∗ P exists in Mo if and

only if edge G ∗ P exists in M.

Proof.

Forward direction: If edge G ∗ P exists in Mo, then G is anterior to P in M.

Therefore, some edge G ∗ X exists in M (X may be P). Owing to Lemma A.44,

edge G ∗ P exists in M.

Reverse direction: If edge G ∗ P exists in M, then G and P are adjacent in

Mo due to Theorem 2.4 and the edge between G and P in Mo is out of G.
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Lemma A.67. Let M be a plausible conditional genetic causal MAG over Go∪̇Gh∪

{P} and Mo be the marginal of M over Go∪{P}. If G1 and G2 are adjacent and

G1 and P are not adjacent in Mo, then G1 and G2 are adjacent in M.

Proof. If G1 and P are not adjacent in Mo, then there is no inducing path between

G1 and P with respect to Gh and /0 in M due to Theorem 2.4. Theorem 2.4 also says

that, if G1 and G2 are adjacent in Mo, then there is an inducing path between G1 and

G2 with respect to Gh and /0 in M. Owing to Lemma A.64, G1 and G2 are adjacent

or there is a path G1 ∗ G3 ∗G2 such that G3 ∈Gh or a path G1 ∗ G3 G4 ∗G2

such that {G3,G4}⊆Gh in M. Suppose that G1 and G2 are not adjacent in M. Then

[G1,G3,P] is an inducing path between G1 and P with respect to Gh and /0 in M,

which is a contradiction. Therefore, G1 and G2 are adjacent in M.

Lemma A.68. If there is some k such that edge G ∗ P exists and G is unshielded

in Mk, then G ∗ P exists in L at line 25 of Algorithm 15.

Proof. If there is some k such that edge G ∗ P exists and G is unshielded in Mk,

then edge G ∗ P exists in Pk due to Lemma A.42, in M due to Lemma A.66, in

every Mk′ such that G ∈ Gk′ again due to Lemma A.66, and in every Pk′ such that

G∈Gk′ and G is unshielded in Pk′ due to Lemma A.42. Therefore, G and P become

adjacent in L at line 6 of Algorithm 15 and the edge between G and P is oriented

out of G at line 14.

Lemma A.69. If there is some k such that edge G←∗ P exists in Mk and G is

unshielded in Mk, then either G and P are not adjacent or edge G←∗ P exists in L

at line 25 of Algorithm 15.

Proof. If there is some k such that edge G←∗ P exists and G is unshielded in Mk,

then Lemma A.42 says that edge G←∗ P exists in Pk. Edge G ∗ P does not exist

in M due to Lemma A.66, in any Mk′ such that G ∈Gk′ again due to Lemma A.66,

and in any Pk′ such that G ∈ Gk′ and G is unshielded in Pk′ due to Lemma A.42.

Therefore, if G and P are adjacent in L at line 7 of Algorithm 15, then the edge

between G and P is oriented into G at line 18.
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Lemma A.70. Let P be a maximally-informative plausible conditional genetic PAG

over G∪{P} and M a plausible conditional genetic MAG in the Markov equiva-

lence class of plausible conditional genetic MAGs represented by P. G1 and P are

adjacent or edge G1 ∗ G2 exists in P if and only if G1 and P are adjacent or edge

G1 ∗ G2 exists in M.

Proof. G1 and P are adjacent in P if and only if they are adjacent in M. If edge

G1 ∗ G2 exists in P, then edge G1 ∗ G2 exists in M. If edge G1 ∗ G2 exists in

M, then path G1 ∗ G2 ∗ P exists in M due to Lemma A.44. Owing to Lemma

A.28, the corresponding path in P is either G1 ∗ G2 ∗ P or G1 ∗( G2 ›∗ P. In

the former case, edge G1 ∗ G2 exists in P. In the latter case, Lemma A.42 says

that G1 and P are adjacent in P.

Proof of Theorem 4.1. Owing to Lemma A.55, Q is a set of maximally-informative

plausible conditional genetic PAGs over O. Let Q ∈ Q and N be MAG in the

Markov equivalence class of plausible conditional genetic MAGs represented by

Q. It will be shown that Q satisfies the conditions of Lemma A.65 for Mk.

• Condition (1): For each edge G ∗ P such that G is unshielded in Mk, edge

G ∗ P exists in L at line 25 due to Lemma A.68. Since the edge is not added

to R1 at line 42, it exists in S, and, subsequently, in Q and N.

• Condition (2): For each edge G1 ∗ ∗ P such that either G1 is shielded or the

edge is into G1 in Mk, Lemma A.42 says that either edge G1←∗ P or edge

G1 ›∗ P exists in Pk. Therefore, either G1 and P are adjacent in Q or edge

G1 ∗ G2 such that G2 ∈ G \Gk exists in Q due to line 126 and in N due to

Lemma A.70.

• Condition (3): For each edge between G1 and G2 such that G1 and P are

not adjacent in Mk, Lemma A.67 says that G1 and G2 are adjacent in M.

Lemma A.61 therefore implies that G1 and G2 are adjacent in L at line 37.

Furthermore, since G1 and P are not adjacent in Mk, and therefore in Pk, G1

and P do not become adjacent in L at line 6. Therefore, {G1,G2} is not added
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to R2 at line 48 or 52. Thus, G1 and G2 are adjacent in S, and, subsequently,

in Q and N.

• Condition (4): For each G1 not adjacent to P in Mk, G1 and P do not become

adjacent in L at line 6. Therefore, G1 and P are not adjacent in Q, and,

subsequently, in N. Owing to lines 35 and 92, there is no edge G1 ∗ G2 such

that G2 ∈G\Gk in Q, and, subsequently, in N.

• Condition (5): For each G1 and G2 not adjacent in Mk, G1 and G2 are not

adjacent in Pk. Therefore, G1 and G2 do not become adjacent in L at line 6.

Thus, G1 and G2 are not adjacent in Q, and, subsequently, in N.

• Condition (6): For each edge G←∗ P such that G is unshielded in Mk, either

G and P are not adjacent or edge G←∗ P exists in L at line 25 due to Lemma

A.69. Therefore, edge G←∗ P does not exist in Q, and, subsequently, in N.

Therefore, N, and, subsequently, Q, is consistent with M1, . . . ,Mn due to

Lemma A.65.

Theorem 4.2

The proof of Theorem 4.2 is based on the following lemmas.

Lemma A.71. Let Q′ be a maximally-informative plausible conditional genetic

PAG over O that is consistent with M1, . . . ,Mn. If edge G ∗ P exists in L at

line 25 of Algorithm 15, then G and P are adjacent in Q′.

Proof. If edge G ∗ P exists in L at line 25 of Algorithm 15, then the endpoints at

G in L were set to tails at line 14. Owing to Lemma A.57, edge G ∗ P exists in

Q′.

Lemma A.72. Let Q′ be a maximally-informative plausible conditional genetic

PAG over O that is consistent with M1, . . . ,Mn. At line 25 of Algorithm 15, if G

and P are adjacent in L and there is some k such that G and the neighbours and

potential neighbours of P that are on the same chromosome as G in L are in Gk,

then G and P are adjacent in Q′.
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Proof. If G and P are adjacent in L at line 25 of Algorithm 15, then G and P are

adjacent in every Pk such that G ∈Gk. Therefore, if there is some k such that G and

the neighbours and potential neighbours of P that are on the same chromosome as

G in L are in Gk, then G and P are not m-separated by any subset of the neighbours

and potential neighbours of P that are on the same chromosome as G in L. Owing

to Lemma A.60, G and P are not m-separated by any subset of the neighbours of P

that are on the same chromosome as G in Q′. Lemma A.46 therefore implies that G

and P are adjacent in Q′.

Lemma A.73. Let Q′ be a maximally-informative plausible conditional genetic

PAG over O that is consistent with M1, . . . ,Mn. At line 58 of Algorithm 15, some

S is considered with the same skeleton as Q′ and the orientations at P, the orienta-

tions at a subset of the unshielded genotypes adjacent to P, and the orientations at a

subset of the genotypes not adjacent to P in Q′, and no orientations at the remaining

genotypes.

Proof. At line 37, L contains a superset of the links, the orientations at P, the ori-

entations at P, the orientations at a subset of the unshielded genotypes adjacent to

P, and the orientations at a subset of the genotypes not adjacent to P in Q′, and no

orientations at the remaining genotypes due to Lemma A.61.

At line 58, every subgraph S of L with the genotype–phenotype edges in L

between pairs of nodes not in R1, the genotype–genotype edges in L between pairs

of nodes not in R2, and the genotype–genotype edges in L between nodes adjacent

to P in S is constructed. It will be first shown that links in L between pairs of nodes

not in R1 or R2 are present in Q′.

• If G and P are adjacent in L and {G,P} /∈ R1, then either the edge between

G and P in L is undirected or there is some k such that G and the neighbours

and potential neighbours of P that are on the same chromosome as G in L are

in Gk. In the former case, G and P are adjacent in Q′ due to Lemma A.71. In

the latter case, Lemma A.72 says that G and P are adjacent in Q′.

• If G1 and G2 are adjacent in L and {G1,G2} /∈ R2, then either G1 and G2 are
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both adjacent to P in L and {G1,P} /∈R1 and {G1,P} /∈R1, or G1 and G2 are

not both adjacent to P in L and there is some k such that G1 and G2 are in Gk

and G1 and G2 are not both adjacent to P in Pk. In the former case, Lemma

A.24 implies that G1 and G2 are adjacent to P in Q′. In the latter case, G1 and

G2 are adjacent to P in Mk. Therefore, G1 and G2 are adjacent to P in Q′ due

to Lemma A.67.

Furthermore, if G1 and G2 are adjacent to P in Q′, then G1 and G2 are adjacent

in Q′ due to Lemma A.24. Therefore, some S is considered with the same skeleton

as Q′ and the orientations at P, the orientations at a subset of the unshielded geno-

types adjacent to P, and the orientations at a subset of the genotypes not adjacent to

P in Q′, and no orientations at the remaining genotypes.

Lemma A.74. Let Q′ be a maximally-informative plausible conditional genetic

PAG over O that is consistent with M1, . . . ,Mn. At line 106 of Algorithm 15, some Q

is considered with the same skeleton as Q′ and the orientations at P, the orientations

at a subset of the unshielded genotypes adjacent to P, and the orientations at the

genotypes not adjacent to P in Q′, and no orientations at the remaining genotypes.

Proof. At line 58 of Algorithm 15, Lemma A.73 says that some S is considered

with the same skeleton as Q′ and the orientations at P, the orientations at a subset

of the unshielded genotypes adjacent to P, and the orientations at a subset of the

genotypes not adjacent to P in Q′, and no orientations at the remaining genotypes.

The condition at line 62, 72, and 81 fails due to Lemma A.36, A.38, and A.42

respectively. The orientations made at lines 86 are present in Q′ due to Lemma

A.29. In the following, let N′ be a member of the Markov equivalence class of

plausible conditional genetic MAGs represented by Q′ and Nk′ be the marginal of

N′ over Gk∪{P}.

The edges incident to G2 in S are oriented into G2 at line 92 if there is an edge

G1 ∗( G2 in S such that G1 is not adjacent to P in L and there is some k such

that G1 is not adjacent to P in Pk, and, subsequently, in Nk′ , and G2 is not in Gk.

Suppose that the edges incident to G2 in N′ are out of G2. Then edge G2 ∗ P exists
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in N′ due to Lemma A.44 and because G1 and G2 are adjacent in N′ (as S has the

same skeleton as Q′), [G1,G2,P] is an inducing path between G1 and P with respect

to G\Gk and /0 in N′. Owing to Theorem 2.4, G1 and P are adjacent in N′k, which is

contradiction. Therefore, the edges incident to G2 in N′, and, subsequently, in Q′,

are into G2.

The edges incident to potential neighbour G3 of P in S are oriented into G3

at line 100 if there is an unshielded triple [G1,G3,G2] such that G1 and G2 are not

adjacent to P in S. Suppose that the edges incident to G3 are out of P in Q′. Owing

to Lemma A.36, G1 and G2 are adjacent in Q′. This is a contradiction, as Q′ has the

same skeleton as S. Therefore, the edges incident to G3 are into P in Q′.

Thus, some Q is considered with the same skeleton as Q′ and the orientations

at P, the orientations at a subset of the unshielded genotypes adjacent to P, and

the orientations at the genotypes not adjacent to P in Q′, and no orientations at the

remaining genotypes at line 106.

Proof of Theorem 4.2. Let Q′ be a maximally-informative plausible conditional ge-

netic PAG over O that is consistent with M1, . . . ,Mn. Owing to Lemma A.74, some

Q is considered with the same skeleton as Q′ and the orientations at P, the orienta-

tions at a subset of the unshielded genotypes adjacent to P, and the orientations at

the genotypes not adjacent to P in Q′, and no orientations at the remaining geno-

types at line 106 of Algorithm 15. Since both orientations for the rest unshielded

genotypes adjacent to P are considered in Part 6 of the algorithm, Q = Q′ holds at

line 112 at some iteration of the loop. Let N be a member of the Markov equiva-

lence class of plausible conditional genetic MAGs represented by Q and Nk be the

marginal of N over Gk ∪{P}. Since Q is consistent with M1, . . . ,Mn, Nk and Mk

have the same skeleton due to Theorem 3.3. Owing to Theorem 2.4 and Lemma

A.63, if G1 and P are adjacent in Mk, then either G1 and G2 are adjacent in N or

edge G1 ∗ G2 such that G2 ∈ G \Gk exists in N. Therefore, either G1 and G2

are adjacent in N or edge G1 ∗ G2 such that G2 ∈ G \Gk exists in Q. Thus, the

condition at line 126 succeeds and Q is added to Q at line 127.
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Theorem 4.3

The proof of Theorem 4.3 follows from the following lemma.

Lemma A.75. Let N be a potential plausible conditional genetic causal MAG that

is obtained from L at line 25 of Algorithm 15 by the following procedure:

1. Remove a subset of the G←∗ P and G ›∗ P edges such that there is no k

such that G and the neighbours and potential neighbours of P in L that are

on the same chromosome as G are all in Gk.

2. For each G adjacent to P such that the endpoints at G are unoriented in L,

orient the edges incident to G either all out of all into G.

3. For each G not adjacent to P such that the endpoints at G are unoriented in

L, orient the edges incident to G into G.

4. Remove G1 ∗ ∗ G2 edges such that G1 and G2 are not both adjacent to P in

L and not on the same chromosome.

5. Remove G1 ∗ G2 edges such that G1 is not adjacent to P in L and there is

some k such that G1 is not adjacent to P in Pk and G2 is not in Gk.

Then N is a plausible conditional genetic causal MAG consistent with M1, . . . ,Mn.

Proof. It will be first proved that N satisfies the conditions of Theorem 3.8.

• Condition (1): Edges incident to P in N were oriented out of P at line 10 of

Algorithm 15.

• Condition (2): Edges incident to each G adjacent to P in N were all oriented

either all out of G or all into G at line 14, 18, or in Step (2) of the procedure

above.

• Condition (3): Edges incident to each G not adjacent to P in N were oriented

into G at line 24 or in Step (3).
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• Condition (4): Owing to Lemma A.24, genotypes adjacent to P are adjacent

in M. Lemma A.60 implies that L at line 25 contained a superset of the links

in M. Therefore, genotypes adjacent to P were adjacent in L at line 25. Since

no edge between genotypes adjacent to P is removed by the procedure above,

G1 and G2 are adjacent in N.

• Condition (5): If there is a triple [G1,G3,G2] such that G1 and G2 are not ad-

jacent to P, G3 is adjacent to P, and the edge between G3 and P is out of G3 in

N, then there is some k such that G1 and P are not adjacent in Pk because oth-

erwise G1 and P would not become adjacent in L at line 6. Owing to Step (5),

G3 is in Gk. G1 and G3 are adjacent in Pk, and subsequently in Mk, because

otherwise they would not become adjacent in L at line 6. Lemma A.67 there-

fore implies that G1 and G3 are adjacent in M. Furthermore, G1 and P are

not adjacent in M due to Theorem 2.4. Similarly, G2 and G3 are adjacent in

M and G2 and P are not adjacent in M. Owing to Lemma A.69, edge G ∗ P

exists in Mk, and due to Lemma A.66, in M. Owing to Lemma A.36, G1 and

G2 are adjacent in M. Lemma A.60 then says that G1 and G2 were adjacent

in L at line 25. G1 and G2 are on the same chromosome due to Lemma A.38.

Therefore, the edge between G1 and G2 was not removed in Step (4). Since

G2 is not adjacent to P in N and N was shown to satisfy Condition (3) of

Theorem 3.8, the edge between G1 and G2 was into G2. Therefore, the edge

was not removed in Step (5). Thus, G1 and G2 are adjacent in N.

• Condition (6): Owing to Step (4), there are no G1 and G2 such that G1 and

P are not adjacent, G1 and G2 are adjacent, and G1 and G2 are on the same

chromosome in N.

Theorem 3.8 therefore implies that N is a plausible conditional genetic causal MAG.

It will be now proved that N satisfies the conditions of Lemma A.65 with every Mk

(1≤ k ≤ n).

• Condition (1): For each edge G ∗ P such that G is unshielded in Mk, edge

G ∗ P exists in L at line 25 due to Lemma A.68 and was not removed from
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N in Step (1), (4), or (5).

• Condition (3): For each edge between G1 and G2 in Mk such that G1 and

P are not adjacent in Mk, Lemma A.67 says that G1 and G2 are adjacent in

M. Lemma A.60 therefore implies that G1 and G2 were adjacent in L at line

25. Furthermore, since G1 and P are not adjacent in Mk, and therefore in Pk,

G1 and P did not become adjacent in L at line 6. Owing to Lemma A.60,

G1 and P are not adjacent in M. Lemma A.38 says that G1 and G2 are on

the same chromosome. Therefore, the edge between G1 and G2 in N was not

removed in Step (4). Suppose that the edge is removed in Step (5). Then the

edge between G1 and G2 in N was out of G2 and there is some k′ such that

G1 is not adjacent to P in Pk′ and G2 is not in Gk′ . The edges incident to G2

in N were oriented out of G2 at line 14 or in Step (2) of the procedure above.

Therefore, G2 and P are adjacent in N. G2 and P are adjacent in Mk because

otherwise G2 and P would not become adjacent in L at line 6. The edge

between G2 and P in Mk is out of G2 due to Lemma A.69. Owing to Lemma

A.66, edge G2 ∗ P exists in M. The edge between G1 and G2 in M is out

of G2 due to Lemma A.28. Owing to Lemma A.63, there is an inducing path

between G1 and P with respect to G\Gk′ and /0 in M. Due to Theorem 2.4, G1

and P are adjacent in Mk′ , and, subsequently, in Pk′ , which is a contradiction.

Therefore, G1 and G2 are adjacent in N.

• Condition (2): For each edge G1 ∗ ∗ P such that either G1 is shielded or the

edge is into G1 in Mk, if G1 and P are not adjacent in N, there are two cases:

1. G1 and P are not adjacent in L at line 6: There is some k′ such that G1

and P are not adjacent in Pk′ , and, subsequently, in Mk′ . Therefore, G1

and P are strictly m-separated by some set Z in Mk′ . Lemma A.45 says

that edge G1 ∗ G2 exists in Mk′ for each G2 in Z. There is some G2 in

Z that is not in Gk because otherwise G1 and P would be m-separated

in Mk. Since N was shown to satisfy Condition (3) of Lemma A.65, G1

and G2 are adjacent in N. Owing to Lemma A.44, G2 ∗ P exists in
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Mk′ . Since N was shown to satisfy Condition (1) of Lemma A.65, edge

G2 ∗ P exists in N. Therefore, the edge between G1 and G2 in N is out

of G2 due to Lemma A.28.

2. G1 and P are adjacent in L at line 6 and removed in Step (1) of the

procedure above: There was some neighbour or potential neighbour G2

of P in L at line 25 on the same chromosome as G1 that is not in Gk.

G1 and G2 were adjacent in L at line 7 due to Lemma A.53. Since G1

and G2 are on the same chromosome, the edge between them was not

removed in Step (4). There is no k such that G1 is not adjacent to P in

Pk, because otherwise G1 and P would not become adjacent in L at line

6. Therefore, the edge between G1 and G2 was not removed in Step (5).

• Condition (4): For each G1 not adjacent to P in Mk, G1 and P did not become

adjacent in L at line 6. Therefore, G1 and P are not adjacent in N. Owing to

Step (5), there is no edge G1 ∗ G2 such that G2 ∈G\Gk in N.

• Condition (5): For each G1 and G2 not adjacent in Mk, G1 and G2 are not

adjacent in Pk. Therefore, G1 and G2 do not become adjacent in L at line 6.

Thus, G1 and G2 are not adjacent in N.

• Condition (6): If G is an unshielded genotype adjacent to P and the edges

incident to G are into G in Mk, Lemma A.69 says that edge G ∗ P does not

exist in L at line 25, and, therefore, in N.

Owing to Lemma A.65, N is a plausible conditional genetic causal MAG con-

sistent with M1, . . . ,Mn.

Proof of Theorem 4.3. The set fNE(P), cCH(P), and cPNE(P) constructed in Al-

gorithm 16 is the set of neighbours, children, and potential neighbours, respectively,

of P at line 25 of Algorithm 15. Owing to Lemmas A.56 and A.71, fNE(P) is a su-

perset of the set of fixed neighbours of P and the set of removable neighbours of P

is empty. Lemmas A.75 and A.28 therefore imply that fNE(P) is the set of fixed
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neighbours of P. Owing to Lemmas A.56 and A.72, the set fCH(P) constructed in

Algorithm 16 is a superset of the set of fixed children of P. Lemmas A.75 and A.28

therefore imply that fCH(P) is the set of fixed children of P. Finally, Lemmas A.56,

A.75, and A.28 imply that the set fPNE(P), rCH(P), and rPNE(P) constructed in

Algorithm 16 is the set of fixed potential neighbours, removable children, and re-

movable potential neighbours, respectively, of P.

Theorem 4.4

Proof of Theorem 4.4. The hypothesis of absence of a consistent link between P

and G is equivalent to the union of the hypotheses of d-separation of P and G given

each set in a union of collections that are separation-sufficient for G and P in Mi

for each 1 ≤ i ≤ n such that G ∈ Gi. From the proof of Theorem 3.13, the con-

ditioning sets of the tests of conditional independence of G and P performed by

the algorithm on Di are separation-sufficient for G and P in Mi for each 1 ≤ i ≤ n

such that G ∈ Gi. Theorem 2.3 and Condition (1) therefore imply that the p-value

corresponding to the hypothesis of absence of a consistent link between P and G

is upper-bounded by the maximal among the p-values corresponding to the tests of

conditional independence of G and P performed by the algorithm (note that the p-

value of the same test is the same across datasets as Algorithm 7 is used to perform

the tests). Thus, an appropriate FDR-controlling procedure applied to the upper

bounds of the consistent-link-absence p-values corresponding to the genotypes in

ĉAD(P) controls the FDR of the genotypes below q.



Appendix B

Exome-array association study

B.1 Introduction
Exome arrays are an inexpensive means to genotype exonic SNPs identified in

exome-sequencing studies [Grove et al., 2013]. The Prion Unit used exome arrays

with UK, German, and US sCJD samples, and I created four datasets (described in

Table B.1) using the generated data and external control data. Association analysis

was then applied to each of the datasets. The fourth analysis is a mega-analysis.

# Dataset n m
1 UK sCJD cases vs. GERAD controls 1444 86789
2 German sCJD cases vs. German controls 3476 106462
3 US sCJD cases vs. Coriell controls 1654 93493
4 UK, German, and US cases vs. GERAD,

German, and Coriell controls
6536 111910

Table B.1: Datasets in the exome-array association study. GERAD refers to the GERAD
consortium, while Coriell refers to the Coriell Institute for Medical Research. n
and m denote the number of samples and variants, respectively.

B.2 Method
An exome-array association study involves the same quality control steps before and

after association analysis as a GWAS [Weale, 2010, Anderson et al., 2010]. How-

ever, the accuracy of the genotype clusters provided by Illumina, the manufacturer

of the chips used, is decreased for rare SNPs compared to common ones [Ritchie

et al., 2011], and most SNPs in exome arrays are rare. The Cohorts for Heart and
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Aging Research in Genomic Epidemiology (CHARGE) consortium overcame this

problem by generating new clusters for Illumina’s HumanExome v1.0 chip from a

much larger sample than Illumina used [Grove et al., 2013]. These clusters could

not be used in this study because chips other than HumanExome v1.0 were also

used. Re-clustering using the Prion Unit’s datasets was also not a option, since the

sample sizes are relatively small. Therefore, the zCall rare-variant caller [Goldstein

et al., 2012] was used to post-process the calls made using Illumina’s clusters, in

order to improve the accuracy of the calls. This approach was also followed by

the Genetic and Environmental Risk in Alzheimer’s Disease (GERAD) consortium,

which supplied controls used in this study.

A further complicating factor in this study was the fact that the Prion Unit’s

original datasets were generated on different chip models and different versions of

the same model (see Table B.2 for the list of original datasets). In order to eliminate

false positives due to chip differences, strict quality control was performed before

merging the datasets (see below).

# Cohort Chip
1

UK sCJD cases
HumanExome v1.1

2 HumanOmniExpressExome v1.0
3

German sCJD cases
HumanExome v1.1

4 HumanOmniExpressExome v1.0
5 US sCJD cases HumanOmniExpressExome v1.0
6 GERAD controls HumanExome v1.0
7 German controls HumanExome v1.0
8 Coriell controls NeuroX (HumanExome v.1.1 plus custom content)

Table B.2: Original datasets used in the exome-array association study. All chips were
manufactured by Illumina. GERAD refers to the GERAD consortium, while
Coriell refers to the Coriell Institute for Medical Research. Among the datasets,
only the one by GERAD was already processed.

For each dataset except the GERAD one (because it was already processed

using zCall), initial quality control, pre-zCall quality control, zCall processing, and

post-zCall quality control were performed (see Figure B.1 for the description of the

quality control steps), based on the standard operating procedure used by GERAD

(personal communication).
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Filter individuals with call rate < 0.9

Filter SNPs with call rate < 0.9

Filter individuals that

• failed sex check

• had outlying heterozygosity rate

• were related

• were population outliers

• had call rate < 0.98

Filter SNPs with call rate < 0.95

Apply zCall to SNPs with MAF < 5%

Filter individuals with call rate < 0.99

Filter SNPs that

• had call rate < 0.99

• were not in a list of poor-performing SNPs

Initial quality control

Pre-zCall quality control

Post-zCall quality control

Figure B.1: Quality control of the original exome-array datasets (see Table B.2) except the
GERAD one (since it was already processed). Heterozygosity rate was consid-
ered outlying if it was > 3 standard deviations away from the mean. Individu-
als were considered related if they had IBD (identity by descent) > 0.185 and
population outliers if their first or the second multi-dimensional scaling (MDS)
component was > 3 standard deviations away from the mean. MAF refers to
the MAF in the original Illumina sample that was used to generate the geno-
type clusters. A list of poorly-performing SNPs on the Illumina HumanExome
v1.0 chip was created by CHARGE [Grove et al., 2013]. SNPs in that list were
also dropped from the GERAD dataset.

For each association study, merging of the original datasets, individual quality

control, SNP quality control, association analysis, and post-association quality con-

trol were performed (see Figure B.2 for the description of the quality control steps).
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The observations were taken to be the gametes of the individuals and association

analysis was performed using Fisher’s exact test.

Post-association quality control involved comparing the MAF in the controls

with the MAF in the European American population on the Exome Variant Server1

or the European population in The 1000 Genomes Project and inspecting the origi-

nal clusters of the hits.

Filter individuals that

• had outlying heterozygosity rate

• were population outliers

• had call rate < 0.99

Filter SNPs that

• had different call rate across at least one pair of
datasets (p < 0.001)

• had different MAF across at least one pair of case
or control datasets (p < 0.001)

• had call rate < 0.99

• were not in Hardy-Weinberg equilibrium in con-
trols (p < 0.001)

• were monomorphic (MAF = 0)

Figure B.2: Quality control of to the exome-array datasets (see Table B.1). MAF stands for
minor allele frequency. The second SNP quality control step was performed
for control datasets only in Dataset 4, in order to allow for differences in the re-
porting of sCJD cases across different countries. The p-values were calculated
using asymptotic χ2 tests.

B.3 Results
Figure B.3 shows the quantile-quantile plots for each association analysis. Since

most SNPs are not expected to be associated with disease, most p-values should fall

on the main diagonal. However, if an exact test is used, as in this case, the p-values

1http://evs.gs.washington.edu/EVS/

http://evs.gs.washington.edu/EVS/
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should fall on a line below the main diagonal [see Note 6 in Weale, 2010]. This can

be most clearly seen in Figure B.3a.

Table B.3 lists the SNPs that achieved an association p-value ≤ 10−6 in one of

the datasets in Table B.1. For each hit, if the MAF in controls matches the MAF

in EA, or the MAF in EUR if the former is not available, the hit was deemed ad-

missible. The hit was also deemed admissible if the MAF is not available in EA or

EUR. For each admissible hit, the clusters in the original datasets were inspected

(see Supplementary Information II – Exome array hit clusters). The clusters for

rs144218313, rs200542656, rs114501427, and rs199759206 were deemed prob-

lematic. The clusters for rs145985036 and rs116589141 were well-formed but the

SNPs were not detected in the cases when Sanger sequencing was performed by a

colleague. In conclusion, there were no discoveries in this study.



B.3. Results 231

(a) UK (b) DE

(c) US (d) Mega-analysis

Figure B.3: Quantile-quantile plots for each exome-array association analysis. The gray
areas are the 95% concentration bands [see Weale, 2010].
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