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Abbreviations – CHANCES, Consortium on Health and Ageing: Network of Cohorts in Europe 
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Treatment of Chronic Diseases in the Older Population; HR; hazard ratio; PCR, polymerase 
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Abstract 

We studied the associations of LTL with all-cause, cardiovascular and cancer mortality in 12,199 

adults participating in two population-based prospective cohort studies from Europe (ESTHER) 

and the US (Nurses’ Health Study). Blood samples were collected in 1989-1990 (Nurses’ Health 

Study), and in 2000-2002 (ESTHER), respectively. LTL was measured by quantitative 

polymerase chain reaction. Z-scores of LTL were calculated to standardise LTL measurements 

across the cohorts. Cox Proportional Hazard regression models were used to calculate relative 

mortality according to continuous levels and quintiles of z-scores of LTL. The hazard ratios 

obtained from each cohort were subsequently pooled by meta-analysis. Overall, 2882 deaths 

were recorded over follow-up (Nurses’ Health Study: 1989-2010, ESTHER: 2000-2015). LTL 

was inversely associated with age in both cohorts. After adjustment for age, a significant inverse 

trend of LTL with all-cause mortality was observed in both cohorts. In random effects meta-

analysis, age-adjusted hazard ratios (95% confidence intervals) for shortest LTL quintile 

compared to longest LTL quintile were 1.23 (1.04-1.46) for all-cause mortality, 1.29 (0.83-2.00) 

for cardiovascular mortality, and 1.10 (0.88-1.37) for cancer mortality. In this study population 

with an age range of 43-75, we corroborate previous evidence suggesting that LTL predicts all-

cause mortality beyond its association with age. 

Keywords: telomere length; leukocyte; all-cause mortality; cancer; CVD; aging; cohort study 

  



4 
 

Telomeres are special chromatin structures that are found at the ends of chromosomes, which are 

comprised of a stretch of repetitive DNA (TTAGGG) and a variety of specifically bound 

proteins. Depending on the age, type of the tissue, chromosomes and replicative history of cells, 

the length of telomeres can vary between 0.5 to 15 kilobase pairs, with ~30 to 200 base pairs lost 

after each mitotic cell division in somatic cells (1, 2). This leads to a gradual telomere shortening 

with age (3, 4), due to incomplete replication of linear chromosomes by DNA polymerases (5). 

Critically short telomere length leads to cell senescence and apoptosis (6). 

A number of epidemiological studies, with varying sample sizes and characteristics, yielded 

inconsistent results with regards to the link between telomere length in leukocytes (LTL) and 

mortality (3). Regarding cause-specific mortality such as cardiovascular disease (CVD) mortality 

and cancer mortality, results have also been inconsistent. The associations reported between LTL 

and CVD indicate a modest inverse link (7-10), but are heterogeneous with regards to CVD 

mortality (11-13). The associations of LTL with cancer seem to be even more complex. A 

number of studies have found increased risk of cancer incidence (14-18) with short LTL and 

mixed results on cancer mortality (11, 12, 18). However, more recent studies investigating 

cancer-specific associations have also correlated longer LTL with increased risk of certain 

malignancies, including pancreatic cancer, hepatocellular carcinoma, melanoma, sarcoma and 

lung adenocarcinoma (19-24). With regards to all-cause mortality, several recent prospective 

cohort studies could not establish an association between LTL and all-cause mortality (12, 25, 

26), while the by far largest study comprising a cohort of nearly 65.000 Danish individuals found 

linear graded associations of LTL with all-cause, CVD and cancer mortality (27). 

Considering the inconsistent findings in the literature, which could be due to a lack of statistical 

power in most of the studies, we aimed to further investigate the association of LTL with all-
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cause, CVD and cancer mortality in two large independent cohorts in the Consortium on Health 

and Ageing: Network of Cohorts in Europe and the United States (CHANCES). 

 

METHODS 

Study design and participants 

Data from Nurses’ Health Study (NHS) and the ESTHER study (Epidemiological Study on the 

Chances of Prevention, Early Recognition, and Optimised Treatment of Chronic Diseases in the 

Older Population) were used. Both are ongoing prospective cohort studies from the USA and 

Germany, respectively, and participate in the CHANCES (Consortium on Health and Ageing: 

Network of Cohorts in Europe and the United States; www.chancesfp7.eu) consortium (28).  

The NHS is a prospective cohort study of 121,700 female registered nurses in 11 US states who 

were 30–55 years of age at enrolment. In 1976 and biennially thereafter, self-administered 

questionnaires gather detailed information on lifestyle, menstrual and reproductive factors, and 

medical history. Self-reports of major chronic diseases are confirmed by medical records and 

pathology report reviews, telephone interviews or supplemental questionnaires. From 1989 to 

1990, 32,826 women provided blood samples. The details of blood collection methods have been 

previously described (29). The current analysis included data from 8633 women who were 

selected to participate in different nested case-control studies. Genomic DNA was extracted from 

peripheral blood leukocytes using QIAmp (Qiagen, Chatsworth, CA, USA) 96-spin blood 

control. The study was approved by the institutional review board of Brigham and Women’s 

Hospital (Boston, MA).  



6 
 

The ESTHER study (Epidemiological Study on the Chances of Prevention, Early Recognition, 

and Optimised Treatment of Chronic Diseases in the Older Population) is an ongoing cohort 

study with the main objective of improving the prevention, early diagnosis and therapy of 

chronic age-related diseases. Overall, 9,949 men and women aged 50-75 years were recruited 

between July 2000 and December 2002 during a general health check-up in Saarland, south-west 

Germany, by their general practitioners and followed with respect to incidence of major diseases 

and deaths since then. Information on age, sex, socio-demographic characteristics, medical 

history, health status, family history and lifestyle factors were obtained by detailed 

questionnaires in a standardised manner. Whole blood samples were obtained from all 

participants from peripheral blood. The current analysis is based on 3,566 participants for whom 

measurements of LTL in baseline blood samples were available. They are a representative sub-

sample of the entire study population whose extracted DNA became available first (a comparison 

of this sub-sample with the overall ESTHER sample is given in Web Table 1). Genomic DNA 

was extracted by high salt method and stored at -20°C. The ESTHER study has been approved 

by the ethics committees of the medical faculty of the University of Heidelberg and of the 

medical board of the state of Saarland. Informed consent was obtained from all participants. 

 

Measurements 

LTL measurements were performed independently in different laboratories. In both studies, 

DNA concentration was quantified using Quant-iT PicoGreen® (Invitrogen) and relative 

telomere lengths, in genomic DNA extracted from peripheral blood leukocytes, were measured 

by quantitative PCR (polymerase chain reaction) (30). This method assesses the ratio of telomere 
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repeat copy number to number of single copy gene (T/S ratio) in experimental samples relative 

to a reference sample. T/S ratio is proportional to average telomere length as amplification is 

proportional to the number of primer binding sites in the first cycle of the PCR reaction and 

relative telomere length was calculated as the exponentiated T/S ratio. Two quality-control 

samples were inserted into each PCR plate in order to assess the coefficients of inter- and intra-

plate variability. The quantitative PCRs were performed on the Applied Biosystems 7900HT 

Sequence Detection System (Foster City, CA, USA) in the NHS and on the LightCycler 480 

System (Roche Diagnostics, GmbH, Germany) in the ESTHER study. 

Terminal restriction fragment analysis was additionally performed in a sub-sample (N=20) of the 

ESTHER study population to validate our results from the quantitative PCR measurements and 

obtain absolute LTL in base pairs. Briefly, 3.5 µg of genomic DNA were digested overnight at 

37 °C with restriction enzymes HphI and Mnl I (Thermo Scientific GmbH Schwerte, Germany) 

and loaded onto 0.7% agarose gel with DIG-labelled marker (DIG-labelled Marker VII, Roche, 

Diagnostics GmbH Mannheim, Germany). Then, DNA was processed as previously described 

(31). Detection of DIG-labelled probe and marker was performed using Anti- Digoxigenin-AP, 

Fab fragments and CDP-Star (Roche Diagnostics GmbH Mannheim, Germany). Image analysis 

was done with ImageJ Analysis Software (Version 1.44) (32).  

 

Statistical analyses 

The correlation between relative LTL and absolute LTL measurements was 0.622 (p=0.005). The 

coefficients of variation for the telomere assay of quality control samples were 6.5% and 5.3% in 

the ESTHER cohort, and were less than 4% for triplicates in the NHS cohort, respectively. 



8 
 

In order to standardise LTL measurements across cohorts a z-transformation was applied. This 

means that measurements were transformed in a way that the mean is zero and the standard 

deviation is one, i.e. after transformation LTL measurements are expressed in units of the 

standard deviation. The differences in quintiles of z-scores with age, lifestyle factors and health-

related outcomes were tested for statistical significance by analysis of variance (ANOVA) tests. 

Cox proportional hazards regression was used to estimate hazard ratios (HR) and 95% 

confidence intervals (CI) for the associations of LTL with all-cause, CVD and cancer mortality 

both in the whole cohort and stratified by sex and age group (50-59 years and ≥60 years). A 

shared frailty model was fit with measurement batch as a random effect in order to account for 

within-batch correlations. Continuous z-score levels, quintiles of z-scores and dichotomised z-

scores (z-score < median and z-score ≥ median) were used as exposure variables in regression 

models.  

Regression models with four different levels of adjustment were used. Model 1 was the crude 

model without any covariates in the model and only adjusting for batch effect; model 2 adjusted 

for batch and age (and also sex in the ESTHER cohort); model 3 additionally adjusted for 

potential further confounders including smoking status (never, former, current), body mass index 

defined as weight (kg)/squared height (m2) (≤18.5, 18.6-24.9, 25-29.9, ≥30), alcohol 

consumption (abstainer, low intake, medium intake, high intake, which were defined as follows: 

men: 0.1-39.9 g/week, 40-59.9 g/week, ≥60 g/week, women: 0.1-19.9 g/week, 20-39.9 g/week, 

≥40 g/week, respectively (33)), physical activity (inactive, active, which were defined as follows: 

0 hours of vigorous physical activity/week; >0 hours of vigorous physical activity/week) and 

years of education. Model 4 further adjusted for systolic blood pressure (mmHg), total 

cholesterol (mmol/l), presence of diabetes, history of myocardial infarction, cancer and stroke. 
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The additional variables included in model 4 might not necessarily be considered as potential 

confounders of the association between LTL and mortality, but could be considered potential 

mediators of LTL-mortality associations. Following the estimation of study-specific HRs, meta-

analyses were carried out to calculate summary HRs across the cohorts. In a conservative 

approach the random effects estimates were taken as “main results” to allow for variation of true 

effects across studies. Random effects estimates were derived using the DerSimonian–Laird 

method (34). All variables used for the project were created by each cohort according to the pre-

agreed harmonisation rules of the CHANCES consortium.  

All analyses were conducted with SAS 9.3 and statistical tests were two-sided using a 5 % 

significance level. R v.3.0.2 and the package ‘meta’ were used to carry out the meta-analysis 

(35).  

 

RESULTS 

The general characteristics of the study populations according to age-adjusted quintiles of LTL 

z-scores are shown in Table 1. There were 8633 and 3566 eligible participants from the NHS and 

ESTHER cohorts, respectively. The age range in the NHS was 42.7-70.2, with a mean age of 

59.0 (SD 6.6) years. The age range in the ESTHER cohort was 50-75 with a mean age of 61.9 

(6.6). After a mean follow-up duration of 18.4 (SD 3.8) years, 2149 deaths were recorded in the 

NHS. After 12.5 (SD 2.9) years of follow-up, there were 733 deaths in the ESTHER cohort. Age 

was inversely associated with LTL in both cohorts (p<0.0001). 

Results of the survival analyses from the individual cohorts are provided in Web Tables 2, 3 and 

4 for all-cause, CVD and cancer mortality, respectively. In both cohorts, the HRs from the crude 
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model (only adjusted for batch effect) showed an inverse association between LTL and all-cause 

mortality, with especially marked graded associations in ESTHER (Web Table 2). After 

additionally adjusting for age, associations were clearly attenuated, but still a significant inverse 

trend of telomere length with all-cause mortality was observed in both cohorts. However, after 

adjusting for further covariates (models 3 and 4), the associations did no longer reach statistical 

significance. Comparable patterns were observed for CVD and cancer mortality. 

Results of the random effects meta-analyses are summarised in Table 2 for the whole study 

population, and summary-estimates of sex- and age-stratified models are shown in Figure 1. 

Looking at the z-score quintiles, gradients were observed for all-cause, CVD and cancer 

mortality in the crude model, and for all-cause mortality also after age-adjustment. The HR for 

all-cause mortality in the quintile with the shortest telomere length was 1.66 (1.09-2.53) in the 

crude model, 1.23 (1.04-1.46) in the age-adjusted model, and 1.10 (0.97-1.25) in the model 

adjusted for age and further covariates. The summary trend estimate for the association of the 

continuous z-score with all-cause mortality was 0.82 (0.68-0.99) in the crude model, indicating 

an 18% decrease in all-cause mortality per increase by one standard deviation of relative 

telomere length. After adjustment for age, the summary estimate was attenuated to 0.92 (0.85-

1.00; p-value=0.052), and to 0.96 (0.93-1.00; p-value=0.065) after adjustment for further 

covariates. Again, patterns were overall similar for CVD and cancer mortality, but no summary 

estimate from the random effects meta-analyses reached statistical significance. No big 

differences across sex or age-groups were seen in stratified models for the outcome all-cause 

mortality, but associations tended to be somewhat stronger in men and in those aged 60 and older 

(Figure 1). Tests for interaction however indicated no significant effect modification by age or 

by sex for any outcome (details not shown). 
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Results of fixed effects meta-analyses are presented in Web Table 5, showing consistent 

associations which were somewhat attenuated but of higher precision. Heterogeneity was high 

especially for models with smaller numbers of covariates (details not shown), warranting the use 

of random effects meta-analyses. 

 

DISCUSSION 

In this study including 12,199 adults in total with 2882 deaths over a mean follow-up duration of 

16.7 years, LTL was significantly associated with all-cause mortality. After adjustment for age, 

the associations were clearly attenuated, but the quintile with the shortest LTL still showed 

significantly increased mortality hazards (HR: 1.23, 1.04-1.46). Comparable patterns were seen 

for CVD and cancer mortality, but the summary estimates did not reach statistical significance. 

Mortality patterns were generally consistent across sex and age, but associations tended to be 

somewhat stronger among men and above the age of 60. Associations were stronger in the 

ESTHER study, which was smaller than NHS but included both men and women and had a 

slightly narrower and older age-range. Nevertheless, patterns were generally quite consistent 

across both cohorts.  

In the present study, we observed that when adjusting for age, the association of LTL with 

mortality attenuated, reflecting the association of age with all-cause mortality. However, even 

after age adjustment the mortality hazard ratio of the shortest LTL quintile was still significantly 

increased, indicating a relationship beyond age. The associations further attenuated after 

adjustment for lifestyle-related variables, possibly reflecting associations of lifestyle with 

mortality. But even after these adjustments, LTL was still inversely and borderline significantly 
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associated with mortality (HR per one standard deviation in LTL: 0.96, 0.93-1.00). Hence, we 

provide further evidence that LTL predicts mortality beyond its association with age and 

possibly also beyond associations with lifestyle, and thus could be an indicator of biological 

fitness in adults in the general population. 

In the last decade telomere biology and dynamics in populations have drawn substantial attention 

in medical and epidemiological fields. While it is established that LTL shortens with age (4), 

results from studies investigating the association of LTL with health outcomes as well as 

lifestyle-related factors, such as smoking, obesity, physical activity and stress, have not been as 

definite (36-39). Most of the studies hypothesised that lifestyle and environmental factors that 

lead to heightened oxidative stress would lead to higher telomere attrition rates, hence shortened 

LTL, which would impair survival in the long run (40). However, inconsistent results yielded 

from highly heterogeneous studies suggest that telomere dynamics might be a rather more 

complex trait than initially thought. There are multiple factors contributing to this heterogeneity, 

and limitations of measurement methods are especially important. The LTL measurement 

methods used show substantial heterogeneity between the studies, impairing the comparability of 

studies.  

There was also large variation in the size and age-range of previous studies assessing the 

association between LTL and mortality. Whereas some earlier, relatively small studies had 

reported strong inverse association between LTL and mortality (17, 41, 42), much weaker 

associations or no association at all was seen in a number of larger, mostly more recent studies 

(11-13, 25, 26, 43). However, in the so far by far largest study from Denmark with 64,637 

participants, with 7607 deaths during 22 years of follow-up, linear graded associations and 

modestly increased hazards for the shortest versus longest deciles of LTL were seen for all-cause 
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mortality (HR: 1.40, 1.25-1.57), CVD mortality (1.36, 1.12-1.66) and cancer mortality (1.35, 

1.11-1.65) (27). Our study confirms these findings in a meta-analysis of two large prospective 

cohort studies from Germany and the USA. Even though in our study not all summary estimates 

reach statistical significance (especially after multivariate adjustment and for cancer and CVD 

mortality), possibly due the smaller sample size, the mortality patterns are quite consistent with 

the Danish study. 

Interestingly, two recent US American studies noted racial differences in the association of LTL 

with mortality. A study in postmenopausal women found a significant association of the shortest 

LTL quartile with increased all-cause and cardiovascular mortality in white women, but no 

association in African American women (43). In contrast, a study using data from the National 

Health and Nutrition Examination Survey (NHANES) found a strong association between LTL 

and cardiovascular mortality only among African American participants (11). As both cohorts 

used in this present study consist mostly of white participants, we were not able to study ethnic 

differences. Our findings however support an association of LTL with mortality among white 

Europeans and Americans. 

Our study had specific strengths and limitations. As the relative LTL data were derived from 

different cohorts, z-scores were calculated to be able to pool data together and carry out meta-

analysis. As a result, only magnitude of the associations could be shown and the corresponding 

T/S ratios or absolute LTL, in base pairs, could not be quantified. As in any observational study, 

measurement error in self-reported variables is inevitable. Although the analyses were controlled 

for multiple covariates which could possibly act as confounders, the possibility of residual 

confounding remains. The LTL measurement yielded acceptable, but not excellent, coefficients 

of variation for the quality control samples, which are in the usual range reported in the 
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literature. This variation may render it more difficult to detect true associations. Then again, high 

correlation coefficients achieved between the terminal restriction fragment analysis, which is 

regarded as the gold-standard, and quantitative PCR measurements, document the quality of LTL 

measurements in the ESTHER study. The large sample size with a follow-up time longer than 10 

years in both studies makes this study one of the largest in the field thus far. The inclusion of two 

independent cohorts from Europe and the US suggest a broad generalizability of our results to 

older white populations. Although there was also some heterogeneity in data collection across 

the studies, this heterogeneity was minimized by major efforts of data harmonization, which is 

not commonly possible in meta-analyses of published data.  

Altogether our findings support previous evidence suggesting that LTL predicts all-cause 

mortality even beyond its association with age and could also be inversely associated with CVD 

and cancer mortality. Hence, LTL could serve as an indicator of biological fitness in the general 

population. 
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Figure 1. Summary Estimates* of Association of LTL with All-cause Mortality (Nurses’ Health 

Study (1989-2010) and ESTHER (2000-2015)), Stratified by Age-group and Sex 

* Estimates represent summary estimates from meta-analyses; except estimates for men, which 

represent estimates for the male subgroup of ESTHER 
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Table 1. Population Characteristics by Quintile of Age-adjusted Telomere Length in the Nurses’ Health Study (1989-2010) and 

ESTHER (2000-2015) 

Characteristic Quintile of z-score 
P valuea 

 
1 2 3 4 5 

 Mean (SE) N % Mean (SE) N % Mean (SE) N % Mean (SE) N % Mean (SE) N %  

Nurses' Health Study (N=8633) 

N (%)  1726 20.0  1727 20.0  1727 20.0  1726 20.0  1727 20.0  

Ageb, years 60.0 (6.3)   59.3 (6.6)   59.1 (6.5)   58.6 (6.7)   58.1 (6.9)  
 

<0.001 

Sex, % male  0 0  0 0  0 0  0 0  0 0 - 

Body mass index 25.6 (4.9)   25.6 (4.6)   25.4 (4.7)   25.2 (4.8)   25.4 (4.6)  
 

0.09 

Smoking Status, % Current 
 

264 19.5 
 

286 21.1 
 

297 21.9 
 

275 20.3  235 17.3 0.08 

Vigorous physical activity, % 
 

789 19.1 
 

836 20.3 
 

822 19.9 
 

829 20.1  852 20.6 0.62 

Education, years 14.8 (1.4)   14.8 (1.4)   14.8 (1.4)   14.8 (1.4)   14.9 (1.4)  
 

0.45 

Alcohol, g/day 5.4 (9.7)   5.7 (9.6)   6.0 (10.7)   5.7 (10.3)   5.2 (8.6)  
 

0.13 

Total cholesterol, mmol/l 5.4 (1.2)   5.4 (1.2)   5.5 (1.2)   5.5 (1.2)   5.4 (1.2)  
 

0.30 

Systolic blood pressure, 
mmHg 

127.6 
(13.8) 

  
128.2 
(13.9) 

  
127.0 
(13.5) 

  
127.7 
(14.0) 

  
128.2 
(14.0) 

 
 

0.08 

Cancer History, %  72 20.1  69 19.3  79 22.1  74 20.7  64 17.9 0.78 

Diabetes History, %  104 24.6  88 20.9  83 19.7  69 16.4  78 18.5 0.09 

CHD History, %  41 22.9  38 21.2  35 19.6  31 17.3  34 19.0 0.80 

Stroke History, %  14 28.6  12 24.5  9 18.4  12 24.5  2 4.1 0.06 

Cancer Death, %  158 19.9  157 19.7  169 21.2  153 19.2  159 20.0 0.93 

CVD Death, %  116 23.6  88 17.9  85 17.3  93 18.9  109 22.2 0.11 

Death of any cause, %  460 21.4  425 19.8  420 19.5  432 20.1  412 19.2 
 

ESTHER (N=3566) 

N (%)  713 20.0  713 20.0  712 20.0  712 20.0  716 20.0  

Ageb, years 62.3 (6.7)   62.4 (6.4)   62.3 (6.5)   61.9 (6.4)   60.5 (6.6)  
 

<0.001 

Sex, % male  367 18.6  373 18.9  381 19.3  407 20.6  449 22.7 0.02 

Body mass index 28.0 (4.6)   27.6 (4.2)   27.7 (4.3)   27.8 (4.7)   27.4 (4.1)  
 

0.16 

Smoking Status, % Current 
 

140 22.2 
 

121 19.2 
 

126 20.0 
 

124 19.7  120 19.0 0.72 

Vigorous physical activity, %  300 20.1  299 20.0  300 20.1  297 19.9  299 20.0 1.00 

Education, years 9.5 (1.1)   9.4 (1.0)   9.4 (0.9)   9.4 (1.0)   9.4 (0.9)   0.54 

Alcohol, g/day 11.4 (16.9   
10.6 

(13.6) 
  

10.2 
(14.0) 

  9.2 (11.7)   9.2 (13.6)   0.02 

Total cholesterol, mmol/l 5.5 (1.4)   5.4 (1.5)   5.1 (1.6)   5.0 (1.6)   5.1 (1.6)   <0.001 
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Systolic blood pressure, 
mmHg 

140.4 
(18.7) 

  
140.2 
(19.4) 

  
141.3 
(20.6) 

  
140.8 
(20.9 

  
138.8 
(19.2) 

  0.18 

Cancer History, %  48 20.8  43 18.6  45 19.5  45 19.5  50 21.7 0.95 

Diabetes History, %  86 21.2  82 20.2  83 20.4  81 20.0  74 18.2 0.91 

CHD History, %  34 17.4  42 21.5  51 26.2  39 20.0  29 14.9 0.13 

Stroke History, %  28 26.2  19 17.8  26 24.3  15 14.0  19 17.8 0.24 

Cancer Death, %  43 18.1  52 21.9  51 21.5  46 19.4  45 19.0 0.86 

CVD Death, %  34 17.1  37 18.6  44 22.1  41 20.6  43 21.6 0.78 

Death of any cause, %  100 16.2  135 21.8  127 20.5  133 21.5  124 20.0 0.17 

SE, standard error 
a based on ANOVA 
b z-score not adjusted for age 
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Table 2. Summary Estimates of Association of LTL with Mortality From Random-Effects Meta-Analysis (Nurses’ Health Study 

(1989-2010) and ESTHER (2000-2015)) 

  All-cause mortality  

Telomere Length n Cases HRa 95% CI P value HRb 95% CI P value HRc 95% CI P value 

Quintiles of z-score 
  

         

1 (shortest) 2425 627 1.66 1.09, 2.53 0.018 1.23 1.04, 1.46 0.017 1.10 0.97, 1.25 0.156 

2 2462 616 1.50 0.96, 2.36 0.078 1.18 0.94, 1.48 0.151 1.10 0.88, 1.37 0.417 

3 2414 568 1.26 0.96, 1.66 0.098 1.06 0.94, 1.20 0.345 1.02 0.89, 1.17 0.810 

4 2470 572 1.17 1.02, 1.34 0.025 1.08 0.96, 1.22 0.219 1.06 0.93, 1.21 0.349 

5 (longest) 2427 499 Ref. 
 

 Ref.   Ref.   

     
 

 
     

z-score (continuous) 12199 2882 0.82 0.68, 0.99 0.043 0.92 0.85, 1.00 0.052 0.96 0.93, 1.00 0.065 

   
         

z-score < median 6106 1508 1.27 0.97, 1.67 0.081 1.10 0.94, 1.28 0.244 1.04 0.89, 1.21 0.629 

z-score ≥ median 6093 1374 Ref. 
 

 Ref.   Ref.   

  CVD mortality  

Telomere Length n Cases HRa 95% CI P value HRb 95% CI P value HRc 95% CI P value 

Quintiles of z-score 
  

         

1 (shortest) 2374 182 1.84 0.85, 3.97 0.120 1.29 0.83, 2.00 0.258 1.05 0.82, 1.34 0.707 

2 2411 153 1.38 0.62, 3.11 0.431 1.06 0.62, 1.81 0.825 0.93 0.60, 1.44 0.742 

3 2371 137 1.30 0.60, 2.82 0.501 1.08 0.62, 1.88 0.793 1.01 0.54, 1.90 0.967 

4 2415 152 1.26 0.84, 1.89 0.270 1.09 0.86, 1.39 0.486 1.03 0.76, 1.41 0.826 

5 (longest) 2390 144 Ref.   Ref.   Ref.   

   
         

z-score (continuous) 11962 800 0.82 0.62, 1.08 0.153 0.94 0.81, 1.08 0.381 0.99 0.91, 1.08 0.844 

     
 

 
     

z-score < median 5984 402 1.22 0.78, 1.90 0.379 1.02 0.76, 1.37 0.897 0.97 0.75, 1.25 0.813 

z-score ≥ median 5978 398 Ref.   Ref.   Ref.   

Table 2 continues on the following page.  
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  Cancer mortality  

Telomere Length n Cases HRa 95% CI P value HRb 95% CI P value HRc 95% CI P value 

Quintiles of z-score 
  

         

1 (shortest) 2345 233 1.42 0.88-2.27 0.149 1.10 0.88-1.37 0.416 1.04 0.84-1.27 0.736 

2 2370 225 1.27 0.85-1.90 0.245 1.03 0.85-1.26 0.744 1.01 0.77-1.31 0.967 

3 2334 235 1.19 0.98-1.44 0.077 1.10 0.91-1.32 0.319 1.08 0.89-1.33 0.425 

4 2375 211 1.05 0.87-1.28 0.605 1.00 0.82-1.22 0.994 1.01 0.82-1.23 0.953 

5 (longest) 2358 207 Ref. 
 

 Ref.   Ref.   

     
 

 
     

z-score (continuous) 11783 1111 0.88 0.74-1.05 0.164 0.98 0.92-1.04 0.494 0.99 0.92-1.06 0.764 

     
 

 
     

z-score < median 5900 573 1.22 0.87-1.73 0.251 1.09 0.85-1.38 0.504 1.05 0.79-1.40 0.718 

z-score ≥ median 5883 538 Ref. 
 

 Ref.   Ref.   

HR, hazard ratio; 95% CI, 95% confidence interval; Ref., reference category 
a crude model, only adjusted for batch effect (random effect) 
b like model 1, but additionally adjusted for age (and sex in ESTHER) 
c like model 2, but additionally adjusted for smoking status, body mass index, physical activity, alcohol consumption and education 

 


