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SUMMARY 

Recent studies have shown that conjugation systems of Gram-negative bacteria are composed of distinct inner and outer membrane core 

complexes (IMCs and OMCCs, respectively). Here, we functionally characterized the OMCC, focusing first on a cap domain that forms a 

channel across the outer membrane. Strikingly, the OMCC caps of the Escherichia coli pKM101 Tra and Agrobacterium tumefaciens 

VirB/VirD4 systems are completely dispensable for substrate transfer, but required for formation of conjugative pili. The pKM101 

OMCC cap and extended pilus also are dispensable for activation of a Pseudomonas aeruginosa type VI secretion system (T6SS).  

Chimeric conjugation systems composed of the IMCpKM101 joined to OMCCs from the A. tumefaciens VirB/VirD4, E. coli R388 Trw, and 

Bordetella pertussis Ptl systems support conjugative DNA transfer in E. coli and trigger P. aeruginosa T6SS killing, but not pilus 

production.  A structure of the A. tumefaciens VirB/VirD4 OMCC, solved by transmission electron microscopy, adopts a cage structure 

similar to that of the pKM101 OMCC. Our findings indicate that the OMCCs are highly structurally and functionally conserved - but also 

intrinsically conformationally flexible - scaffolds for translocation channels. Importantly, the distal end of the OMCC functions as a 

morphogenetic checkpoint controlling extension of the conjugative pilus.  
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INTRODUCTION 

The bacterial type IV secretion systems (T4SSs) are a versatile superfamily of macromolecular transporters (Costa et al., 2015, Christie, 

2016). An interesting feature of this superfamily is that members sharing a common ancestry and, likely, overall architecture have 

evolved the capacity to carry out a wide range of biological functions. An early review highlighted the functional diversity of the T4SSs 

by describing striking similarities in T4SS gene organization and subunit composition among the Escherichia coli pKM101 Tra, 

Agrobacterium tumefaciens VirB/VirD4, and Bordetella pertussis Ptl T4SSs (Winans et al., 1996).  Now grouped as members of the type 

IVa or P-type subfamily, these systems respectively promote conjugative transfer in E. coli, deliver oncogenic T-DNA and effector 

proteins to plant cells, and export the multisubunit pertussis toxin (PT) across the B. pertussis outer membrane to the milieu (Christie & 

Vogel, 2000, Christie, 2016). Each of these systems is assembled from a set of 9 - 11 conserved subunits, all ‘signatures’ of this T4SS 

subfamily (Christie et al., 2005, Bhatty et al., 2013, Chandran Darbari & Waksman, 2015).  These observations raise the intriguing and 

unsolved question of how such systems diversified over evolutionary time to specify contact-dependent substrate transfer to bacterial or 

eukaryotic target cells or contact-independent export.  

 

Recent structural studies have provided an architectural blueprint for the type IVa subfamily.  The E. coli pKM101 Tra (designated 

TrapKM101) and closely related R388-encoded Trw (TrwR388) conjugation machines are composed of a large (~185 Å in width and height) 

cage-shaped outer membrane (OM) core complex (the OMCC) of 1 MegaDalton (MDa) in size (Fronzes et al., 2009, Chandran et al., 

2009, Low et al., 2014).  The OMCC is composed of 14 copies of three proteins, VirB7, VirB9, and VirB10 (we use here the A. 

tumefaciens VirB/VirD4 system, VirB/VirD4At, as a unifying nomenclature). The OMCC is made of two layers, the O- and I-layers. The 

O-layer is assembled from 14 copies each of the VirB7- and VirB9-like subunits together with the C-terminal halves of VirB10 homologs.  

The VirB10 C-terminal region folds as a -barrel connected to a helix-loop-helix extension termed the antennae projection (AP).  In the 

assembled OMCC, APs from the 14 TraF monomers form a cap of ~100 Å in diameter with a central channel of ~10 - 30 Å in diameter 

(Fronzes et al., 2009, Chandran et al., 2009). The cap spans the outer membrane and is postulated to participate in various surface 

phenomena, including biogenesis of conjugative pili, conveyance of secretion substrates across the OM, and establishment of target cell 

contacts. The proximal end of the TrwR388 OM core complex is connected by a narrow stalk to an even larger inner membrane complex 

(IMC) of 2.5 MDa in size, which is composed of the N-terminal halves of VirB10-like subunits, 24 copies of VirB6 homologs, and 12 

copies each of VirB3, VirB4 ATPase, VirB5 and VirB8 homologs (Low et al., 2014).  Missing from the solved TrwR388 subassembly, 

designated as the T4SS3-10 structure, are the VirB2-like pilins, the conjugative pilus, and the VirD4- and VirB11-like ATPases. Recently, 

a structure of a conjugative pilus showed the pilus to be composed of a 5-start helical assembly consisting of a stoichiometric complex of 

an -helical hairpin bound to a phospholipid (Costa et al. (2016) Cell reference to be added). However, how this pilus is mounted onto 

the T4SS IMC and OMCC is unknown. 

 

In this study, we characterized the contributions of the OMCCs associated with the type IVa systems to formation of cell-cell contacts, 

substrate transfer, and pilus biogenesis.  Results of mutational and domain swapping studies of the TrapKM101 and VirB/VirD4At model 

systems established the requirement for the OMCC cap for assembly of the conjugative pilus, but not for establishment of productive 

mating junctions or even for contact-dependent activation of a type VI secretion system (T6SS).  We also show that chimeric machines 

consisting of the IMCpKM101 coupled to heterologous OMCCs from the TrwR388, VirB/VirD4At, and PtlBp systems support conjugative 

DNA transfer in E. coli and activate T6SS killing, but fail to elaborate detectable pili.  Finally, we solved the structure of the A. 

tumefaciens VirB/VirD4 OMCC by transmission electron microscopy and negative staining, enabling structural comparisons with the 

other solved OMCCs.  We discuss our findings in the context of a model for conjugation machines functioning in Gram-negative species 

in which the distal end of the OMCC, together with a pilus tip protein, coordinates a late-stage morphogenetic switch that alternatively 

directs pilus extension or intercellular substrate transfer.  
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RESULTS 

Genetic requirements for assembly of the pKM101 Tra T4SS.  We first constructed a set of pKM101 derivatives lacking individual 

tra genes to define the genetic requirements for T4SS machine assembly (Fig. S1).  Eight of the 11 tra genes were successfully deleted 

from pKM101 by recombineering, but for unknown reasons we were unable to delete traL, traN, and traO.  We therefore created 

miniaturized versions of pKM101 consisting of the tra gene cluster and upstream regulatory sequences cloned either into pBAD plasmids 

or joined to pKM101’s oriV replication region along with a selectable Kanr gene.  These mini-pKM101 plasmids encode fully functional 

Tra T4SSs (see below) and served as templates for construction of complete collections of tra gene deletion mutations by inverse PCR.  

 

E. coli donors conjugatively transfer pKM101 at frequencies approaching 1 transconjugant per donor (Tc/D) in 2 h solid-surface matings 

(Winans & Walker, 1985).  In contrast to previous reports that IncN plasmids typically transfer poorly in liquid matings (Bradley et al., 

1980, Jorgensen & Stenderup, 1982), MG1655(pKM101) cells delivered pKM101 fairly efficiently  at  ~10-3 Tc’s/D in 2 h and at  ~10-1 

Tc’s/D in overnight liquid matings subjected to constant agitation (Fig. S1).  Another donor strain carrying the mini-pKM101 plasmid 

pRP100 mobilized the transfer of plasmid pJG142, which carries the entire pKM101 mob region (Paterson et al., 1999), at frequencies 

slightly higher than observed for pKM101 in both solid surface and liquid matings (Fig. 1).   

 

Most of the tra gene mutations abolished Tra T4SS function, in agreement with previous findings for the A. tumefaciens VirB/VirD4 

T4SS and the E. coli TrwR388 conjugation system  (Figs. 1 & S1) (Berger & Christie, 1994, Larrea et al., 2013). Most strains harboring 

the pRP100tra and pKM101tra variant plasmids were fully complemented by trans-expression of the corresponding tra genes from 

the PBAD promoter. Strains carrying the pKM101traA, traB, or traD mutant plasmids were only partially complemented, as 

evidenced by transfer frequencies of 3- to 4-orders of magnitude lower than those of the pKM101-carrying donor (Fig. S1).  Regardless 

of possible negative effects accompanying nonstoichiometric production of certain Tra proteins on machine assembly or slight polar 

effects on downstream gene expression, results of the complementation studies established that 9 of the 11 Tra proteins are essential for 

elaboration of a functional TrapKM101 T4SS.  

 

virB1-like traL codes for a peptidoglycan (PG) hydrolase and its deletion had no discernible effect on plasmid transfer in either solid-

surface or liquid matings (Fig. 1).  This finding contrasts with previous reports for other T4SSs documenting attenuating effects of 

hydrolase gene deletions on substrate transfer (Berger & Christie, 1994, Bayer et al., 1995, Zahrl et al., 2005). traL expression from the 

strong PBAD promoter in traL mutant donors conferred an apparent 10- to 100-fold increase in transfer efficiencies (Fig. 1). These 

PBAD::traL expressing cells, however, grew poorly and exhibited protrusions and enhanced vesicle production compared with cells 

expressing traL from the native promoter (data not shown), as observed previously for the P19 hydrolase associated with the plasmid R1-

encoded conjugation systems (Bayer et al., 2001).  The apparent increase in mating frequency, recorded as the number of transconjugants 

per donor, is therefore likely due to a reduction in donor cell viability as a result of TraL overproduction.   

 

The last tra gene, virB5-like traC, is postulated to encode a pilus tip protein on the basis of previous findings for VirB5 homologs 

associated with the VirB/VirD4At system and the Helicobacter pylori Cag T4SS (Aly & Baron, 2007, Shaffer et al., 2011).  Interestingly, 

traC mutant donors retained the capacity to transfer DNA substrates at frequencies of ~5x10-4 Tc’s/D on solid surfaces, but were 

completely defective for plasmid transfer in liquid matings (Figs 1& S1). In the F plasmid transfer system, F pili dynamically extend and 

retract to initiate distant contacts and then formation of direct donor-recipient cell contacts in liquid matings, which is thought to account 

for the observed high-frequency transfer of F plasmids under these conditions (Clarke et al., 2008).  At this time, there is no evidence that 

the TrapKM101 pilus dynamically extends and retracts, yet its production of the TrapKM101 pilus might still promote donor-recipient contacts 

enabling pKM101 transfer in liquid.  pKM101-encoded pili are difficult to visualize microscopically, but pilus production can be 

assessed by susceptibility of plasmid-carrying cells to IKe, an M13-like filamentous phage that uses the pKM101 pilus as a receptor 

(Bradley, 1979).  Among the tra mutant strains, only the traL mutant was dispensable for pilus production. The requirement of TraC 

for IKe infection and plasmid transfer in liquid, but not solid-surface, matings is consistent with a proposal that this putative pilus tip 

protein contributes specifically to pilus extension from the cell surface and not directly to elaboration of the translocation channel.  

 

The outer membrane core complex (OMCC) cap also is dispensable for substrate transfer but required for pilus biogenesis.  With 

a pKM101 molecular ‘toolkit’ in hand, we next sought to define the T4SS machine requirements for productive engagement with 

recipient cells. While conjugative pili clearly play a role in initiating donor-target cell interactions, mutations conferring a transfer-

positive, pilus-minus (Tra+, Pil-) “uncoupling” phenotype, reminiscent of that observed for traC, have been isolated in various subunits 

of the VirB/VirD4At  (Sagulenko et al., 2001, Jakubowski et al., 2003, Jakubowski et al., 2005) and E. coli RP4-encoded (Haase et al., 

1995) T4SSs.  These observations suggest, first, that conjugative T4SSs can assemble alternatively as pilus-producing or substrate 

transfer machines and, second, these systems possess surface features other than extended pili that promote formation of productive 

mating junctions on solid surfaces.   

 

To explore this latter proposal, we sought to define the functional importance of the OMCC cap, which to date is the only surface-

exposed domain of the type IVa T4SSs other than the pilus.  As mentioned above, this cap is assembled from the 14 AP domains of 

VirB10-like subunits. In the TrapKM101 O-layer structure, the 2 and 3 helices of the AP domains of TraF form the OM-spanning 

channel while the intervening AP loops (APLs) project from the cell surface (Fig. 2A) (Chandran et al., 2009). We introduced deletion or 

substitution mutations in the AP of TraFpKM101, which spans residues 307-355. Interestingly, substitution of the APL with 5 Gly residues 

(5xGly) or introduction of a FLAG epitope in TraF’s APL had no detectable effects on TraF protein accumulation (Fig. 2C) or donor-

directed plasmid transfer (Fig. 2B).  Deletion of the entire AP domain also did not affect TraF steady-state levels and conferred only a 

modest reduction in DNA transfer compared with donors producing native TraF (Figs. 2B,C). To evaluate the generality of these findings, 

we inserted duplicate (2X) or triplicate (3X) FLAG tags at several positions within the AP domain of A. tumefaciens VirB10 (Fig. S3A). 
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These insertions also did not affect VirB10 protein accumulation or function, as deduced by the appearance of morphologically wild-type 

plant tumors resulting from A. tumefaciens-mediated delivery of oncogenic T-DNA into plant cells (Figs. S3B, C). The AP domains of 

TraF and VirB10 share only 26 % identity (Figs. 3A, S2), but interestingly reciprocal swaps of these domains yielded stable (Figs. 3C, 

S3C) and fully functional TraF/APVirB10 and VirB10/APTraF chimeric proteins, as shown by robust transfer of a pKM101 substrate in E. 

coli matings (Fig. 3B) and oncogenic T-DNA in A. tumefaciens infection assays (Fig. S3B).  We conclude that the OMCC caps of the 

TrapKM101 and VirB/VirD4At T4SSs augment, but are not required for, substrate transfer to target cells.   

 

Complete deletions of the APs from TraF and VirB10, however, abolished production of WT pili, as evidenced by lack of pKM101 

transfer in liquid, resistance to IKe phage infection, and lack of surface display of the VirB2 pilin on A. tumefaciens cells (Figs. 2B & 

S3B) which serves as a convenient assay for T pilus production by the VirB/VirD4At T4SS (Sagulenko et al., 2001, Kerr & Christie, 

2010).  Further mutational analyses indicated the importance of the AP membrane-spanning -helices, but not the APLs, for pilus 

biogenesis.  For example, strains producing TraF with a 5xGly replacement of the APL or FLAG insertion in this domain remained 

sensitive to infection by IKe (Fig. 3B). Similarly, A. tumefaciens strains producing VirB10 variants with FLAG insertions in the APL 

accumulated abundant amounts of VirB2 pilin on the cell surface indicative of T pilus production, whereas strains with FLAG insertions 

in VirB10’s 2 or 3 helices had comparatively low levels of surface pilin (Fig. S3B).  Also of note, reciprocal swaps of TraF’s and 

VirB10’s AP domains supported pilus production in E. coli and A. tumefaciens (Fig. 3B, S3B).  Together, these findings suggest that 

elaboration of the extended pilus requires formation of an -helical channel across the OM regardless of its sequence composition. 

 

The C-terminal (CT) domain, but not the lever arm, is critical for TraF function.  The extreme C termini of TraF and VirB10 are 

highly related (72 % identity) and both domains possess several residues, most notably an RDLDF motif, that are highly conserved 

among the VirB10 family members (Fig. 3A) (Jakubowski et al., 2009).  As shown by the TrapKM101 O-layer structure, TraF’s C-terminal 

(CT) domain forms a -strand that extends along the -barrel domain (see Figs. 2A, S2)(Chandran et al., 2009).  An AP-CT deletion 

mutant was undetectable and a CT mutant accumulated at low levels suggesting that the CT domain contributes to TraF stability (Fig. 

2C).  However, within the CT domain, smaller deletions of a highly-conserved RDLDF motif or the C-terminal 9 residues (CT9) did not 

affect steady-state protein accumulation but completely eliminated function as monitored by substrate transfer and IKe phage infection 

(Fig. 2B, C).  To further examine the functional importance of the CT domain, we exchanged VirB10At’s AP and CT domains or just the 

CT domain for the corresponding domains of TraF.  In E. coli, the respective TraF/AP-CTVirB10 and TraF/CTVirB10 chimeras supported 

substrate transfer on solid surfaces, but not transfer in liquid or IKe phage infection (Fig. 3B, data not shown).  Interestingly, VirB10’s 

CT domain extends 11 residues beyond that of TraF and when we deleted this extension, the resulting chimera, TraF/CT11B10, 

accumulated at abundant levels and supported substrate transfer and IKe phage infection (Figs. 3A, B).  In A. tumefaciens, a VirB10 

chimera bearing TraF’s AP-CT (VirB10/AP-CTTraF) (Fig. S3), or VirB10 deleted of its C-terminal 11 residues (data not shown), also 

supported WT levels of substrate transfer to plants but not T pilus production. Together, these findings suggest that the CT domains 

contribute to stabilization of the VirB10 proteins and also mediate intra- or intersubunit contacts necessary for channel formation and 

pilus production.  VirB10’s C-terminal 11 residues also are required for T pilus production by the VirB/VirD4At T4SS.  This motif 

poisons pilus production by the TrapKM101 system, although interestingly TraF bearing a FLAG tag at its C terminus exhibited WT 

function (Fig. 2B, C).  

 

In the TrapKM101 O-layer crystal structure, a domain of TraF designated as the lever arm extends laterally from one TraF monomer to form 

a network of contacts with 3 adjacent TraF monomers, resulting in a tetradecameric complex in which the 14 lever arms form a 

continuous inner shelf at the base of the OMCC (Chandran et al., 2009).  Notably, TraF’s CT domain, and more specifically-strand 7c 

containing the RDLDF motif, interacts with -strand n1 in the lever arm of an adjacent TraF monomer (Fig. 2, S2) (Chandran et al., 

2009). To evaluate the functional importance of this putative CT domain - lever arm interaction, we constructed a variant of TraF deleted 

of the lever arm.  In contrast to native TraF, the TraFlever mutant protein migrated in SDS-polyacrylamide gels as multiple, 

presumptive degradation products, suggestive of a contribution of the lever arm to TraF stability (Fig. S3).  Strikingly, however, 

TraFlever-producing donors delivered DNA substrates to recipient cells nearly at WT levels and also exhibited IKe phage sensitivity 

(Fig. S3). Despite an apparent stabilizing effect by the lever arm on TraF, the lever arm shelf and its associated network of lateral 

contacts in the assembled OMCC do not impact the OMCC’s contribution as a scaffold for assembly of the translocation channel and 

extended pilus.  

 

TraF chimeras with substituted OM core complexes support substrate transfer.  VirB10 subunits are unique among known Gram-

negative bacterial proteins in spanning the entire cell envelope (Jakubowski et al., 2009, Chandran et al., 2009).  To determine if TraF 

could tolerate substitutions of domains other than the AP and CT, we constructed additional TraF/VirB10 chimeras (Fig. 3B).  TraF 

chimeras composed of VirB10’s N-proximal cytoplasmic (Cyto) or transmembrane (TM) domains joined to the remaining portions of 

TraF accumulated at abundant levels but were nonfunctional (Figs. 3B, C).  Chimeras bearing VirB10’s PRR domain (TraF/PRRB10) or 

the entire portion of VirB10 extending from the TM domain through the C terminus (TraF/TM-CTB10) accumulated at low levels or 

moderate levels, respectively, but failed to support plasmid transfer or IKe phage uptake.  These findings are in agreement with previous 

studies showing that the N-terminal regions of VirB10-like proteins form extensive interactions with cognate IMC components and 

VirD4 coupling proteins (see Discussion) (Das & Xie, 2000, Atmakuri et al., 2004, Llosa et al., 2003, Rivera-Calzada et al., 2013). 

 

Strikingly, however, chimeras consisting of TraF’s N-terminal half joined to VirB10’s -barrel domain accumulated at low but detectable 

levels and also supported substrate transfer at frequencies of 10-5 - 10-6 Tc’s/D (Fig. 3B). The functionality of these chimeras was 

particularly striking given that the TraF and VirB10 -barrel domains share low sequence relatedness (19 % identity, Fig. S2) and results 

from the TrapKM101 O-layer crystallography studies establishing that TraF’s -barrel forms extensive contacts with its OMCC partner 

subunit TraO (Fig. S2) (Chandran et al., 2009).  
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We next tested whether the TraF/B-CTVirB10 chimera would function more efficiently if the VirB7 and VirB9 subunits of the 

VirB/VirD4At OMCC also were substituted for their TrapKM101 counterparts, essentially creating an IMCTra::OMCCVirB chimera 

(designated Tra::VirB).  To ensure temporal and stoichiometric synthesis of the IMC and OMCC subassemblies, we substituted codon-

optimized virB7, virB9 and the traF/B-CTB10 chimeric gene for traN, traO, and traF within the pKM101 tra region expressed from the 

mini-pKM101 plasmid pJG144.  Plasmid pJG144 phenocopies WT pKM101 in conferring highly efficient transfer of the mobilizable 

plasmid pJG142 and pilus production, as monitored by substrate transfer in solid-surface and liquid matings and IKe phage susceptibility 

(Fig. 4A, B).   The Tra::VirB chimera also supported transfer of the mobilizable plasmid, although at a frequency comparable to that 

observed by donors in which TraF/B-CTVirB10 was substituted for native TraF (compare Figs. 3B & 4B). The Tra::VirB chimera did not 

support formation of the WT pilus, however, as evidenced by IKe phage resistance and lack of substrate transfer in liquid media. 

 

To further explore the compositional flexibility of the OM core complex, we engineered two more chimeric T4SSs bearing heterologous 

OMCCs.  The first was derived from the E. coli TrwR388 conjugation machine, a system closely related phylogenetically and functionally 

to that of TrapKM101 (Llosa et al., 2003).  The second was from the PtlBp T4SS, which has diverged considerably from ancestral 

conjugation systems both in primary sequence (Fig. S2) and through its adapted function as a PT export system (Locht et al., 2011).  

Strikingly, both systems supported conjugative transfer of the pKM101 oriT plasmid in solid surface matings.  Donors producing the 

Tra::Trw chimera transferred the pKM101 substrate at 10-3 Tc’s/D, whereas donors producing the Tra::Ptl chimera transferred the 

plasmid at low frequencies of ~10-7 Tc’s/D.  Despite the low level of transfer of the Tra::Ptl chimera, our findings clearly establish the 

modular and interchangeable nature of OMCCs from diverse type IVa systems in supporting conjugative DNA transfer.   

 

T4SS requirements for triggering of Type VI-mediated killing. We sought to define the contributions of surface-exposed structures of 

the T4SS to formation of donor-target cell contacts even in the absence of detectable substrate transfer or pilus production, and to this end 

we employed a T6SS killing assay.  Previously, it was shown that pKM101-carrying E. coli cells convey a signal across the P. 

aeruginosa cell envelope that triggers production of the H1-T6SS.  In turn, P. aeruginosa cells kill the activating E. coli cells through 

transfer of toxic effectors (Ho et al., 2013). To identify T4SS surface features responsible for conveying the contact-dependent signal, we 

incubated E. coli donors producing WT or mutant T4SSs with P. aeruginosa strain PAO-1 and assayed for T6SS-mediating killing by 

serial dilution on media selective for E. coli.   

 

E. coli DH5cells lacking pKM101 exhibit comparable growth in the presence or absence of P. aeruginosa (Fig. 4C), as also shown 

previously (Ho et al., 2013).  However, DH5 cells producing the Tra system exhibited a ~2-log reduction in colony 

forming units (CFUs) when incubated in the presence vs the absence of P. aeruginosa PAO-1 (Fig. 4C) or the presence of a T6SS- 

(vipA) mutant (data not shown).  Strains competent for production only of the pKM101 Tra IMC or OMCC, respectively, were not 

killed in the presence of P. aeruginosa, confirming that both subassemblies of the TrapKM101 T4SS are required for activation of the 

T6SS.  Interestingly, E. coli strains engineered to produce the chimeric T4SSs (Tra::Trw, Tra::VirB, Tra::Ptl) also triggered T6SS 

killing at levels comparable to the native Tra T4SS (Fig. 4C).  These chimeric systems thus phenocopy the intact TrapKM101 T4SS in 

transducing an activating signal to P. aeruginosa target cells, despite exhibiting various degrees of attenuation in substrate transfer and 

deficiencies in detectable pilus production (Fig. 4B).   

 

As expected from the above findings (Fig. 4) and our earlier phenotypic analyses (Fig. 1), the traL mutant retained the capacity to 

activate the P. aeruginosa T6SS, whereas strains individually deleted of the remaining tra genes failed to trigger killing (Fig. S4).  All 

of the complemented tra mutants triggered T6SS killing (Fig. S4), confirming the importance of an intact T4SS for signal transmission 

to P. aeruginosa.  To further evaluate the requirements for intercellular signaling, E. coli strains harboring TraF mutations in the AP or 

CT domains were analyzed for T6SS activation.  Intriguingly, strains deleted of the AP (confers a Tra+,Pil- phenotype) and with CT 

mutations (Tra-,Pil-) triggered a T6SS killing response (Fig. 5A). These findings establish that the TrapKM101 T4SS retains the capacity to 

transduce an intercellular potentiating signal even in the absence of DNA transfer, elaboration of the OMCC cap, or formation of the 

WT pilus.  
 
Structural resolution of the A. tumefaciens VirB/VirD4 OM core complex and comparisons with the pKM101 OMC.   Finally, to 

allow for further structural comparisons of OMCC subassemblies shown here to be functionally interchangeable, we purified and solved 

the A. tumefaciens VirB/VirD4 OMCC by negative-stain electron microscopy (see Fig. S5).  This structure has dimensions of 180 Å in 

diameter and 155 Å in height, closely resembling the pKM101- and R388-encoded OMCCs (Fronzes et al., 2009, Chandran et al., 2009, 

Low et al., 2014). The VirB OMCC also has 14-fold symmetry with openings at its proximal and distal ends of dimensions similar to 

those of the other OMCCs (Fig. 6).  The VirB OMCC is more cylindrically-shaped than its TrapKM101 and TrwR388 counterparts, and its 

OM-spanning cap is also broader with a notable cup presumptively exposed to the extracellular milieu.  It is not yet possible to assess the 

significance of these structural differences due to the low resolution achieved for the VirB OMCC by negative staining. Regardless, the 

VirB structure adds to an accumulating body of evidence that OMCCs from the type IVA T4SSs exhibit strong similarities in their 

overall architectures.  These findings also provide a structural basis for understanding the functional interchangeability of the 

heterologous OMCCs for that of TrapKM101.  
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DISCUSSION 

E. coli pKM101 is widely known for its mutagenic and protective properties in cells exposed to UV irradiation and other DNA-damaging 

agents (Ames et al., 1975).   pKM101 also encodes a highly-efficient T4SS (Winans & Walker, 1985, Paterson et al., 1999), and here we 

capitalized on the construction of a pKM101 ‘molecular toolkit’ to address a central question in the type IV secretion field of how these 

machines establish productive contacts with target cells.  Among the systems functioning in Gram-negative species, conjugative pili 

initiate donor - recipient cell contacts either through dynamic extension - retraction or pilus sloughing or release mechanisms (Samuels et 

al., 2000, Lawley et al., 2003, Christie, 2004, Clarke et al., 2008).  Once pilus-mediated cell-cell contacts are established, stable mating 

junctions form thereby enabling efficient DNA transfer.  Extended pili are not obligatory for conjugative DNA transfer, however, since 

Gram-positive bacterial conjugation machines function efficiently in their absence (Bhatty et al., 2013) and various pilus-blocking 

mutations in Gram-negative systems have been shown to permit efficient substrate transfer on solid surfaces (Eisenbrandt et al., 2000, 

Sagulenko et al., 2001, Jakubowski et al., 2003, Jakubowski et al., 2005).  These observations suggest that surface features of 

conjugation systems other than pili are capable of mediating formation of productive donor-recipient cell mating junctions.  Here, guided 

in part by solved structures of T4SS subassemblies, we evaluated the contributions of the pKM101 Tra subunits and OMCC domains to 

pilus production, donor-target cell contacts, and intercellular substrate transfer. Intriguingly, we discovered that T4SSs lacking prominent 

surface features implicated in target cell binding, including the OM-spanning cap domain and the TraC pilus tip protein, display the Tra+, 

Pil- “uncoupling” phenotype. We also showed that heterologous OMCC subassemblies could be substituted for that of the TrapKM101 

system.  Mechanistically, functionality of the chimeric T4SSs is remarkable, first, because swapped OMCCs were derived from T4SSs 

adapted over evolutionary time for distinct purposes of conveying substrates interbacterially or to eukaryotic cells through contact-

dependent or -independent processes. Second, T4SSs are known to activate substrate transfer in response to transduction of intracellular 

and extracellular signals across the cell envelope, implying that the TrapKM101 IMC not only physically interacts with the heterologous 

OMCCs, but also must transduce signals in the form of conformational changes required for channel activation.   

 

We defined the functional importance of TraC and the other Tra subunits through a systematic tra deletion/complementation analyses 

using native pKM101 as well as mini-pKM101 plasmids that were more amenable to genetic manipulation (Figs. 1 & S1).  These studies 

confirmed an early report of the dispensability of TraC for pKM101 transfer on solid surfaces (Winans & Walker, 1985) but further 

established the importance of TraC for transfer in liquid.  Previous work has shown that conjugative transfer on solid surfaces does not 

require production of extended pili due to close packing of donor and recipients (Lessl et al., 1993, Haase et al., 1995, Samuels et al., 

2000), whereas by contrast pilus production is important for efficient transfer in liquid (Lawley et al., 2003, Clarke et al., 2008, 

Arutyunov & Frost, 2013).  Coupled with the demonstrated importance of TraC for infection by IKe (Figs. 1 and S1)(Yeo et al., 2003), 

which binds the tip of the pKM101 pilus (Bradley, 1979), our findings strongly indicate that TraC contributes specifically to pilus 

nucleation.  Of further interest, Winans and Walker (1985) also supplied genetic evidence for surface exposure and even intercellular 

transfer of TraC.  In a phenomenon termed extracellular complementation, a TraC-producing (but non-conjugative) ‘helper’ strain is 

capable of restoring mating proficiency of a traC mutant when the two strains are mixed with a third, plasmid-free recipient strain.  

These findings prompted a proposal that the ‘helper’ strain delivers surface-localized TraC to the traC mutant where it then associates 

with the TrapKM101 T4SS to promote pilus assembly, mating pair formation, and substrate transfer.  Studies have since confirmed that 

TraC is surface-localized even on cells lacking the TrapKM101 T4SS (Schmidt-Eisenlohr et al., 1999), although there is still no direct 

evidence for cell-to-cell transmission.   

 

The selective importance of VirB5/TraC subunits for pilus production also is supported by the observation that the PtlBp system lacks a 

VirB5 homolog and does not produce detectable pili, yet efficiently exports the multisubunit PT across the OM (Farizo et al., 2000, 
Locht et al., 2011).  In some characterized systems, however, mutations of virB5/traC-like genes completely abolish substrate transfer 

(Berger & Christie, 1994, Fischer et al., 2001, de Paz et al., 2005, Larrea et al., 2013).  This could be explained by findings that VirB5-

like subunits have functionally diversified during evolution to carry out additional activities of importance for intercellular transfer. In 

several species, for example, the VirB5-like subunits are implicated in specifying contacts with target cells.  In H. pylori, VirB5-like 

CagL carries an RGD motif as well as other motifs that mediate binding to  integrin receptors on human host cells (Kwok et al., 2007, 

Barden & Niemann, 2015).  CagL also displays extensive sequence variation, thought to arise from evolutionary selection pressures 

within the human host, which allows for immune evasion or altered host cell binding by infecting H. pylori strains (Olbermann et al., 

2010, Gorrell et al., 2016).  In A. tumefaciens, VirB5 also carries an RGD motif (Backert et al., 2008), which similarly might contribute 

to establishment of productive contacts with susceptible plant cells in view of findings VirB5At overproduction or exogenous addition of 

purified VirB5 enhances A. tumefaciens-mediated T-DNA transfer efficiencies.  Finally, in Bartonella henselae, variant forms of surface-

located VirB5 subunits are thought to determine host-specificity of erythrocyte parasitism (Dehio, 2008).  Evidence for localization of 

CagLHp and VirB5At at the tips of pili produced by the respective T4SSs also is consistent with a dual role for the VirB5 subunits in pilus 

nucleation and target cell binding in some systems (Aly & Baron, 2007, Kwok et al., 2007, Lacroix & Citovsky, 2011, Barden & 

Niemann, 2015).   

 

The OM-spanning caps of the TrapKM101 and VirB/VirD4At T4SSs were surprisingly permissive to mutation with respect to substrate 

transfer (Figs. 2, S3), suggesting that the translocation channel assembles across the OM even without an intact cap domain. The nature 

of this channel is not yet defined, but a growing body of evidence suggests that it consists of pilin monomers most probably in the form 

of a short pilus extending from the inner membrane to the cell surface (see Fig. 7).  In our earlier crosslinking studies, we showed that the 

VirB2At pilin forms formaldehyde (FA)-crosslinkable contacts with DNA substrates during their transit through the A. tumefaciens 

VirB/VirD4 T4SS (Cascales & Christie, 2004b). VirB2At - DNA crosslinking also was observed with variant channels harboring Tra+, 

Pil- “uncoupling” mutations, but not among T pili isolated from the cell surface by shearing (Jakubowski et al., 2005, Cascales & Christie, 

2004b). Very recently, structural studies of the F pilus revealed the striking finding that the inner lumen is composed of phospholipids, 

derived from the inner membrane, in stoichiometric association with the TraAF pilin subunit (Costa et al., 2016). In line with early 
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models describing the dynamics of F pilus assembly and retraction (Manchak et al., 2002), these findings suggest that TraAF pilin - 

phospholipid complexes comprise the building blocks for polymerization of the F pilus from an inner membrane platform (Costa et al., 

2016).  Finally, some evidence has been presented for the capacity of extended F pili to mediate substrate transfer in the apparent absence 

of direct donor-recipient cell contacts (Babic et al., 2008, Harrington & Rogerson, 1990).  Such transfer events are rare, as suggested by a 

wealth of data for this and other systems that efficient conjugative transfer requires formation of direct cell-cell contacts and stable 

mating junctions (Samuels et al., 2000, Lawley et al., 2002, Arutyunov & Frost, 2013).  Nevertheless, the capacity of extended pili to 

mediate substrate transfer is consistent with a model in which a pilus polymer extending across the donor cell envelope, and potentially 

beyond, functions as a conduit for substrate passage.  

 

The OMCC cap was essential for detection of surface pili in both the TrapKM101 and VirB/VirD4At systems (Figs. 2, S3).  In A. 

tumefaciens, we previously determined that a VirB10AP mutation confers low levels of surface-exposed VirB2 pilin and striking 

defects in pilus polymerization.  In that study, the AP boundaries (residues 308-337) were assigned on the basis of a crystal structure of 

VirB10-like ComB10 associated with a H. pylori competence system (Terradot et al., 2005, Jakubowski et al., 2009). With the 

availability of the entire O-layer of the TrapKM101 OMCC X-ray structure, AP boundaries of both TraF and VirB10 were reassigned so 

that the latter spans residues 288-339 (Chandran et al., 2009).  Our present mutational analyses confirmed that the VirB10288-339 
variant, and the corresponding TraFpKM101 mutant, conferred strong blocks in delivery of pilin subunits or extension of the pilus to the cell 

surface. We also have shown that VirB10 homologs possess an invariant Gly residue that in the TrapKM101 O-layer crystal structure is 

positioned in the interior chamber of the OMCC near the OM-spanning cap. Interestingly, substitution of Arg for this residue (Gly272) in 

VirB10At completely blocks production of T pili without affecting substrate delivery to plant cells, reinforcing the notion that the distal 

end of the OMCC plays a critical role in regulating extension of pili from the cell surface (Banta et al., 2011).  

 

To reconcile our findings, we propose a working model that is consistent with previous models (Christie et al., 2005, Trokter et al., 2014), 

in which the default pathway for conjugation systems in the absence of any target cell interactions is the production of extended pili (see 

Fig. 7). These pili function in a ‘mate-seeking’ mode through dynamic rounds of extension and retraction as shown for F pili (Clarke et 

al., 2008) or via a mechanism(s) in which adhesive pili accumulate abundantly in the milieu to promote formation of mating aggregates 

(Samuels et al., 2000). Upon establishment of direct donor - recipient cell contacts, the T4SS ceases production of extended pili and 

transitions to the ‘mating’ mode presumably through translocation of substrates through a short, envelope-spanning pilus structure.  

Various signals regulate this morphogenetic switch, including recipient contact-propagated signals of an undefined nature (Frost & 

Koraimann, 2010, Arutyunov & Frost, 2013) and activating signals within the donor cell including i) productive binding of VirD4-like 

substrate receptors with the IMC (de la Cruz et al., 2010, Lang et al., 2011), ii) docking of DNA substrates with the channel ATPases 

VirD4 and VirB11 (Cascales et al., 2013, Lang & Zechner, 2012), and iii) ATP hydrolysis activities of the VirD4 and VirB11 ATPases 
(Cascales & Christie, 2004a). In the framework of this model, our present findings point to the importance of the TraC/VirB5-like pilus 

tip protein and the distal end of the OMCC, specifically for the ‘mate-seeking’ mode of pilus extension.  A central prediction of our 

findings, currently under investigation, is that the exported form of TraC is recruited to the OMCC cap where it interacts both with the 

cap and the tip of the pilus to nucleate extension from the cell surface.  Contact-mediated extracellular and intracellular signals induce 

pilus retraction or sloughing and block further rounds of TraC-driven pilus extension, thereby transitioning the T4SS to the ‘mating’ 

mode.  It is important to note that TraC/VirB5-like subunits have been shown to interact with IMC components (Yuan et al., 2005, 

Villamil Giraldo et al., 2012), raising the possibility that the pilus tip proteins are recruited to the T4SS from a periplasmic location.  

Nevertheless, a central feature of our model is that that VirB5-like subunits engage with the distal end of the OMCC to drive pilus 

extension from the cell surface.   

 

Our studies also supplied important insights into the OMCC domain requirements for T4SS function.  For example, TraF’s CT domain 

(residues 355-386) appears to contribute to protein stability, whereas the conserved RDLDF motif within this domain is critical for 

function (Fig. 2B). We had envisioned that the CT domain contacts with the lever arm of the adjacent TraF monomer that were identified 

in the TrapKM101 O-layer structure (Fig. S2C) (Chandran et al., 2009) contributed to OMCC assembly or stability.  Although the 

TraFlever mutant protein exhibited some degradation, it nevertheless supported efficient substrate transfer and pilus production (Fig. 

S4).  Thus, while the lever arm platform and its CT domain contacts might stabilize the OMCC scaffold, mutant scaffolds devoid of these 

stabilizing contacts still assemble with sufficient structural integrity to support elaboration of the extended pilus and a fully functional 

translocation channel.  

 

We also gained evidence for conformational flexibility of the OMCC through TraF -barrel domain swaps.  The functionality of the 

TraF/B-CTVirB10 chimera (Fig. 3), and of equivalent chimeras composed of the -barrel domains from the TrwER388 and PtlGBp 

homologs (Fig. 5 & data not shown), was particularly surprising in view of the low overall sequence relatedness of the VirB10 homologs 

(Fig. S2) coupled with findings that TraF’s -barrel forms a large number of contacts with VirB9-like TraO in the TrapKM101 O-layer 

crystal structure (Fig. S2C) (Chandran et al., 2009). Only a few of the residues that form the TraF-TraO subunit interfaces are conserved 

among the -barrel domains of the TraF homologs (Fig. S2C), minimally suggesting that TraF’s network of intra- and intersubunit 

contacts do not structurally lock the TrapKM101 OMCC.  The notion that the OMCC is intrinsically flexible also agrees with previous work 

showing that VirB10At undergoes a conformational change in response to sensing of substrate docking and ATP hydrolysis signals to 

regulate substrate passage through the distal portion of the VirB/VirD4 channel (Cascales & Christie, 2004a, Cascales et al., 2013).  
 

The functional interchangeability of the entire TrapKM101 OMCC with corresponding subassemblies from the VirB/VirD4At, TrwR388 and 

PtlBp systems (Fig. 4) further underscores the intrinsic flexibility of the entire T4SS in supporting assembly of the translocation channel.  

At one level, the observed architectural similarities of the OMCCs solved to date provide a structural basis for understanding how 

heterologous OMCCs were able to substitute for the TrapKM101 subassembly (Fig. 6).  Moreover, given the widespread phylogenetic 
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distribution of the VirB7, VirB9, and VirB10 homologs among the type IVa systems, and the recent identification of ring-shaped 

OMCCs associated with type IVb systems (represented by the Legionella pneumophila Dot/Icm T4SS) (Kubori et al., 2014, Kubori & 

Nagai, 2015), it is reasonable to predict that the OMCC structures solved to date are paradigmatic for T4SSs associated with Gram-

negative species.  However, the OMCC also must physically and functionally interact with the IMC both to build the translocation 

channel and to regulate its dynamic activity.  A complex network of contacts involving the VirB9- and VirB10-like OMCC subunits and 

the VirB6- and VirB8-like IMC subunits are required for elaboration of the channel (Hapfelmeier et al., 2000, Das & Xie, 2000, Krall et 

al., 2002, Jakubowski et al., 2003, Jakubowski et al., 2004, Baron, 2006).  Contacts between the VirB10-like subunits and VirD4-like 

subset receptors also are implicated in transduction of the aforementioned intracellular (substrate docking/ATP energy) and extracellular 

(target cell binding) signals necessary for transitioning the T4SS to the ‘mating’ mode (Llosa et al., 2003, Atmakuri et al., 2004, de Paz et 

al., 2005, Cascales & Christie, 2004a, Mihajlovic et al., 2009, Lang et al., 2011, Cascales et al., 2013, Arutyunov & Frost, 2013).   

Although our use of TraF chimeras clearly facilitated productive coupling between pKM101’s IMC and the heterologous OMCCs, it is 

reasonable to predict that functionality of the chimeric systems also required establishment of other IMC-OMCC contacts as well as 

signal-activated conformational changes.  Further studies of these or other heterologous T4SSs should reveal underlying mechanistic and 

structural relationships between these two subassemblies.    

 

Finally, although the OMCC cap or the extended pilus potentially mediate productive binding of donors with target cells, the Tra+ 

phenotypes of the chimeric T4SSs (Fig. 4) and of various TrapKM101 mutant T4SSs, including cap and Pil- variants (Figs. 2 & 3), argues 

against a requirement for either structure for donor – recipient contacts. We further evaluated the contribution of the OMCC to formation 

of donor-target cell interactions, even in the absence of DNA transfer, by capitalizing on the discovery that E. coli cells harboring 

conjugation machines propagate a signal to the P. aeruginosa cell envelope that activates a T6SS killing response (Ho et al., 2013).  

Strikingly, each of the chimeric T4SSs efficiently triggered P. aeruoginosa T6SS killing, which was most surprising for the Tra::Ptl 

system whose OMCC in the native Ptl system neither supports pilus biogenesis nor direct binding of B. pertussis with eukaryotic target 

cells (Fig. 5) (Burns, 2003, Locht et al., 2011).  Our further analyses of the killing potential of mutant strains sustaining tra mutations 

further confirmed that substrate transfer is not necessary for T6SS activation, as was also previously shown for the RP4 conjugation 

system (Ho et al., 2013).  Furthermore, a cap deletion mutant (Tra+, Pil- phenotype) or CT domain mutations (Tra-,Pil-) confirmed that 

neither the extended pilus nor the OMCC cap was essential for triggering the killing response.  Taken together, these findings suggest 

that features other than the OMCC cap or pilus can mediate formation of intercellular mating junctions.  We envision that such surface 

features might include i) surface-exposed motif of the OMCC that forms only transiently in response to target cell sensing ii) another 

surface-exposed protein that is not encoded by the tra operon but physically or functionally interacts with the OMCC, or iii) short, 

surface-exposed pilus structures that were not detectable by our available assays.  Our future work will continue to employ P. aeruginosa 

T6SS killing as a surrogate assay to further define T4SS surface features required for the initiation of donor-recipient cell contacts and 

formation of productive mating junctions.  
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EXPERIMENTAL PROCEDURES 

Strains and growth conditions. E. coli DH5 (GIBCO-BRL) was used for plasmid constructions and the type VI secretion system 

(T6SS) killing assay. E. coli MG1655 (E. coli Genetic Stock Center) was used for conjugation and phage infection assays. E. coli 

HME45 (Thomason et al., 2014) was used for construction of tra gene deletions from native pKM101.  Pseudomonas aeruginosa 

PAO1(Holloway, 1955) containing an ISphoA insertion in the retS locus was used for the T6SS killing assay (Pseudomonas Transposon 

Mutant Collection, University of Washington Genome Sciences).  E. coli strains were grown in Luria Broth (LB) at 37°C with shaking.  

E. coli strains were cultured in the following antibiotics: carbenicillin (50g ml-1), kanamycin (50g ml-1), spectinomycin (100g ml-1), 

chloramphenicol (20g ml-1), tetracycline (20g ml-1), and rifampicin (50g ml-1).  P. aeruginosa PAO1 was grown in LB without 

antibiotic selection. 

 

Plasmid constructions.  Plasmids and oligonucleotides used in these studies are listed in Tables S1 and S2, respectively. 

Vectors.   pBAD24Spc was created by isolation of the spcr gene as a SmaI fragment from pHP45 and inserting it into the ScaI site 

within the crbr gene on pBAD24. pKM101Spcr  was constructed by introduction of the same spcr gene as an EcoRI fragment into the 

unique EcoRI site within the crbr gene of pKM101. 

 

pKM101tra mutant plasmids.  Eight of the 11 tra genes were deleted from pKM101 by recombineering (Thomason et al., 2014).  

Briefly, pKM101 or pKM101Spcr were transferred by conjugation into E. coli strain HME45, which contains the bacteriophage  red 

system under the control of the cI857 repressor. For construction of each tra gene deletion, the kanr cassette from plasmid pUC4K was 

PCR amplified so that it carried flanking NcoI sites and 35 basepairs (bps) of 5’ and 3’ sequences that were complementary to regions 

immediately upstream and downstream of a tra gene of interest.   HME45(pKM101Crbr) or HME45(pKM101Spcr) cells were 

temperature-induced for expression of the red-gam genes, and the kanr amplicons were introduced by electroporation with Kanr selection 

for transformants.  Because pKM101 is a multicopy plasmid, we eliminated plasmids lacking the integrated kanr cassette by subculturing 

the Kanr transformants for 4 days in LB broth containing kanamycin (200 g ml-1).  Isolated plasmids were digested with NcoI and 

religated to delete the kanr cassette, and ligation mixes were introduced into DH5 with selection for Crbr or Spcr.   Transformants were 

screened for Kan sensitivity, and tra deletion mutations were confirmed by sequencing across the deletion junction.   

 

 Mini-pKM101 plasmids.  We constructed 2 mini-pKM101 plasmids with a goal of simplifying genetic manipulations of the tra gene 

cluster. pCGR108 was generated by introduction of the tra region from pKM101 into pBAD24.  We amplified a ~10-kilobase region of 

pKM101 encompassing the upstream regulatory region and tra promoter through traG.  This fragment was amplified with primers 

pKM101_2700NcoI_F and pKM101_13500XbaI_R and the resulting PCR product was introduced into pBAD24 using NcoI and XbaI 

restriction sites.  The second mini-pKM101 plasmid, pRP100, was constructed by joining three PCR products: i) the tra gene cluster 

extending from the 3’ end of kikA through the end of traG, ii) the pKM101 oriV replication origin, and iii) an nptII gene encoding Kanr.  

The ~10-kb tra gene cluster was amplified from pKM101 with primers pKM101_1921Nco1_F and pKM101_13500Xba_R, a ~3-kb 

region encompassing the replication origin was amplified with primers RSP007 and RSP008, and the nptII gene was amplified with 

primers RSP005 and RSP006 using plasmid pUC4K as a template. The replication origin and nptII gene were joined together using 

overlapping PCR, digested with NcoI and XbaI, and the resulting fragment was ligated to the tra gene cluster. The resulting circularized 

product was transformed into E. coli DH5 with Kanr as a selection for self-replicating pRP100.  Transformants were screened for 

plasmids bearing the three PCR fragments followed by sequence analysis of the PCR fragment junctions.   We also confirmed that each 

of the mini-pKM101 plasmids encodes a fully functional Tra T4SS (see Results).   

 

pRP100tra and pCGR108tra variants. We precisely deleted each of the tra genes from pRP100 by inverse PCR using the 

5’phosphorylated primers listed in Table S1 and pRP100 as a template.  The resulting plasmids, designated pRP101-pRP111, sustain 

deletions of traL through traG, respectively. We also deleted traF and traN-traF from pCGR108 to create pJG125 and pJG143, 

respectively, using a similar inverse PCR protocol, except that SacI and XhoI restriction sites were incorporated at the 5’ and 3’ ends of 

the deletion junctions.  

 

pKM101 mob plasmid.  We constructed a mobilizable plasmid bearing the pKM101 origin-of-transfer (oriT) sequences and adjacent traK, 

traJ, and traI genes.  These genes code for the oriT processing proteins, relaxase TraI and accessory factor TraK, and the coupling 

protein TraJ.  A PCR fragment spanning the oriT-traI region was generated with primers oriT_NcoI_F and TraI_HindIII_R and pKM101 

as a template, and then introduced as a blunt-ended fragment into a blunt-ended HindIII site on the pSC101 derivative pGB2 to make 

pJG142.   

 

tra gene expression plasmids.  Plasmids pMS1 through pMS11 express the pKM101 traL through traG genes, respectively, from the 

PBAD promoter.  Each tra gene was PCR amplified using primers listed in Table S2, and pKM101 as a template. The resulting PCR 

fragments were digested with NcoI and KpnI for introduction into NcoI/KpnI-digested pBAD24Kan.  Plasmids pJG59 and pJG62 

express native and his6-tagged traF, respectively, from the PBAD promoter on pBAD24Spc. They were constructed by PCR amplification 

of traF using primers TraF_FWD_NcoI or TraF_NT_His_FWD NcoI and TraF_RVS_XhoI with pKM101 as a template, digestion of the 

PCR fragments with NcoI and XhoI, and introduction of the resulting fragments into NcoI/SalI-digested pBAD24Spc. Plasmid pJG103 

expresses PBAD::traF-CT_FLAG, producing C-terminally FLAG-tagged TraF.  It was constructed by amplifying traF using primers 

TraF_FWD_NcoI and TraF_FLAG_CT_RVS_XhoI with pKM101 as a template.  The resulting PCR fragment was digested with NcoI 

and XhoI and introduced into a NcoI/SalI digested pBAD24Spc 

 

traF mutant plasmids.  The following plasmids expressing traF mutant alleles from the PBAD promoter were constructed by PCR 

amplification of gene fragments of interest using primers listed in Table S2 and pKM101 as a template, digestion of the final products 
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with NcoI and XhoI, and introduction of the digested fragments into NcoI/SalI-digested pBAD24Spc.  Plasmids: pJG95 produces 

TraFAP-CT from PBAD::traF1-301 (numbers correspond to traF codons); pJG96 produces TraFCT from PBAD::traF1-353; pJG76 

produces TraFAP from PBAD::traF307-354 (traF1-307 and traF355-386 were amplified and joined by overlapping PCR, and cloned 

as above);  pJG61 produces TraFAPL-5xGly from PBAD::traFAPL-5xGly (traF1-322 and traF346-386 were amplified to carry a 5xGly 

residues at their 3’ and 5’ ends, respectively, and then joined by overlapping PCR); pJG64 produces His6-TraF-FLAG330 from 

PBAD::his6-traF-FLAG330 (traF1-330 and 331-386 were amplified to carry a FLAG tag at their 3’ and 5’ ends, respectively, and then 

joined by overlapping PCR); JG101 produces TraFRDLDF from PBAD::traF373-377;  pJG97 produces TraFCT9 from 

PBAD::traFCT9.   pJG92 produces TraFlever from pBAD::traFlever (traF1-170 and traF200-386 were amplified, and joined by 

overlapping PCR).   

 

traF/virB10 chimera plasmids.   The following plasmids expressing traF/virB10 chimeric genes were constructed by PCR amplification 

of gene fragments of interest using primers listed in Table S2 and pKM101 or traF fragments or pKVD10 for virB10 fragments. The 

amplification products (listed in parantheses) were joined by overlapping PCR, and the resulting fragments were digested with NcoI and 

XhoI for introduction into NcoI/SalI digested pBAD24Spc.  Plasmids: pJG68 produces TraF/NTVirB10 from PBAD::traF/NTvirB10 (virB10.1-

29 and traF40-386); pJG69 produces TraF/TMDVirB10 from PBAD::traF/TMvirB10 (traF1-40, virB10.29-50, traF60-386); pJG2005 

produces TraF/TMD-CTVirB10 from PBAD::traF/TM-CTvirB10 (traF1-40, virB10.29-377);  pJG70 produces TraF/PRRVirB10 from 

PBAD::traF/PRRvirB10 (traF.1-60, virB10.51-172, traF194-386); pJG150 produces TraF/BVirB10 from PBAD::traF/BvirB10 (traF1-193, 

virB10.173-286, traF307-386); pJG134 produces TraF/B-APVirB10 from PBAD::traF/B-APvirB10 (traF1-193 and virB10.173-335, 

traF356-386); pJG57 produces TraF/AP-CTVirB10 from PBAD::traF/AP-CTvirB10 (traF1-307, virB10.286-377);  pJG58 produces TraF/B-

AP-CTVirB10 from PBAD::traF/B-CTvirB10 (traF1-193, virB10.173-377). pJG60 produces TraF/APVirB10 from PBAD::traF/APvirB10 (traF1-

307, virB10.286-335, traF356-386); pJG65 produces TraF/APLVirB10 from PBAD::traF/APLvirB10  (traF1-322, virB10.301-325, traF364-

386); pJG66 produces TraF/CTVirB10 from PBAD::traF/ CTvirB10 (traF1-354, virB10.335-377); pJG201 produces TraF/ CT11VirB10 from 

PBAD::traF/ CT11virB10 (traF1-354, virB10.335-366. 

 

Chimeric tra operons.  Plasmid pJG145 expresses the chimeric gene cluster tra::trw. A DNA fragment encoding trwH-traE-trwF-

traF/B-CTtrwE was generated by overlapping PCR (trwH, traE, trwF, traF1-193, trwE197-395) using primers listed in Table S2 and 

pSU1443 and pKM101 as templates, and the resulting amplicon was digested with SacI and XhoI for introduction into pJG143. Plasmid 

pJG143 contains pKM101 traL-traD-SacI/XhoI-traG; it was derived from pCGR108 by inverse PCR.  Plasmid pJG144 expresses the 

chimeric gene cluster tra::virB.  A DNA fragment encoding virB7-traE-virB9-traF/B-CTvirB10 was designed with codon-optimization for 

expression in E. coli, and synthesized by Genewiz Inc.  The DNA fragment was isolated from the pUC57-Amp vector by digestion with 

SacI and XhoI and introduced into similarly-digested pJG143.  Plasmid pJG203 expresses the chimeric gene cluster tra::ptl.  A DNA 

fragment encoding ptlI-traE-ptlF-traF1-172/B-CTptlG (ptlG160-374) was designed with codon-optimization for expression in E. coli 

(Genewiz Inc) and introduced into pJG143 as described above. 

 

Mini-pKM101 plasmids with traF variants.  Plasmid pCGR125 carries the pKM101 tra genes except that XhoI and SacI sites were 

substituted for traF. It was constructed by inverse PCR using 5’ phosphorylated primers listed in Table S2 and pCGR125 as a template. 

pCGR125 derivatives expressing different traF alleles were constructed by introduction of PCR fragments generated with primers and 

templates listed in Table S2 into SacI/XhoI-digested pCG125.  Plasmids: pJG152 produces N-terminally FLAG-tagged TraF; pJG1 

produces FLAG-TraFAP (deleted of codons 307-354); pJG154 produces FLAG_TraFRDLDF (deleted of codons 373-377); pJG153 

produces FLAG-TraFCT9 (deleted of 9 codons at the 3’ end); pJG155 produces FLAG-TraF/AP-CTVirB10 (traF1-307, virB10.286-377); 

pJG157 produces FLAG-TraF/AP-CTTrwE (traF1-307/trwE303-395); pJG156 produces FLAG-TraF/AP-CTPtlG (traF1-307/ptlG294-374). 

 

A. tumefaciens virB10 expression plasmids.  We incorporated a Strep-tag (St) sequence at the 3’ end of virB10 on plasmid pTiA6NC of 

strain A348(Garfinkel et al., 1981). virB10-St was amplified with 500 basepairs (bps) of 5’ and 3’ flanking sequences using overlapping 

PCR and primers listed in Table S2.  We then cloned this fragment into pBB50 for introduction into the virB10 derivative PC1010 by 

marker-exchange eviction mutagenesis, as previously described (Berger & Christie, 1994).  The resulting strain, A348virB10-St, carrying 

the incorporated virB10-St gene was used for purification and structural characterization of the A. tumefaciens VirB/VirD4 OMCC.    

 

We introduced the following plasmids expressing virB10 alleles into strain PC1010. Plasmid pKVD10 produces native VirB10 from 

Plac::virB10 and fully complements the virB10 mutation (Jakubowski et al., 2009).  Plasmids pSJ510, pSJ511, and pSJ512 were 

constructed by inserting an SphI restriction site at codons 298, 329, and 332, respectively, by inverse PCR using primers listed in Table 

S2 and pKVD10 as a template. We then PCR amplified 2xFLAG or 3xFLAG tag sequences, each with flanking SphI sites, using primers 

listed in Table S2 and pSJ503 as a template.  Plasmid pSJ503 contains a 3xFLAG tag and was constructed by annealing oligonucleotides 

listed in Table S2, digesting the product with NcoI and BamHI, and inserting the digested fragment into similarly-digested 

pBSIISK+.NdeI.  We then digested the amplified 2x or 3x FLAG tag sequences with SphI for insertion at codons 298, 329, and 332, 

creating plasmids pJG40, pJG42, and pJG33, respectively.  Plasmid pJG52 producing VirB10 with a 2xFLAG tag inserted at codon 310 

was constructed by two-step overlapping PCR using primers listed in Table S2 and pKVD10 as a template.  Plasmid pSJ500 producing 

VirB10 with a C-terminal FLAG tag was constructed by amplification of virB10 with a 3’ terminal FLAG sequence using 

oligonucleotides listed in Table S2 and pKVD10 as a template.   

 

Plasmid pSJ504 producing VirB10AP (deleted of residues 288 - 337) was constructed by inverse PCR using primers listed in Table S2 

and pKVD10 as a template.   Plasmids pSJ501 and pSJ502 producing VirB10/APTraF and VirB10/AP-CTTraF, respectively, were 

constructed by overlapping PCR using the primers listed in Table S2 and pKVD10 or pKM101 as templates.  Following amplification, 

the virB10/APtraF and virB10/AP-CTtraF products were digested with NdeI-XhoI for insertion into pBSIISK+.NdeI.    
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All ColE1 plasmids expressing the virB10 alleles were ligated to broad-host-range plasmid pXZ151 for introduction into A. tumefaciens 

(Berger & Christie, 1994).    

 

Conjugation assays. E. coli conjugation assays on solid surfaces were carried out essentially as previously described (Whitaker et al., 

2016).  Briefly, overnight cultures of donors and recipients were diluted 1:100 in antibiotic-free media and incubated for 1 h with shaking 

at 37°C.  For induction from the PBAD promoter, arabinose was added (0.2 % final concentration) followed by incubation for 1 h with 

shaking at 37°C.  Donors and recipients (2.5 μl) were mixed on a nitrocellulose filter on LB media containing 0.2% arabinose and the 

mating mix was incubated for 2 h at 37°C.  For broth matings, induced donors were mixed with recipients at a 1:1 volumetric ratio and 

incubated at 37°C for 2 h. Filter and broth mating mixtures were serially diluted and plated on media selective for transconjugants and 

donors. Frequency of transfer was calculated as the number of transconjugants per donor (Tcs/D).  Experiments were performed at least 

three times in duplicate or triplicate, and results are reported as the mean frequency of transfer. 

  

Phage infection assays.  PRD1 bacteriophage was propagated as described previously for R17 (Lang et al., 2011). Strains carrying 

plasmids of interest were grown and assayed for susceptibility to PRD1 infection as previously described with slight modifications 

(Cellini et al., 1997). Briefly, cells induced with arabinose as described above for the conjugation assays.  Fifty microliters of cells at a 

concentration of ~108 ml-1 were spread on an LB plate containing appropriate antibiotics and arabinose, and allowed to dry. Five 

microliters of the bacteriophages PRD1 (106 pfu, final concentration) were spotted onto the lawns of cells, and plates were incubated 

overnight at 37°C.  

 

Type VI killing assay.  T4SS-mediated killing of E. coli by the Pseudomonas aeruginosa type VI secretion system (T6SS) was carried 

out as previously described (Ho et al., 2013).  Briefly, 2ml of E. coli DH5 donors and a P. aeruginosa PAO1retS were incubated 

overnight with shaking at 37°C, then resuspended in 2ml of antibiotic-free LB followed by a 1:100 dilution in 5ml of antibiotic-free LB.  

Cells were then incubated with shaking at 37°C for 2 h, pelleted and resuspended in 100 l LB. P. aeruginosa (17 l) were mixed with E. 

coli (3l) on filters placed on LB plates and incubated for 3 h at 37°C.  Cells were resuspended in 1 ml of LB and serial dilutions were 

spotted onto plates containing spectinomycin (300g/ml) and rifampicin (100g/ml) to select for growth of E. coli.  T6SS killing of E. 

coli is presented as E. coli cell viability in CFU per ml.   

 

Protein detection. E. coli strains were grown and induced for expression of His6- or FLAG-tagged TraF variants of interest in LB media, 

harvested, and normalized to equivalent optical densities (OD600).  Total protein extracts were subjected to SDS-PAGE, proteins were 

transferred to nitrocellulose membranes, and blots were developed with α-His or -FLAG primary antibodies and HRP-conjugated 

secondary antibodies for detection of the TraF proteins by chemiluminescence (Whitaker et al., 2016).  For VirB10 detection in A. 

tumefaciens, cells were grown and induced for expression of the vir genes (see below), and total cell extracts were analyzed by SDS-

PAGE and immunostaining of western blots with -VirB10 antibodies (Jakubowski et al., 2009).  

 

Extracellular VirB2 blot assay. Surface-exposed VirB2 was detected by colony immunoblotting using -VirB2 antibodies as described 

previously (Kerr & Christie, 2010). 

 

A. tumefaciens outer-membrane complex expression and purification. A. tumefaciens strain A348virB10-St was inoculated in 100ml 

of MG/L media supplemented with 100ug/ml of Kanamycin. After overnight incubation at 26°C, 10 ml of culture pellet was inoculated 

into 200ml of fresh MG/L media and incubated with shaking to an OD600 of 0.5-0.8. The culture was further harvested by centrifugation 

and re-suspended in 6L of ABIM media (supplemented with 100mM of acetosyringone for vir genes expression) to an OD600 of 0.1-0.2. 

After 12-14h of incubation at 23°C, the cultures were harvested by centrifugation and re-suspended in cooled 50mM Tris-HCl pH 8.0, 

treated with DNase I, lysosyme and EDTA-free protease inhibitor tablets, and sonicated on ice. After cell disruption, 1mM EDTA was 

added and the lysate was clarified by centrifugation at 38000xg for 20min. The membrane fraction was then collected by centrifugation at 

98000xg for 45 min and membrane pellets were mechanically homogenized and solubilized in 50mM of Tris-HCl pH 8.0, 200mM NaCl, 

1mM EDTA, 0.5% w/v Digitonin (Sigma), 0.75% w/v DM-NPG (Anatrace), 0.5% w/v DDM (Anatrace) and 1mM DTT for 1h at 4°C. 

The suspension was clarified by centrifugation at 98000xg for 20min and the supernatant was loaded onto a 5ml Strep Trap HP (GE 

Healthcare) column and washed with 50mM of Tris-HCl pH 8.0, 200mM NaCl, 1mM EDTA, 0.1% w/v Digitonin, 0.05% w/v DM-NPG 

and 1mM DTT at 4°C. The outer-membrane complex was eluted with the equivalent wash buffer supplemented with 2.5mM of 

desthiobiotin. The single peak fractions were pooled and loaded onto a Superose 6 10/300 column (GE Healthcare) equilibrated with the 

same buffer without desthiobiotin. The sample eluting as a peak after the column void was used immediately for the preparation of 

negative stain EM grids. 

 

Electron microscopy and image processing.  Sample preparation for EM. 4 μl of the OM core complex diluted to 0.01mg/ml was 

applied on glow-discharged carbon-coated copper grids (400 mesh grid copper, Agar Scientific). After incubation for 2 min, the sample 

was washed twice with 10 μl water and then stained for 1 min with 10 μl 2% uranyl acetate. The data were collected on a F20 microscope 

(FEI) operating at 200kV at a magnification of 45,500xg using a low dose mode (~ 30 e Å2) and a defocus range of -0.7 to -2.0 µm. 

Images were recorded on a Gatan UltraScan 4000 CCD camera (Gatan) with a calibrated pixel size of 3.3 Å. 60 micrographs were 

collected. Quality was assessed visually and through CTF estimation.  

 

Preprocessing. The contrast transfer function (CTF) of the microscope was estimated using CTFFIND3 (Mindell & Grigorieff, 2003) and 

the CTF correction of entire images was done by phase flipping using Bsoft (Heymann & Belnap, 2007). Particle images were picked 

from the CTF corrected micographs. A total of 1746 particles were manually selected and extracted with a box size of 240x240 pixels 
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using EMAN/BOXER (Ludtke, 2010). The following processing was done using IMAGIC software (van Heel et al., 1996). Images of 

particles were normalized, band pass filtered, centred, subjected to reference-free multi-statistical analysis (MSA), and then subjected to 

the iterative procedure that includes multi-reference-alignment (MRA), MSA and classification of particle images (van Heel et al., 2000). 

After each round the best 10 classes representing characteristic views were further used as new references. This refinement procedure 

was considered complete when changes in image shifts were no longer observed. A subset of the best 96 representative class averages 

(from 300) were assigned Euler angles by angular reconstitution (Van Heel, 1987) using the structure of the pKM101 core complex 

(EMDB – 5031) as a starting model. An initial three-dimensional reconstruction of the OM core complex was then generated using the 

best classes with the lowest error evaluation for angular orientation; this initial map was further improved using anchor set refinement 

together with rounds of MRA and classification to produce the final three-dimensional map.  
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FIGURE LEGENDS 

 

FIG.  1.   E. coli pKM101 tra gene deletion and complementation analyses. The E. coli pKM101 tra and A. tumefaciens virB loci are 

similar in gene composition and order, as shown by color-coding of genes encoding homologs of the T4SS subunits.  The pKM101 tra 

genes expressed from pRP100 encode a fully functional Tra T4SS, as shown by efficient conjugative DNA transfer and IKe 

bacteriophage sensitivity.  The schematic depicts effects of individual tra mutations (histogram, upper bars) and results of 

complementation studies (histogram, lower bars) in which corresponding genes were trans-expressed from the PBAD promoter (black 

arrow) on conjugative transfer. Matings (2 h) were carried on solid-surface (solid bars) and in liquid (stippled bars); pRP100-carrying 

donors also were mated overnight in liquid with constant agitation (light stippled bars).  Transfer frequencies are presented as 

transconjugants/donor (Tc’s/D).  IKe phage sensitivity (S, sensitive, R, resistant) for tra mutants and complemented strains is shown at 

the right.  

 

FIG. 2.  Substitution and deletion mutational analysis of the outer membrane cap of the pKM101 Tra T4SS. A) Ribbon diagram of the O-

layer of the pKM101 outer membrane core complex (OMCC).  VirB7-like TraN and VirB9-like TraO are color-coded magenta and cyan, 

respectively.  The -helical antennae projection (AP) forming the OM-spanning cap and the C-terminal (CT) domain of TraF are color-

coded red, and the -barrel domain of TraF is color-coded yellow. At right, ribbon diagram of a TraF monomer depicting the -barrel, 

AP, and CT domains in same color-coding.  Domain junctions (residues from N terminus) and positions of deletion or substitution 

mutations are indicated.  B) Schematic depicts TraF domain architecture with junctions (in residues) indicated.   Mutations in the AP or 

CT are listed at left, and effects of the mutations on plasmid transfer (transconjugants per donor, Tc’s/D) and IKe phage infection (S, 

sensitive; R, resistant).  C) Steady-state levels of His-TraF and mutant proteins in total cell extracts, as monitored by immunostaining 

with -His antibodies.  RNA polymerase -subunit (-RNAP) served as a loading control.  

 

FIG. 3. Domain swapping reveals compositional flexibility of TraF’s -barrel, antennae projection (AP,) and C terminus (CT). A) 

Sequence alignment of the AP and C-terminal (CT) domains of TraF and VirB10, with identical (red) and nonidentical (black) residues 

shown. Numbers correspond to domain junctions (residues from N terminus).  Sequences comprising the 2 - loop (APL) - 3 regions of 

AP domains and the highly-conserved RDLF motifs are highlighted.  B) Schematics depicting domains of TraF and VirB10, with 

junctions (residues from N terminus) indicated: Cyto, cytoplasmic; TM, transmembrane domain; Pro-Rich, proline-rich-region; -Barrel; 

AP, antennae projection; CT, C-terminal domain.  Schematics of the TraF/VirB10 chimeras depict the VirB10 domain(s) swapped for the 

equivalent domain(s) of TraF. Strains producing the TraF/VirB10 chimeras supported plasmid transfer in 2 h solid-surface matings at the 

frequencies shown in transconjugants per donor (Tc’s/D), and exhibited sensitivity (S) or resistance (R) to IKe infection.  C) Steady-state 

levels of His-TraF and chimeric proteins in total cell extracts, as monitored by immunostaining with -His antibodies.  RNA polymerase 

-subunit (-RNAP) served as a loading control.  

 

FIG. 4.  Chimeric T4SSs support conjugative DNA transfer and activate T6SS killing.  A) Sequences encoding the outer membrane core 

complex (OMCC) subunits TraN, TraO, and the C-terminal half (residues 194-386) of TraF were replaced with corresponding genes or 

gene fragments from the A. tumefaciens VirB, E. coli R388 Trw, or B. pertussis Ptl systems on mini-pKM101 plasmid pJG144.  The 

chimeric T4SSs composed of the inner membrane complex (IMC) of pKM101 (yellow) joined to the OMCCs from the VirB, Trw, or Ptl 

systems (color-coded) are modeled on the R388 T4SS3-10 structure (Low et al., 2014).  B) E. coli donors producing the IMC::OMCC 

chimeras transferred a pKM101 substrate (pJG142) at the frequencies shown in transconjugants per donor (Tc’s/D) in solid-surface 

(histogram, solid bars) or liquid (stippled bars) matings, and were resistant to IKe phage infection (S, sensitive; R, resistant).  C) E. coli 

survival when cultivated in the absence or presence of P. aeruginosa PAO1.  E. coli DH5cells lacked or produced intact or variant 

forms of the TrapKM101 T4SS depicted.  Statistical significance is shown based on a Student’s t test corresponding to the values of 

plasmid-free DH5 or growth in the absence of P. aeruginosa  (NS, not significant; *P < 0.05; **P < 0.01). For panels B and C, data 

presented are mean +/- SD, n = 3 independent replicates.  

 

FIG.  5.  Requirements for activation of T6SS killing by P. aeruginosa PAO1.  E. coli DH5 lacking or producing the TrapKM101 T4SS 

composed of the His6-TraF variants shown; in each case, the traF allele was substituted for wild-type traF by incorporation into the 

pKM101 tra locus on plasmid pCGR108.  Statistical significance is shown based on a Student’s t test corresponding to the values of 

plasmid-free DH5 or growth in the absence of P. aeruginosa  (NS, not significant; *P < 0.05; **P < 0.01). Data presented are mean +/- 

SD, n = 3 independent replicates. Lower panel:  Steady-state levels of His-TraF variants in total cell extracts, as monitored by 

immunostaining with -His antibodies.  RNA polymerase -subunit (-RNAP) served as a loading control.  

 

FIG. 6.  Negative-stain EM structure of the A. tumefaciens outer-membrane core complex (OMCC) and comparison with the NS-EM 

structure of the OMCC (EMDB-5032) encoded by E.coli pKM101.  A) A. tumefaciens OMCC side view (left) and cut-away side view 

(right).  B) E.coli pKM101 OMCC side view (left) and cut-away side view (right).  C) Representation of the cut-away side view of the 

overlay of A. tumefaciens and E.coli pKM101 OMCC’s. D) Cross-section of overlaid A. tumefaciens and E.coli pKM101 OMCC 

complexes. Dashed line S in panel C indicates the level of the cross section shown in panel D. 

 

FIG. 7.  Working model for biogenesis of Type IVa secretion systems highlighting the importance of the postulated OMCC checkpoint 

in regulating pilus extension.  Steps in the assembly pathway of the T4SS include (A) formation of the stable T4SS3-10 substructure 

(Chandran et al., 2009) and (B) elaboration of a short pilus that extends from an inner membrane platform to the cell surface by a 

mechanism requiring TraB/VirB4- and TraG/VirB11-type ATPases. Next, (C) the pilus extends from the cell surface in a mate-seeking 

mode by a mechanism activated by recruitment of surface-exposed TraC to the distal end of the OMCC (denoted by yellow lightning 

bolt).  TraC alternatively might be recruited to the T4SS via a periplasmic location (red-dashed line, ?).  Finally, (D) upon pilus-mediated 
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or direct contact with a recipient cell, a mating signal is transduced across the donor cell envelope resulting in recruitment of the 

TraJ/VirD4 substrate receptor, substrate docking and ATPase hydrolysis. These signals (denoted by lightning bolts) activate the 

morphogenetic switch to the T4SS ‘mating’ mode.  The assembly intermediate depicted in (B) may bypass the pilus assembly (mate-

seeking) mode (C) if presented with signals, e.g., recipient cell contact, required for activation of the substrate transfer (mating) mode (D), 

as could occur when donors and recipients grow in dense biofilm (solid-surface) communities.  Abbreviations: OM, outer membrane; IM, 

inner membrane; P, peptidoglycan; OMCC, outer membrane complex; IMC, inner membrane complex; GSP, general secretory pathway.  

The pKM101 Tra proteins and their VirB counterparts required for each step of the assembly pathway are denoted.  
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