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Abstract  

 

Background: One of the most widely studied perceptual measures of sensory dysfunction in dystonia 

is the temporal discrimination threshold (the shortest interval at which subjects can perceive that 

there are two stimuli rather than one, TDT).  In this study we present two paradigms designed to 

better quantify temporal processing and used a decision-making model to assess the influence of 

decision strategy over responses for the first time.  

Methods: 22 patients and 22 age-matched control were examined with two tasks (i) temporal 

resolution (a randomised, automated version of existing TDT paradigms) and (ii) interval 

discrimination (rating the length of two consecutive intervals).   

Results: In the temporal resolution task patients had delayed (p=0.021) and more variable (p=0.013) 

response times but equivalent discrimination thresholds. Modelling these effects suggested this was 

due to an increased perceptual decision boundary in dystonia with patients requiring greater 

evidence before committing to decisions (p=0.020).  Patient performance on the interval 

discrimination task was normal. 

Conclusions: Previously observed abnormal in TDT may not solely reflect abnormalities in temporal 

processing as decision-making is abnormal is dystonia.  Our work did not support the presence of a 

selective sensory deficit of temporal resolution or interval discrimination.  Decision modelling 

promises to be powerful analytical tool by which to better define psychophysical abnormalities in 

movement disorders research yielding corresponding insight into relevant pathophysiology. 
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Introduction 

 

Dystonia is a movement disorder characterised by abnormal postures due to involuntary muscle 

contractions.  Individuals frequently use alleviating manoeuvres (sensory tricks) to reduce the 

severity of abnormal muscle activity (1) and the importance of such sensory influences has received 

much attention experimentally with a range of abnormalities in the sensory domain documented (2-

4).  One of the most widely studied perceptual measures is the temporal discrimination threshold 

(TDT) which has been defined as the shortest interval at which subjects can perceive that there are 

two stimuli rather than one (5). Elevated thresholds are present across subtypes of isolated dystonia 

(6).  Furthermore the finding that TDTs are abnormal in first degree relatives of those with dystonia 

has led the suggestion that the TDT represents an endophenotype.  Correspondingly there has been 

much speculation on how mechanisms underpinning abnormal thresholds may inform on the 

pathogenesis of dystonia (6-9).   

Interestingly current paradigms used to test TDT not only assesses temporal discrimination but also 

extraneous sensory and decision making parameters.  For example some studies test more than one 

sensory modality (visual, somatosensory) and deliver stimuli to two sites which requires spatial 

integration (e.g. index and middle fingers).  Whatsmore the design of standard staircase 

methodology in which the separation between two stimuli is slowly increased or decreased in a 

predictable manner allows the obtained thresholds to be readily biased by decision strategy 

unrelated to temporal discrimination ability.   Elevated TDTs have been documented across a range 

of hypokinetic and hyperkinetic movement disorders, cerebellar disease and functional 

(psychogenic) symptoms (6, 10-14). Disease-specific abnormalities may be concealed within the 

currently used TDT metric and better quantification of the precise deficit could offer better insight 

into the pathophysiological mechanisms involved in these distinct diseases. 

In the present study we applied more rigorous psychophysical methodology and tested two tasks 

which assessed different aspects of temporal processing in the millisecond range.  A randomised and 

automatic version of the TDT, temporal resolution, had basic elements common to currently used 

TDT methods and removed potentially confounding elements which are not integral to the definition 

of resolution/acuity (the ability to detect that two stimuli are present rather than one).  A second 

task, interval discrimination, examined the ability of subjects to compare the lengths of two 

consecutive intervals in the millisecond range.  This task was designed to test a different aspect of 
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time perception: temporal discrimination, i.e. the ability to discern differences in the lengths of two 

intervals.  To each of these tasks we applied an established mathematical model of decision-making 

that can disentangle the quality of sensory evidence entering the decision from decision strategy 

and non-decision processes such as stimulus encoding and response execution.  Each of these could 

potentially be abnormal in dystonia.  

Methods 

Twenty-two healthy subjects (mean age 56.2 years (± 11.0), 17 females) and 22 subjects with 

cervical dystonia (mean age 58.2 years (± 11.1), 17 females) were tested.  All dystonic subjects had 

clinically apparent postural abnormality (rather than tremor dominant) and were receiving 

treatment with botulinum toxin injections (tested a minimum of 3 months after their last 

treatment).  A full history and examination excluded subjects that had any evidence of significant 

cognitive disease, other major health problems or sensory problems in the limbs.  Reasoning and 

intelligence was estimated by the non-verbal Ravens Matrix score (maximum/high performance 

score 12) (15).  The Toronto Western Spasmodic Torticollis Rating Score (TWSTRS, maximum/worst 

score 85) and disease duration was documented for all patients. Written informed consent was 

obtained and the study was approved by the local Ethics Committee.   

Both tasks were performed seated and button presses were made using the index finger of their 

right hand.  An answer was required for every trial even if uncertain of the answer and subjects were 

prompted to guess if they paused longer than 5 seconds (forced choice).  Subjects were trained in 

each task (20 trials, data not analysed) prior to the start of each task. The total length of time of the 

experiment with both tasks was approximately 30 minutes. Experiments were coded in Matlab using 

the Cogent toolbox. 

Temporal Resolution Task 

300 consecutive trials were presented in which subjects pressed a button with their right index 

finger to indicate whether they felt one or two stimuli (figure 1A). Unknown to participants, the 

proportion of single-stimulus trials was 30% and of double stimuli trials was 70%.   The double 

stimuli trials had an entirely randomised interval range from 1 to 200ms which could be any decimal 

within that range (generated using the random function in matlab (interval=rand*0.199+0.001)).  

The order of single and double trials was also randomised within the 300 trials.  The index finger of 
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their left hand was stimulated using a ring electrode connected in parallel with two Digitimer 

electrical stimulators (supplementary material for further detail).   

Interval Discrimination Task 

After a short break, subjects were presented with 300 consecutive trials in which they were asked to 

respond with a button press whether the first or second interval was longer (figure 1B).  One interval 

was selected from three fixed values (50ms, 100ms and 200ms).  The other interval varied within the 

range from 1ms up to twice the fixed value (100ms, 200ms and 400ms respectively) were 

randomised to any value within this range.  All stimuli were 2 x 200μs square wave pulses delivered 

to the left index finger using a single Digitimer stimulator. 

Psychometric analysis 

Data were binned into 15 interval ranges spread evenly over the range of possible intervals and a 

psychometric function was fitted to response behaviour for each individual (equations described in 

supplementary material). For the temporal resolution task, the fitted curve describes how the 

tendency or probability to respond “two pulses” rather than “one pulse” increases with larger 

millisecond gaps between the two pulses (figure 2A for examples in two patients). The floor of the 

function was defined by the false positive rate.  The temporal resolution threshold (T50) was defined 

as the interval at which subjects responded “2 pulses” in half of trials (probability of answering “2 

pulses” is 0.5).  Modelled thresholds are also given for temporal resolution at T75 and T98 in order to 

facilitate comparison to previous studies (probability of answering “2 stimuli” 0.75 and 0.98 

respectively).  The slope of the function at T50 was calculated as a measure of the range of time 

intervals over which decisions were uncertain. A similar psychometric analysis has recently been 

applied to the ascending staircase paradigm and the point of subjective equivalence corresponds to 

the T50 threshold (16).   

For the interval discrimination task, a separate psychometric curve was fitted to the data for each of 

the three fixed intervals (50,100ms, 200ms), each containing a third of the trials.  The interval 

discrimination threshold (I50) indicated the variable interval at which the response probability for 

either answer was equal (the point of subjective equivalence) and the slope was calculated at this 

point (a steep slope reflecting high resolution for the discrimination of interval length).  In the 

absence of bias, I50 would be identical to the fixed interval. To analyse all trials we used a contrast 

index (the difference between intervals divided by their total length, see supplementary material) 
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which accounts for the fact that a just-noticeable difference is longer for longer intervals (Weber’s 

law (17)).  

Drift diffusion model 

Data from both tasks were fitted to the drift diffusion model which treats decision time as a period 

for weighing up information. Mathematically, the distribution of reaction times and errors provides 

an estimate of the rate of information accumulation (drift rate), a decision boundary and non-

decision time (18).  The basic assumption is that in order to make a speeded choice between two 

options, evidence is accumulated sequentially over time during the decision period (figure 2B).  As 

soon as sufficient evidence toward one option or the other has gathered, the process stops and a 

response is initiated. The accumulation process is governed by two distinct forces, the tendency to 

drift toward either decision boundary (drift rate) and a stochastic component (diffusion, i.e. random 

noise).  The distance between the two boundaries (decision boundary) reflects the amount of 

evidence required before a decision is made. The non-decision time is the sum of all other processes 

involved such as the sensory encoding of stimuli and the time required for the motor execution of 

response.  Simultaneously fitting both choices and response times to the drift-diffusion model 

allowed us to quantitatively dissociate how individuals accumulate sensory information, from the 

critical amount of information they need before initiating a choice. Our method specifically 

accounted for the different levels of difficulty as interval length was varied, in which different 

strengths of evidence were provided (analysis detailed in supplementary material). 

Statistical analysis 

To compare distributions between groups, independent t-tests were calculated when the data were 

normally distributed and the two-tailed Wilcoxon Rank Sum Test for independent samples was used 

otherwise. The mean (± the standard deviation) is given for descriptive statistics in the text.  

Repeated measures analysis of variance across condition was used to compare the drift rate 

between groups and the interaction of condition by group.  Pearson’s correlation was used to 

estimate covariance of two variables.  Data analysis and statistics were performed using Matlab and 

SPSS.  
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Results 

There was no significant difference in age (t(42) = -0.598, p=.838) or sex (17 females in both groups) 

which is important due to the known influence of both demographics on TDT values (19, 20). The 

mean TWSTRS score in the patient group was 35.9 (± 11.9) and mean disease duration was 16.3 (± 

3.4) years.  The mean Ravens index in controls was 9.3 (±2.42) and cervical dystonia was 7.86 (±2.93) 

with no significant difference between the two groups (t(42)=1.83, p=0.07). 

Temporal Resolution  

We had expected subjects with cervical dystonia to demonstrate impaired performance in this task, 

however we found that performance across groups was remarkably similar (figure 3A, individuals 

data shown in supp. Figure 1).  Temporal resolution thresholds (T50, T75 and T98) were comparable 

across groups and there was no significant difference in the slope gradient between controls and 

cervical dystonia. Therefore despite precise quantification of both isolated thresholds and slope 

metrics, we found no direct evidence that temporal resolution, the ability to detect two stimuli, 

based on accuracy data alone was impaired in cervical dystonia. In addition, summary metrics such 

as the hit rate (proportion of two-stimuli trials correctly identified) and false positive rate (the 

proportion of one stimulus trials with incorrectly identified as two-stimuli trials) were comparable 

between groups (figure 3A). Intelligence (estimated by the Raven’s matrix) strongly correlated with 

the slope (but not threshold) of psychometric function in both groups independently but also when 

the data were combined (R2=0.185, p=-.004.  Thus a high intelligence score was associated with a 

high slope value or a small range of intervals over which there was decision uncertainty. 

Subjects with cervical dystonia were however significantly slower and more variable in their 

response times (group mean of median reaction time in dystonia 1.07s vs 0.958s in controls, 

Wm=396, p=.021, z=-2.31); and group mean of standard deviation in dystonia 0.133s vs 0.234s in 

controls, Wm=389, p=.013, z=-2.47) (figure 3B).  This suggested that despite comparable accuracy 

data there was a systematic alteration in the timing of responses in dystonic subjects with the 

longest reaction times seen for the more difficult decisions (figure 3C). 

In order to obtain more insight into this observation we used the drift diffusion model which 

synergistically evaluates accuracy and reaction time data in order to quantify separate decision-

making components. Given reports that motor function of the limb can be altered in cervical 

dystonia (21) it was important to show that non-decision time was equivalent between groups 
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(median in patients 0.880s vs 0.782s in controls, ns) (figure 4A). This value is an estimate of the 

minimum reaction time that would be present even if perceptual discrimination were instantaneous.  

It is therefore unlikely that increased reaction times observed in dystonia patients were an artefact 

due to increased time needed to execute the motor response required for the button press. As 

expected, drift rate significantly varied across interval bins (df=3.23, F=12.7, p=.001), with lowest 

drift rates for difficult decisions, close to the perceptual limit. However there was no difference in 

the drift rates between patient and controls (df=3.23, F=1.60, p=.191), indicating that the quality of 

the information on which decisions were based was not significantly different between groups 

(figure 4B). In contrast, patients had an elevated decision boundary (median in cervical dystonia 

0.560 vs 0.293 in controls, Wm=348, p=.020, z=2.33) (figure 4C).  This suggested that dystonic 

patients had set a different decision criterion, requiring greater evidence before committing to a 

decision.   

Interval Discrimination  

The second task evaluated the ability to discriminate the length of intervals between successive 

pairs of stimuli.  Subjects reported that this task was more difficult than the temporal resolution 

task, with one control and two dystonic subjects being unable to complete the task (n=41). The 

psychometric function was fitted for each of the fixed intervals (50ms, 100ms or 200ms, supp. figure 

2A).  No clear group difference in response accuracy was observed, with comparable I50 and slope 

metrics at each fixed interval (supp. figure 2B).  Response behaviour using contrast index to combine 

trials was thus similar across groups (supp. figure 3A). Compared to controls, subjects with cervical 

dystonia showed a trend to longer responding for the task but this was not significantly different 

between groups in terms of mean of median (dystonia 2.42s vs 2.31s in controls, Wm=492, p=.061, 

z=1.87) or variability (mean of standard deviation in dystonia 0.399s vs 0.469s in controls, Wm=484, 

p=.097, z=1.65) (supp. figure 3B).  Similar to the temporal resolution threshold, it was decisions 

around the perceptual threshold (more difficult decisions with lower accuracy) which had the most 

pronounced increase in reaction time in dystonia (supp. figure 3C).  

Modelling data from the interval discrimination task using the drift diffusion model again found no 

difference in the non-decision time between groups (Wm=.366, p=.672, z=0.424).  Diffusion rates 

were lower than in the temporal resolution task, in keeping with this task being more difficult due to 

decreased quality of sensory information available.  As expected, drift rate approximated zero when 

there was no contrast between the two intervals and increased with contrast magnitude (supp. 

Figure 3D, df=2.78,F=13.3, p<0.001) and there were no group differences (interaction of group and 
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drift rate df=2.78, F=1.05, p=.397) suggesting that the quality of sensory information available for 

the task was equal in both groups.  In this task, the decision boundary was not significantly different 

(dystonia a=0.637 vs a=0.535 in controls, Wm=316, p=.313 z = -1.01). 

Relationship between tasks  

Across individuals the slope in the temporal resolution task correlated strongly with the slopes in the 

interval discrimination task, as such both tasks appear to sensitively test a common aspect of 

sensory processing ability (supp. figure 4).  

Discussion 

We present two tasks designed to better quantify temporal processing in dystonia. The first task was 

similar to existing temporal discrimination threshold paradigms but the order of stimuli presentation 

was randomised rather than incremental. This simple paradigm shift revealed no significant 

difference between patients and controls in their accuracy in discriminating single from double 

stimuli.  However due to the observation that patients showed longer and more variable reaction 

times  we combined reaction time and accuracy data into a decision-making model.  This 

demonstrated that patients approached decision making differently to controls with a higher 

criterion for information (decision boundary). A further task investigated the ability to distinguish 

intervals presented in pairs, found patients to be no worse at interval discrimination. Our data show 

that altered decision-making is likely to influence thresholds values and questions the assumption 

that abnormal TDT thresholds in dystonia are solely due to impaired temporal discrimination.  

 

Superficially, documenting TDT is a simple procedure.  It can be defined as the shortest interval at 

which subjects can perceive that there is a gap between two stimuli.  Each trial represents a choice 

between two options in which the participant must communicate whether they perceived one or 

two stimuli.  During an experiment the interval between two stimuli is varied and the threshold at 

which they detect this gap is noted. Ascending and descending staircase designs, in which the 

interval between stimuli is systematically increased or decreased, have shown similar results in 

many studies in the literature.   
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However in the psychophysical literature it is well known that such predictable threshold paradigms 

are vulnerable to the influence of multiple decision-making parameters (17). These can be 

collectively referred to as the participant’s decision criterion and are determined by factors such as 

instruction, payoffs and reward contingencies (22).   Furthermore in some previous studies (fuelled 

by a genuine desire for greater sensitivity and specificity) complicating and confounding components 

have been incorporated into TDT.  For example some tasks introduce an obvious spatial element 

(two stimuli delivered at distinct locations), test both the somatosensory and visual modality, use 

single stimulus trials that may not be true catch trials (recognisable by being of weaker intensity) and 

have up to four possible response options which recruits more complex decision making (6, 7, 23).   

For these reasons our first task, temporal resolution, was a randomised and automated version of 

commonly used TDT protocols which aimed to minimse both the effects of bias and potentially 

confounding elements.  The second task required comparison of two consecutive interval lengths, a 

further test of temporal discrimination inspired by our current nomenclature of the psychophysical 

deficit in dystonia ‘temporal discrimination threshold’.  In addition for the first time we recorded 

both accuracy and reaction time since modelling these data in synergy allows assessment of these 

previously unexplored components of the decision-making process.   

Interestingly, we could not provide clear evidence for the existence of deficits in temporal 

discrimination in cervical dystonia in either task. In the temporal resolution task patients were 

equally able as controls to classify one- vs. two-stimulus trials. Furthermore the ability to compare 

the length of two consecutive intervals, interval discrimination, was comparable between groups.   

Patients were however slower in their responses and demonstrated greater intra-subject variability 

in response time in the temporal resolution task. Such an increase in response time could reflect 

either slower sensory processing, or a higher threshold for initiating a response. We therefore 

modelled the data using the drift diffusion model which evaluates response and response time in 

order to quantify separate decision-making components.  The model confirmed our psychometric 

results with equivalent drift rates between groups (no difference in the quality of sensory 

information upon which decisions were based). In the temporal resolution task the decision 

boundary (the level of evidence required before a decision is made), even when the paradigm was 

randomised, was the key difference between groups.  As such, in a task with the same components 

as commonly used TDT tasks, dystonic subjects set a more conservative decision-making strategy 

(despite the forced choice and randomised design).  
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We did not set out to directly compare previous methodologies for assessing TDT in dystonia and 

the methods used here in the same patients. However, an increase in decision boundary could 

contribute to elevated thresholds obtained using an ascending staircase design (a popular method 

used in some but not all previous TDT publications in dystonia). An increased decision boundary 

translates into a bias for subjects to wait before a greater amount of sensory evidence is available 

before reporting a change in stimuli. Doubt about whether two stimuli were presented on trial n will 

tend to favour postponing the decision to trial n+1. These effects are seen irrespective of the quality 

of sensory signal.  Thus our result does not query the reliability of previous studies in which a large 

body of evidence points to differences in performance in psychophysical tests in dystonia.  Our 

results do however offer an alternative interpretation of the TDT as a consistent bias in the form of 

increased boundary separation and altered decision making in dystonia could partially explain some 

previous results.   

Interestingly, our results may also offer a tentative link to work which has started to identify subtle 

cognitive and behavioural problems in association with dystonia.  Previously unidentified deficits in 

the  executive, attentional or visuospatial domains (24) and anxiety and depression have been 

documented in over 50% of patients in some studies (25).  It has not yet been fully elucidated which 

of these are primary features of dystonia and which may be a consequence of the motor impairment 

(24).  However any such change can potentially influence performance on psychophysical tasks.  For 

example, it is well documented that anxiety leads to an increase in the decision boundary in a similar 

manner to the change we observed in cervical dystonia (26). Our work therefore identifies the need 

to evaluating psychophysical performance within models which also evaluate psychological co-

morbidities and cognition in parallel.  

It is important to consider differences between our paradigm and traditional methods. For example 

we delivered stimuli at a single site; it is possible that the spatial integration required to define two 

stimuli trials delivered at different sites (seen in some but not all paradigms) is the core problem in 

cervical dystonia (any spatial computation is inherently more complex in cervical dystonia due to 

abnormal head and neck position). Another important difference is that we randomised the order of 

stimulus presentation.  An alternative hypothesis is that threshold abnormalities observed with 

ordered staircase paradigms are actually testing the ability of subjects to detect a change in stimuli 

rather than temporal discrimination. In line with this argument we have recently shown that 

mismatch negativity, an EEG event calculated by subtracting the potential produced by a standard 

repeated stimulus from that produced by a rare ‘oddball’ stimulus, correlated with TDT obtained by 

staircase methodology in cervical dystonia.  Higher thresholds on the TDT were associated with 
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smaller mismatch negativity thresholds, both suggesting that the saliency of change was reduced 

(27). 

The fact that such a simple paradigm change can reveal so many unanswered questions emphasises 

the complexity of understanding the significance of sensory deficits in dystonia.  Abnormalities in the 

detection of stimuli relating to timing, spatial representations, pain, thermal qualities, kinaesthesia 

have all been documented (3). This hints that there may be a common mechanism central to how 

subjects with dystonia perceive and report sensory phenomena at the root of all of these deficits 

however the nature of this mechanism remains poorly defined. In this specific task we have shown a 

change in a core decision-making parameter but it remains to be established whether a more 

fundamental component of sensory processing is at the root of other sensory deficits. As the neural 

correlates to psychophysical phenomena are increasingly understood the onus is on researchers to 

better define the precise psychophysical deficits in dystonia so that the true neurobiological 

significance can be better appreciated (28, 29).  

We have attempted to test as purely as possible perceptual sensitivity for millisecond timing 

mechanisms and assess the contribution of decision-making components.  However the detailed 

characterisation of psychophysical performance requires careful interpretation, and our results need 

validation with further studies in this patient group and their relatives (to examine endophenotype 

phenomena).  For example, there was a trend for drift rate to be reduced in the temporal resolution 

task at longer interval bins and as such our study may have been underpowered to detect subtler 

abnormalities in sensory processing which could co-exist together with the shift in the decision 

threshold that we observed. 

It is relatively recently that the sensory aspects of movement disorders have been championed and 

their importance in pathogenesis debated. Abnormalities in various domains of sensory processing 

have been documented in almost all movement disorders yet we are still far from defining how such 

abnormalities interact to cause the distinct movement disorders. We hope that the application of 

novel methods and analysis, such as those detailed in this study, will provide better tools to identify 

disease specific abnormalities in the sensory domain with ensuing insight into the pathophysiology 

of dystonia and other movement disorders.  
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Legends 

Figure 1. A Temporal Resolution 300 trials in which subjects respond with a button press whether 

they felt one or two stimuli. Either one pulse or two pulses (with an inter-stimulus range from 1 to 

200ms) were presented at each trial. B Interval Discrimination 300 trials in which subjects respond 

with a button press to indicate whether the first or second interval was longer.  One interval was 

selected from three fixed values (50ms, 100ms and 200ms) and the other interval varied within the 

range from 1ms to twice the fixed value (100ms, 200ms and 400ms respectively).   

Figure 2 A Example of psychometric analysis. Each graph plots actual data and a fitted curve from 

two patients performing the temporal resolution task. Data were binned into 15 interval ranges and 

the proportion of trials to which subjects answered “two stimuli” are marked by crosses. Response 

behaviour was modelled using the psychometric function (solid line). The temporal resolution 

threshold (T50) was defined as the interval at which subjects answer “2 pulses” in half of trials.  The 

slope of the function at T50 is a measure of the range of intervals of decision uncertainty. Threshold 

values and slope metrics are complementary when evaluating discrimination performance.  For 

example, it can be seen that subject 1 had a relatively high false positive rate (floor accentuated by 

shaded region), T50 is ~95ms and the slope is relatively shallow.  Subject 2 by comparison had a low 

false positive rate, their threshold (T50) was greater and the slope is steeper reflecting more 

consistent responses (with a high slope value (slope = Δy/Δx)).  B Drift diffusion model. The model 

simultaneously analyses reaction time and accuracy data. In order to make a speeded choice 

between two options, evidence accumulates over the decision period.  When sufficient evidence for 

one of the two options has gathered, a decision is made and a response initiated. Two distinct 

components drive the accumulator: a tendency to drift toward the correct choice (drift rate) and a 

random component (diffusion).  An example graphical representation of the drift diffusion process is 

shown by the curved line and indicates the amount of evidence for the ‘upper’ response as it evolves 

over time.  At about 800ms the upper boundary is crossed and the process ends. 

Figure 3 Temporal Resolution A Psychometric analysis.  Line plot of the probability of answer “two 

pulses” (y-axis) and log(inter-stimulus interval) (x-axis).  Mean control (blue, dotted line) and 

dystonia (red, solid line) with shaded standard error.  There was little difference in response 

behaviour across the range of intervals tested.  Group metrics:  Hit rate (HR, the percentage of two-

stimuli trials in which subjects correctly identified an interval) and false positive rate (FP, the 

percentage of trials where only one stimulus was delivered in which subjects incorrectly identified an 
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interval) were calculated.  Modelled thresholds are given for temporal resolution at T50, T75 and T98 in 

order to facilitate comparison to previous studies.  The slope at T50 has the units: probability of 

response/ms. p value from the Wilcoxon Rank Sum Test for independent samples given on the lower 

row of the table for each variable. Subjects with dystonia had a trend for increased thresholds 

compared to controls at both the T75 and T98 level, but neither were significantly different. B 

Reaction time histograms of all trials (200bins) revealed systematic differences in the distribution of 

reaction times.  Both mean median reaction time and mean standard deviation of variance were 

elevated in the dystonic group.  C.  Plotting accuracy against reaction time (10 bins) revealed a 

systematic difference in the manner in which dystonic subjects responded.  

Figure 4  Drift Diffusion Model A Non-decision time was no different between groups (bar plot, 

error bars display standard error).  B Drift rate, a marker of the quality of sensory information, 

significantly varied across interval bins. As 30% of trials comprised the 0ms bin there are six 

conditions in the model output (bin centres 0ms, 13ms, 44ms, 85ms, 122ms, 158ms).  Difficult 

decisions, close to the perceptual limit, had low drift rate (bins 2 and 3), whereas drift rates further 

from this point had higher drift rates.   The lack of significant difference between groups suggests 

that there is no significant difference in the quality of sensory information reaching the decision 

process in cervical dystonia. C Decision threshold was increased in cervical dystonia suggesting that 

patients required greater evidence before a decision was made.  

 

Supplementary material  

Supplementary Figure 1 Temporal resolution task: psychometric analysis A Individual data Each 

graph plots actual data and model from an individual subject (n = 44) performing the temporal 

resolution task. Data were binned into 15 interval ranges (log(interval(ms)), x-axis) and the 

proportion of trials to which subjects answered “two stimuli” (y-axis) are marked by crosses. 

Response behaviour was modelled using the psychometric function (solid line). Controls are shown 

in blue, subjects with cervical dystonia in red.  B Group metrics Hit rate (HR, the percentage of two-

stimuli trials in which subjects correctly identified an interval) and false positive rate (FP, the 

percentage of trials where only one stimulus was delivered in which subjects incorrectly identified an 

interval) were calculated.  Modelled thresholds are given for temporal resolution at T50, T75 and T98 in 

order to facilitate comparison to previous studies.  The slope at T50 has the units: probability of 

response/ms. p value from the Wilcoxon Rank Sum Test for independent samples given on the lower 
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row of the table for each variable. Subjects with dystonia had a trend for increased thresholds 

compared to controls at both the T75 and T98 level, but neither were significantly different.  

Supplementary Figure 2 Interval discrimination task: data subdivided by the length of the fixed 

interval (50ms, 100ms, or 200ms).  Each dataset contained approximately 100 trials. Mean accuracy 

increased as the length of the fixed interval increased (66.5%, 72.9%, 75.4%) reflecting greatest 

difficulty when the fixed interval was 50ms.  Four individuals had no discriminatory ability for when 

the fixed interval was 50ms (two control, two dystonic) and one control had no discriminatory ability 

when the fixed interval was 100ms.  Data for these subjects were excluded from subsequent 

analysis. Data from all 41 subjects when the fixed interval was 200ms are shown’ y-axis plots 

probability of response “second interval longer” versus the x-axis, the length of second interval.  

Crosses are patient data and the solid line is the modelled psychometric function. Group means are 

shown to the right of the individual data plots. B Boxplots showing no significant difference in I50 or 

slope for any of the three fixed interval values respectively (p>0.05 for all rank sum comparisons).  

Supplementary Figure 3 Interval discrimination task A Psychometric analysis Contrast index 

(equation 4) was used to plot all data. Performance behaviour was similar across the two groups. A 

negative contrast indicates that the 1st interval was longer than the 2nd interval. As expected 

response rate approximates 50% when the contrast is zero (no difference between intervals, 

subjects guessing) B Reaction Time As in the temporal resolution task the reaction time was elevated 

in the dystonic group but the effect was not significant and variance was comparable.  C Accuracy vs 

reaction time with data divided into 10 bins. D. Drift Diffusion Model The non-decision time was no 

different between groups.  The drift rate varied significantly with contrast with lowest quality of 

input sensory information when the difference between intervals was minimal. Bin centres of 

contrast were -0.288, -0.196, -0.098, 0.037, 0.239, 0.493, 0.813.  Drift rate was not significantly 

different between groups.  The decision boundary in the dystonic group was not significantly 

increased. These results support the hypothesis that another form of timing estimation in the 

millisecond range is intact in dystonia.  

Supplementary Figure 4 Sensitivity of tasks The standard deviation (sigma) of the psychometric 

function significantly correlated across tasks.  A small value signifies high resolution such that there 

was only a small range of intervals or contrast of interval through which there was response 

uncertainty.  
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