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Abstract: Metal organic {Ni4O4} clusters, known oxidation catalysts, have been shown to provide a
valuable route in increasing the photocurrent response on silicon nanowire (SiNW) photocathodes.
{Ni4O4} clusters have been paired with SiNWs to form a new photocathode composite for water
splitting. Under AM1.5 conditions, the combination of {Ni4O4} clusters with SiNWs gave a current
density of −16 mA/cm2, which corresponds to an increase in current density of 60% when compared
to bare SiNWs. The composite electrode was fully characterised and shown to be an efficient and
stable photocathode for water splitting.

Keywords: photocathode; nickel oxide; nanowires; water splitting

1. Introduction

The depletion of fossil fuels and the effects of global warming is a major concern for the world’s
future energy requirements. Using inorganic semiconductors to perform water electrolysis under solar
radiation has been shown to produce clean, sustainable and renewable fuels such as hydrogen (H2) [1].
As an alternative to fossil fuels, H2 will play an important role for the future because it is storable,
transportable, can be converted to hydrocarbon fuels using the Fischer-Tropsch or Sabatier process
and can be converted into electrical energy using fuel cells [2]. Following the work by Fujishima and
Honda [1], there has been enormous interest in the field of semiconductor materials for photocatalysis
and photoelectrolysis, specifically on the mechanisms that are involved in photoelectrochemical (PEC)
water splitting [3–8]. The photocatalytic approach for water splitting can be divided into two types.
The first involves the use of single visible-light-responsive photocatalysts with sufficient potential to
split water into H2 and oxygen (O2) [9]. The second is via the two-step excitation mechanism using
two different photocatalysts, analogous to photosynthesis carried out by plants [10]. In these systems,
devices are typically built upon an n-type semiconducting photoanode and p-type photocathode.
Recent advances in photocathodes such as Si [11], Cu2O [12], CuO [13,14], and GaInP2 [15] have
resulted in solar-to-fuel efficiencies are becoming comparable to the much studied photoanodes such
as TiO2 [16]. This leads to photocathodes being replaced by expensive platinum group metal catalysts.
As an alternative to platinum, our previous reports have studied alternative photocathode materials
based on nickel oxide (NiO) [17], silicon [18] and carbon nanotubes [19].
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Silicon is still the most popular inorganic photoelectrode because of its low band gap, abundance
and broad absorption of the solar spectrum. Nanostructured forms of silicon such as silicon nanowires
(SiNWs) [18], porous silicon (p-Si) [20], and flat silicon [11] have shown their potential as photocathodes
for renewable energy generation [21]. In addition, the tuneable band gap and antireflective properties
are some of the features which make SiNWs suitable for water splitting [22]. Recently, Liu et al.,
described the mechanism for photocatalytic H2 production on SiNWs and suggest it is not true
water splitting [23]. This has led researchers to combine silicon with molecular catalysts to lower the
activation energy and improve the efficiency of solar water splitting [24]. Furthermore, 1-dimensional
(1D) structures such as nanowires can offer better charge transport by providing a more direct pathway
for charge collection/transfer [25,26]. They have also been shown to reduce the interconnected grain
boundaries commonly associated with particulate based photoelectrodes [27].

Recently, materials such as nanocrystals (NCs) have been used as photosensitisers, which aid in
maximising the visible light absorption when paired with a silicon semiconductor [28]. An alternative
to NCs is to incorporate molecular catalysts made from low-cost, earth abundant elements, which
contain well-defined structures. Examples of molecular catalysts that fit this criterion are typically
based on first row transition metals iron, copper, cobalt and nickel. As one of earth’s most abundant
elements, materials made from nickel have been estimated to be one of the most significant catalysts
due to their water oxidation potential.

In this work, we propose the use of a {Ni4O4} molecular cluster as a reduction co-catalyst with
SiNWs to produce a novel photocathode for water splitting. The introduction of {Ni4O4} molecular
clusters significantly increased the reductive photocurrent response of SiNWs compared to bare SiNWs.

2. Results and Discussion

The tetra-nuclear {Ni4O4} cubane cluster complex, [Ni4(HL1)3(HL2)(H2O)(CH3OH)][CH3COO]·
2CH3OH·CH3CN (1) (Figure 1) where (H3L1=3-(2-hydroxybenzylideneamino)propane-1,2-diol;
H2L2=3-aminoprppane-1,2-diol) has been prepared by the reported one-pot reaction of nickel(II)
acetate, salicylaldehyde and 3-aminopropane-1,2-diol (see Materials and Methods) [29]. 1 has been
chosen as the {Ni4O4} cluster employed in this study due to its ease of synthesis and its distinctive
structure, whereby each nickel centre is in a unique environment. A {Ni4O4} bio-mimic with each
nickel in a differing environment may offer a more accurate mimic to the natural oxygen centre in
photo system II, whereby the manganese metal centres are all in different environments owing to their
varying organic substituents.
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Herein, we paired {Ni4O4} clusters with SiNW photocathodes forming a new p-type
photoelectrode for water electrolysis. SiNW photoelectrodes were prepared by metal assisted chemical
etching (MACE) and the {Ni4O4} clusters were loaded into the photocathodes by drop cast technique.
The MACE technique helped in the formation of non-ordered SiNW arrays. SiNW array traps the
incoming light and helps in the improved solar to current efficiency. Addition of the {Ni4O4} clusters
gave a significant increase in photocurrent response for SiNW photocathodes. Information on the
fabrication of SiNWs, {Ni4O4} clusters and electrode fabrication is mentioned in Materials and Methods.

The network of NWs can be seen in the scanning electron microscopy (SEM) image in Figure 2.
Figure 2a,b shows the top view and cross sectional view of bare SiNWs. The inset in Figure 2a
represents the islands of SiNWs, which are distributed across the surface of the substrate. The cross
section in Figure 2b represents the bare SiNWs, which were measured to be 1 µm in height using
Image J software. Figure 2c,d shows the top and cross sectional view of the SiNWs coated with
{Ni4O4} clusters. Figure 2c shows the SiNWs after drop casting {Ni4O4} clusters on the surface.
The {Ni4O4} clusters were non-homogeneously distributed across the NW surface. The cross section of
the SiNWs + {Ni4O4} clusters is shown in Figure 2d which shows the clusters of varying sizes (up to
1 µm) on the SiNWs. Additional SEM images can be found in the electronic supporting information
(ESI) (Figure S1). The presence of {Ni4O4} clusters on the SiNWs was confirmed by means of X-ray
photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDS). Confirmation of
the nickel 2p spectra for the {Ni4O4} clusters can be found in the ESI (Figure S2). EDS spectra were
scanned over the cross sections and the red circle insets indicated the presence of the {Ni4O4} clusters.
The EDS spectra of bare SiNWs and SiNWs with {Ni4O4} clusters is shown in the ESI (Figure S3a,b).
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Figure 2. SEM images (a,b) top and cross section view of bare SiNWs. Inset in Figure 1a represents
islands of SiNWs; (c,d) top and cross section view of SiNWs coated with {Ni4O4} clusters.

Figure 3a shows the current density as a function of time for the SiNW photocathodes. All current
density measurements were obtained by ramping the bias potential between 100 and 500 mV for 5 min
under air mass (AM) 1.5 conditions. Bare SiNW photocathodes gave a maximum current density
of −10 mA/cm2, which was measured with an applied bias potential of −500 mV. Figure 3b shows
the current density for the SiNW photocathodes containing the {Ni4O4} catalyst. The addition of
the {Ni4O4} catalyst gave a maximum current density of −16 mA/cm2, which corresponds to an
improvement in current density of 60%. This is the first example of {Ni4O4} acting as a reduction
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catalyst as opposed to an oxidation catalyst [30]. The current densities were measured by ramping the
bias potential in 100 mV increments in 0.1 M H2SO4 electrolyte vs. Ag/AgCl.Nanomaterials 2017, 7, 33 4 of 7 
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Figure 3. Photocurrent measurements showing current density as a function of time for (a) bare SiNWs
and (b) SiNWs + {Ni4O4} clusters.

A time course study showed that the current density is stable under illumination for at least
5 h (Figure 4). Passivation techniques such as electrografting, thermal hydrocarbonisation and
hydrosilylation of SiNW photocathodes for improving stabilities are currently being explored. H2 was
measured by taking 500 µL aliquots from the headspace of the photoelectrochemical cell after 1 h [31].
The evolution of H2 was quantified by gas chromatography to be approximately 279 µLmol/h.
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Figure 4. Current density measurement of SiNWs + {Ni4O4} clusters catalyst in 0.1 M H2SO4 at a bias
potential of −500 mV over 5 h.

3. Materials and Methods

Nickel (II) acetate-tetrahydrate (Ni(OAc)2·4H2O), salicylaldehyde, 3-aminopropane-1,2-diol,
sodium hydroxide, methanol and acetonitrile were all purchased from Sigma-Aldrich (Castle Hill,
NSW, Australia) and used as such without further purification.

SiNWs were fabricated from p-type silicon wafers (Czochralski, Silicon Quest Intl. Ltd., San Jose,
CA, USA) with resistivity of 10–20 mΩ·cm, orientation (100). Hydrofluoric acid (HF, 48%) was
purchased from Scharlau Chemie (Chem-Supply Pty. Ltd., Gillman, SA, Australia). Silver nitrate
(AgNO3) and hydrogen peroxide (H2O2, 30%) were purchased from Merck (Bayswater, VIC, Australia).
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3.1. Synthesis of {Ni4O4} Clusters

{Ni4O4} clusters, 1, were synthesised according to the previously reported literature method [29].
In a typical experiment, Ni(OAc)2·4H2O (4 mmol), salicylaldehyde (4 mmol), 3-aminopropane-1,2-diol
(5 mmol) and sodium hydroxide (8 mmol) was mixed with methanol (50 mL) in a reaction
flask. The resulting green mixture was stirred at room temperature for 40 h. Following this,
acetonitrile (20 mL) was added and the resulting green solution was allowed to evaporate at room
temperature resulting in green crystals of {Ni4O4} clusters. The green crystals were analysed by
Attenuated total reflection spectroscopy (ATIR) on a Bruker (Bruker Optics, Billerica, MA, USA)
Alpha Platinum-ATR showing a good match to 1. IR found (ATR)/[IR previously reported [29]
(KBr)]: υmax/cm−1 = 3410 (s)/[3448 (s)], 2917 (m)/[2917 (m)], 2846 (m)/[2850 (m)], 1638 (s)/[1627 (s)],
1595 (m)/[1596 (m)], 1542 (m)/[1541 (m)], 1472 (m)/[1472 (m)], 1308 (m)/[1310 (m)], 1104 (s)/[1104 (s)],
1034 (s)/[1039 (s)], 755 (m)/[761 (m)], 591 (m)/[598 (m)].

Mass spectrometry was performed on a Waters LCT Premier XE ESI Q-TOF mass spectrometer
(Waters, Milford, MA, USA) isotope patterns were typical for a {Ni4O4} molecular ion. m/z (ES+) 1040.0
(M+-[CH3COO]-H2O), 1007.0 (M-[CH3COO]-CH3OH-H2O), 935.0 (M-[CH3OO]-2CH3OH·CH3CN
-H2O). UV-Vis of the {Ni4O4} clusters can be found in the supporting information (Figure S4).

3.2. Fabrication of SiNWs

A p-type silicon wafer with resistivity of 10–20 mΩ·cm was cleaned by ultrasonication using
acetone, ethanol and deionised water for 5 min, respectively. The wafers were then cut into
1 × 1 cm2 pieces and placed in 1:1 HF and ethanol solution in order to remove the native oxide
layers. The unpolished side of the wafers were masked using a sticky tape to avoid etching of the
surface. Firstly, the wafers were dipped in 4.8 M HF and 0.02 M AgNO3 solution for 30 s in order to
deposit silver (Ag) on the polished side. The wafers were then immediately dipped in the etching
solution of 4.8 M HF and 0.1 M H2O2 for 2 min. The etched wafers were then rinsed with deionised
water and the sticky tape was removed from the unpolished side. Finally, the etched wafers were
dipped in conc. nitric acid for 20 min to remove Ag coating, then washed with deionised water and
transferred into an Argon purged glove box.

3.3. Electrode Fabrication

Initially the 1 × 1 cm2 SiNW piece was dipped in 1:1 HF and ethanol solution for 30 s to remove
the native oxide layer. It was then dried in a stream of N2 gas and quickly transferred to an argon
purged glove box. {Ni4O4} (1 mg in 1 mL methanol) clusters (1) were deposited on SiNWs by “drop
casting” procedure inside the glove box. Few drops of {Ni4O4} in methanol were placed on the
SiNW sample and then allowed to dry. This was repeated five times. A back contact to the SiNWs
photocathode (unetched surface) was obtained by using In-Ga eutectic. A copper plate was used as a
rigid electrical contact.

4. Conclusions

In conclusion, we have developed a new SiNW photocathode for water splitting that achieves
a 60% improvement in current density when compared to bare SiNWs. The combination of {Ni4O4}
clusters with SiNWs gave a current density of −16 mA/cm2 in contrast to −10 mA/cm2 for bare SiNW
photocathodes. While {Ni4O4} clusters are known oxidation catalysts [32], here we show them to
also be valuable in increasing the reductive photocurrent response on SiNW photocathodes for water
splitting. The resultant photocathode is an example of an efficient electrode made from abundant
materials, which is capable of splitting water.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/7/2/33/s1.
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