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Abstract

HTTP Adaptive Streaming (HAS) permits to efficiently deliver video to multiple heterogenous
users in a fully distributed way. This might however lead to unfair bandwidth utilization among
HAS users. Therefore, network-assisted HAS systems have been proposed where network elements
operate alongside with the clients adaptation logic for improving users satisfaction. However,
current solutions rely on the assumption that network elements have full knowledge of the network
status, which is not always realistic. In this work, we rather propose a practical network-assisted
HAS system where the network elements infer the network link congestion using measurements
collected from the client endpoints, the congestion level signal is then used by the clients to
optimize their video data requests. Our novel controller maximizes the overall users satisfaction
and the clients share the available bandwidth fairly from a utility perspective, as demonstrated
by simulation results obtained on a network simulator.

keywords— HTTP adaptive streaming, Pricing and resource allocation

1 Introduction

In the last decade video traffic has drastically increased to become the largest share of the total
data transmitted in the Internet. This trend is expected to continue with video traffic reaching an
outstanding share of 82% by 2020 [1]. However, for sustaining this growth there is the need to solve
many challenges that arise from the fact that the Internet was not originally designed for media
data transmission. For example, the Internet has been designed as a best-effort delivery network,
and does not provide any sort of guaranteed Quality of Service (QoS) in general. As a consequence,
the video transmission rates have to be adapted to the network condition variations in order to
avoid dramatic congestions and large delays in video playback. Adapting the transmission rate to
the available resources means varying the encoding bitrate of the transmitted video, hence the name
adaptive bitrate streaming or more simply adaptive streaming. The way bitrate adaptation is performed
strongly depends on what protocol is used for the video delivery. Whereas adaptive streaming systems
initially used User Datagram Protocol (UDP) to transmit video data, an approach based on the HTTP
(over TCP) protocol, known as HTTP Adaptive Streaming (HAS), has established as the universal
solution for video distribution over the Internet in the last decade [2]. Transmitting video data
using the HT'TP protocol offers the following advantages over the UDP systems: i) Network Address



Translation (NAT) and firewalls can easily handle HTTP transmissions, whereas UDP flows might
be blocked; i) standard and widely deployed web server technology can be used; iii) since HAS is
pull-based the adaptation algorithm resides exclusively at the client side, which results in a fully
distributed and scalable algorithm that does not require to keep per client state information at the
server. Nevertheless, HAS only provides a framework to deploy adaptive video streaming services,
and many challenges remain open, especially on the design of the client adaptation strategy.

In more details, the video content in HAS systems is made available at the main server in different
coded versions, namely representations, each one with a given bitrate and resolution. The representa-
tions are generally subdivided into chunks of few seconds, which are then downloaded by clients using
HTTP requests over TCP. Chunks represent video segments that can be decoded independently, so
that the users can request different representations for different video chunks. At the client side, the
video is played while it is being downloaded. A playout buffer usually resides at the user side, in order
to store video chunks that have been downloaded but not played yet. The role of the buffer is to
absorb network bandwidth variations and avoid freezings (interruptions) of the video playback. The
size of the buffer represents a first design tradeoff in HAS: a large buffer reduces rebuffering events
caused by network condition variations, whereas a small buffer leads to a more responsive adaptation,
being able to quickly benefit for large bandwidth when available. Normally each HAS client then
implements a strategy that selects the best representation to download from the server with the goal
of maximizing the downloaded bitrate while minimizing the occurrence of rebuffering events. The
bitrate selection usually takes into account the buffer status and the estimated bandwidth. In such a
way, HAS systems are able to respond to the heterogeneous demands of several HAS clients in a fully
distributed and adaptive way.

It is important to note however that the use of HTTP requests for downloading video chunks
prevents the HAS client controller from having full control of the transmission rate. When a chunk
request is served, the TCP downloads the data as fast as possible without taking into account the
actual bitrate of the video chunk. This TCP behavior complicates the bandwidth estimation in the
adaptation logic at the client side and might further lead to unfair resource allocation when multiple
users share the same bottleneck [3]. A large body of research has focused on designing HAS client
controllers that guarantee a stable and rate-fair utilization of the network resources. Some of these
works focus exclusively on improving the decision strategy made at the client side. Others investigate
solutions where the bitrate selection becomes network-assisted, which means that the network elements
provide some sort of support (e.g., bitrate selection guidelines) to help the client adaptation logic in
order to improve fairness and network efficiency. The latter approach seems to go against the original
principles of HAS, which ideally aims at having a fully distributed controller. However, due to the
expected increase of the Internet video traffic which will put increasing pressure on the network
infrastructure, it becomes important to reasonably relax the design constraints and consider any
effective method that could help improving the video delivery.

In network-assisted HAS systems, we can distinguish two main approaches: i) methods that only
supervise the client controller during the bitrate selection and ii) methods that modify the network
behavior, which eventually affects the users bitrate selection. The works in the first category, e.g.,
see [4], typically rely on elements that monitor the client requests and the network link usage, and
transmit information to the client controllers in order to guarantee fairness among the users. In the
second category, the authors of [5] for example propose to have network elements performing a rate
allocation among the video flows and reserving a defined bandwidth to each client. When the client
controller estimates the download bandwidth, the estimation then matches the value of the reserved
bandwidth, which eventually leads to a consistent bitrate selection. Both types of methods have
pros and cons: forcing a defined bandwidth to each user does not require any modification of the
client controller and it is resilient towards misbehaving users but it poses important conditions on



the network elements that must be able to perform a per user bandwidth reservation. On the other
hand, signaling methods have only limited assumptions about the network elements but require a
modification of the client controller for all the users of a particular video service.

Beyond having different methodologies, network-assisted HAS systems might also have different
ultimate objectives, even if they all generally aim at increasing the overall users satisfaction. Some
proposals use a policy that takes into account the perceived video quality of the different videos,
e.g., [5,6], while other works are content agnostic and ignore video quality metrics, e.g., [4]. The latter
methods are in general easier to implement, since they do not require any information about the video
content, i.e., all videos have the same priority. However, it is well known that video sequences might
have very different characteristics. The mere video rate is not an accurate measure of the quality
seen by users and video quality fairness can only be achieved with methods that are adaptive to the
video content. Finally, the proper consideration of the network technology is another critical factor
in the design factor in network-assisted HAS systems. For example, the recent works in [6-8] operate
in a Software Defined Networking (SDN) environment. SDN is an emerging technology that promises
to bring more advanced features, such as network configurability, to the future Internet. Since the
SDN provides tools for enabling QoS management to the Internet, network-assisted HAS systems can
leverage SDN features to improve video delivery performance. However, the SDN technology is not
currently widely deployed, and it is not clear whether and how the deployment of this technology
will take place. Therefore, for an easy deployment, a network assisted HAS has to pose very lim-
ited assumptions regarding the technology used by the inner network nodes and possibly avoid the
modification of the network elements that lie on the delivery path. Aside from these works which
propose possible implementations of networked-assisted HAS, there are also efforts for the standard-
ization of such a technology. The MPEG group is developing an extension of the Dynamic Adaptive
Streaming over HTTP (DASH) standard [2] called Server and Network Assisted DASH (SAND) [9].
The extension provides guidelines about the communication between network nodes and the features
that the network-assisted framework should possess, e.g., the system should be resilient to clients
that ignore the network assistance. Standardization efforts certainly motivate the development of
network-assisted systems and contribute to prepare future deployments.

A common aspect in all the above works, which is not necessarily a practical assumption, is that the
network link capacities are assumed to be known. HAS systems might also use third party networks
and might not have access to this information. In the case where no prior information on the network
resources is available, is it still possible to properly coordinate the HAS users using measurements
collected exclusively from the clients’ endpoints? That is specifically the problem we address in this
work. Our goal is to coordinate a set of HAS users sharing a common bottleneck of unknown capacity
in order to maximize an overall users satisfaction metric, which we refer to as total utility. Moreover,
we assume that i) the network elements are not able to alter the downloading rate of the users and i)
the user satisfaction depends on the content of the individual downloaded videos. We formulate the
problem as a Network Utility Maximization (NUM) problem and we design a price-based distributed
controller inspired by congestion control algorithms [10] that maximizes the overall utility. In order
to enable our utility-aware rate allocation method, we introduce a coordination node that evaluates
the congestion level, i.e., the price, of the network as a function of the downloading times of the
chunks that are gathered by the HAS clients. This coordinator node however does not have to lie on
the delivery path of the video. Using that price information, the users can perform a proper bitrate
selection in a fully distributed way. In our algorithm, the users who achieve a satisfactory utility level
with low bandwidth, do not increase the bitrate of the requested chunks in congested periods in favor
of users downloading videos that are more demanding in terms of bandwidth. We test the proposed
solution in a network simulator (NS3) under different network conditions and compare it with other
rate-fair controllers proposed in the literature. The simulation results confirm the advantages that
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Figure 1: Overview of the considered scenario: Conventional HAS system and the infrastructure
modification required by the proposed method (highlighted in orange).

can be achieved by utility-aware rate allocation methods with respect to the baseline rate-fair HAS
controllers. The main advantage of our method is that it does not involve modifications of nodes
that lie on the delivery path of the video data and it relies only on end-to-end measurements, the
downloading time of the video chunks, for estimating the available resources and coordinate the users.
Therefore, this work shows that the downloading time is not only an important variable that is
used for conventional single user HAS controllers but it is a useful quantity for the development of
network-assisted HAS systems.

The remaining of the paper is structured as follows. In Section 2, we provide a description of
the considered framework. In Section 3, we describe how the NUM framework can be extended to
the HAS scenario. We provide some details about the implementation of the proposed controller in
Section 4. We present in Section 5 the simulations results. Finally, conclusions are provided in Section
6.

2 System Overview

The scenario investigated in this paper is depicted in Fig. 1. The HAS system is composed by N
clients connected to a video server through a common bottleneck link of unknown capacity C. This
scenario reflects many realistic cases, for example a group of users sharing the same access link, or a
group of users connecting to the same server. Each client downloads video chunks of bitrate r and of
fixed time duration T, by sending HTTP requests to the server. The clients then store the received
video data in the playout buffer, which has a maximum capacity of M video chunks. After a chunk is
downloaded the next one is requested immediately if a free slot is available in the buffer, otherwise the
client waits until a chunk is played and a buffer slot becomes free. In particular, requests are made
every T, when the buffer is full.

We denote the utility delivered to the user ¢ with U;(r;), where r; represents the downloaded
bitrate of user ¢. We define the total utility in the system as the sum of the individual utilities:
U(r) = Zfil Ui(r;). We assume that the shape of the utility function is a strictly increasing concave
function, as it is common in the NUM framework. Considering that the users are ultimately interested
in is the visual quality, we argue that the users’ utility functions should also reflect some sort of visual
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Figure 2: SSIM curves for sample videos with different content. As can be seen different video types
exhibit different dependency on the encoding bitrate, low-complexity videos (lecture) achieve a much
higher SSIM score when compared to high-complexity videos (sport).

quality metric for the downloaded video sequences. Since the content of the video sequences is usually
different for the users, the utility functions are also different. In general, the visual quality of video
sequence with low-complexity content grows quickly at low bitrate but saturates for larger bitrates.
For high-complexity content, the quality grows more slowly with the bitrate so that a large bitrate is
necessary to reach a satisfactory quality. In order to motivate the above statement, in Fig. 2 we show
the average visual quality captured by the Structural Similarity (SSIM) metric [11] for four different
video sequences encoded at different resolutions and at different bitrates. The SSIM is one of the
possible video quality metrics that can be used as utility function but our work extends also to other
quality metrics. The video quality scores achieved at the same bitrate for the different sequences are
strikingly different. It becomes obvious that, since the user satisfaction depends on the video quality,
the client bitrate selection should also be driven by the video content heterogeneity in order to fully
benefit from the capabilities of the network-assisted HAS system.

Finally, we briefly motivate the concavity assumption made for the utility functions. In the litera-
ture some works argued that the concavity assumption does not always hold and proposed some other
utility models for different settings (e.g. [12]). A discussion about the different implications that arise
from the different shapes of the utility function goes beyond the scope of this work. However, concave
functions, though being a restricted class of function, have been successfully used in the literature and
in practice. In particular, the proposed method generalizes the conventional rate-fair HAS systems,
which basically use a homogeneous concave utility function for all the different HAS users, and it
extends them to cases with heterogenous (concave) utility functions for different video streams. The
reasonable and commonly admitted assumption of concave utility functions further permits to develop
a simple distributed rate allocation algorithm and to incentivize cooperation among the users.



3 Network Utility Maximization for HAS

We now briefly describe the NUM framework for the congestion control scenario, we then show how
the problem and the solution method can be adapted to the HAS environment.

We now consider N users sending data packets through a link of capacity C. Moreover, as for our
HAS model, we associate a utility function that depends on the transmitted rate to every user. The
goal of maximizing the overall utility given the available network resources mathematically translates
into the following optimization problem:

N N
maximizez Ui(r;) s.t. Zri <C. (1)
i=1

=1

The variables r; simply denote the rate at which packets of user i are transmitted. If the utility
functions are concave, then the above optimization problem is a convex problem with a linear inequality
constraint. The Problem (1) can be solved distributively using dual decomposition methods (see [10,
13]) obtaining the following iterative system of discrete dynamic equations:

M argmax Uy(r}) — Mr) = [U;(0)] T i =1..N (2a)
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i

N
o= (s (- o
+

=1

where )\ is the dual variable, or price, associated to the bottleneck capacity constraint, the operator
[U7:(-)] " represents the inverse of the derivative of the utility function of user i, and the notation ()4
denotes the projection onto the positive orthant. The variable § is a simple parameter that controls
the step length of the dual variable update. Since the algorithm is an iterative method we index the
iterations with the variable k in Eq. (2a) and Eq. (2a). In Eq. (2a) each user independently optimizes
its transmission rate according to the most recent value of the price A*. Whereas in Eq. (2b) the dual
variable is updated using the most recent rate values rf“. In the congestion control framework, the
dual variable update corresponds to the dynamic law that governs the evolution of the packet queue
in the buffer located before the bottleneck link. Consequently the price update operation is carried
out implicitly by the network and the users can obtain the value of the price from the end-to-end
delay measurements in order to optimize the transmission rate according to Eq. (2a).

Applying the above NUM framework to the HAS system is not completely straightforward. Prob-
lem (1) can be defined in the HAS framework with r; corresponding to the selected bitrate of user
i. The bitrate update equation, Eq (2a), also remains meaningful in the HAS context, but the price
update equation, Eq. (2b), becomes problematic. In the HAS scenario, the queuing delay at the
bottleneck buffer is completely uncorrelated from the selected bitrates because chunks are transferred
on the top of TCP. Consequently, the price has to be evaluated differently, a viable solution is to
use a coordination node, which then communicates the current price to the users. Since we further
assume that the value of the capacity C' is unknown, we also need to find an alternative update rule
that does not explicitly use the value C. The price evolution in Eq. (2b) is governed by a simple
rule: the price increases if the downloaded total bitrate exceeds the link capacity and vice versa.
Therefore any other quantity that can signal the overuse (underuse) of the bottleneck capacity can
be used to update the price. We argue that the average downloading time of the video chunks is
a good candidate for representing the use of the bottleneck capacity in a HAS scenario. Similarly
to queuing delay or packet losses in congestion control, a downloading time that exceeds the chunk
video time can be interpreted as a signal that the network cannot sustain the selected bitrates. The



playout buffer of HAS client can handle occasional downloading times larger than chunk video times,
but this is clearly not a sustainable situation in the long run. In this case the playout buffer would
empty and the video playback would freeze. Hence, regardless of the bitrates selected by the users,
we want all the users to experience an average downloading time smaller than the chunk video time
Ter, 7i < T,k, where 7; denotes the average downloading time of user 7. If any of the users experiences
a downloading time that is higher than T,; the price should increase so that the selected bitrates
decrease and consequently also the downloading times. Now, since a price increase caused by a high
downloading time of a single user affects the selection of all the other users, can we guarantee that it
does not compromise the efficient use of the network resources? Under the assumptions of an ideal
TCP behavior that should not happen. These assumptions, which represent the ideal characteristic
of every rate-fair congestion control algorithm, are: ¢) the bandwidth is always equally shared among
the active connections, 4i) the channel is fully utilized when at least one connection is active. In this
case, we obtain the following equivalence:

N
ZﬂSC’ <— %MAX(I')STck (3)

i=1

where Tprax = max;—1.. v 7; and 7; denotes the average selected bitrate for user i. The equivalence
can be understood by noting that if one user experiences an average downloading time equal to
T.i, it means that the user’s connection is basically always active ensuring that the channel is fully
utilized (note that users make one chunk request every T.; when the buffer is full). Due to the ideal
assumptions on the TCP, a connection that is always active means that any bandwidth left free by
other users is not wasted, which guarantees an efficient network usage. The equivalency of the two
conditions in Eq. (3) is true only if the ideal characteristic of the congestion control is verified. If
this assumption does not hold, the equivalency is only an approximation whose accuracy depends on
the actual behavior of the congestion control. In practice, we therefore need to consider the usage of
the downloading time condition, instead of the original rate condition, as an heuristic approximation
suggested by ideal assumption on the congestion control used.
The above equivalence permits us to rewrite Eq. (2) as follows:

P ] T = 1N (4a)
M= (W 4 B(Fmax () = Tg)) -
The price update operation of Eq. (4b) can now be easily computed since every user knows the
downloading time of the requested chunks. More in detail, the entire operation flow is the following:
in the first step of Eq. (4a), which corresponds to the adaptation logic, all the users independently
compute the optimal bitrate and request the chunks to be downloaded at the next iteration. After a
chunk download, every user sends the average measured downloading time to the coordinator node.
The coordinator then performs a maximum pooling operation on the received downloading times and
updates the dual variable A using Eq. (4b). The value of A is then sent to the users for the next bitrate
selection. By performing these steps iteratively, the system converges to the optimal equilibrium point.

4 System Implementation

The iterative procedure described in the previous section cannot be used directly in realistic settings.
Even though the iterative system of Eq. (4) naturally leads to a condition where the playout buffers
are full in average, it is advisable to take into account the current buffer status in the bitrate selection
in order to avoid undesired rebuffering events. Moreover since the system is not able to instantly adapt



the price in case of a sudden capacity variation, the rate selection cannot be completely agnostic of
the TCP throughput prediction, which should also therefore be taken into account.

4.1 Coordinator Node

As depicted in Fig. 1 the coordination node represents a general network endpoint that is able to
communicate with the HAS users that share the bottleneck link. This endpoint can also coincide with
the video server or with one of the user endpoints. Every time a user downloads a video chunk from
the server, the updated average downloading time is sent to the coordinator node, which replies by
sending the most updated value of the price back to the user. It also stores the received downloading
time in order to track the maximum value among all the users. The coordinator node periodically
performs the price update described in Eq. (4b). It can also perform other operations, such as a
smoothing of the price value for a more stable bitrate selection, or the addition of a proportional error
to the price value in order to improve the dynamic performance of the system. Finally, it is worth
noticing that the coordinator node operations are extremely simple, thus preserving system scalability.

4.2 Client Node

A client needs to know the utility curve in order to select the bitrate values. In the case where the
utility function reflects some video quality metric, there are several available options for providing
this information to the client controller. For example: ¢) the quality information is computed when
the video is encoded and it is made available at the server side in an auxiliary file; i) the client
application estimates the video quality using a no-reference method (no-reference methods estimate
the video quality of a video using only the compressed signal). The second method has the advantage
that it can be implemented without involving the server side, but the first choice is much simpler and
provides more accurate values for the actual video quality.

Every time a chunk has to be downloaded the user is able to select the bitrate using Eq. (4a).
The client controller should also take into account the buffer status and the average TCP throughput
when making the bitrate selection in order to reduce the chances of rebuffering events. In our imple-
mentation, if the buffered video time is low and the estimated TCP throughput is smaller than the
bitrate computed from Eq. (4a), then we neglect the price value and we select the bitrate to download
according to the TCP estimate. In this case the downloaded bitrate is smaller and therefore safer
in terms of rebuffering probability. A secondary problem arises in real world implementations: the
ideal rate rigea1 computed using Eq. (4a) is a continuous variable whereas the available bitrates are
discrete. In order to deal with this problem there are two possible choices, namely i) to always select
the largest available bitrate that is smaller than the ideal rate rigear; #4) to adopt a selection strategy
where the average selected bitrate is equal to the ideal rate rigea;. The first choice, in contrary to the
second one, has the advantage of a more stable bitrate selection but might lead to a lower channel
utilization, since it is more conservative. In our case we implement the former solution and privileged
stability with respect to channel utilization. Taking into account the different real-world problematics
described above, the client controller selects the most suitable bitrate to download and issues the
chunk request to the server. Once that the video chunk is downloaded the user updates the average
downloading time and sends this information to the coordinator node, which sends back the most
recent price value.

As final remark we would like to point out that the dynamic system of Eq. (4) can actually be
implemented in many different ways and that our solution is not unique. In any case however, the
system of Eq. (4) should represent the core of the actual implementation, which would aim at operating
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Figure 3: Three HAS users implementing our algorithm compete for the same bottleneck channel.
The three plots respectively show the selected and ideal bitrates, the buffer occupancy and the channel
utilization.

with the same equilibrium point as for the theoretical system.

5 Experimental Evaluation

We have implemented the proposed system in the NS3 network simulator with different users request-
ing the different types of video. We use the SSIM score [11] as utility functions, depicted in Fig. 2.
In our simulations we identify each user with a single video at a given resolution, therefore with a
single constant utility curve that serves the adaptation logic. The length of the chunks is Tex = 2 s
and the available bitrates correspond to [0.4, 0.64, 0.88, 1.2, 1.68, 2.24, 2.8, 3.6, 4.4, 6] Mbps. For
a detailed description of the actual implementation of the controller and for more simulation results,
we refer the reader to our former paper [14] and to an extended version available online [15].

In the first test case, three HAS clients share a common bottleneck link that has a physical capacity
of 5 Mbps. The users 2 and 3 download the cartoon and lecture video respectively, and are active for
the entire simulation, while the user 1 downloads the sport video (which is the most complex one)
between 250s and 600s. The results are depicted in Fig. 3. In Fig. 3a, we provide both the video
bitrate selected by the users and the ideal bitrates (rigea1) as described in Section 3. This plot shows
the ability of the algorithm to allocate the available bandwidth consistently with the different utilities:
user 1, being the one with the most complex video sequence, gets the largest amount of bandwidth
when active. Fig. 3b further shows the buffer level of the users. The playout buffers of all the three
users have an occupancy level close to the maximum value (which has been set to 16s of video). The
channel utilization, depicted in Fig. 3c, is also satisfactory. In fact, the cumulative download rate of
the users settles to a value that is close to the physical channel capacity.

In the next simulations, we compare our algorithm with three HAS controllers proposed in the



literature, namely: the Probe and Adapt (PANDA) algorithm also proposed in [16], which is a conser-
vative rate-based controller, that aims at having constant bitrate selection; the ELASTIC algorithm
proposed in [17], which is a very aggressive buffer-based controller that strives to fully utilize the chan-
nel; and a conventional HAS controller as described and implemented in [16], which offers somehow an
intermediary behavior compared to the other two. We investigate the performance of our algorithm
for different number of N users sharing a bottleneck link. We consider 10 different realizations of
random utility-user assignments and we average every metric over these realizations. In this scenario,
all the users are simultaneously active for 460 seconds and we evaluate the time-average SSIM value
over the user population at regime. We also compute the average SSIM variation per downloaded
chunk (ASSIM), which corresponds to the average absolute value of the SSIM difference between
consecutive chunks. The last metric is the capacity usage, which is the time average cumulative
downloaded bitrate of the users divided by the total capacity. The three metrics above are evaluated
in scenarios with a different number of users, i.e., N = [2, 4, 8, 12, 25, 50, 100], with C' = N - 1.25
Mbps. The corresponding results are depicted in Fig. 4a. The box-plot shows the minimum, the first
and third quartile divided by the median and the maximum of the time-average SSIM value among
the user population. We can notice that our algorithm is in general able to achieve better average
quality compared with the rate-fair controllers. In particular the minimum average SSIM for the
proposed algorithm is remarkably higher than the one of the rate-fair controllers. By looking at the
numerical values, our method can achieve a gain of up to 0.05 point for the minimum SSIM score for
large N. Beyond increasing the average SSIM, the proposed algorithm also reduces the average SSIM
variations, as shown in the second column of Fig. 4a. From the third column of Fig 4a, we can also
notice that the proposed algorithm is the one achieving the lowest bandwidth utilization compared
to the baseline algorithms. Nevertheless, the more efficient usage of the bandwidth achieved by a
smart bitrate selection permits to have better performances in the other evaluated metrics. The low
bandwidth utilization is caused by the policy of always selecting a bitrate that is lower than the ideal
bitrate. One way to improve this metric is to select a bitrate that is equal on average to the ideal
rate; however, in this case the value of ASSIM would also increase.

We further analyze the performance of our algorithm when the bottleneck capacity is shared with
TCP cross-traffic for different amounts of TCP connections. This test is important since in realistic
settings the network resources can be shared with other type of traffic, which commonly corresponds
to TCP traffic. In this scenario, we verify that the proposed algorithm is effectively able to estimate
the available resources and it does not get starved by the competing flows. We set the number of HAS
users to N = 16 and then add different numbers of TCP connections, i.e., Nrcp = [2, 4, 8, 16]. The
capacity is set to C = (N + Npcp) - 1.25 Mbps. We then compute the same metrics as in the previous
tests and the results are shown in Fig. 4b. The average SSIM shows that the different algorithms are
able to achieve approximatively the same performance. However, the proposed algorithm achieves
higher values of minimum SSIM with respect to the rate-fair controllers. From the second column
in Fig. 4b, we see that the proposed method achieves the lowest SSIM variations, confirming the
behavior observed in Fig. 4a. In terms of channel utilization, ELASTIC is the algorithm that has
the highest utilization ratio while our algorithm has the lowest channel utilization together with the
PANDA algorithm. It is worth noting that the proposed algorithm achieves approximatively the same
average quality as the other algorithms using less bandwidth. This spared bandwidth is not wasted,
but it is used by the other TCP connections. Therefore, we can state that considering the whole set
of users (HAS users plus cross traffic users) our method provides a higher overall users satisfaction.
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(b) SSIM statistics, SSIM variations and channel utilization for the four implemented controllers for a set 16
HAS users sharing the bottleneck with a varying number of TCP flows, with C' = (N + Nrcp) - 1.25 Mbps.
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Figure 4: Comparison with other rate-fair algorithms
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6 Discussion and Future Works

The huge popularity of HAS is associated to mainly two characteristics: i) a full integration with
the current deployed Internet infrastructure; i) a high scalability due to a fully distributed controller
with no per user state at the server side. Some recent studies [3] have revealed unfairness issues
of some HAS adaptation logic because of erroneous bandwidth estimations at the client side. To
overcome this limitation, several works in the literature proposed network-assisted HAS systems. In
such systems some network elements interact with the HAS framework in order to assist the users and
make a smarter bitrate selection that is able to ultimately improve the users satisfaction. Even though
these modifications go against the original HAS principles, where the adaptation logic is completely
distributed, their advantages are worth to be considered and studied.

Inspired by the NUM framework used in congestion control, we design a distributed network-
assisted HAS system that coordinates users sharing a common bottleneck in order to maximize the
delivered utility. The framework is based on the definition of a price that measures the congestion
level of the bottleneck in order to coordinate the users. The price is related to the downloading
time of the video chunks measured by the users and captures the underuse or overuse of the network
resources. The coordination of users via this price signal permits to overcome the main limitation of
most of the network-assisted HAS systems that rely on the prior knowledge of the available capacity.
In the simulation results, we further show the ability of the proposed algorithm to work under different
network conditions and for a large number of clients, and yet to improve the quality fairness of the
users when compared to classical rate-fair controllers.

As future work, we aim at extending the system to the multiple bottlenecks scenario, where a
different price is associated to every bottleneck. This poses important challenges for designing a
proper price update strategy in order to guarantee an efficient use of the resources.

Acknowledgment

This work has been supported by the Swiss National Science Foundation under grant CHISTERA
FNS 20CH21 151569.

References

[1] “The zettabyte era: Trends and analysis,” Cisco, White Paper, 2016.

[2] T. Stockhammer, “Dynamic adaptive streaming over HTTP—: standards and design principles,”
in Second annual ACM conference on Multimedia systems. ACM, 2011.

[3] S. Akhshabi, L. Anantakrishnan, A. C. Begen, and C. Dovrolis, “What happens when HTTP
adaptive streaming players compete for bandwidth?” in ACM 22nd international workshop on
Network and Operating System Support for Digital Audio and Video. ACM, 2012.

[4] S. Petrangeli, J. Famaey, M. Claeys, S. Latré, and F. D. Turck, “QoE-driven rate adaptation
heuristic for fair adaptive video streaming,” ACM Transactions on Multimedia Computing, Com-
munications, and Applications, vol. 12, no. 2, 2015.

[5] A. El Essaili, D. Schroeder, E. Steinbach, D. Staehle, and M. Shehada, “QoE-based traffic and
resource management for adaptive HT'TP video delivery in LTE,” IEEE Transactions on Circuits
and Systems for Video Technology, vol. 25, no. 6, 2015.

12



[6]

[13]

[14]

[15]

P. Georgopoulos, Y. Elkhatib, M. Broadbent, M. Mu, and N. Race, “Towards network-wide QoE
fairness using openflow-assisted adaptive video streaming,” in ACM SIGCOMM workshop on
Future human-centric multimedia networking. ACM, 2013.

G. Cofano, L. De Cicco, T. Zinner, A. Nguyen-Ngoc, P. Tran-Gia, and S. Mascolo, “Design
and experimental evaluation of network-assisted strategies for HI'TP adaptive streaming,” in 7th
International ACM Conference on Multimedia Systems. ACM, 2016.

J. W. Kleinrouweler, S. Cabrero, and P. Cesar, “Delivering stable high-quality video: An SDN
architecture with dash assisting network elements,” in 7th International ACM Conference on
Multimedia Systems. ACM, 2016.

E. Thomas, M. van Deventer, T. Stockhammer, A. Begen, and J. Famaey, “Enhancing MPEG
DASH performance via server and network assistance,” The Best of IET and IBC, 2015.

F. P. Kelly, A. K. Maulloo, and D. K. Tan, “Rate control for communication networks: shadow
prices, proportional fairness and stability,” Springer Journal of the Operational Research society,
vol. 49, no. 3, 1998.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment: from error
visibility to structural similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, 2004.

S. Shenker, “Fundamental design issues for the future internet,” IEEE Journal on selected areas
i communications, vol. 13, no. 7, 1995.

D. P. Palomar and M. Chiang, “A tutorial on decomposition methods for network utility maxi-
mization,” IEEE Journal on Selected Areas in Communications, vol. 24, no. 8, 2006.

S. D’Aronco, L. Toni, and P. Frossard, “Price-based controller for quality-fair HTTP adaptive
streaming,” in International Symposium Multimedia. TEEE, 2016.

——, “Price-based controller for quality-fair HTTP adaptive streaming — extended version,”
arXww preprint arXiw:1701.01392, 2017.

Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. Begen, and D. Oran, “Probe and adapt: Rate adap-
tation for HT'TP video streaming at scale,” IEEE Journal on Selected Areas in Communications,
vol. 32, no. 4, 2014.

L. De Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo, “ELASTIC: a client-side controller
for dynamic adaptive streaming over HT'TP (DASH),” in 20th IEEE International Packet Video
Workshop. TEEE, 2013.

13



