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Abstract 

Income and fuel price pathways are key determinants in projections of the energy system in integrated 
assessment models. In recent years, more details have been added to the transport sector representation in 
integrated assessment models. To better understand the dynamics within these more complex models, this 
manuscript analyses transport fuel demand elasticities to projected income and fuel price levels. In order to 
isolate price effects on energy demand and create a transparent environment to compare fuel demand 
response, fuel price shocks were simulated under various scenarios. Interestingly, the models show very 
comparable oil price elasticity values for the first 10 to 20 years that are also close to the range described in 
the empirical literature. When looking at the very long term (3040 years), demand elasticity values widely 
vary between models, between 0.4 and -1.9, showing either continuous demand or increased demand 
responses over time. The latter can be the result of long response time to fuel price shocks, availability of new 
technologies, and feedback effects on fuel prices. The elasticity calculation method proved to be a suitable 
method to evaluate model behaviour and its application is also recommended for other models as well as 
other sectors represented in integrated assessment models.   

 

Key words: Transportation, energy modelling, model evaluation, price elasticity, income elasticity 

mailto:Oreane.Edelenbosch@pbl.nl


1. Introduction 

Integrated Assessment Models (IAMs) have been developed to model the evolution of the global 

energy and land-use systems for the coming century. They have extensively been used to project 

greenhouse gas emissions and to identify cost-effective mitigation strategies [1, 2]. In the past, IAMs 

tended to represent energy demand sectors in a rather stylised manner, while presenting energy 

supply in more detail. Energy demand sectors are complex, both in terms of the many sub-sectors 

with numerous technologies and in the heterogeneity of consumers that use the services requiring 

energy. These sectors are therefore more difficult to represent in quantitative models. 

Energy demand reduction can, however, have important contribution to emission reduction [1, 3, 4].  

In recent years, more details of the energy demand side have been incorporated in IAMs, in order to 

better understand demand dynamics and the role of efficiency in mitigation strategies. This is 

especially the case for the transport sector, where infrastructure, behaviour and technology 

considerations have been addressed, as described in several articles in the Transport Research Part D 

special issue on transport modelling in IAMs [5-9].  

The models have various representations of the transport system, some with more technology detail, 

and others providing a more aggregated demand formulation. Several studies compare IAM transport 

sector outcomes [10-12], and show a variation in projected growth of transport service demand, fuel 

switching and efficiency change [11]. Intermodal comparison studies are informative, as they provide 

a range of plausible pathways.  However, as the models have become more complex, it becomes less 

easy to understand why model results differ [3]. Kriegler et al. (2015) indicate that, besides intermodal 

comparisons, diagnostic analysis which characterise model dynamics, are very relevant to explain 

model differences. This type of analysis is not aimed to explore realistic policy scenarios, but to identify 

typical model responses to a single policy signal [13]. So far, a detailed diagnostic analysis of transport 

model responses to key drivers in IAMs has not been performed. 

Income and fuel price levels are key model drivers. Income relates to the money available to spend on 

transport activities and fuel price affects the benefits of energy efficiency of technologies used and of 

switching to alternative fuels. Moreover, the implementation of a carbon tax, which is the commonly 

used mitigation policy instrument in IAMs, will impact fuel prices. Elasticities of transport fuel demand 

are used as measure for how sensitive demand is to changes in –in this case- either income or prices. 

In this study, the transport models’ implicit fuel demand elasticities are explored, by comparing 

demand responses to various fuel price and income trajectories. The aim is twofold; first to better 

understand model dynamics through a diagnostic experiment, and second comparing the model 

dynamics to empirical data as a validation test. A large number of empirical studies have analysed the 

sensitivity of transport demand to changes in fuel price and income [14, 15], expressed in elasticities, 

to inform transport planners and policymakers [16]. Moreover, quantifying the model response to 

elasticity values provides the opportunity to translate model dynamics of models that consider details 

of transport modes and technologies into relatively aggregate models. A comparable exercise has 

been performed for demand models by Hogan and Sweeney [17]. They conclude that the implicit 

elasticity calculation method is appropriate for comparing demand model dynamics, and they 

recommend modellers to make this a standard component of their documentation to better 

understand the model dynamics.  



An overview of the various models and methods used to calculate elasticities and scenarios that were 

run by the models are discussed in Section 2. The models’ transport consumption response to varying 

fuel prices and income scenarios compared to the empirical data is presented and discussed in Section 

3. Underlying changes, such as efficiency effects and changes in the kilometres travelled, are 

addressed separately. Section 4 provides tentative conclusions about the variations between models 

and discusses the implications of the projections of energy transitions and the role of climate policy.  

2. Method 

With everything else remaining constant, fuel demand elasticities measure the percentage change in 

demand due to a 1% increase in price or income. A set of scenarios was designed to estimate price 

and income elasticities for transport demand in six global integrated assessment models. Elasticities 

of fuel consumption, but also, for those models in this study containing sufficient detail, service 

demand and efficiency responses for specific transport modes. This section provides an overview of 

the models, fuel and income scenarios, and the elasticity calculation method.  

2.1 Models and baseline scenario 

The IAMs included in this study are IMAGE, MESSAGE, POLES, REMIND, TIAM-UCL and WITCH1. These 

form a set of well-known IAM models that contributed to key assessments and also cover a wide range 

of different methods (see Error! Reference source not found. and Supplementary Information).  

Table 1 Overview of key characteristics of the transport models 

Name Model 

type 

Solution methods Service Demand driver 

per transport mode 

End use technology 

representation 

IMAGE PE Recursive dynamic 

simulation 

GDP, population, fuel 

price, travel time, mode 

characteristics 

All modes  

POLES PE Recursive dynamic 

simulation 

GDP/income, population, 

fuel prices 

All modes 

MESSAGE GE Intertemporal 

optimisation 

GDP, population, fuel 

price 

All modes (aggregated 

together) 

REMIND GE Intertemporal 

optimisation with 

perfect forecast  

GDP growth, fuel prices, 

elasticity of substitution 

in CES function 

LDV 

TIAM-

UCL 

PE Intertemporal 

optimisation 

Linear relation to GDP 

and population 

All modes 

WITCH GE Intertemporal 

optimisation with 

perfect forecast 

GDP, population, 

elasticity of substitution 

in CES function 

LDV and road freight 

 

                                           
1 The MESSAGE transport module used in this study is a simpler version than the one used in other papers 
(e.g.. McCollum et al., 2016) of the special issue “Transport in IAMs”, that this paper is part of. Other models 
employed might also not exactly match those versions employed in other papers of the special issue. 



Of the six IAMs, POLES, IMAGE and TIAM-UCL have a more technology-rich representation of transport 

demand. The projected kilometres travelled, which are related to population and GDP, are distributed 

over the transport modes either based on exogenous assumptions (TIAM-UCL and POLES) or 

endogenously on their price and speed (IMAGE). Per transport mode, different technologies are 

considered that compete on the basis of exogenous technology cost and endogenous fuel cost. POLES 

and IMAGE are both recursive dynamic simulation models and TIAM-UCL is a linear optimisation 

model. 

In REMIND, the mobility demand for all modes of transport are input to a nested CES production 

function that ultimately produces GDP. REMIND differentiates between four other transport modes 

besides light duty vehicles (LDVs). The representation of transport in the version of MESSAGE used in 

this study captures only fuel switching and price-induced demand responses [18]. Importantly, the 

entire sector is modelled as one; all motorised transport modes are aggregated together into a single 

demand category.  

Finally, in WITCH, road transport kilometre demand (LDVs and freight) is derived based on GDP and 

population growth. This demand can be met by different vehicles (traditional, hybrid, plug-in hybrid, 

battery electric vehicles) and fuel types, which compete based on cost. The investment costs of 

batteries endogenously decrease, following a global learning rate via dedicated R&D investments. The 

remaining part of the transport sector is modelled in a top-down fashion and included in the 

aggregated non-electric vehicle sector in the CES structure.  

 

All models are run on the basis of a medium baseline, using the assumptions from the SSP2 scenario 

for population, income and other parameters (unless otherwise indicated).  

 

2.2 Fuel price elasticity scenarios 

In line with previous studies that tested demand elasticities inherent in models, scenarios with fuel 

prices shocks are compared to the original price pathway in the models’ baseline scenario [17, 19]. 

The shocks are applied to 1) oil & natural gas, 2) biofuels and 3) electricity from 2020 to 2070, changing 

the price with respect to a reference price trajectory, by -50%, +50% and +100% (see Table 2). Based 

on experience with model demand responses to carbon prices the expectation was that fuel price 

shocks of 50% to 100% would be needed before there would be a significant demand response. The 

fuel price is increased at the final energy level for all demand sectors; however, the focus of our 

analysis is only on the transport demand response.  

Table 2: Scenario design to calculate price demand and income demand elasticities. Descriptions 

of Scenarios 2 to 10 indicate the price jumps relative to the baseline scenario, for the three fuel 

types considered. Ref indicates the unaltered reference fuel price trajectory in the baseline of each 

model. Scenario descriptions of Scenarios 11 and 12 indicate the varying income pathways. 

Scenario Price change  per fuel type 

  Oil & Natural gas Electricity Biofuel 



 

Figure 1 shows the baseline transport oil price used in each model (at the end-use level; global 

average) (panel a), as well as the fuel price change, relative to the baseline, in the -50% scenario and 

+100% scenario (panel b). The WITCH and TIAM-UCL scenarios do not include end-use taxes in their 

prices, implying that these models use a lower price pathway. All models project oil prices to increase 

as a result of resource depletion in baseline, but the extent of this effect varies. The variations in oil 

price development between models ultimately resulted in different fuel shocks, in absolute terms. 

Price jumps are implemented as exogenous shocks. In two models (IMAGE, POLES), this is 

implemented by replacing the endogenous prices by an exogenous input. In the other models (TIAM-

UCL, MESSAGE, REMIND and WITCH), where this would interfere with the model solution, price 

increases/decreases were added to the endogenously calculated final energy prices – thus mimicking 

additional taxes or subsidies. Here, dynamic model responses and feedback effects could clearly be 

observed.  

The most important model response is that, due to higher fuel prices, the demand for this particular 

fuel (and its primary resource, crude oil) is reduced (allowing to calculate the elasticities – see further). 

As a result, however, as a feedback final energy prices tend to move away from the price shock 

pathway towards the original price pathway, in the long run. This effect is the largest in MESSAGE, but 

can also be seen in the TIAM-UCL and REMIND projections. In REMIND, the perfect foresight feature 

leads to a reduction in the price change effect already by 2020 (when the shock is introduced). The 

reduction in demand due to the exogenous price increase, in this case, has led to a relaxation of the 

scarcity and thus to a reduction in the endogenous price component. Yet, despite the variance in fuel 

price pathways, since price demand elasticities are calculated relative to price changes (and not to 

price levels), even with smaller price changes it is still possible to compare elasticities between models.  

1  Ref Ref Ref 

2  -50% Ref Ref 

3  Ref -50% Ref 

4  Ref Ref -50% 

5  +50% Ref Ref 

6  Ref +50% Ref 

7  Ref Ref +50% 

8  +100% Ref Ref 

9  Ref +100% Ref 

10  Ref Ref +100% 

Scenario Income change 

11 SSP1 GDP assumptions 

12 SSP3 GDP assumptions 



 

Figure 1: Global average price of transport oil in the baseline scenario (Scenario 1) (top) and the 

relative increase in oil price compared to this baseline (bottom), for the price shock scenarios of 

+50% (Scenario 5), +100% (Scenario 8) and -50% (Scenario 2).2 

2.3 Income elasticity scenarios 

Two extra scenarios with different income pathways are run to analyse income elasticities (see Table 

2, Scenarios 11 and 12 and Figure 2). In the baseline scenario, the models have implemented the 

Shared Socio-Economic Pathway (SSP) 2 assumptions on GDP and population growth. The SSPs are a 

scenario framework that defines pathways of the evolution of society and ecosystems in the next 

century. Within this framework SSP2 is the middle of the road scenario. The alternative GDP pathways 

are based on SSP1 and SSP3 which assume respectively low and high challenges for mitigation and 

adaptation. Within that narrative SSP1 follows higher and SSP3 follows lower economic development 

than SSP2 [20]3.  

                                           
2 Note that in the figure the average global prices are shown. The moving away effect at the global level can be 
larger than at the regional level as the average fuel prices also can be affected by regions, with lower or higher 
than average fuel prices, accumulating a larger share of the global transport final energy use. 
3 The SSP1, SSP2 and SSP3 GDP pathway assumptions are published on https://secure.iiasa.ac.at/web-
apps/ene/SspDb 

https://secure.iiasa.ac.at/web-apps/ene/SspDb
https://secure.iiasa.ac.at/web-apps/ene/SspDb


 

Figure 2: GDP pathways implemented in the models. The solid line is the SSP2 baseline (Scenario 

1), the dashed line is the higher GDP pathway (Scenario 11) and the dotted line represents the 

lower GDP pathway (Scenario 12). 

2.4 Price and Income elasticity calculation method 

The scenarios described above allow to calculate elasticities. In the case of calculating elasticities on 

the basis of model runs, the various fuel quantities and prices can be compared at the same point in 

time and for the same region. This allows to compute the elasticities without having to correct for 

other covariates or confounding factors (which can obviously not be done for empirically derived 

elasticities). Based on two different scenarios (1 and 2),  𝑄𝑖1 and 𝑄𝑖2 denote the quantity consumed, 

which can be - service demand (kilometres travelled) , final energy use, or energy efficiency (energy 

use per kilometre travelled) of category or fuel 𝑖. Similarly,  𝑃𝑖1 and 𝑃𝑖2 denote the price of fuel 𝑖 in 

both scenarios. Given these four values, the arc price elasticity can be calculated through a logarithmic 

function: 

𝜂𝑄,𝑖 =
𝑙𝑜𝑔𝑸𝑖2 − 𝑙𝑜𝑔𝑸𝑖1

𝑙𝑜𝑔𝑷𝑖2 − 𝑙𝑜𝑔𝑷𝑖1
 

where 𝜂𝑄,𝑖  measures the price elasticity of quantity Q with respect to the price of fuel 𝑖.  

In this case, various price projections for a given future year are compared, and there is no beginning 

or end point between those points. The arc elasticity can therefore be approximated by a mid-point 

formulation on the basis of the average value of the independent variables [14]: 

𝜼𝑸,𝒊  = (
∆𝑸𝒊

𝟎. 𝟓 (𝑸𝒊𝟏 + 𝑸𝒊𝟐)
) / (

∆𝑷𝒊

𝟎. 𝟓 (𝑷𝒊𝟏 + 𝑷𝒊𝟐)
) 

where the percentage change between Scenarios 1 and 2 is calculated relative to the average value 

between the two. 

The elasticities are calculated for the years 2030 and 2060. Some models work with 10-year time steps, 

which would make 2030 the first year for which price change effects can be analysed and 2060 the 

last. In the literature, there is a differentiation between short-term and long-term elasticities, as the 



full impact of a price change can take several years to wear out. Short term is often considered less 

than two years, while long term refers to more than 10 years. It has been found that long-term 

elasticities are higher (and can be up to three times as high [21]) than short-term elasticities. 

Compared to the literature, all those calculated in this study are long-term elasticities, in line with the 

models’ long-term perspective, mostly with an end-of-the-century time horizon. Both the long term 

(10 years) and the very long term (40 years) are compared to the long-term transport elasticity values 

described in the empirical literature.  

2.5. Cross-price market share semi-elasticities 

To examine fuel consumption responses to price changes in other fuels, typically standard cross-price 

elasticities are used (e.g., [22]). However, this approach does not always yield meaningful results: if 

market shares of alternative fuels are small, such as currently is the case for biofuel and electricitythis 

result in difficult-to-compare high elasticity responses to a slight change in demand. Therefore, market 

share elasticities are computed (as introduced in [23]). The market shares of different fuels i are 

defined as: 

𝑴𝑺𝒊 =
𝑸𝒊

∑ 𝑸𝒋
𝑰
𝒋=𝟏

 

Based on these market shares, the changes in absolute values of the market shares 𝑀𝑆𝑖 are computed 

for the different fuel types i due to changes in the price of fuel 𝑗, resulting in cross-price market share 

semi-elasticities4, which we define as: 

𝜼𝑴𝑺𝒊,𝒋 ≡
𝑴𝑺𝒊,𝟏 − 𝑴𝑺𝒊,𝟐

∆𝑷𝒋

𝟎. 𝟓 (𝑷𝒋,𝟏 + 𝑷𝒋,𝟐)

 

These market share elasticities can be interpreted as changes in the market share of each fuel i due 

to a 1% increase in the price of fuel j (or by multiplying them by 100, they represent the (approximate) 

market share change in percentage points due to a doubling of the price of fuel j). These elasticities 

sum to zero, ∑ ηMSi,j
I
i=1 = 0, since market shares always add to one. Therefore, these cross-price 

elasticities5 isolate the fuel switching effect due to price changes as a result of efficiency improvements 

and demand changes discussed above.6 

3. Models’ inherent demand elasticity results 

3.1 Oil and alternative fuel responses 

The absolute change in energy demand, compared to the baseline in 2030 and 2060, of transport oil 

and alternative fuel (AF)7 in response to the oil and natural gas price shocks (Scenarios 2, 5 and 8) are 

shown in Figure 3. In 2030 (i.e., 10 years after the applied shock) all models show a decrease in oil 

demand and an increase in alternative fuel under higher oil and natural gas prices, and vice versa. 

                                           
4 Note that the same arc elasticity approach is used as before. Moreover, the definition of the semi elasticity 
here uses the absolute change in a value due to a percentage change in the price. 
5 In the following, cross-price market share semi-elasticities are referred to simply as cross-price elasticities for 
brevity. 
6 If the total quantity ∑ 𝑄𝑗

𝐼
𝑗=1  does not change, the standard cross price elasticity ηi,j can be obtained from 

this elasticity as ηi,j = ηMSi,j/MSi
̅̅ ̅̅ ̅ where MSi

̅̅ ̅̅ ̅ represents the average market share of fuel I in both scenarios. 
7 Alternative fuel is defined as all fuels other than oil. 



Most models show a stronger response to the price shocks in 2060 than those in 2030, with higher 

demand-price slopes (right side vs left side of graph 3). The POLES model is the only one to project the 

absolute change in oil demand to be less while the fuel price jump becomes larger over time. WITCH 

shows a relatively mild response to the changing fuel price as well, while IMAGE, REMIND, MESSAGE 

and TIAM UCL show significant responses. In MESSAGE, oil demand ranges from 35 to 290 EJ/year in 

2060. between the higher and lower price scenario, implying that the transport system has completely 

changed in response to 40 years of widely diverging price trajectories. As MESSAGE, TIAM-UCL and 

REMIND show strong feedback effects on the price trajectory, moving back to the original fuel price 

pathway, here very high price elasticities can be expected. 

In all models, the decrease in oil is greater than the increase in alternative fuel demand, indicating 

that increased fuel prices also lead to efficiency improvements. However, there is clear variation in 

the size of energy reduction, on the one hand, and fuel substitution effects, on the other, across the 

models. MESSAGE, REMIND and WITCH show higher substitution rates (48%83% of the oil change), 

while this is less the case in the more technology-rich models POLES, IMAGE and TIAM-UCL (2%34%). 

 

 

Figure 1: The oil (bottom) and alternative fuel (AF) (top) energy demand response to oil and gas 

price shocks – Scenarios 2, 5 and 8 - in 2030 (left) and 2060 (right).  Alternative fuel is defined as any 

fuel other than oil. 

3.2 Service demand and fuel consumption elasticities 

For the models that include details on passenger transport modes (IMAGE, POLES and TIAM-UCL), 

Table 3 shows the mean and standard deviation in modal service demand (expressed in passenger 

kilometres (pkm) or tonne kilometres (tkm)) and energy efficiency elasticities of the three oil & natural 

gas price shock scenarios. This method gives insight into the underlying sectoral changes, for example 

changes in the kilometres travelled or in the fuel efficiency of each transport mode, which contribute 

to sectors’ change in energy demand. At the same time, it provides the opportunity to compare model 



elasticities to empirical data, which are often reported at modal level. For the REMIND, WITCH and 

MESSAGE projections, the contribution of service demand and efficiency to energy demand elasticities 

have been specified  for total transport, freight and passenger elasticities, as shown in Table 3.  

Table 2 Mean service demand (pkm or tkm), fuel efficiency (MJ/pkm or MJ/tkm) and fuel 

consumption (MJ) elasticities to oil price per mode of transport and aggregated for freight, 

passenger and total transport. Calculated by comparing the oil & natural gas fuel-price shock 

Scenarios 2, 5 and 8 to the baseline. The standard deviation in the elasticity values of these three 

scenarios are indicated between brackets. In bold are the elasticities that are elastic (>1). 

      IMAGE   POLES  TIAM-UCL   

    2030 2060 2030 2060 2030 2060 

LDV  Pkm -0.2 (0.1) -0.1 (0.0) -0.2 (0.0) -0.1 (0.0) 0.0 (0.0) -0.1 (0.0) 

  Efficiency -0.3 (0.2)  -0.7 (0.6) -0.3 (0.1) -0.3 (0.0) -0.2 (0.0) -2.0 (0.7) 

  Energy -0.5 (0.2) -0.8 (0.6) -0.4 (0.2) -0.4 (0.0) -0.2 (0.0) -2.1 (0.7) 

Public transport  Pkm -0.2 (0.0) -0.2 (0.1) -0.2 (0.0) -0.1 (0.0) -0.1 (0.0) -0.1 (0.0) 

  Efficiency -0.1 (0.2) -0.4 (0.5) -0.3 (0.0) -0.2 (0.0) 0.0 (0.0) -0.4 (0.2) 

  Energy -0.4 (0.2) -0.6 (0.4) -0.5 (0.0) -0.4 (0.1) 0.0 (0.0) -0.4 (0.2) 

Aviation  Pkm -0.7 (0.1) -0.6 (0.1) 0.1 (0.0) 0.0 (0.0) -0.3 (0.0) -0.4 (0.1) 

  Efficiency -0.1 (0.1) -0.6 (0.2) -0.2 (0.1) -0.2 (0.1) 0.0 (0.0) 0.0 (0.0) 

  Energy -0.8 (0.1) -1.2 (0.1) -0.1 (0.1) -0.1 (0.1) -0.3 (0.0) -0.5 (0.1) 

Walking & Cycling Pkm 0.1 (0.0) 0.2 (0.0)     
Total Passenger  Pkm -0.2 (0.0) -0.2 (0.0) -0.2 (0.0) -0.1 (0.0) -0.2 (0.0) -0.3 (0.0) 

  Efficiency -0.3 (0.1) -0.7 (0.4) -0.2 (0.1) -0.2 (0.0) 0.0 (0.0) -1.0 (0.6) 

  Energy -0.5 (0.2) -0.9 (0.4) -0.4 (0.1) -0.3 (0.0) -0.2 (0.0) -1.3 (0.5) 

Total Freight Tkm -0.2 (0.1) -0.1 (0.1)   -0.1 (0.0) -0.1 (0.0) 

  Efficiency -0.1 (0.2) -0.3 (0.3) -0.2 (0.0) -0.1 (0.0) -0.3 (0.3) -2.0 (1.9) 

  Energy -0.3 (0.1) -0.4 (0.2) -0.2 (0.0) -0.1 (0.0) -0.4 (0.3) -2.1 (1.9) 

Total Transport Energy -0.4 (0.1) -0.7 (0.1) -0.3 (0.1) -0.2 (0.0) -0.3 (0.1) -1.5 (0.7) 

    REMIND   WITCH  MESSAGE   

  2030 2060 2030 2060  2030  2060 

Total Passenger  Pkm -0.3 (0.1) -0.5 (0.2)     

  Efficiency 0.0 (0.0) -1.7 (0.7) 0.0 (0.0) -0.1 (0.2)   

  Energy -0.3 (0.1) -2.3 (0.9) 0.0 (0.0) -0.1 (0.2)   

Total Freight Tkm -0.5 (0.1) -1.3 (0.5)     

  Efficiency 0.0 (0.0) 0.1 (0.1) 0.0 (0.0) 0.0 (0.0)   

  Energy -0.5 (0.1)   -1.2 (0.5) 0.0 (0.0) 0.0 (0.0)   

Total Transport Energy -0.3 (0.1) -1.9 (0.7) 0.0 (0.0) -0.1 (0.1) -0.4 (0.1) 0.4 (3.8) 

 

The passenger service demand elasticity — the elasticity of the travelled passenger kilometres — in 

2030, varies between -0.2 and -0.3 across all models and, in 2060, between -0.1 and -0.5. Freight 

service demand ranges from -0.1 to -0.5 in 2030 and from -0.1 to -1.3 in 2060. In the REMIND model, 

where there is no alternative for liquid fuel in freight transport, fuel-price shocks have a larger impact 

on transport prices than in passenger transport, resulting in higher elasticity values. In all models, but 



REMIND the transport service demand is not elastic to fuel prices (i.e. <1). WITCH service demand and 

POLES freight service demand projections are not related to energy prices, but are driven only by GDP 

and population, and changes in energy prices are reflected only in the choice of technology. Not 

capturing service demand price elasticity could lead to relatively downward bias for the overall energy 

demand elasticity. Indeed, of the six models, POLES and WITCH energy demand elasticity are on the 

low side of the spectrum. MESSAGE does not differentiate between passenger and freight transport 

demand, but relates total transport (useful) energy demand directly to economic and demographic 

drivers. 

Fouquet has analysed the income and price elasticities of passenger transport demand between 1850 

and 2010 in the United Kingdom, and shows that both elasticities have declined over time [24], from 

3.1 and -1.5 to 0.8 and -0.6, respectively. Price elasticities depend on income effects as well as 

substitution effects. When incomes rise, the share of fuel expenditure in total expenditure declines, 

leading to lower price sensitivity. Moreover, with higher incomes, travel time is valued more, and fuel 

costs take up a relatively smaller share of the generalised cost of travel (in which money and time are 

accounted for) [16]. Fouquet compares service demand to the price of service demand, instead of to 

the price of fuel [24]. Therefore, the results in Table 3 cannot be compared directly to Fouquet’s 

results. The described trends of service demand’s reduced sensitivity to prices, over time, can be seen 

for some modes of transport, but others show the opposite trend.  

Most models show a response in efficiency change that is stronger for 2060 — ranging from -0.1 to -

1.7 for passenger transport and -0.0 to -2.0 for freight transport — than for 2030. As a result, in all 

models except POLES, the long-term (2060) energy demand elasticity is higher than that in the  

medium term (2030), as is also noted in Section 3.1. This is especially pronounced in TIAM-UCL’s 

projections. This is because 1) models have a much longer time period to respond to higher/lower 

prices, and 2) new vehicle technology developments have led to cheaper alternatives, which, for 

example in the case of electric vehicle deployment, would lead to higher efficiency. Also, long-term 

feedback effects on fuel prices, as seen in REMIND, MESSAGE and TIAM-UCL projections, could further 

enhance this effect.  

A large share of the empirical research on transport price elasticity has focused on road transport 

elasticities to the petrol price under different circumstances, and a few review studies have 

summarised these results in ‘generic values’. Johansson and Shipper (1997) [25] study 12 OECD 

countries, for the period from 1973 to 1992, and find long term elasticities to fuel prices of  car service 

demand to range between -0.05 and -0.55, and of car fuel economy to range between -0.45 and -0.35. 

These figures are comparable to those in reviews by Graham and Glaister (2002) [26], Goodwin et al. 

(2004) [27] and Espey (1998) [28]. Interestingly, the models’ LDV service demand elasticities range 

from -0.1 to -0.2, which is within that range8. The models respond very similarly; not covering the full 

uncertainty found empirically. For 2030, the efficiency response of the models (-0.3 in all models) is 

very comparable to the empirically found data; leading to an overall comparable LDV energy 

consumption elasticity in 2030. For 2060 however, both IMAGE and TIAM-UCL project a stronger 

efficiency response, resulting in an elastic (< -1) response that is beyond the range summarised in the 

reviews of empirically found elasticities. The availability of more fuel-efficient alternative types of 

                                           
8 Note that the IAM values are expressed in passenger kilometers (pkm) and thus car sharing effects and load 

factor change are accounted for in energy intensity change, which could explain the somewhat low values. 



vehicles increases the substitution effect on the price elasticity projected for the second half of the 

century. 

The differences between price elasticities per transport mode, in the model projections, not 

necessarily imply modal shifts, because the elasticity is defined as a relative decrease in pkm to the  

transport mode’s total pkm, and the transport modes differ in overall volume. Moreover, the various 

transport modes do not contribute equally to the overall transport volume (some, such as bicycles, 

have a smaller share). A change in fuel price can be expected to have a larger effect on the transport 

modes that are relatively high in energy consumption, such as LDVs and aviation. Fouquet argues that 

air transport is a ‘luxury’ form of transport and service demand would be more sensitive to fuel prices 

than would other modes of transport [24]. IMAGE and TIAM-UCL indeed show higher service demand 

responses in aviation than in other modes of transport, and all three models show the largest 

efficiency response in the light duty vehicles (LDV).  

3.3 Market share elasticities of fuel 

The transport sector is currently being dominated by oil products, but Integrated Assessment models 

show that fuel switching is an effective way to mitigate the greenhouse gas emissions from the 

transport sector, in order to achieve a stringent climate target [11]. The scenarios with oil, biofuel and 

electricity shocks of +100% (Scenarios 6, 7 and 8) and -50% (Scenarios 2, 3 and 4) are used to analyse 

how responsive fuel market shares are to fuel price changes for various carriers. Following the 

equations in section 2.5, Figure 5 shows the cross-price elasticities per fuel type. The interpretation, 

for instance for IMAGE, shows that a doubling9 of oil prices will lead to a 50 percentage points decrease 

in the market share of oil in transportation by 2050, whereas the share of biofuels and electricity will 

increase by respectively 18 and 21 percentage points.  

Fuel market shares are considerably more responsive to oil and biofuel price changes than to 

electricity price changes. For many modes of transport, switching to electricity means switching to an 

alternative type of propulsion. The lower sensitivity could be explained by the fact that technology 

cost, availability and consumer behaviour are larger hurdles than the costs of electricity in relation to 

this transition. The fuel market is the most sensitive to changing oil prices and decreasing biofuel 

prices, which both lead to oil substitution. Elasticities of all fuel types, in all models, increase over time, 

with the exception of the IMAGE biofuel response in the +100% scenario. POLES and WITCH show la 

low response, compared to the other models, projecting the sector to remain dependent on oil 

irrespective of fuel price changes, in line with the low responses to oil price changes as shown in 

Sections 3.1 and 3.2. MESSAGE and REMIND show a high response, which again partially can be 

explained by the feedback effects on prices, but also higher fuel switching flexibility due to less 

technology constraints. 

Oil price increases are projected to lead to a switch from oil to biofuel in 2030 and, in some models, 

to fossil synfuel, while, in 2050, electricity also becomes an attractive alternative. Increasing electricity 

and biofuel prices lead to a reduction in the use of both fuel types, from which can be concluded that, 

under the baseline scenario, electricity and biofuel have a certain share in transport fuel use. In 

REMIND, intertemporal foresight and interactions with other fuel-consuming sectors may lead to the 

                                           
9 Scenarios (810) were precisely designed to implement a doubling of fuel prices, compared to those in the 

baseline. In the cross elasticity calculation, the price increase is calculated relative to the average price shock 
and the baseline scenario(∆Pj)/(0.5 (P(j,1)+P(j,2)). Therefore, the relative price increase is + 2/3. 



opposite effect; for example, with increasing oil shares under higher oil prices in 2030. Lowering fuel 

prices leads to strong early consumption, both in the transport sector and in others, which implies 

that long-term scarcities become more pronounced, in turn leading to increased long-term reliance 

on alternative fuels.  

 

Figure 4: Market share elasticities in response to changes in oil, biofuel and electricity prices from 
+100% to -50%. Elasticities indicate the shift in market shares, for all the different fuel types for 
which the sum of the elasticities is 0. Negative elasticities in the -50% scenario imply an increase in 
use, as the elasticity is relative to the price signal. The models are indicated by their first letter 
(R=REMIND, I=IMAGE, T=TIAM-UCL, M=MESSAGE, P=POLES and W=WITCH). * In two scenarios 
(marked with *) the market elasticity was larger than 1.5 - due to very high price feedbacks- the 
results were normalised to 1.5.  

3.4 Income elasticities 

To assess the sensitivity of demand to income level, an approach similar to that described in Section 

3.1 was used, distinguishing the effects of changes in efficiency and service demand. The results are 

presented in Table 4. There have been suggestions that at higher income the per capita kilometres 

travelled would saturate and that we are reaching peak travel [29, 30]. The theory is that transport 

was originally perceived as a ‘luxury’ product which is sensitive to income changes. As incomes 

continue to rise, saturation effects will reduce income elasticity. This theory is supported by the 

already mentioned reduced travel demand to income elasticity between 18502010, in Fouquet [24]. 

This trend is not clearly reflected in all the model results, neither over time nor with increased income. 

The elasticity values for high and low incomes are rather comparable, although IMAGE, REMIND and 

WITCH do show lower service demand elasticities to higher income scenarios.  

The energy efficiency response in IMAGE increases, due to a shift to higher intensity transport modes 

with higher income. In the other models, efficiency decreases, which could reflect the concept of a 

larger budget leading to an increase in technology use, which, in turn, leads to efficiency learning. 

Johansson and Shipper (1997) find that the long-term elasticity of vehicle fuel consumption (related 

to what here is called efficiency) with respect to income is between 0.05 to 1.6 [25], and Glaister and 

Graham (2002) report this to be between 1.1 and 1.3 [26]. These two studies were conducted at LDV 



level, and, therefore, are not easy to compare to the model projections used in this study, as the 

effects of structural changes (shifting transport modes) are not included, but it can be concluded that 

this positive relationship is not necessarily reflected in the models. Both studies also analyse long-

term elasticity of service demand with respect to income;  Johansson and Shipper (1997) find a range 

of 0.65 to 1.25 [25], while Glaister and Graham (2002) report this to be between 1.1 to 1.8 [26]. For 

the United Kingdom, Fouquet reports a reduction in transport service demand to income elasticity of 

3.1 to 1.0 (including air travel) between 1850 and 2010. Compared to these figures, the IAM service 

demand elasticity values are on the low side, with the exception of the WITCH model. Income 

elasticities of transport energy demand are reported to be greater than price elasticities provided in 

the literature [27]. The models show service demand to income elasticities are indeed larger 

(especially in WITCH) but negative energy efficiency may lead to income energy demand elasticities 

(ranging from 0.31 to 1.44) that are comparable to price elasticities. 

 

Table 3 Service demand (pkm or tkm), fuel efficiency (MJ/pkm or MJ/tkm) and fuel consumption 

(MJ) elasticities with respect to income changes (Scenarios 11 and 12) for freight, passenger and 

total transport.  

 IMAGE POLES REMIND WITCH TIAM-UCL 
 

low high low high low high low High low high 

Passenger transport in 2030 

Pkm 

Efficiency 

Energy 

0.50 0.38 0.49 0.65 0.45 0.32 1.19 0.91   

0.11 0.20 -0.13 -0.17 -0.01 -0.02 -0.03 -0.10   

0.61 0.58 0.36 0.47 0.44 0.31 1.15 0.81   

Freight transport in 2030 

Tkm 

Efficiency 

Energy 

0.87 0.35 0.43 0.83 0.42 0.30 1.17 0.93   

-0.26 0.18 -0.01 -0.42 -0.06 0.00 -0.03 0.04   

0.61 0.54 0.42 0.41 0.36 0.31 1.14 0.97   

Total 0.61 0.56 0.39 0.44 0.41 0.31 1.15 0.87 0.65 0.99 

    Passenger transport in 2060 

Pkm 

Efficiency 

Energy 

0.51 0.53 0.62 0.40 0.37 0.31 0.96 0.75   

0.16 0.38 -0.09 -0.18 0.08 0.04 -0.06 -0.30   

0.67 0.90 0.52 0.22 0.45 0.34 0.91 0.46   

Freight transport in 2060 

Tkm 

Efficiency 

Energy 

0.78 0.50 0.53 0.59 0.41 0.25 0.99 0.79   

-0.08 0.03 -0.14 -0.15 -0.02 0.00 0.02 0.04   

0.70 0.52 0.40 0.44 0.39 0.25 1.01 0.83   

Total 0.68 0.77 0.47 0.32 0.43 0.31 0.95 0.62 0.53 1.44 

 

4 Discussion and conclusions  

In this paper, we introduced fuel price shocks in models in order to determine the implicit demand 

elasticities. This can help to describe and understand model behaviour and projected results. In the 

experiments in the paper, ideally, the fuel price shocks would follow the exact same fuel price 

pathways in all models. However, the fuel price trajectories in the baseline already varies across 



models. Moreover, due to interference with some of the models solution methods, fuel prices could 

not follow a predefined pathway in all models. In those models price increases/decreases were added 

to endogenously calculated fuel prices to mimic the fuel price shocks. In some models, this method 

resulted in fuel prices moving away from the set pathway over time, as a result of lower fuel use. In 

REMIND, fuel prices also moved away but already in the early decades, due to intertemporal forecasts. 

Because of the relative nature of elasticities, different fuel price pathways not necessarily have an 

impact on results, but we did find the demand response to be both pathway- and time-dependent. 

This is most clearly demonstrated by the results from the MESSAGE and REMIND models, projecting 

large demand differences, while fuel price differences became very small (in some cases, even 

negative) by 2060. Remaining as close as possible to the intended fuel price pathway would therefore 

improve the comparability of results between models. However the scenarios do show how the 

different solution methods affect the model dynamics. It can be expected that the implementation of 

a carbon tax could result in similar model responses.  

 

On the basis of the results, the following conclusions can be derived: 

The proposed method in this paper to derive price and income elasticities as diagnostic indicators 

provides a transparent environment to test model dynamics. The approach provides insights into 

model responsiveness, both for the medium and long term. It enables us to evaluate model behaviour 

and to distinguish a model’s fingerprint. At the same time, it could be used to understand the effect 

of model development on model behaviour, through a before-and-after comparison. Modelling 

individual transport modes explicitly does not lead to major differences in energy demand responses 

(compared to models that only represent transport modes in a more aggregated way), and the 

detailed and less detailed models show similar elasticity values. 

 

Efficiency and service demand elasticities to fuel price are within the range of values found 

empirically, and very close to each other in the medium term. Comparing model elasticities at modal 

level, and specifying between service demand and efficiency changes, shows that in 2030 energy 

demand elasticities are very comparable between models and close to the range reported in the 

literature. This shows that in terms of historical validation in the medium term the model perform 

well. LDV energy demand elasticities to oil and gas prices are projected to range from -0.2 to -0.5 in 

2030. Total transport energy elasticity values, projected to range between 0.0 and -0.4 in 2030, are 

also comparable (although on the low side) to the values reported by Hogan and Sweeney [17] that 

ranged between (-0.1 to -0.6) in the short term.  For 2060, the models show more diverging behaviour, 

and elasticities cover a broader range as a result of fuel substitution, increased efficiency, service 

demand reduction and feedback effects on prices. Assuming service demand pathways exogenously, 

as is done in WITCH and POLES, on the other hand leads to a weaker demand response. 

 

A division can be made between the models that become more responsive in the long term (2060) 

than in the medium term (2030). Some models clearly show higher fuel switching and energy demand 

reduction responses in the long term, while service demand response remains comparable. The 

projected elasticity of total energy demand in transport to oil and natural gas prices in 2060 range 

from 0.4 to -1.9, and for LDV energy consumption from -0.4 to -2.1. There are however different 



effects that can have caused this increased response. In IMAGE, REMIND, MESSAGE and TIAM-UCL, 

alternative technologies become more attractive (cheaper) in the long term, and therefore oil price 

changes can lead to a stronger response. In REMIND’s freight sector, the opposite is visible, since no 

alternatives are available, therefore travelling becomes more expensive and, thus, leads to higher 

price effects on service demand. MESSAGE, REMIND and TIAM-UCL also show large feedback effects 

on fuel price pathways in the long term, while demand does not immediately follow. This also shows 

that near term price policies could have long term effects. 

 

Market share distribution responds more strongly to oil and biofuel price changes than to electricity 

prices. Oil will be substituted as the dominant fuel when oil prices increase. Biofuel price change sees 

in some models a strong effect but electricity price changes hardly have an impact on the projected 

shares. The models show that, in 2030, mainly biofuel is used as a substitute, and some models use 

fossil synfuel, while electricity shares increase as a result of higher oil prices in the long term. 

Furthermore, the models show a stronger response to biofuel price reductions than to reductions in 

the oil price. The models are not responsive to electricity price changes, indicating that other factors 

such as technology costs and behaviour might be more important in this transition. The models’ 

response to price jump of 50% compared to a price jump of 100% is not clearly different. Elasticity 

values for most models are comparable per model under both these scenarios, implying a linear 

demand response. Again, here a clear difference can be seen between models that show a high 

response (REMIND, MESSAGE), medium response (IMAGE, TIAM-UCL) and a low response (WITCH and 

POLES).  

 

Service demand projections are more responsive to income level than to fuel prices, which 

corresponds to findings in the literature. Saturation effects over time or with increasing income are 

not clearly visible. The model results are responsive to income projections and elasticity values range 

between 0.31 and 1.44. This is within the range reported in the literature. Even so, this range has a 

large impact on the projected transport demand, and could explain the varying transport sector 

service demand growth projections which have been seen in previous model comparison studies [11]. 

Reduced income elasticities over time, or in response to higher income shocks indicating saturation, 

cannot clearly be retraced in the model results. A better understanding of the uncertainty of income 

effects on service demand by exploring different income pathways as well as different service demand 

to income elasticities, is very relevant — as is having a better understanding of the role of saturation. 

The efficiency response to income change differs across models. In some models efficiency increases 

as a result of technology learning, while in others it decreases due to a shift to more energy-intensive 

transport modes. 
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A. Transport model descriptions of participating Integrated Assessment Models 

REMIND transport 

REMIND models the transport sector by using a hybrid approach combining top-down and bottom-up 
elements. Mobility demands for the four modeled transport sub-sectors (passenger-light duty vehicles 
(LDV), freight, electric rail, passenger-aviation and buses) are derived in a top-down fashion, since they 
are input to a nested CES production function that ultimately produces GDP. For the LDV mode, three 
different technology options (internal combustion engine, battery electric vehicle, and fuel cell 
vehicle) compete against each other in a linear bottom-up technology model. 

The transport sector requires input of final energy in different forms (liquids, electricity and hydrogen) 
and requires investments and operation and maintenance payments into the distribution 
infrastructure (infrastructure capacity grows linearly with distributed final energy) as well as into the 
vehicle stock.  

The main drivers/determinants of transport demand are GDP growth, the autonomous efficiency 
improvements (efficiency parameters of CES production function), and the elasticities of substitution 
between capital and energy and between stationary and transport energy forms. Furthermore, inside 
a model run, different final energy prices (due to climate policy, different resource assumptions, etc.) 
can lead to substitution of different transport modes inside the CES function, or a total reduction in 
travel demand. 

The distribution of vehicles inside the LDV mode follows cost optimisation (perfect linear 
substitutability), although with different non-linear constraints (learning curve, upper limits of 70% on 
share of battery-electric vehicles and 90% on Fuel Cell vehicles) that in most realisations lead to a 
technology mix. Further information on the transport sector modeling in REMIND can be found in 
Luderer, Leimbach [31]and Pietzcker, Longden [12] 

 

IMAGE travel model 

The Integrated Model to Assess the Greenhouse Effect (IMAGE)is developed by PBL Netherlands 
Environment Assessment Agency, to assess environmental consequences of human activities in 
industry, transport, buildings, agriculture and forestry affecting energy use and land use at a global 
level [32]. The transportation module IMAGE/Travel model is described in detail by [33]. In this study 
the GDP and population drivers are updated to SSP2 scenarios that can be accessed at 
https://secure.iiasa.ac.at/web-apps/ene/SspDb .  

https://secure.iiasa.ac.at/web-apps/ene/SspDb


In IMAGE/Travel travelling costs form the basis of the modeling both in determining modal shares, as 
well as vehicle shares per transport mode, based on a multi nominal logit (MNL) model. The model 
represents 7 passenger transport modes and 6 freight transport modes. Modal costs depend on real 
cost per pkm, non-monetary preferences, and a time weight that captures the importance of time 
compared to monetary costs. Non-monetary preferences are used to calibrate the model to historical 
observations and account for factors that go beyond cost (e.g. driving a car is more expensive than 
other modes, but a popular travel choice). The concepts of the travel money budget (TMB) and travel 
time budget (TTB) are used to relate travel demand to income. Increasing income leads to increasing 
travel demand per capita which results in more time spent travelling. Through the concept of travel 
time budget (TTB), time gets more weight and faster modes are values more, as a result. This dynamic 
relation results in the empirically observed shift to higher speed modes when income increases [33]. 

All transport-specific model mechanics and data are documented in the main text and appendix of 
[33], with the exception of the following updates. The costs per vehicle type, which determines vehicle 
choice, depend on energy cost, technology cost, non-energy cost (related to maintenance and vehicle 
purchase), and the load factor, which is regionally dependent. Energy efficiency in the model is 
captured in three ways: 1) Price induced efficiency improvement: in response to higher fuel price more 
efficient vehicles become cost competitive, 2) Autonomous efficiency improvement: technology costs 
of efficient technologies decline over time as a result of technological learning, 3) Modal shift: 
increasing fuel prices can also result in a shift toward more efficient modes [33] [34]. Reduction in 
transport GHG emissions are achieved through a carbon tax resulting, on the one the hand, in reduced 
competitiveness of technologies and modes with high dependency on fossil fuels, and, on the other 
hand,  the increased price of travelling leads to less travel demand implemented through the concept 
of travel monetary budget (TMB). 

Since Girod (2012) the LDV projected vehicle costs and efficiency have been revised to incorporate the 
most recent projections of LDV vehicle technology development, following the in depth study 
performed by the Argonne National Laboratory [34]. 

MESSAGE Stylised Transport Sector Representation 
 
The version of MESSAGE employed in this study (‘MESSAGE V.5a’) includes a quite stylised 
representation of the transport sector, which essentially captures only fuel switching and price-elastic 
demands as mechanisms to respond to climate and energy policies. Importantly, the entire sector is 
modeled as one: all motorised transport modes, including light-duty vehicles, buses, trains, heavy-
duty trucks, ships, and airplanes, are aggregated together into a single demand category. (Other 
MESSAGE model versions, in contrast, have a highly-detailed technological and socio-behavioral 
representation of the various modes, including a mechanism for switching transport modes; [35] for 
more information on the model version ‘MESSAGE-Transport V.5’.) The following brief description 
elaborates the main characteristics of the transport module employed here. 
 
The model chooses between different final energy forms to provide useful energy for transportation. 
This decision is based primarily on the energy service costs by fuel, taking into account fuel prices at 
the final energy level and the respective final-to-useful energy conversion efficiencies. In addition, cost 
mark-ups are applied to non-liquid fuels, in order to capture increased vehicle investment costs and 
market adoption hurdles, or ‘behavioral barriers’, which this stylised transport formulation is 
otherwise not well equipped to handle. The portion of the mark-ups capturing behavioral barriers are 
referred to as ‘inconvenience’ or ‘disutility’ costs. They represent, for instance, range anxiety, extent 
of refueling/recharging infrastructure, and risk aversion. The conversion efficiencies vary by energy 
carrier. Useful energy demands (for the aggregate transportation sector of each region) are first 
specified in terms of internal combustion engine (ICE)-equivalent, which therefore by definition have 
a conversion efficiency of final to useful energy of 1. Relative to that, the conversion efficiency of 
alternative fuels is higher, for example electricity in 2010 has a factor of ~3x higher final-to-useful 
efficiency than the regular oil-product-based ICE. The assumed efficiency improvements of the ICE 



vehicles in the transportation sector, as well as switching transport modes and other lifestyle changes, 
are implicitly embedded in the baseline demand specifications (i.e., the scenario storyline). These 
come from the MESSAGE scenario generator10 (see Riahi et al. [36] for more information). Finally, the 
demand for international shipping is modeled in a very simple way with a number of different energy 
carrier options (light and heavy fuel oil, biofuels, natural gas, and hydrogen). Demand is coupled to 
global GDP development with an income elasticity. 
 
Additional demand reduction in response to price increases (e.g., in policy scenarios) then occurs via 
two mechanisms: (i) the fuel switching option (due to the fuel-specific relative efficiencies), and (ii) 
the linkage with the macro-economic model MACRO. Figure 2 graphically illustrates the main 
components of the stylised transport sector representation in MESSAGE. 
 

                                           
10 Energy service demands are provided exogenously to MESSAGE; they are then adjusted endogenously based on energy 

prices thanks to the linkage with MACRO. There are seven demands in the stylized end-use version of the model, one of 
which is transport. These demands are generated using an R-based model called the scenario generator.  This model uses 
country-level historical data of GDP per capita (PPP) and final energy use, as well as projections of GDP|PPP and 
population, to extrapolate the seven energy service demands into the future.  The sources for the historical and projected 
datasets come from, for example, the World Bank, UN, OECD, and IEA. Using the historical datasets, the scenario generator 
conducts regressions that describe the historical relationship between the independent variable (GDP|PPP per capita) and 
several dependent variables, including total final energy intensity (MJ/2005USD) and the shares of final energy in several 
energy sectors (%).The historical data are also used in quantile regressions to develop global trend lines that represent 
each percentile of the cumulative distribution function (CDF) of each regressed variable.  Given the regional regressions 
and global trend lines, final energy intensity and sectoral shares can be extrapolated forward in time based on projected 
GDP per capita. Several user-defined inputs allow the user to tailor the extrapolations to individual socio-economic 
scenarios. The total final energy in each region is then calculated by multiplying the extrapolated final energy intensity by 
the projected GDP|PPP in each time period.  Next, the extrapolated shares are multiplied by the total final energy to 
identify final energy demand for each of the seven energy service demand categories.  Finally, final energy is converted to 
useful energy in each region by using the average final-to-useful energy efficiencies reported by the IEA for each country. 



 
Figure 2.  Schematic diagram of the stylised transport sector representation in MESSAGE 
 
To reflect limitations of switching to alternative fuels, for example as a result of limited 
infrastructure availability (e.g., rail network) or some energy carriers being largely unsuitable for 
certain transport modes (e.g., electrification of aviation), cost mark-ups and share constraints are 
imposed on certain energy carriers (e.g., electricity) and energy carrier groups (e.g., liquid fuels) of 
the transport sector. In addition, the diffusion speed of alternative fuels is limited to mimic known 
bottlenecks in the supply chain, particularly those not explicitly represented in MESSAGE (e.g., non-
energy related infrastructure). Both the share and diffusion constraints are typically parameterised 
based on transport sector studies that analyse such developments and their feasibility in much 
greater detail. 
 
In the overall MESSAGE framework, price-induced demand responses for energy carriers at the final 
energy level result from a combination of three different factors: (i) adopting more efficient 
technologies, (ii) fuel switching and the resulting relative efficiency changes (e.g., differences 
between solids, gases and electricity), and (iii) demand response at the useful energy level. The 
latter changes in useful energy demand are modeled in MESSAGE via an iterative link to MACRO, an 
aggregated macro-economic model of the global economy[37].  Through an iterative solution 
process, MESSAGE and MACRO exchange information on energy prices, energy demands, and 
energy system costs until the demand responses are such (for each of the six end-use demand 
categories in the model: electric and thermal heat demands in the industrial and 
residential/commercial sectors (1-4), non-energy feedstock demands for industrial applications (5), 
and mobility demands in the transportation sector (6)) that the two models have reached 
equilibrium.  This process is parameterised off of a baseline scenario (which assumes some 
autonomous rate of energy efficiency improvement, AEEI) and is conducted for all eleven MESSAGE 
regions simultaneously.  Therefore, the demand responses motivated by MACRO are meant to 



represent the additional (compared to the baseline) energy efficiency improvements and 
conservation that would occur in each region as a result of higher prices for energy services.  The 
macro-economic response captures both technological and behavioral measures (at a high level of 
aggregation), while considering the substitutability of capital, labor, and energy as inputs to the 
production function at the macro level.   
 
Further, more detailed information on the MESSAGE modeling framework is available, including 
documentation of model set-up and mathematical formulation[4, 38] and the models’ 
representation of technological change and learning[39-41].  
 
TIAM-UCL transport model 
 
TIAM-UCL is a whole energy system model covering from energy resources to conversion to 
infrastructure to end-use sectors. This is a linear programming model that minimises total 
discounted energy system cost in the standard version and maximises societal welfare (total surplus) 
in the elastic demand version to compute a partial equilibrium.  
 
The transportation sector is characterised by 14 energy-services plus one non-energy use demand 
segment (Table 1). Six of the energy-services are considered as generic demands: international and 
domestic aviation (TAI, TAD), freight and passenger rail transportation (TTF, TTP), domestic and 
international navigation (TWD, TWI). All other energy-services are for road transport.  
 
Table 1: Energy-service demands in transport sector 

Code 

TAD 

Energy-service demand 

Domestic Aviation 

Unit 

PJ 

TAI International Aviation PJ 

TRB Road Bus Demand Bv-km 

TRC Road Commercial Trucks Demand Bv-km 

TRE Road Three Wheels Demand Bv-km 

TRH Road Heavy Trucks Demand Bv-km 

TRL Road Light Vehicle Demand Bv-km 

TRM Road Medium Trucks Demand Bv-km 

TRT Road Auto Demand Bv-km 

TRW Road Two Wheels Demand Bv-km 

TTF Rail-Freight PJ 

TTP Rail-Passengers PJ 

TWD Domestic Internal Navigation PJ 

TWI International Navigation PJ 

 
Demand for road transport energy-services is expressed in b-vkm and others are in PJ. Base-year 
energy-service demands are exogenous and are projected for the future using drivers such as GDP, 
population, household, sector output etc. Base-year transport sector final energy consumption is 
calibrated to IEA extended energy balance data for each region.  
  
 
WITCH transport model 
The WITCH transport model is documented in detail as part of this Special Issue by Carrara and 
Longden [9] as far as road freight is concerned, while the passenger transport modelling is described 
in Bosetti and Longden [42] and Longden [43]. 
 
POLES transport model 
A more detailed description of the POLES transport model can be found in Girod, van Vuuren [10] 
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