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Abstract 43 

Statistically-based seasonal hurricane outlooks for the North Atlantic were initiated by 44 

Colorado State University (CSU) in 1984, and have been issued every year since that 45 

time by CSU.  The National Oceanic and Atmospheric Administration (NOAA) Climate 46 

Prediction Center and the UK-based Tropical Storm Risk (TSR) have the next longest 47 

records (1998-present) of continuous outlooks. This chapter describes how these three 48 

forecasts have evolved with time, and documents the approaches, the environmental 49 

fields, and the lead times which underpin the models’ operation. Some of the 50 

environmental parameters used in early seasonal outlooks are no longer employed, but 51 

new predictive fields have been found which appear to be more important for seasonal 52 

hurricane prediction. An assessment is made of the deterministic skill of the seasonal 53 

hurricane outlooks issued in real-time by CSU, NOAA, and TSR between 2003 and 2014. 54 

All methods show moderate-to-good skill for early August outlooks (prior to the most 55 

active portion of the hurricane season), low-to-moderate skill for outlooks issued in early 56 

June, and lesser skill for outlooks issued in early April.  Overall, the TSR model has the 57 

most skillful predictions of Accumulated Cyclone Energy (ACE), while NOAA has the 58 

best named storm predictions issued in early August. 59 

  60 
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1.  Introduction 61 

 62 

 Tropical cyclones (TC) are severe weather events that form in many parts of the 63 

tropics, and impact continents, including North America, Asia, Australia, and Africa. The 64 

damage caused by tropical cyclones can be catastrophic, and will only continue to 65 

increase as coastal developments expand and populations grow [Mendelsohn et al., 2012; 66 

Peduzzi et al., 2012]. Improving our ability to predict seasonal tropical cyclone activity is 67 

one way to mitigate this increase in damage [DeMaria et al. 2014].  68 

The tropical climate system influences atmospheric dynamics and sea surface 69 

temperature (SST) anomaly patterns in all TC basins. Therefore, the climate system 70 

affects the strength of the hurricane seasons throughout the world. Because of this climate 71 

influence, some level of seasonal predictive skill is being achieved for most hurricane 72 

basins.  73 

This chapter focuses on seasonal predictions of North Atlantic hurricane activity. 74 

The North Atlantic hurricane season lasts for six months from 1 June to 30 November. 75 

The season has a well-defined 3-month peak of August-September-October (ASO), 76 

during which 77% of all named storms, 84% of all hurricanes, and 93% of all major 77 

hurricanes have formed (1950-2014 data).   78 

 Atlantic hurricane seasons feature large year-to-year and decade-to-decade 79 

fluctuations in strength, primarily in response to differing amounts of activity during 80 

ASO. Figure 1 shows the set of conducive conditions within the MDR during ASO that 81 

produce a more active Atlantic hurricane season.  Opposite conditions suppress hurricane 82 

formation and intensification in the MDR and produce a less active season. Gray [1984a, 83 
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b], Bell and Chelliah [2006] and others have linked active and inactive hurricane seasons 84 

to seasonal fluctuations in oceanic and atmospheric conditions during ASO within the 85 

Atlantic hurricane Main Development Region (MDR, yellow box in Figure 1), which 86 

spans the tropical North Atlantic Ocean and Caribbean Sea [Goldenberg et al., 2001]. 87 

Such fluctuations often have strong climate links and involve a set of inter-related 88 

parameters, including SSTs, trade wind strength, vertical wind shear, atmospheric 89 

stability and the strength of the west African monsoon. Therefore, above-normal and 90 

below-normal Atlantic hurricane seasons are typically not random occurrences. Instead, 91 

they often reflect a strong climate influence over a set of atmospheric and oceanic 92 

conditions within the MDR, which then collectively determines the overall strength of the 93 

hurricane season.    94 

The seasonal hurricane outlooks are designed primarily to predict oceanic and 95 

atmospheric conditions within the MDR during ASO. Two large-scale climate 96 

phenomena, the El Niño/Southern Oscillation (ENSO) and the Atlantic Multi-Decadal 97 

Oscillation (AMO) account for much of the coherent variability observed across the 98 

MDR in the atmosphere and ocean on both inter-annual and multi-decadal time scales 99 

[Goldenberg et al., 2001; Bell and Chelliah, 2006]. This high degree of control exerted by 100 

the tropical climate system on Atlantic hurricane activity provides the underlying 101 

scientific basis for making seasonal Atlantic hurricane outlooks. Studies have well-102 

established that by monitoring, understanding, and predicting these climate patterns and 103 

their associated regional circulation features, it is often possible to confidently predict the 104 

nature of the upcoming hurricane season.  105 



 6 

One benefit of issuing seasonal outlooks is to anticipate the likelihood of extreme 106 

events.  While weak tropical storms can form in marginally favorable environments, a set 107 

of very conducive conditions (Fig. 1) is required to produce powerful hurricanes and an 108 

exceptionally active season.  Seasonal prediction models typically forecast an aggregate 109 

measure of overall seasonal activity such as the Accumulated Cyclone Energy (ACE) 110 

index [Bell et al., 2000].  The ACE index measures the combined intensity and duration 111 

of all named storms during the season, and it is therefore a measure of the overall 112 

strength of the hurricane season.  ACE correlates strongly with major hurricanes 113 

(Category 3-5 on the Saffir-Simpson wind scale).  For example, in seasons classified as 114 

below-normal (<66 ACE units) by NOAA since 1966 (when daily geostationary satellite 115 

data became available), an average of 0.9 major hurricanes formed, compared with 3.9 116 

major hurricanes in above-normal seasons (>111 ACE units).  This 4:1 ratio is especially 117 

important when one considers that major hurricanes cause approximately 80-85% of TC-118 

related damage on an annual basis [Pielke Jr. et al., 2008].   119 

This chapter evaluates the three longest-lived outlooks for North Atlantic 120 

hurricane activity.   In order of longevity, these outlooks have been issued by: Colorado 121 

State University (CSU), the National Oceanic and Atmospheric Administration (NOAA) 122 

and Tropical Storm Risk (TSR).  CSU started disseminating operational seasonal 123 

hurricane outlooks in 1984. NOAA’s seasonal outlooks started in August 1998, and TSR 124 

began publishing seasonal outlooks in December 1998. Successful predictions of Atlantic 125 

basin seasonal hurricane activity are now also being made by dynamical models, such as 126 

those issued by the European Centre for Medium Range Weather Forecasts (ECMWF) 127 

[Vitart and Stockdale, 2001] and the UK Met Office [Camp et al., 2015].   128 
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Building upon Klotzbach [2007] this chapter provides an updated review of 129 

statistically-based seasonal hurricane outlooks for the North Atlantic basin, including an 130 

assessment of their skill.  Section 2.1 summarizes the initial prediction scheme used by 131 

CSU in 1984. Section 2.2 discusses the development of CSU’s seasonal hurricane 132 

outlooks since 1984. Section 2.3 describes the evolution of NOAA’s outlooks since their 133 

original issuance in 1998.  Section 2.4 provides a discussion of prediction development 134 

from TSR since 1999.  In section 2.5 the real-time outlook skill of the three forecast 135 

models is evaluated and compared for the period 2003-2014.  Potential future 136 

improvements to the statistical models are discussed in section 2.6.  Section 3 concludes 137 

the chapter.  138 

 139 

 140 

2.   Statistically-Based Seasonal Hurricane Outlook Models 141 

 142 

The reason why the North Atlantic was chosen in 1984 for the first statistically-143 

based seasonal tropical cyclone outlook was the greater year-to-year variability in TC 144 

activity present in this basin compared to the Northeast Pacific or Northwest Pacific 145 

basins (Gray, personal communication). Based on 1986-2005 data, the coefficient of 146 

variation (the ratio of the standard deviation to the mean) is nearly twice as large for the 147 

Atlantic as for the Northeast Pacific and about three times as large for the Atlantic as for 148 

the Northwest Pacific [Klotzbach 2007].  149 

 150 

2.1 Early Research and Outlooks 151 
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Before 1984 there was little way of knowing how active an upcoming hurricane 152 

season would be.  CSU issued the first statistically-based seasonal hurricane outlooks for 153 

the North Atlantic basin in 1984 [Gray, 1984b]. Since then, the CSU outlooks have 154 

evolved and are currently available at http://tropical.atmos.colostate.edu.  Early outlooks 155 

for the Atlantic basin were issued in June and updated in August. These outlooks utilized 156 

current and predicted strengths and phases of two large-scale climate phenomena: ENSO 157 

and the Quasi-Biennial Oscillation (QBO) [Gray, 1984a], along with forecasts of 158 

Caribbean basin sea level pressure (SLP).  Figure 2 shows the six stations utilized to 159 

estimate Caribbean basin SLP anomalies.  When an El Niño event was present, the 160 

predicted level of Atlantic hurricane activity was reduced, while both ENSO-neutral and 161 

La Niña events were treated equally.  If the QBO was in its easterly phase at 30-hPa, or if 162 

the 30-hPa winds were increasing from the east, the predicted level of hurricane activity 163 

was reduced. If the QBO was in its westerly phase or the 30-hPa winds were increasing 164 

from the west, a stronger hurricane season was predicted.  If SLP in the Caribbean basin 165 

was below average a stronger hurricane season was predicted, and if SLP in this region 166 

was above average a weaker hurricane season was predicted.  This initial model showed 167 

considerable hindcast skill. The correlation between hindcast and observed named storms 168 

(tropical storms and hurricanes combined) was 0.82 for the period 1950-1982 (Fig. 3), 169 

and the correlation for hurricanes alone was 0.77.   170 

 171 

2.2 CSU Model Development: 1984-Present 172 

 173 
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CSU’s outlooks have undergone significant evolution since their original release. 174 

CSU began releasing early December predictions in 1990, while continuing to issue both 175 

June and August outlooks.  Gray et al. [1992; 1993; 1994] detail the CSU prediction 176 

models used in the early 1990s.  Figure 4 displays the predictors utilized in the early 177 

1990s for their early August prediction scheme.  178 

While all of CSU’s seasonal outlooks still retain an ENSO component, other 179 

predictors have been added or removed over the years. For example, the models used in 180 

the early 1990s included new predictors that were closely related to West African rainfall.  181 

As discussed by Landsea and Gray [1992], when rainfall in the Western Sahel is 182 

enhanced during June-July, Atlantic hurricane seasons tends to be more active.  A 183 

stronger West African monsoon is associated with stronger and better defined easterly 184 

waves, weaker vertical wind shear, and warmer sea surface temperatures (SSTs) in the 185 

MDR, all of which favor more frequent and more intense tropical storms and hurricanes 186 

[Bell and Chelliah 2006]. In addition, Landsea and Gray [1992] found a significant 187 

relationship between Gulf of Guinea rainfall during August-November and Atlantic 188 

hurricanes the following year.   This relationship was a key predictor in CSU’s original 189 

early December prediction model.  Figure 5 displays the tracks of major hurricanes 190 

during the ten wettest vs. ten driest years for the Gulf of Guinea region during the period 191 

from 1949 to 1989.   192 

In the mid-1990s the development of the NCEP/NCAR Reanalysis products 193 

[Kistler et al., 2001] led to a transition from station-based predictors to grid-based 194 

predictors.  In addition, the failure of previously-used predictors, such as the QBO 195 

[Camargo and Sobel, 2010] and direct African rainfall measurements [Klotzbach and 196 
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Gray, 2004] caused CSU to investigate other climate predictors.  These failures also 197 

illustrated the challenges of making seasonal outlooks in an inherently non-stationary 198 

climate system.   199 

While original forecast models were constructed using limited data (e.g., 1950-200 

1980), longer periods of hindcast data are now available.  In addition, with the 201 

development of the 20th Century Reanalysis [Compo et al., 2011], a full three-202 

dimensional realization of the atmosphere is now available back to 1851.  Obviously, as 203 

one goes back in time, there is increased uncertainty both in atmospheric parameters and 204 

levels of hurricane activity.  However, being able to evaluate predictor skill over 100+ 205 

years of prior data helps to avoid some of the pitfalls associated with predictor screening 206 

[DelSole and Shukla 2009].  207 

CSU discontinued its December outlooks following the 2011 hurricane season 208 

due to a lack of real-time predictive skill.  The project currently issues outlooks in April, 209 

June, July, and August [Klotzbach, 2014].  Figure 6 displays the three predictors 210 

currently used in CSU’s early August outlook.   211 

As indicated, the CSU outlooks now utilize the low-level wind flow across the 212 

Caribbean Sea as an important predictor.  Using the ERA-Interim Reanalysis [Dee et al., 213 

2011], July Caribbean trade winds correlate with post-1 August ACE at 0.78. This 214 

predictor had previously been noted by Saunders and Lea [2008] to explain a significant 215 

amount of variability of Atlantic TC activity.  Indeed TSR has used the predicted speed 216 

of the August-September Caribbean trade winds as one of its two main predictors for 217 

seasonal hurricane activity since 2001.  218 
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This trade-wind predictor is important because it is associated with a set of 219 

conditions which together influence Atlantic hurricane activity. For example, reduced 220 

trade wind strength over the Caribbean Sea implies higher than normal pressure in the 221 

eastern tropical Pacific which is typically associated with La Niña conditions.  Weaker 222 

trade winds are also typically associated with warmer than normal conditions in the 223 

tropical Atlantic and Caribbean Sea, along with an expanded Atlantic Warm Pool [Wang 224 

and Lee, 2007].  A larger warm pool generates a more conducive dynamic and 225 

thermodynamic environment for TC genesis and intensification.   226 

Another predictor currently used by CSU is the SST anomaly in the northeastern 227 

subtropical Atlantic.  The Atlantic tends to be more active when SSTs in this region are 228 

warmer than normal prior to the peak of the hurricane season [Klotzbach, 2011; 229 

Klotzbach, 2014], likely because these warm anomalies tend to get advected into the 230 

Atlantic by the peak of the hurricane season [Smirnov and Vimont, 2012].  Additionally, 231 

warmer temperatures in this region are typically associated with weaker trade winds and 232 

a more conducive configuration of the African Easterly Jet (AEJ) during the peak months 233 

of the hurricane season.  234 

 235 

2.3 NOAA Model Development: 1998-Present 236 

 237 

 NOAA’s seasonal hurricane outlooks for the North Atlantic basin are an official 238 

product of the Climate Prediction Center and are made in collaboration with NOAA’s 239 

National Hurricane Center and Hurricane Research Division. NOAA began issuing 240 

seasonal hurricane outlooks in August 1998. The outlooks, beginning with May 1999, are 241 
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archived at: www.cpc.ncep.noaa.gov/products/outlooks/hurricane-archive.shtml.  These 242 

outlooks provide a general guide to the expected strength of the upcoming hurricane 243 

season. They are not a seasonal hurricane landfall outlook, and do not imply levels of 244 

activity for any particular location.  NOAA’s initial seasonal hurricane outlook is issued 245 

in late- May and is then updated in early August.   246 

 For the outlooks issued from August 1998-May 2000, NOAA only indicated the 247 

most likely season strength. Since August 2000, the outlooks have indicated the 248 

probabilities for the three season classifications: above-, near-, and below-normal, as 249 

defined at 250 

www.cpc.nce.noaa.gov/products/outlooks/background_information.shtml#NOAADEF.  251 

Since August 2001 the outlooks have also include probabilistic statements for the likely 252 

ranges of named storms, hurricanes, major hurricanes, and ACE. However, there was 253 

flexibility during 2001-2002 in what was referred to as a “likely” range. Since May 2003, 254 

the “likely” ranges of activity have been specified with an estimated 70% probability of 255 

occurrence. 256 

NOAA’s seasonal hurricane outlooks reflect predictions of the combined impacts 257 

of three climate factors: ENSO [Gray, 1984; Goldenberg and Shapiro, 1996], the AMO 258 

[Gray et al., 1996; Landsea et al., 1999], and the tropical multi-decadal signal (TMS) 259 

[Bell and Chelliah, 2006]. The TMS is the leading multi-decadal mode of tropical 260 

convective variability, and it captures the observed link between multi-decadal 261 

fluctuations in Atlantic SSTs (i.e. the AMO), the West African monsoon system 262 

[Hastenrath 1990; Gray, 1990; Landsea and Gray, 1992; Landsea et al., 1992; 263 

Goldenberg and Shapiro, 1996] and Amazon Basin rainfall [Chen et al., 2001; Chu et al., 264 



 13 

1994]. Together, these climate factors produce the inter-related set of atmospheric and 265 

oceanic conditions typically associated with both seasonal and multi-decadal fluctuations 266 

in Atlantic hurricane activity (Fig. 1).  267 

Three types of forecast tools provide guidance for the outlooks [Bell and Blake, 268 

2015]. These include statistical tools, a hybrid statistical/dynamical ensemble forecast 269 

technique based on the NOAA Climate Forecast System (CFS) Version-2 (T-128), and 270 

purely dynamical model ensemble forecasts from the CFS high-resolution (T-382) model, 271 

the ECMWF, and the EUROpean Seasonal to Inter-annual Prediction (EUROSIP) model 272 

(Figure 7). The updated outlook issued in August also incorporates predictive information 273 

such as anomalous early season activity, and atmospheric and oceanic anomalies that 274 

may have developed which are not related to the dominant climate predictors. 275 

One statistical prediction technique utilizes linear multiple regression equations to 276 

first establish the historical relationship between seasonal activity and the combined 277 

effects of the above climate factors.  Forecasts of these climate factors are then input into 278 

the regression equations to predict the upcoming seasonal activity. In practice, the 279 

regression results for each prediction parameter are assembled into a look-up table [Bell 280 

and Blake, 2015], allowing forecasters to quickly assess a likely range of activity given 281 

uncertainties in the climate prediction itself.  A second statistical technique uses climate-282 

based analogues, which provide the forecaster with the observed ranges of activity in past 283 

seasons having similar climate conditions to those currently being predicted.  284 

The hybrid statistical/dynamical technique [Wang et al., 2009] uses regression 285 

equations to relate historical CFS-V2 model forecasts of anomalous seasonal Atlantic 286 

SSTs and vertical wind shear to the observed seasonal hurricane activity in that year. The 287 
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results are used to quantify the observed ranges of activity during past seasons having 288 

model predictions similar to the present.  289 

One purely dynamical forecast tool in use since 2009 is the set of ensemble   290 

forecasts obtained from the CFS high-resolution model [Schemm and Long, 2009]. This 291 

tool provides guidance to the seasonal hurricane outlooks in three main ways. First, it 292 

aids in the prediction of the climate predictors themselves.  Second, it aids in predicting 293 

the strength of the regional circulation anomalies associated with those climate 294 

predictors, which is especially important when there are competing climate factors or 295 

when there is an expectation for a significant evolution in those climate factors (such as 296 

ENSO) as the season progresses. Third, the model provides independent, bias-corrected 297 

predictions of seasonal activity based purely on model-generated hurricane tracks. Along 298 

similar lines, in 2010 the outlooks also began taking into account ensemble dynamical 299 

model predictions obtained from the ECMWF and the EUROSIP. 300 

To arrive at the final seasonal hurricane outlook, all predicted ranges obtained 301 

from the various prediction tools are first assembled. Consensus guidance outlook ranges 302 

are then obtained by averaging separately, over all the prediction tools, the lower bounds 303 

and the upper bounds of the predicted ranges. The individual team forecasters then use 304 

this guidance to make predictions for the likely ranges of activity (~70% confidence) for 305 

each prediction parameter. The final Atlantic outlook reflects a consensus of these 306 

individual forecaster predictions. 307 

 308 

2.4 TSR Model Development: 1999-Present 309 

 310 
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Tropical Storm Risk (TSR), based at University College London in the UK, has 311 

issued public outlooks for seasonal TC activity in the North Atlantic since December 312 

1998.  The TSR venture developed from a UK government-supported initiative called 313 

TSUNAMI, which ran from 1998 to 2000, and whose aim was to assist the 314 

competitiveness of the UK insurance industry.   315 

TSR predicts basin-wide TC activity (namely numbers of storms of different 316 

strengths and the ACE index), U.S. landfalling TC activity, and Caribbean Lesser 317 

Antilles landfalling TC activity.  Outlooks are issued in deterministic and tercile 318 

probabilistic form.  The TSR prediction models are statistical in nature, but are 319 

underpinned by predictors that have sound physical links to contemporaneous TC 320 

activity.  TSR issues seasonal outlooks in early December, April, June, July and August.   321 

All historical TSR seasonal TC outlooks are available online at 322 

www.tropicalstormrisk.com/forecasts.html thereby allowing assessments to be made of 323 

the TSR real-time forecast skill.  However, during the period from December 1998 324 

through 2001 the TSR seasonal forecast models and their lead times of issue were 325 

evolving.  For a consistent assessment of TSR prediction skill at set lead times, it is 326 

recommended to use only outlooks starting with the 2002 hurricane season.  TSR also 327 

provides within its seasonal outlooks, the hindcast precision of each outlook parameter 328 

assessed over a prior 35-year period.   329 

The TSR seasonal hurricane forecast model is sophisticated for a statistical model.  330 

The model divides the North Atlantic hurricane basin into three regions: (1) the tropical 331 

North Atlantic; (2) the Caribbean Sea and Gulf of Mexico; (3) the remainder of the North 332 

Atlantic outside regions (1) and (2).  TSR employs separate outlook models for each of 333 



 16 

the three regions before summing the regional hurricane outlooks to obtain an overall 334 

North Atlantic hurricane outlook.   335 

For regions (1) and (2) the model pools different environmental fields involving 336 

predictions of August-September SST anomalies and July-September trade wind speed to 337 

select the environmental field or combination of two fields which gives the highest 338 

replicated real-time skill for individual predictands (number of tropical storms, number of 339 

hurricanes, number of major hurricanes, and ACE index) over the prior 10-year period.  340 

The nature of this process means that the details of the seasonal forecast model can vary 341 

subtly: (1) between individual predictands at the same lead time for a given year; (2) with 342 

lead time for the same predictand during the same year; and (3) from year-to-year for the 343 

same predictand at the same lead time.  Separate forecast models are employed to predict: 344 

(1) July-September trade wind speed; (2) August-September SST anomalies for different 345 

regions in the tropical North Atlantic and Caribbean Sea; and (3) August-September SST 346 

anomalies for different Nino regions [Lloyd-Hughes et al., 2004].  Finally bias 347 

corrections are employed for each predictand based on the performance of that predictand 348 

over the prior 10 years.   349 

Two environmental fields stand out amongst the fields which the TSR model 350 

pools in making its selection described above.  These fields are: (1) Predicted speed of 351 

the trade winds for July-August-September for the region 7.5°-17.5°N, 100°W-30°W.  352 

The trade winds blow westward across the tropical Atlantic and Caribbean Sea and 353 

influence cyclonic vorticity and vertical wind shear over the MDR; and (2) Predicted SST 354 

anomaly for August-September for the region 10°-20°N, 60°W-20°W between West 355 

Africa and the Caribbean, which includes the central and eastern MDR where many 356 
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hurricanes develop during August and September.  Waters here provide heat and 357 

moisture to help power the development of storms within the MDR.   The nature of these 358 

two environmental fields and their anomalies, which are linked to active hurricane 359 

seasons, is shown in Figure 8.  Further information on the TSR outlooks for North 360 

Atlantic TC activity and its underpinning methodology is described in Lea and Saunders 361 

[2004; 2006], Saunders [2006], and Saunders and Lea [2008]. 362 

TSR outlooks for US landfalling TC activity issued between December and July 363 

employ a historical thinning factor between ‘tropical’ North Atlantic activity and U.S. 364 

landfalling activity.  The TSR outlook for U.S. landfalling activity issued in early August 365 

employs the persistence of July steering winds [Saunders and Lea, 2005].  These winds 366 

either favor or hinder evolving hurricanes from reaching U.S. shores during August and 367 

September.  This model correctly anticipates whether U.S. hurricane losses are above-368 

median or below-median in ~75% of the years between 1950 and 2013.  For the U.S. 369 

ACE index, the TSR prediction skill increases from 3% (prior December) to 29% (early 370 

August) for the period 1980-2013. 371 

 372 

2.5   Assessment of Seasonal Hurricane Outlook Skill: 2003-2014  373 

  374 

An assessment and inter-comparison of the real-time forecast skill of the CSU, 375 

NOAA and TSR hurricane outlooks was performed for the 12-year period 2003-2014. 376 

This period is chosen because the forecast methodologies employed by each group have 377 

remained relatively stable over this period (see sections 2.2, 2.3 and 2.4), and because 378 

these outlooks are available and archived on their public websites.  379 
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The deterministic August outlooks for the four main measures of hurricane 380 

activity; ACE, major hurricane numbers, hurricane numbers, and named storm numbers, 381 

that were issued by each forecast group during 2003-2014 are shown in Figure 9. Since 382 

NOAA does not issue deterministic outlook values, but instead issues an outlook range 383 

having a 70% probability of occurrence, the mid-point of their outlook range is used as a 384 

proxy for their deterministic value.  385 

Notable forecast successes are evident (e.g. 2005, 2010 and 2014) as well as 386 

forecast failures (e.g. 2007 and 2013). The 12-year period includes the most active 387 

hurricane season on record (2005) as well as the quietest hurricane season since the early 388 

1980s (2013). Thus, although the assessment period is relatively short it provides a 389 

reasonable test of outlook performance. 390 

The skill assessment and comparison is made separately for the four main 391 

measures of hurricane activity, and separately for the three outlook issue times of early 392 

April, early June (at the start of the official hurricane season) and early August (just prior 393 

to the main part of the hurricane season). It should be noted that only CSU and TSR issue 394 

outlooks in early April and that the NOAA outlook issued in late May is treated here as 395 

an early June outlook. 396 

The assessment examines two measures of deterministic outlook skill. The first is 397 

the Spearman rank correlation (rrank), which is a robust and resistant alternative to the 398 

Pearson product-moment correlation coefficient [Wilks, 2006]. The second skill measure 399 

is the mean square skill score (MSSS), defined as the percentage reduction in mean 400 

square error of the outlooks compared to outlooks made with a climatological mean. 401 

MSSS is the skill metric recommended by the World Meteorological Organization 402 
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(WMO) for verification of deterministic seasonal outlooks [WMO, 2002; also see Déqué, 403 

2003]. The MSSS is calculated here with respect to two different climatologies: a fixed 404 

1951-2000 mean and a rolling prior 10-year mean. A prior 10-year mean is used, instead 405 

of the prior 5-year mean as recommended by the WMO [WMO, 2008], because the 10-406 

year mean is found to be a tougher benchmark to beat for all measures of hurricane 407 

activity.  408 

Figures 10 and 11 display the real-time skill of the seasonal hurricane outlooks 409 

computed for the different lead times and activity measures. Figure 10 shows the skill 410 

using the Spearman rank correlation (rrank), and Figure 11 shows the skill using the mean 411 

square skill score (MSSS). The findings from these two skill assessments are similar.  For 412 

all models, the August outlooks are by far the most skillful, and the April outlooks are the 413 

least skillful. Overall, the TSR model is the most skillful predictor of the ACE index and 414 

is also the most skillful pre-season and early-season predictor for hurricane numbers.  415 

The NOAA model has the best August prediction for named storm numbers. 416 

Benchmark skill values were then obtained by identifying the best performing 417 

statistical outlook model for each measure of hurricane activity based on the MSSS 418 

scores.  The benchmark MSSS skill values for ACE, major hurricane numbers and 419 

hurricane numbers are 10-20% for early April outlooks, 20-30% for early June outlooks, 420 

and 40-60% for early August outlooks. For named storm numbers, the benchmark MSSS 421 

values are 0-40% for early April outlooks, 20-60% for early June outlooks, and then 422 

increase to 60-80% for early August outlooks. These are the largest skill scores of all 423 

predicted parameters. The lower value in these ranges correspond to the MSSS calculated 424 
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with respect to the prior 10-year mean (dashed lines) and the larger value corresponds to 425 

the MSSS calculated with respect to the 1951-2000 mean. 426 

The benchmark MSSS values show that the best performing statistical seasonal 427 

model offers skill for all measures of hurricane activity and that this skill extends out to 428 

early April.  This skill may be described as moderate-to-good for early August outlooks, 429 

low-to-moderate for early June outlooks, and low for early April outlooks.  430 

 431 

2.6   Future of Atlantic Basin Seasonal Hurricane Prediction 432 

  433 

Although seasonal Atlantic hurricane outlooks are showing skill from early April, 434 

it is likely that there are untapped sources of seasonal predictability which can further 435 

enhance the predictive skill.  These untapped sources of predictability may come, for 436 

example, from the identification of significant additional forcing factor(s) in years when 437 

ENSO is neutral and/or from further developments in dynamical modeling.  We 438 

anticipate that as model resolution, data assimilation techniques and model physics 439 

continue to improve, the utility of dynamical models for seasonal outlooks will continue 440 

to increase. 441 

However, as this chapter focuses on statistical predictions, two areas of research 442 

related to future developments in statistical modeling are addressed. One promising area 443 

for further statistical model development is the ability to generate forecast models built 444 

over longer periods of data.  In general, models built over long periods of data should 445 

prove to be more reliable in the future.  The 20th Century Reanalysis developed by the 446 

Earth System Research Laboratory (ESRL) [Compo et al., 2011] as well as the ERA-20C 447 
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project from the ECMWF [Stickler et al., 2014] provide gridded datasets since the start of 448 

the 20th century.  These datasets ingest surface data and then use an Ensemble Kalman 449 

filter (in the case of the 20th Century Reanalysis) and 4D variational data assimilation (in 450 

the case of the ERA-20C) to arrive at estimates of upper-air fields.  The ECMWF is 451 

currently intensively involved in data rescue efforts from pibals and weather balloon data 452 

from the 1920s and 1930s in preparation for a fully-coupled three-dimensional realization 453 

of the atmosphere dating back to 1900.  There is obviously increased uncertainty as one 454 

heads back in time, but these datasets have proved and will likely continue to prove 455 

useful in better estimating the stability of relationships between predictors and Atlantic 456 

hurricane activity. 457 

Another area that has helped with improving the accuracy of statistically-based 458 

seasonal outlooks has been the reanalysis of the Atlantic basin hurricane database 459 

(HURDAT2) [Landsea and Franklin, 2013].  As is the case with large-scale fields, there 460 

is increased uncertainty in observed hurricane activity earlier in the record. This 461 

uncertainty becomes especially large prior to the mid-1960s when no geostationary 462 

satellite data was available.  The reanalysis has attempted to reconstruct historical 463 

hurricane tracks back to 1851 using historical records from newspapers, ship logs, and 464 

other sources.  This project is currently in the middle of the 20th century and has likely 465 

provided more accurate estimates of historical ACE.  Vecchi and Knutson [2008, 2011] 466 

have also provided an estimate of named storms and hurricanes; respectively, that were 467 

likely missed prior to 1965 through examination of ship traffic across the Atlantic basin.  468 

A similar adjusted ACE metric would be useful for continued improvement of 469 

statistically-based models of seasonal hurricane activity.   470 
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 471 

3.    Conclusions 472 

 473 

This chapter has described how statistically-based Atlantic basin seasonal 474 

hurricane outlooks have developed since their inception in 1984.  The first seasonal 475 

outlooks were issued by CSU, and were based on the phase of ENSO, the phase of the 476 

QBO, and Caribbean sea level pressure anomalies.  The CSU model has evolved and now 477 

employs a variety of predictors derived from the latest global reanalysis products. In the 478 

late 1990s statistically-based seasonal hurricane outlooks were initiated by two other 479 

groups: NOAA and TSR. The NOAA model is statistical-dynamical in form and utilizes 480 

statistical techniques analyzing the state of the AMO and ENSO, combined hybrid 481 

statistical/dynamical techniques, and dynamical model output.  The TSR model is 482 

sophisticated for a statistical model but primarily utilizes two predictors: 1) predicted 483 

tropical Atlantic sea surface temperatures and 2) predicted low-level trade wind flow 484 

across the tropical Atlantic and Caribbean Sea.   485 

All three prediction models (CSU, NOAA and TSR) show significant real-time 486 

skill for the 2003-2014 period, with the August outlooks being by far the most accurate. 487 

Overall, NOAA’s August outlooks show the most skill in predicting named storm 488 

numbers. The TSR model shows the most skill in predicting ACE, and also has the 489 

highest pre-season and early-season skill in predicting hurricane numbers.  490 

The benchmark MSSS values show that the best performing statistical seasonal 491 

model offers skill for all measures of hurricane activity and that this skill extends out to 492 

early April.  This skill may be described as moderate-to-good for early August outlooks, 493 
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low-to-moderate for early June outlooks, and low for early April outlooks. It is likely that 494 

untapped sources of seasonal hurricane predictability remain to be discovered, and it is 495 

possible for statistical models to gain modest improvements upon the seasonal real-time 496 

outlook skills documented herein.  497 
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652 

Figure 1: Schematic of atmospheric and oceanic anomalies during August-October 653 

associated with active Atlantic hurricane seasons and decades.  Adapted from Bell and 654 

Chelliah [2006]. 655 

  656 
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 657 

 658 

 659 

Figure 2:  Locations of six stations used to estimate Caribbean basin sea level pressure 660 

anomalies in the original CSU outlook.  Figure taken from Gray [1984b].     661 

662 
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 663 

Figure 3: Hindcast skill based on the period 1950-1982 of the original early August 664 

outlook issued by CSU.  The correlation (r) between the hindcast and observed number of 665 

hurricanes and tropical storms combined is 0.82. Figure taken from Gray [1984b].     666 

  667 
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 668 

Figure 4:  Predictors utilized by CSU in the early 1990s for their August seasonal 669 

outlook. Labels not mentioned in the text include: 1) the Southern Oscillation Index, 670 

which is used to monitor ENSO and is a measure of the anomalous sea-level pressure 671 

difference between Darwin, Australia and Tahiti, and 2) the Niño-3 region, which is an 672 

important area of the tropical Pacific used to monitor ENSO.  Figure adapted from Gray 673 

et al. [1993].   674 
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 676 

 677 

Figure 5: Tracks of major hurricanes in the year following the ten wettest August-678 

November periods in the Gulf of Guinea (top panel) and the ten driest August-November 679 

periods from 1949-1989.  This finding was why the previous August-November Gulf of 680 

Guinea rainfall was utilized in the initial early December outlook scheme issued by CSU.  681 

Figure taken from Gray et al. [1992]. 682 

  683 



 36 

  684 

Figure 6:  Location of predictors for CSU outlooks currently being issued in early 685 

August.   686 
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 687 

Figure 7: Schematic illustrating the tools which provide guidance for NOAA’s Atlantic 688 

hurricane season outlooks.   689 

  690 
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 691 

Figure 8: Nature of the TSR statistical model for replicating North Atlantic seasonal 692 

hurricane activity. The figure displays the two August-September environmental field 693 

areas that the TSR model employs most often in producing a seasonal hurricane outlook. 694 

The figure also displays the anomalies in August-September SST (color coded in °C) and 695 

925 hPa wind (arrowed) linked to active Atlantic hurricane years. Figure taken from 696 

Saunders and Lea [2008]. 697 
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 700 

 701 

Figure 9: Time series comparing the seasonal outlook values issued in early August  702 

2003-2014 by CSU, TSR and NOAA with observed values. The comparison is made 703 

for (a) ACE, (b) Major hurricane numbers, (c) Hurricane numbers, and (d) Named storm 704 

numbers.  705 
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 707 

Figure 10: Skill of North Atlantic seasonal hurricane outlooks from 2003-2014 708 

assessed using the Spearman rank correlation (rrank) between the forecast and 709 

observed values. The assessment is made for (a) ACE, (b) Major hurricane numbers, (c) 710 

Hurricane numbers, and (d) Named storm numbers. In each case the rrank values are 711 

computed for CSU, TSR and NOAA seasonal outlooks issued at lead times of early 712 

August, early June and early April. 713 
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 715 

Figure 11: Skill of North Atlantic seasonal hurricane outlooks 2003-2014 assessed using 716 

the mean square skill score (MSSS) and displayed in the same format as Figure 10. The 717 

MSSS skill assessment is made with two different climatology forecasts: a fixed 1951-718 

2000 mean and a rolling prior 10-year mean. 719 


