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Abstract

Single-cell transcriptomics is becoming an important component of the molecular biologist’s 

toolkit. A critical step when analyzing this type of data is normalization. However, normalization 

is typically performed using methods developed for bulk RNA sequencing or even microarray 

data, whose suitability for single-cell transcriptomics has not been assessed. In this perspective, we 

discuss commonly used normalization approaches and illustrate how these can lead to misleading 

results. Finally, we present alternative approaches and provide recommendations for single-cell 

RNA sequencing users.

Single-cell RNA sequencing (scRNA-seq) has transformed the field of transcriptomics by 

making it possible to address fundamental questions that are inaccessible to bulk-level 

experiments [1]. Examples include the study of tumor heterogeneity, the identification of 
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novel cell types, and the understanding of cell fate decisions during early embryo 

development [2–5].

Recent literature has highlighted the need for new computational methods to address the 

complex features that characterize scRNA-seq data, such as sparsity and technical noise [6–

11]. Despite this, little attention has been given to normalization — a critical step in the 

analysis pipeline that adjusts for unwanted biological and technical effects that can mask the 

signal of interest. Instead, most tools developed for scRNA-seq rely on normalized 

expression measures obtained from methods developed for bulk RNA-seq or even 

microarray data. However, the suitability of such approaches for single-cell transcriptomics 

has not been rigorously discussed.

In this Perspective, we address normalization and focus on the most widely used strategy, 

global-scaling, which attempts to remove cell-specific systematic biases by scaling 

expression measures within each cell by a constant factor. Within this context, we illustrate 

that using bulk-based normalization methods can have serious adverse consequences for 

downstream analysis, such as the detection of highly variable genes prior to clustering. Such 

problems are exacerbated by the high levels of technical noise and dropout typical of 

scRNA-seq. We also discuss the use of extrinsic spike-in sequences (e.g. [12]) for 

normalization. To conclude, we summarize state-of-the-art methods for scRNA-seq 

normalization, including integrated strategies, where normalization is intrinsic to a specific 

method, and generic tools, which provide normalized data that can be used as input to any 

downstream analysis pipeline.

From bulk samples to single-cell resolution

Bulk microarray and RNA-seq experiments measure gene expression levels as averages 

across thousands of cells. While this allows the characterization of population-level 

differences in overall expression, single-cell-level experiments are required to better 

understand the dynamics of gene expression patterns. In particular, scRNA-seq experiments 

can reveal heterogeneity within populations of cells. However, the promise of scRNA-seq 

comes at the cost of more challenging experimental protocols [13] and higher data 

complexity [10].

A prominent feature of scRNA-seq is the sparsity of the data, i.e., the high proportion of 

zero read counts [7, 8, 14]. This so-called zero inflation arises for both biological reasons 

(e.g., subpopulations of cells or transient states where a gene is not expressed) and technical 

reasons (e.g., dropouts, where a gene is expressed but not detected through sequencing). 

Besides the dropout effect, technical noise in scRNA-seq is also reflected by high variability 

between technical replicates, even for genes with medium or high levels of expression [6]. 

Additionally, by capturing individual cells from potentially very different cell types, scRNA-

seq data are highly heterogeneous, even in the absence of the technical biases discussed 

above. Consequently, several assumptions made when analyzing bulk RNA-seq data do not 

always apply in the context of scRNA-seq.
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Systematic biases in scRNA-seq datasets

Data normalization strategies must capture biases that are specific to the technology of 

interest. For example, two-channel microarrays require normalization to account for 

differences in dye balance related to intensity and spatial position on the array [15]. By 

contrast, in sequencing assays, read counts must be adjusted to control for a variety of 

biases, including sequencing depth [16, 17]. Additionally, in any of these high-throughput 

assays, one needs to account for possibly more complex and putatively unknown effects, 

collectively known as “batch effects” [18–20].

While scRNA-seq analysis pipelines routinely include a normalization step, the sources of 

the systematic biases that this step captures are assay-specific. To illustrate this, we focus on 

the Illumina sequencing platform, with a simple experimental setup where gene expression 

is measured in a homogeneous population of cells. The discussion below applies to whole 

transcript scRNA-seq as well as to 3’ sequencing protocols and Unique Molecular Identifier 

(UMI) [21] based approaches that use barcodes to obtain molecular counts.

RNA-seq experiments are inherently stochastic, with reads being randomly sampled from a 

pool of amplified cDNA molecules. Typically, the quantity of interest is the expression level 
of each gene: the relative abundance of mRNA molecules within the population of mRNA 

molecules in each cell. There are several experimental sources of systematic biases that can 

affect measurements of gene expression, including gene- and cell-specific features (Fig. 1). 

Accordingly, we distinguish between two types of normalization: within-sample 
normalization, which removes gene-specific biases (e.g., GC-content); and between-sample 
normalization, which adjusts for effects related to distributional differences in read counts 

between cells (e.g., sequencing depth). In this Perspective we focus on the latter type of 

normalization, and in particular, on global-scaling, the most common approach in the 

literature.

Global-scaling normalization methods assume that the expected value of the read count for a 

gene in a cell is proportional to a gene-specific expression level and a cell-specific scaling 
factor (also known as a size factor), which is an unknown (random) variable representing 

nuisance technical effects (Box 1). Reverse transcription (RT) efficiency, as well as cell-

intrinsic properties, such as endogenous mRNA content, are examples of nuisance effects. 

Note that, unlike endogenous mRNA content, which is fixed for a given cell, the remaining 

effects listed in Box 1 are random (if the same cell could be processed twice, these quantities 

would vary). This implies that scaling factors are inherently random. Nevertheless, most 

existing methods treat these scaling factors as fixed factors and/or model offsets.

Depending on the experimental protocol, some cell-specific effects cancel out between cells. 

For example, if library quantification is accurate, the dilution step can remove biases related 

to differences in the pre-dilution number of amplified cDNA molecules per cell. UMI-based 

protocols in principle remove amplification and sequencing depth related biases, since 

multiple reads associated with the same UMI are collapsed into a unique count (Figure 1c). 

However, this is only true if all libraries are sequenced to saturation (i.e., each uniquely-

tagged molecule is observed at least once). If not, some UMI-tagged cDNA molecules will 
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be lost and, since sequencing depth randomly fluctuates between cells, systematic cell-

specific differences between molecule counts can occur. Finally, since UMIs are ligated to 

each molecule during RT, they cannot account for differences in capture efficiency prior to 

the RT step, nor for differences in cellular mRNA content.

Normalizing scRNA-seq datasets

scRNA-seq datasets are typically normalized using global-scaling normalization methods 

inherited from bulk RNA-seq data analysis [7, 8, 24]. In principle, global-scaling factors can 

be treated as (nuisance) model parameters and jointly estimated with other quantities of 

interest such as gene-specific expression levels. However, this approach is computationally 

intensive and necessarily tailored to a specific model (e.g., [19, 25]).

An alternative — and widespread — approach is to compute normalized expression 

measures based on scaling factors estimates obtained during a pre-processing step (Box 1). 

Downstream analyses, such as clustering or differential expression, are then typically based 

on normalized measures (either directly or by treating the estimated scaling factors as model 

offsets), ignoring uncertainty related to the scaling factor estimation. While this strategy is 

common, there is no consensus on how to estimate the scaling factors; some popular choices 

are summarized below. All approaches, however, share the same motivation: to bring cell-

specific measures onto a common scale by standardizing a quantity of interest (e.g., total 

read counts per sample) across cells, while assuming that, e.g., most genes are not 

differentially expressed.

An intuitive and popular method is Reads Per Million (RPM), which standardizes the total 

number of reads between cells; it is also referred to as library size normalization and is 

related to RPKM [26] and TPM [27]. However, these estimates can be dominated by a 

handful of highly expressed genes, which can bias downstream results [16, 22]. Another 

possibility is to use Upper-Quartile (UQ) normalization, which defines scaling factor 

estimates as proportional to the 75th percentile of the distribution of counts within each cell 

[16]. An extension of this idea (albeit outside the universe of global-scaling normalization) 

is Full-Quantile (FQ) normalization, where all the quantiles of cell-specific counts are 

matched to a reference distribution [16]. However, quantile-based normalization methods are 

problematic in scRNA-seq due to the high frequency of zero counts typically observed. In 

practice, this can lead to scaling factor estimates being set to 0 in UQ normalization, while 

the large number of zeros leads to ties in the gene ranking needed by FQ normalization, 

rendering its interpretation more difficult.

Alternative approaches have been developed in the context of bulk RNA-seq analyses. Two 

highly popular methods are DESeq [22] and Trimmed Mean of M-values (TMM) [23] 

normalization. DESeq defines scaling factor estimates based on a pseudo-reference sample, 

which is based on a geometric mean. TMM trims away extreme log-fold-changes to 

normalize the counts based on the remaining set of non-differentially expressed genes. 

Critically, zero inflation is problematic for DESeq, as the calculation of the pseudo-reference 

sample is only well defined for the potentially very small set of genes with at least one read 

in every cell.
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In the context of bulk RNA-seq, the performance of global-scaling methods was reviewed by 

[17], where DESeq and TMM were suggested to outperform other methods using a variety 

of case studies and simulated datasets. However, their performance in the context of scRNA-

seq has been given little attention.

Comparing bulk-based approaches: A case study

Using different normalization methods can alter the results of downstream analysis. To 

illustrate this, we applied the three widely used normalization techniques RPM, DESeq, and 

TMM to a publicly available dataset (Fig. 2). The data consist of gene expression measures 

for 933 mouse embryonic stem cells (mESCs) [28]. These cells were processed using a 

droplet-based protocol, yielding UMI-based counts.

Overall, we observe substantial differences between the methods regarding scaling factor 

estimation (Fig. 2a, upper right panels). Firstly, due to zero inflation, DESeq scaling factors 

are based on only 115 genes. As expected, this results in less stable estimation of the scaling 

factors. Moreover, we observe that — with respect to RPM (and DESeq) — TMM tends to 

respectively under- and over-estimate large and small scaling factors (this is in line with the 

simulation results in [14]). This is largely due to the sparsity of the data, with the differences 

between methods increasing for cells where more zero counts are observed (Fig. 2b, bottom 

panel).

Crucially, we observe that differences in scaling factor estimation affect gene-specific 

estimates of variability. This is illustrated using the squared coefficient of variation (CV2) of 

the normalized expression measures per gene (Fig. 2a, lower left panels). Thus, analyses 

whose aim is to uncover heterogeneity within the data are also distorted. For example, 

studies often start by selecting highly variable genes (HVGs) to reduce the dimensionality of 

the data prior to clustering or other analyses. We observe that HVG selection is sensitive to 

the choice of normalization, with less than a third of HVGs shared across all normalization 

methods (Fig. 2c).

We performed the same analyses on additional datasets, showing that these issues are likely 

general and inherent to scRNA-seq data (Supplementary Data 1). As expected, differences 

between scaling factors, and consequently between the lists of HVGs, are emphasized in 

datasets with low sequencing depth. This is critical, as several modern experimental 

protocols (e.g., droplet-based methods) use shallow sequencing, with less than 50,000 reads 

per cell, in order to profile a large number of cells. While shallow sequencing has been 

shown to allow discovery and classification of cell types in complex tissues [29–31], the 

result of more refined analyses (e.g., pseudo-time ordering [32]) can be distorted by 

differences between normalization methods.

Given the lack of ground truth in real data, we cannot determine which normalization 

method, if any, correctly estimates the scaling factors. To shed some light onto the relative 

merits of each method, we turn to simulations (Supplementary Data 2). We simulated two 

groups of cells with varying numbers of differentially expressed genes. When the data are 

simulated with symmetric differential expression, all methods lead to unbiased estimates. 
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However, with asymmetric differential expression, bulk-based methods lead to biased 

estimates of the scaling factors (see Figure 2d for an example with 80% up-regulated and 

20% down-regulated genes in group 1; see Supplementary Data 2 for other settings). This 

suggests that great care should be used if bulk-based global-scaling methods are applied to 

scRNA-seq data.

State-of-the-art

Bulk-based normalization methods are widely applied to scRNA-seq datasets, despite the 

problems outlined above. However, normalization methods that are specifically tailored to 

scRNA-seq datasets have recently been introduced. Below, we summarize state-of-the-art 

methods, provide practical recommendations to scRNA-seq users, and motivate the 

development of new methodology to address unresolved issues.

We distinguish between two different approaches. Firstly, we consider bespoke methods that 

use pre-normalized expression measures in conjunction with a model that accounts for 

artifacts specific to scRNA-seq that are not accounted for in the normalization. In the context 

of differential expression analyses, two examples are SCDE [7] and MAST [8]. To attenuate 

the effect of technical variation in downstream analysis, SCDE introduces a two-component 

mixture model to capture dropout events and events where a transcript is faithfully 

amplified. Alternatively, MAST uses the fraction of genes that are detectably expressed in 

each cell as a proxy for both technical and biological sources of variation. MAST uses a 

hurdle model where the expression measure of a detected gene is modeled by linear 

regression and the probability of detection by logistic regression.

A second strategy for normalizing scRNA-seq datasets is to use generic methods that yield 

normalized expression measures that can be used as input in any subsequent analyses (e.g. 

[32–34]). A recent example of such an approach, scran, pools multiple cells in order to 

estimate cell-specific size factors more robustly in the presence of zero inflation and 

unbalanced differential expression of genes across groups of cells (Figure 2d and [14]). In 

principle, BASiCS [11,25] also provides a generic normalization tool but its implementation 

has been coupled with specific downstream analysis.

We tested two single-cell motivated methods, BASiCS and scran, on recently published 

datasets and found that, unlike bulk-based methods, they led to very similar results in terms 

of scaling factor estimation and HVG selection (Supplementary Data 3). This likely derives 

from greater robustness to features of single-cell RNA-seq data compared to bulk-based 

approaches. Other recent examples of normalization methods specifically designed for 

scRNA-seq include GRM [35] and SAMstrt [36], which both rely on spike-ins, and SCnorm 

[44], which uses quantile regression to group genes with similar dependence on sequencing 

depth and estimate different scaling factors for each group. However, it should be noted that 

GRM is not a between-sample normalization method, but rather a method to de-noise gene 

expression levels within each cell. In addition, Qiu et al. [45] proposed the Census algorithm 

to convert relative RNA-seq measurements to relative transcript counts. The Census 

algorithm can be considered as a normalization method since it rescales TPM values by 

dividing them by the estimated total number of mRNA molecules.

Vallejos et al. Page 6

Nat Methods. Author manuscript; available in PMC 2017 August 09.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Finally, we note that although the various global-scaling methods rely on different 

assumptions, they all fail if the number or fold-change of differentially expressed genes 

across the cell population is too high. One strategy to alleviate this issue is to pre-cluster the 

cells into smaller, more homogeneous sets (e.g., using rank-based clustering methods, which 

are unaffected by global-scaling normalization). Normalization can then be performed 

separately for each cluster prior to between-cluster normalization to calculate cluster-

specific offsets. This approach is used in the “scran” method and has been shown to yield 

more accurate estimates of scaling factors [14], as also suggested by our simulations (Figure 

2d).

Spike-in sequences and normalization

The scaling factors introduced in Box 1 cannot distinguish between technical biases and 

genuine biological differences between cells, such as total mRNA content. Jiang et al. [12] 

discussed the benefits of exploiting a set of synthetic control genes — with constant 

expression level across all samples — to disentangle these effects in bulk RNA-seq. 

Extrinsic control genes have also been used in the context of scRNA-seq [6, 25, 33, 35, 36], 

where spike-in sequences are added to each cell’s lysate in a theoretically constant and 

known amount. The most commonly used set of spike-ins is the set of 92 External RNA 

Control Consortium (ERCC) molecules [12]. Other examples include the 8 synthetic 

mRNAs deployed in [37] and the whole transcriptome HeLa RNA spike-in used in [6]. An 

important question is to understand the utility of synthetic spike-in sequences in the context 

of global-scaling normalization.

One critical assumption underlying the use of spike-in sequences is that the technical effects 

summarized in Box 1 equally affect the intrinsic and the extrinsic genes. If this assumption 

holds, additional technical scaling factors can be defined that capture these shared technical 

effects [6]. Thus, for any given cell, the ratio between the scaling factor described in Box 1 

and the technical scaling factor defined above is equal to the endogenous mRNA content of 

the cell. As a corollary, normalization based solely on spike-in derived scaling factors does 

not remove differences in endogenous mRNA content between cells and further 

normalization is required to remove this effect.

This suggests that spike-in sequences can be used to obtain estimates of endogenous mRNA 

content per cell. At a coarse level, this is reflected in several scRNA-seq datasets (Figure 

3a), consistent with previously described bulk RNA-seq studies [38]. Here, we look at three 

different datasets [33, 42, 43], for which we can stratify samples according to their expected 

mRNA content. The ratio of mRNA/spike-in read counts correctly indicates that mRNA 

content increases as mouse embryonic stem cells progress along the cell cycle [33] and 

decreases across blastomeres in early mouse embryos at 2-,4-, and 8-cell stages [42] due to 

their difference in size. Analogously, in an experiment on the Fluidigm C1 instrument, wells 

including multiple cells are characterized by a higher mRNA content than wells where 

single cells are captured [43].

However, using spike-in sequences remains challenging. In particular, calibrating the added 

number of spike-in molecules is non-trivial and depends on intrinsic characteristics of the 
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studied cells, such as endogenous mRNA content. Poor calibration can invalidate the utility 

of the spike-ins as control genes: too many spike-ins can overwhelm signal from the intrinsic 

genes, while the majority of spike-in sequences can be unusable in downstream analysis if 

too few spike-in molecules are added [19].

Additional issues arise for specific sets of spike-in sequences. In particular, for the widely 

used set of ERCC controls, the extreme range of concentration of spike-in molecules [38] 

prevents the use of the entire ERCC set in (single-cell) RNA-seq: Typically only half of the 

spike-in molecules are detected and the proportion of reads mapped to the spike-in 

sequences may be extremely variable (Figure 3a).

Moreover, potential biases in the mRNA enrichment process related to gene length and GC-

content imply that, overall, technical effects may be different for the ERCC spike-in 

sequences and the intrinsic genes. In fact, the ERCC set does not reflect the mammalian 

transcriptome in terms of gene length and GC-content (Figure 3b). Moreover, [19] showed 

that ERCC spike-in signal can vary considerably between technical replicate samples. 

Consequently, estimates of endogenous mRNA content derived using ERCC spike-ins have 

large measurement uncertainties [38].

Developing a set of spike-ins specifically tailored for scRNA-seq experiments could 

overcome some of these limitations. Ideally, this set should closely resemble intrinsic genes 

in terms of the distribution of GC-content, total length, and polyA tail length. Ongoing 

efforts in this context are illustrated by a recent call from the National Institute of Standard 

and Technology (https://federalregister.gov/a/2015-19742), to design an improved set of 

controls, which should (i) mimic endogenous RNA and (ii) not interfere with the 

measurement of endogenous RNA. More recently, [39] introduced sequins (sequencing 

spike-ins) — a set of extrinsic spike-ins designed for (bulk) RNA-seq experiments.

Discussion

One aim of this perspective is to provide a straightforward understanding of the sources of 

variation that can be captured through global-scaling normalization in the context of scRNA-

seq.

Case studies and simulated datasets highlighted that a direct application of bulk RNA-seq 

normalization methods is not appropriate in the context of scRNA-seq, where — due to 

biological heterogeneity as well as technical artifacts — we typically observe more 

heterogeneous and sparser datasets. In particular, we illustrated that the choice of the 

normalization method affects downstream analyses, such as HVG detection, that aim to 

uncover heterogeneity within the data. Spike-in sequences can help to disentangle 

differences in endogenous mRNA content between cells from technical artifacts, though they 

do carry some caveats. This can be useful in several contexts, such as the whole-

transcriptome up-regulation induced by elevated expression of the c-Myc transcription factor 

[40].

A variety of scRNA-seq tailored methods have recently been proposed that outperform bulk 

strategies. Despite this, bulk-motivated approaches remain widely used in practice. We 
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therefore suggest that scRNA-seq users update their analysis pipelines — matching advances 

in technology — to take full advantage of the rich information provided by scRNA-seq 

datasets. Finally, while the issue of how best to normalize scRNA-seq data has not yet been 

fully resolved, many efforts are underway to develop additional robust and effective 

normalization techniques and to systematically assess their performance on individual 

datasets [44, 45, 46].

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1

Global Scaling Normalization for scRNA-seq Datasets

RNA-seq experiments are inherently stochastic, with reads being randomly sampled from 

a pool of amplified cDNA molecules. Accordingly, let Xij denote a random variable 

representing the read count of gene i in cell j. Typically, the parameter of interest is the 

expression level of each gene (see left panel), i.e., the relative abundance of mRNA 

molecules for a gene within the population of mRNA molecules in each cell. For the sake 

of simplicity, we consider here the case of a homogeneous population of cells.

Intuitively, a first effect captured through the scaling factor sj is the endogenous mRNA 
content nj, the total number of mRNA molecules per cell (middle panel). Indeed, even 

within a homogeneous population, nj can vary across cells. Furthermore, after cell lysis, 

only a fraction of these nj molecules, Fj, are captured and reverse transcribed into cDNA. 

Consequently, only nj x Fj cDNA molecules can potentially be amplified and 

subsequently sequenced. Critically, the capture and reverse transcription efficiency Fj 

varies between cells, which introduces cell-to-cell variability that should also be handled 

by sj.

Subsequently, due to the minute amount of genetic material contained in a cell, this pool 

of nj x Fj cDNA molecules must be amplified prior to sequencing library preparation. 

Variability in amplification efficiency can introduce cell- and gene-specific biases in the 

measurement of expression levels. We denote the cell-specific amplification factor by Aj, 

such that amplification leads to a pool of nj x Fj x Aj molecules.

Unlike microarray experiments, RNA-seq is inherently competitive, meaning that a fixed 

number of reads are distributed between genes. Given this, the amplified pools are 

subsequently diluted by a cell-specific factor Dj, so that there are nj x Fj x Aj x Dj 

amplified cDNA molecules to be sequenced. In principle, the dilution factor Dj can be set 

so that a library contains the same number of molecules from each cell, by carrying out a 

library quantification step and setting Dj = m / (nj x Fj x Aj), where m is the desired 

number of molecules per cell. Alternatively, each cell can contribute the same volume of 

amplified cDNA solution to the library, such that each library will contain a different 

number of amplified cDNA molecules if the concentration of the solution varies between 

cells. In this case, Dj = d, where d is the proportion of amplified molecules used to 

prepare the sequencing library. This decision is critical for interpreting the scaling factor 
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sj, since it affects the number of molecules that are available for sequencing and, 

consequently, the scale of cell-specific read counts.

Finally, the number of sequenced reads per molecule from each cell (sequencing depth), 

Rj, also varies stochastically. Consequently, by considering all the above factors, we 

expect to observe nj x Fj x Aj x Dj x Rj reads from cell j. Hence, even within the same 

sequencing lane, differences in sequencing depth introduce cell-specific artifacts that will 

be incorporated into the global-scaling factor sj.

While the above discussion assumes a homogeneous population of cells, this 

interpretation of scaling factors is still valid for more realistic scenarios - with 

heterogeneous populations - under specific assumptions, such as that the majority of 

genes is not differentially expressed or that there are roughly an equal number of up- and 

down-regulated genes.
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Figure 1. Cell- and gene-specific effects in RNA-seq experiments.
(a) Schematic representation of cell-specific effects. The top panel shows a pair of cells 

expressing two genes at the same levels. When RNA-seq is performed, cell-specific effects 

introduce a bias in the estimated log-fold-change (LFC) computed on raw read counts 

(bottom left panel). (b) Schematic representation of gene-specific effects. The two cells and 

true gene levels are the same as in (a), but now gene-specific effects are shown to bias the 

estimation of relative gene expression (bottom right panel). In real situations, both cell-
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specific and gene-specific effects are present. (c) List of main cell- and/or gene-specific 

effects and whether these are removed by unique molecular identifiers (UMIs).
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Figure 2. Comparison of bulk-based normalization methods in real and simulated datasets.
(a) Mean-difference plot comparing the estimated scaling factors (upper-triangular panels) 

and CV2 of normalized counts (lower-triangular panels) for the dataset published in [28]. (b) 

Ratio of estimated scaling factors vs. proportion of zero counts per cell for dataset [28]. (c) 

Top 10% most variable genes identified after normalizing dataset [28] with three different 

methods. Additional datasets are analyzed in Supplementary Data 1. (d) Ratio between the 

estimated and the true scaling factors for the most widely used bulk-based normalization 

methods and a method specifically designed for scRNA-seq (“scran”) [14] in a simulated 
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dataset consisting of two groups of cells. See Supplementary Data 2 for the simulation 

strategy and additional simulations.
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Figure 3. ERCC spike-ins can be used to estimate mRNA content.
(a) Ratio between the number of reads mapped to intrinsic genes and the number of reads 

mapped to ERCC spike-ins in datasets from [33, 42, 43] (left, central and right panel 

respectively). (b) Distributions of GC-content (left panel) and length (right panel) for mouse 

genes with at least one count in one cell in the dataset published in [41]. The purple areas 

show the interquartile ranges of GC-content and length for ERCC spike-ins, with the 

medians marked by vertical purple continuous lines.
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