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Centre de Recerca Matemàtica, Edifici C, Campus de Bellaterra, 08193 Bellaterra (Barcelona), Spain

and Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain

Ruben Perez-Carrasco* and Pilar Guerrero
Department of Mathematics, University College London, Gower Street, London WC1E 6BT, United Kingdom

Tomas Alarcon
ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
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Cell state determination is the outcome of intrinsically stochastic biochemical reactions. Transitions
between such states are studied as noise-driven escape problems in the chemical species space. Escape can
occur via multiple possible multidimensional paths, with probabilities depending nonlocally on the noise.
Here we characterize the escape from an oscillatory biochemical state by minimizing the Freidlin-Wentzell
action, deriving from it the stochastic spiral exit path from the limit cycle. We also use the minimized action
to infer the escape time probability density function.
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Introduction.—Cells are intrinsically noisy. Such stochas-
ticity arises not only from the production and degradation of
cellular components, but also from their mutual interaction
or even the interaction with other cells. Nevertheless, some
cellular processes require a precise deterministic output, and
noise-suppression mechanisms are necessary within the cell
[1–4]. On the other hand, since fluctuations are an intrinsic
component of cellular dynamics, mechanisms are in place
that cells exploit to improve their function [3–8]. There exist
situations in which randomness can even evolve predictably
in constant environments [9].
Mean-field descriptions of biochemical processes can

be analyzed using dynamical systems theory [10], where
stable steady states, sustained oscillations, or even tran-
sients of the ordinary differential equations (ODEs) corre-
spond to different possible cellular states [11,12]. Relevant
examples including sustained oscillations are circadian
rhythms [13–15], cAMP oscillations in Dictyostelium

[16], cell-cycle regulation [17–19], or patterns of bursting
in neuronal activity [20–24].
When molecular populations are small, the mean-field

framework is inaccurate and a stochastic description is
required. This involves the formulation of themaster equation
(ME) describing the underlying multivariate biochemical
birth-death process [25]. Unfortunately the ME is rarely
solvable analytically, requiring the use of Monte Carlo
methods (such as the Gillespie algorithm [26]). These
numerical methods are often computationally costly, even
infeasible [27]. This is especially true in phenomena asso-
ciated with rare fluctuations, as in the noise-induced escape
from a basin of attraction in mean first passage time (MFPT)
problems.
The analysis of MFPT problems started with rate theory,

studying escape from stationary states in double-well poten-
tials [28]. This theory was later extended to more complex
systems (nonpotential, dissipative), making use of rare event
theory and quasisteady state approximation [29–31].
Nevertheless, in spite of the importance of oscillatory
phenomena in biology, most studies have tackled escape
problems frompoint attractors, and a general theory of escape
from stable limit cycles is lacking. In order to fill this gap, we
consider two oscillatory models and unveil the utility of the
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minimum action path (MAP) method from large deviation
theory [32,33].
The models.—In order to study the limit cycle-fixed

point transition we first consider a model based on the
normal form of a subcritical Hopf bifurcation, showing
that the method can be applied to multiple physical
problems [34].

ṙ ¼ rðr2 − c2ÞEðx; yÞ; θ̇ ¼ ω: ð1Þ
In particular, we have broken the symmetry of the

normal form by introducing the elliptical term Eðx; yÞ≡
1 − ½ðx − xc − x0Þ2/a2� − ½ðy − ycÞ2/b2� ¼ 0, where (x, y)
are the Cartesian coordinates and (r, θ) the polar coor-
dinates with respect to the Cartesian point (xc, yc). In this
description, the stable fixed point is located at (xc, yc) that
is surrounded by a circular stable limit cycle of radius c
(Fig. 1 and the Fig. S1 in Supplemental Material [35]).
The basins of attraction are separated by a limit cycle that
will depend on Eðx; yÞ (for more details see Sec. I in
Supplemental Material [35]). Hereinafter, this model will
be referred to as the Hopf model.
We further consider a less prototypical model to explore

the predictions of the MAP to study the firing of neurons
using the Morris-Lecar model [23] (see Sec. II and Fig. S2
in Supplemental Material [35] which includes Ref. [36]). In
this context, the coexistence of a stable point and a limit
cycle, characteristic of type-II excitable behavior, gives rise

to stochastic spike trains. The properties of these spike
trains are determined by the details of the stochastic jump
out of the limit cycle. A detailed presentation of both
models is given in the Supplemental Material [35],
Sections SI and SII.
Stochastic description.—The details of the stochastic

description will depend on the underlying process leading
to the mean-field behavior given by Eq. (1). In the current
Letter, we chose a compatible birth and death process by
splitting the rhs of Eq. (1) into positive and negative
contributions to the evolution of each species ρþx ; ρ−x ;
ρþy ; ρ−y , where the intensive magnitudes x, y can be related
to the number of elements of each species, X ¼ xΩ and
Y ¼ yΩ (see Supplemental Material [35], Secs. SI and SII).
As Ω grows, the intrinsic noise is reduced, recovering the
mean-field limit Eq. (1) when Ω → ∞. For large (but finite)
Ω, the master equation can be approximated by the chemical
Langevin equation (CLE) [37,38],

ẋ ¼ ρþx − ρ−x þ Ω−1/2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρþx þ ρ−x

p
ξxðtÞ;

ẏ ¼ ρþy − ρ−y þ Ω−1/2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρþy þ ρ−y

q
ξyðtÞ; ð2Þ

where ξxðtÞ and ξyðtÞ are uncorrelated white Gaussian
noises, of zero mean, and autocorrelation hξxðtÞξxðt0Þi ¼
hξyðtÞξyðt0Þi ¼ δðt − t0Þ. Equations (2) imply that tuning the
value of Ω allows us to investigate the role of fluctuations in
the transition between the stable limit cycle and the
fixed point.
Minimum action path.—The intrinsic noise described

in the previous section allows for transitions between the
limit cycle and the fixed point. Such transitions can occur
through many possible transient trajectories, φ(xðtÞ; yðtÞ).
Nevertheless, not all the transitions are equally probable. In
particular, for reaction systems, unlikely transitions decay
exponentially with Ω, P ∼ e−ΩS ðφÞ [39], where the decay
rate S ðφÞ is the so-called action of the transition. This
means that for large enough values of Ω, the stochastic
transition will concentrate along the path, φ�, which
minimizes the action:

S ≡S ðφ�Þ ¼ min
φ
S ðφÞ: ð3Þ

For the n-dimensional stochastic differential equation
φ̇ ¼ fðφÞ þ gðφÞΩ−1

2ξðtÞ, the action for any path φτ of
duration τ is given by the Freidlin-Wentzell functional [32]:

S ðφτÞ ¼
1

2

Z
τ

0

kφ̇τðtÞ − f(φτðtÞ)k2g(φτðtÞ)dt; ð4Þ

where fðφτÞ is the deterministic field, and the multiplica-
tive noise appears in the norm k • k2gðφτÞ, corresponding
with the inner product h•; (gðφτÞgðφτÞ⊤)−1•i, where
gðφτÞg⊤ðφτÞ≡D is the diffusion matrix. In the Hopf
model, D takes the form

FIG. 1. Comparison of escape trajectories from the Hopf model
limit cycle to the stable fixed point. Results show 5 trajectories of
the CLE (green) compared with the MAP (blue) for different
values of ω and Ω. ForΩ ¼ 150, results are also compared with 5
Gillespie trajectories (red). The unstable limit cycle separating the
basins of attraction (shaded area) is found by temporal inversion
of Eq. (1). For the sake of clarity, only the last turn of each
trajectory prior to escape is shown. The rest of the parameters are
xc ¼ 100, yc ¼ 100, x0 ¼ 5, a ¼ 8, b ¼ 5, c ¼ 15.

PHYSICAL REVIEW LETTERS 120, 128102 (2018)

128102-2



Dðx; yÞ ¼
�
ρþx þ ρ−x 0

0 ρþy þ ρ−y

�
: ð5Þ

Interestingly, the action and, consequently, the most
probable path, are independent of Ω. Additionally, the
mean first passage time T from one attractor to the other
can be expressed as [32,39]

T ≃ CeΩS: ð6Þ

In order to numerically find the path minimizingS ðφτÞ,
each path of duration τ was divided into a chain of N
segments with initial and final points in the relevant
attractors. This reduces finding the optimal path to a
minimization problem with 2ðN − 2Þ degrees of freedom.
This was solved using the Broyden-Fletcher-Goldfarb-
Shanno algorithm [40,41], using the analytical expression
for the gradient of the action in any of the 2ðN − 2Þ
dimensions [42].
Results.—To assess whether MAP theory can character-

ize the escape from a stable limit cycle, we have divided the
analysis into two sections. First, we compare the MAP with
paths obtained numerically from the Master Equation and
the CLE. We then compare MAP predictions of the MFPT
with those derived from CLE numerical solutions.
The MAP predicts average stochastic escape

trajectories.—The MAP defines the most probable transient
during the escape from the stable limit cycle at low noise.
Direct comparison of the MAP with trajectories obtained
from numerical integration of the CLE or Gillespie sim-
ulations shows good agreement (Figs. 1 and 2). As Ω
increases, the stochastic escape trajectories converge to the
MAP. In addition, our simulations show that the MAP
recapitulates changes in parameters, such as the angular
velocity of the Hopf model ω (Fig. 1), and it works well in
cases with very asymmetrical basins of attraction as the
Morris-Lecar model (Fig. 2 and Fig. S2 in Supplemental
Material [35]). A very important feature of the MAP
method is that it is much faster than regular CLE for the
relevant range of Ω. Additionally, the prediction becomes
more precise the larger Ω is without an increase in
computational time, while the CLE transition simulation
time increases exponentially with Ω (for more details see
Sec. III and Fig. S3 in Supplemental Material [35]).
A more detailed comparison between stochastic simu-

lations and MAP theory reveals that the prediction of the
latter becomes less accurate close to the exit point from the
cycle. The small discrepancy originates in a fraction of
trajectories following the limit cycle for a bit longer before
starting the transition (Fig. 1). This results in the prediction
of a smaller exit angle than the actual average exit angle
(Figs. 2 and 3). Strikingly, this discrepancy was smaller
than other methods such as using the probability distribu-
tion along the cycle, or the probability of escape from a thin
annulus around the limit cycle (Figs. 2 and 3). The latter has

been proposed in Ref. [43] as a quantity that characterizes
escape from a stable limit cycle in the low noise limit. The
MAP proves to be the most useful of the three because
action minimization takes place along the whole escape
trajectory, instead of relying on a purely local analysis.
Localized inaccuracies in the MAP prediction suggest a

highly heterogeneous contribution to the action along the
MAP. In order to study this, we have evaluated the density
of the action along the MAP, i.e., the Lagrangian of the
system. Results show that the density is highest in the
middle of the MAP (Fig. 3), while the density is negligible
close to the stable and unstable limit cycles, where, in
addition, the MAP is tangent to both limit cycles. This

PDF

PDF

PDF

FIG. 2. Comparison of escape trajectories of the Morris-Lecar
model limit cycle. (Left) MAP prediction (blue) compared with
30 CLE trajectories (red) Ω ¼ 104. For the sake of clarity, only
the last fraction of each trajectory prior to escape is shown.
(Right) Comparison of the escape voltage distribution from the
limit cycle for Ω ¼ 20000 (green) with MAP prediction (cyan
line). The results are also compared with the distribution of
escape values of V from a distance Δw ¼ 0.0005 from the limit
cycle (red), and the occupation distribution along the limit cycle,
i.e., before escape, (dark blue).

FIG. 3. Comparison of the escape angle distribution from the
limit cycle (green) with the escape angle predicted by the MAP
(cyan line) for ω ¼ 75 and Ω ¼ 150 in the Hopf model. The
results are also compared with the distribution of escape angles
from an annulus of radius 0.001 around the limit cycle (red), and
the angular distribution along the limit cycle, i.e., before escape,
(dark blue). Inset: Action density (Lagrangian) along MAP
normalized to the maximum density. Other parameters are the
same as in Fig. 1.
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suggests that there might be multiple paths with similar
actions close to the exit point, giving an explanation for the
discrepancy in the exit point from the cycle.
In usual escape problems, the path crosses from one basin

of attraction to the other at the saddle point of the
deterministic system. Here the boundary between basins
of attraction is the unstable limit cycle, so the crossing point
cannot be identified by a simple local stability analysis. This
again shows the predictive power of the MAP approach.
Minimum action theory predicts MFPT for escape from

the cycle.—To test the ability of MAP theory to predict the
MFPT to exit the basin of attraction, we consider Eq. (6),
which shows that this can be achieved to logarithmic
precision, up to a constant, C. When the basins of attraction
are separated by a saddle point, C can be determined by a
Jacobian computed at the saddle [44]. However, in the
current case, the separatrix is an unstable limit cycle and C
must be computed numerically by solving the CLE at low
Ω. Our results show that the minimum action theory allows
us to capture the MFPT dependence on model parameters
(Fig. 4). In particular, we observe an increase in the MFPT
with ω. In fact, C also depends nonmonotonically on ω (see
Fig. 4). Nevertheless, as Ω grows, the contribution of the
prefactor becomes less important (lnT ≈ΩSþ lnC), and
the minimum action dominates the escape time estimate.
In addition to the MFPT, we are interested in finding

the probability distribution of escape times from the stable

limit cycle. Assuming that escape is a rare event focused
around a certain point in the cycle, the escape problem
can be described as a Bernoulli process with low success
probability p taking place every period of the cycle
τ ¼ 2π/ω, at times tn ¼ 2πn/ω. The probability of exiting
at the nth revolution follows the geometric distribution
PðtnÞ ¼ pð1 − pÞðωtn/2πÞ−1. Following rare event theory,
we can write the success probability as p ¼ e−SΩ/C,
obtaining the geometric distribution,

PðtnÞ ¼
ð1 − e−SΩ/CÞωtn2π

CeSΩ − 1
: ð7Þ

In the limit p → 0, the discrete geometric distribution
Eq. (7) can be approximated by its continuum counterpart,
the exponential distribution, which does not depend explic-
itly on the angular velocity,

PðtÞ ¼ 1

C
e−SΩþ t

C expð−SΩÞ: ð8Þ

Comparing the distributions Eqs. (7) and (8), with the
probability distribution of MFPT obtained over several
CLE realizations of the Hopf model, we obtained a good
agreement (see Fig. 5). Surprisingly, even for realizations

FIG. 4. Comparison of predictions of the MFPT for the Hopf
model. (Top) Comparison of MFPTs calculated from CLE
simulations (circles) with the exponential dependence of the
MFPT on Ω given by S (lines). Each line is computed by
minimizing the action S for different ω and fitting the prefactor C.
(Bottom) Following the same procedure, the values of the action
S andC are compared for different values of ω. Parameters values
are the same as those of Fig. 1, error bars are standard error of the
mean from the CLE.

FIG. 5. (Top) Comparison of the cumulative distribution function
(CDF) of the number of turns t/ð2πωÞ for 10 000 realizations of the
Hopf model with ω ¼ 75. For each distribution the Cramer–von
Mises (CvM) criterion is computed to compare the resulting
distribution with the geometric and exponential distribution deter-
mined by the value of the action. (Inset) Detail of the CDF for small
revolution numbers. (Bottom) CDF of the number of spikes per
train for the Morris-Lecar model comparing a CLE simulation of a
total time 2 100 000,with thegeometric distribution predicted by the
MAP method. (Inset) Trajectory exhibiting spike trains.
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with a low average number of revolutions prior to escape,
the resulting probability distribution is more similar to an
exponential distribution than to a geometric one. This is
true even for escapes that occur during the first revolution,
suggesting that θ differs significantly from ωt. A more
accurate prediction would involve a convolution of geo-
metric processes with the angular noise [45,46]. However,
for the parameters we used, the exponential distribution fits
well independently of the average number of revolutions.
Fitting the distribution Eq. (8) to the MPFTs from CLE
realizations therefore provides an alternative method to
compute the prefactor C. Similarly, the MAP is able to
capture the distribution of the number of spikes in the
neuronal activation bursts of the Morris-Lecar model. Each
spike of a train will correspond with a whole turn around
the limit cycle before switching to the rest state (stable
node). Strikingly, the predicted geometric distribution
resulting from the action, fits the burst distribution even
when the number of spikes is small (Fig. 5).
Conclusions and perspectives.—We have shown that,

within the rare event theory framework, escape problems
from a stable limit cycle can be accurately characterized.
The success of the method, in comparison with alter-
natives, relies on the fact that the Freidlin-Wentzell action
is not a local property of the dynamical landscape but of
the whole escape trajectory. For sufficiently large system
sizes, we have shown that MAP theory accurately predicts
escape trajectories and the escape time distribution. The
method has also revealed properties of the escape trajec-
tory, such as the tangent exit of the MAP from the stable
limit cycle and tangent entry into the basin of attraction of
the stable fixed point, as well as the dependence of the
entry and exit points on the parameters of the system.
In addition to its predictive power, the MAP method has
also proven to be computationally faster than running
Langevin simulations to study basin of attraction tran-
sitions whose simulation times increase exponentially
with the size of the system.
MAP predictions, while better than previously used

methods, were less successful in determining the exit angle
from the stable limit cycle. A deeper analysis of the exit angle
could be carried out through a relaxation of the Laplace
condition, i.e., the reduction to an integral along a single
optimal path, by further exploring the distribution of sub-
optimal paths. Additionally, in the absence of a unique point
(the saddle) separating the basins of attraction, novel
research into the calculation of the prefactor [44] should be
extended.
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