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Chemiosmotic coupling – the harnessing of electrochemical ion gradients across membranes to 

drive metabolism – is as universally conserved as the genetic code. As argued previously in these 

pages, such deep conservation suggests that ion gradients arose early in evolution, and might have 

played a role in the origin of life. Alkaline hydrothermal vents harbour pH gradients of similar 

polarity and magnitude to those employed by modern cells, one of many properties that make 

them attractive models for life’s origin. Their congruence with the physiology of anaerobic 

autotrophs that use the acetyl CoA pathway to fix CO2 gives the alkaline vent model broad appeal 

to biologists. Recently, however, a paper by Baz Jackson criticised the hypothesis, concluding that 

natural pH gradients were unlikely to have played any role in the origin of life. Unfortunately, 

Jackson mainly criticized his own interpretations of the theory, not what the literature says. This 

counterpoint is intended to set the record straight. 

 

Introduction 

Few researchers have a problem with the idea that LUCA, the last universal common ancestor of life, 

possessed DNA, RNA and ribosomes, despite the intimidating complexity of the molecular machines 

involved in transcription and translation. Yet the idea that chemiosmotic coupling might be equally 

ancient [1] is treated with reservation, for the superficially good reason that it requires not only a 

rotor-stator ATP synthase, but also (apparently) ion-tight lipid membranes and complex proton 

pumps to generate electrochemical ion gradients [2]. All that might seem too complex to be 

primitive, and so it is understandable that most researchers have put the vexed question of its 

origins aside until more is known. Nonetheless, the fact remains that the ATP synthase is as 

universally conserved across life as the ribosome itself, and shares the same deep split between the 

bacteria and archaea [3-8]. Some form of chemiosmotic coupling probably evolved very early in the 

history of life, arguably before LUCA [1]; the question is how, and why? 

 

In dismissing the possibility that natural proton gradients could have played any role in the origin of 

life [9], Jackson ignores this comparative structural and phylogenetic evidence, instead positing that 

chemiosmotic coupling arose later, for trivial reasons; he suggests “to drive weak acids and weak 

bases across the membrane”. Not only is this inconsistent with phylogenetics [8,10-12] and microbial 
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physiology [13-17], but it also begs a secondary question, on which Jackson is silent – why would 

such inconsequential selective forces go on to fix chemiosmotic coupling across all life? 

 

The idea that LUCA was chemiosmotic is not actually particularly challenging, as LUCA certainly had 

genes and proteins, and the ATP synthase is no more complex than the ribosome. It is a product of 

natural selection, and presumably the recruitment of subunits with pre-existing functions [6]. The 

more interesting question is, in what context did the ATP synthase evolve? Again, phylogenetics 

gives a clue. LUCA was the common ancestor of bacteria and archaea [8,18-20]. Eukaryotes are not 

relevant as they arose some 2 billion years later from an archaeal host cell [20-22] and a bacterial 

endosymbiont [23-25]. Traits shared by bacteria and archaea might therefore have arisen in LUCA, 

while those that differ between the two domains arguably arose later. These issues are discussed in 

detail elsewhere [8,13,17,18,26-28]. Suffice to say that these studies imply that LUCA was an 

autotroph [12,13], and used some form of the acetyl CoA pathway to reduce CO2 using H2 [14,15,28-

32] this being the only one of 6 known pathways of carbon fixation found in both bacteria and 

archaea [16]. The antiquity of the acetyl CoA pathway is supported by several other features: it is 

short, linear, exergonic overall, and replete in proteins whose active sites contain Fe(Ni)S clusters, 

similar in structure to hydrothermal Fe(Ni)S minerals [16,27,32-34]. Equally importantly, 

phylogenetics shows that LUCA was chemiosmotic and had an ATP synthase [1,3-8], but does not 

seem to have had a modern phospholipid membrane [26,27,35-37], or even the proton-pumps used 

to generate ion gradients [13]. While that might seem paradoxical, it is not if LUCA lived in an 

environment that harboured natural proton gradients [1]. 

 

There is plainly a long evolutionary distance between the genetically encoded biochemistry of LUCA 

and the prebiotic chemistry that gave rise to the first organic molecules. It is therefore possible that 

there is no direct link between the biochemistry of LUCA and those remote abiotic pathways. Some 

researchers accordingly ignore the biological perspective, instead proposing alternative mechanisms 

such as a cyanosulphidic protometabolism [38], driven by UV radiation [38,39] or ZnS photosynthesis 

[40], neither of which bears any resemblance to extant biochemistry. While this work is impressive 

as systems chemistry, it does not narrow the gap between prebiotic chemistry (in any geochemical 

environment) and the origins of biochemistry as we know it [17]; on the contrary, it widens the gap. 

If life did start with cyanoacetylene activated by UV radiation, then protometabolism must have 

been overwritten by modern biochemistry for unknown reasons. Equally problematic, there is no 

indication from geochemistry that the Earth ever contained the significant amounts of cyanide 

required for this chemistry to work [41-45]. 
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Biochemistry emerged from geochemistry 

The alternative hypothesis posits that there is continuity between prebiotic chemistry and the 

origins of biochemistry: that the emergence of genetically encoded catalysts (either ribozymes or 

enzymes) amplified processes that occurred naturally and spontaneously in some geochemical 

setting [46,47]. This argument would have force even if no geochemical environment were known 

that could narrow the gap between the biochemistry of LUCA and geochemistry. It gains a lot more 

force from the fact that there is an environment that closely matches the reconstructed chemistry of 

LUCA – alkaline hydrothermal vents. The properties of these vents have been discussed in detail in 

many papers [1,8,17,26-28,32,48-55]. Suffice to say here that in the Hadean, 4 billion years ago, such 

vents should have provided high concentrations of H2 in alkaline hydrothermal fluids [26-28,32,50-

55] and CO2 in ocean waters [42-44], which would have percolated through a catalytic labyrinth of 

interconnected pores, with Fe(Ni)S minerals in the thin walls separating them [26-28]. The difference 

in pH between the ocean waters (probably mildly acidic, conservatively around pH 6, in the Hadean 

[43,44]) and alkaline hydrothermal fluids (probably around pH 11, as today [26-28,32,48-55]) means 

that vent pores could have transected pH gradients of up to 5 pH units [1,26-28,32,48-55]. While 

little is known about how steep the pH gradients can be, even in modern alkaline vents, microfluidic 

studies show that laminar flow can support gradients of up to 6 pH units across micrometer-scale 

distances, even in the absence of barriers [56]. 

 

This is the context that Jackson ignores. The top-down view from biology suggests that LUCA was an 

autotroph that used the acetyl CoA pathway to grow from H2 and CO2 alone, and to do so depended 

on Fe(Ni)S cofactors and chemiosmotic coupling [1,8,13,16,17,27,31,34]. The bottom-up view from 

geochemistry indicates that alkaline hydrothermal systems provided high concentrations of H2 and 

CO2, and natural proton gradients across thin inorganic barriers containing Fe(Ni)S minerals with 

structures similar to the Fe(Ni)S clusters common in the acetyl CoA pathway [1,8,17,26-28,32,48-55]. 

This congruence between geochemistry and biochemistry is at the level of broad-brush stroke. How 

exactly the geochemistry of vents gave rise to the biochemistry of cells is as yet unresolved; this is 

the subject of several distinct, but testable, hypotheses [13,27,57-61,64,65]. Unfortunately, Jackson 

[9] conflates these different hypotheses (which he labels as ‘RML’) – by trying to shoehorn disparate 

hypotheses into the same box, he misrepresents them all, fails to recognize that views have evolved 

over decades, and makes some basic errors in his calculations.   

 

Lipid membranes and inorganic barriers 
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The biggest problem is that Jackson conflates thin inorganic barriers with organic membranes (lipid 

bilayers) throughout his article. There is an issue with language here. Geologists frequently use the 

term membrane to refer to thin, pliable sheets or inorganic layers [48,49,58,59]. On reading the 

term membrane, however, most biologists tend to think of a lipid bilayer, about 5 nm thick, 

compared with perhaps a few micrometers for the inorganic barriers in vents [51,62,63]. Jackson is 

careful to distinguish between these two types of barrier, but does not seem to appreciate that 

many papers on life’s origins in alkaline vents actually call on both, for different reasons. 

 

Jackson argues that proton gradients could not have driven the origin of life because he envisages 

some kind of proton-driven machine – analogous to the proteins found today in lipid membranes – 

embedded in these inorganic barriers. But that is not what is claimed. Proton-powered machines 

such as the ATP synthase or the energy converting hydrogenase (Ech) are posited to operate within 

some form of lipid bilayer, and this is very clearly depicted and articulated in numerous papers 

[1,17,27,60,61,64,65]. In BioEssays in 2010, for example, we wrote: “We do not envisage the 

ancestral ATPase as embedded in the inorganic walls, but rather in organic lipids lining the walls… An 

ancestral ATPase embedded in such organic membranes could tap proton gradients across the side 

walls and hydrothermal effluent flow would maintain the gradient through replenishing alkalinity 

inside" [1]. 

 

Mike Russell and colleagues have recently introduced a more mechanical perspective on the origin 

of life, discussing mineral chemistry in terms of ‘disequilibrium-converting engines’ [58,59]. They 

discuss the mechanical properties of minerals such as green rust (ferrous hydroxide) in relation to 

enzymes such as the pyrophosphatase. Russell and colleagues are perfectly capable of defending 

themselves, and I will not do so here. But the key point is that this is a distinct and quite recent 

hypothesis. The question is not whether Russell’s recent approach is correct; that is a matter of 

experimental testing. The problem is that Jackson has projected his own meanings into Russell's 

words, and then generalised them onto other approaches that do not call for minerals to change 

conformational state in any way.  

 

Almost all work discussing molecular machines (i.e. proteins) in vents envisages them embedded in 

organic membranes: some form of bilayer, perhaps composed of fatty acids and other amphiphiles. 

The problem with specifying the lipid composition of early membranes is that the phospholipids of 

bacteria and archaea are distinct, so it is far from clear what kind of membrane LUCA might have 

possessed [1,26,27,35-37,60,61,64,65]. But LUCA certainly had membrane proteins, adapted (as 
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today) to 5 nm lipid bilayers, or we would not be able to recognize their transmembrane sequences 

in proteins dating back to LUCA [66]. That can only mean that LUCA did indeed possess a lipid 

bilayer, even if it was not genetically encoded. If the membrane was not genetically specified, where 

might those lipids have come from? Possibilities discussed in previous papers include Fischer-

Tropsch synthesis, which forms long-chain hydrocarbons and amphiphiles under mild hydrothermal 

conditions [67,68]. Fatty acid synthesis is thermodynamically favoured under anoxic alkaline 

hydrothermal conditions [69,70] so any organics formed in vents would likely include fatty acids, 

which in turn spontaneously form bilayers when concentrated.  

 

Jackson eschews the point that even in a vent-bound LUCA, membrane proteins were embedded in 

lipid bilayers. This might have little directly to do with the first steps of prebiotic chemistry, but still 

begs the question, how did LUCA come to be that way? This takes us back towards the origin of life. 

If LUCA was chemiosmotic, yet lacked the membrane pumps needed to generate its own gradients, 

then early cells in vents could have depended on geochemically sustained proton gradients. So the 

question becomes – could natural proton gradients power the metabolism of early cells in vents via 

proteins such as the ATP synthase or the energy-converting hydrogenase (Ech)? If so, there was no 

requirement for active pumping in early cells, a very significant energy saving. The fact that pH 

differences alone could drive the chemiosmotic machinery in classical experiments by Jagendorf in 

chloroplasts [71] and Oesterhelt in Halobacterium [72] implies that this is indeed possible. However, 

those experiments worked in part because the membrane systems studied were permeable to 

counter-ions such as Cl– via specific channels [73]. For LUCA to evolve in vents, the steady-state flux 

of ions across membranes must balance in such a way that the continuous flux of protons is 

sufficient to drive metabolism, unopposed by any build-up of electrical charge on the membranes.  

 

Proton flux across lipid membranes and through protein machines 

Our computational modelling shows that natural proton gradients could indeed have driven carbon 

and energy metabolism in LUCA, but only if the lipid membranes were highly permeable to protons, 

with a permeability equivalent to fatty acid vesicles [64]. The model assumes steep pH gradients 

across vent pores, which is plainly a best-case scenario. But there are two separate questions here, 

which Jackson characteristically conflates: (i) if such steep gradients existed, could they in principle 

drive molecular machines in lipid membranes? The answer to this is yes, with a free energy 

equivalent to that available in modern cells [64]. That leads us to: (ii) are such steep gradients in fact 

realistic, or even necessary? For example, could fluctuating flow, where pH changes over timescales 

of seconds to minutes, produce a similar effect [64]? This question is important, but only becomes 
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relevant after it has been shown that, under a best-case scenario, natural proton gradients can 

indeed drive molecular machines in lipid membranes.  

 

In his preoccupation with the structure of Lost City (which is only partially relevant) Jackson misses 

two critical points. First, flow in hydrothermal systems is often laminar rather than turbulent [56,74], 

which in experimental microfluidic systems can generate very steep pH gradients (6 pH units over 

micrometre distances) even in the absence of physical barriers – flow alone can maintain the 

gradient [56]. Physical barriers allow steep gradients to be maintained at lower flow rates [56]. 

Second, if lipid membranes or simple protocells line the thin inorganic barriers (which have 

hydrophobic surfaces [75-77]), then the steepness of the proton gradient would depend on several 

factors: (i) the proton permeability of the wall itself; (ii) the flow rates through neighbouring pores 

(potentially some distance away); and (iii) the proton permeability of the lipid membrane lining the 

pore. It is feasible that the main barrier to proton flux – responsible for steepening natural pH 

gradients – is not the inorganic walls themselves but the lipid membranes lining and insulating them 

(Figure 1). As noted above, many papers depict lipid bilayers lining thicker inorganic barriers 

[1,17,27,60,61,64,65]. Jackson fails to acknowledge that in any of his figures or text, which imply the 

contrary.  

 

This misrepresentation is compounded by a conceptual error in Jackson’s own Figure 2, which shows 

molecular machines operating in a matrix of inorganic barriers (which was never proposed, as noted 

above). Jackson then asserts that the proton fluxes are equal and opposite, so that the inward flux of 

protons through the molecular machines on one side is completely offset by the outward flux on the 

opposite side. That is not the case, because pH units are not equal and opposite, as Jackson depicts 

them, but a log scale representing the concentration of protons and hydroxide ions. Sojo et al [64] 

calculated the proton flux through a protocell with lipid membranes, from ocean waters at pH 7 to 

alkaline hydrothermal fluids at pH 10. The flux depends on two main factors: (i) the permeability of 

the membrane to H+ and OH– ions (which we took to be equivalent) and (ii) the actual concentration 

of the ions. That is far from equivalent. The concentration of protons at pH 7 is 10–7M (0.1 µM). The 

concentration of OH– ions at pH 10 is 10–4M (100 µM), a 1000-fold difference. Thus the rate of influx 

of OH– ions into the organic protocell is much faster than the rate of influx of protons.  

 

As a result the inside of the cell is relatively alkaline, not exactly intermediate between the two pHs 

(which is only the case if pH is offset symmetrically around pH 7, e.g. pH 4 vs pH 10). Therefore the 

pH gradient across the ocean side is much steeper (nearly 3 pH units) than the pH gradient across 
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the vent side (about 0.2 units). This difference means that molecular machines set in opposite sides 

of a lipid protocell in a natural proton gradient could power ATP synthesis or CO2 reduction via Ech 

even when the pH dependent machines are present in equal abundance on opposite sides of the cell 

[64] (Figure 2). In principle, once cells with genes, proteins and membranes existed, natural proton 

gradients could have powered their growth without the need for membrane pumps, so long as the 

membrane was leaky to protons – potentially explaining why LUCA did not have a modern proton-

tight phospholipid membrane equivalent to either bacteria or archaea, and greatly simplifying the 

problem of how chemiosmotic coupling might have first evolved. 

 

Electron transfer across inorganic barriers – no ‘prebiotic machines’ needed 

Jackson’s major preoccupation is with the proton permeability of the inorganic barriers at an earlier 

stage of prebiotic chemistry, and his assumption that some kind of prebiotic machine is needed to 

take advantage of proton flux. Again, he misses the point. Putting aside the ATPase as a genetically 

encoded protein, the question is: how could natural proton gradients have been harnessed before 

the evolution of genetically encoded machines? One possibility is that prebiotic carbon and energy 

metabolism entailed the synthesis of reactive thioesters analogous to acetyl CoA, such as methyl 

thioacetate, coupled to substrate-level phosphorylation, generating acetyl phosphate and ultimately 

ATP [1,17,27,60,61,64,65] as still happens in bacteria [14,31].  

 

There is no requirement for proton gradients to play a role in the synthesis of reactive thioesters 

[78]. On the basis of differences between methanogenic archaea and acetogenic bacteria in the 

methyl synthesis branch of the acetyl CoA pathway, Bill Martin and Filippa Sousa have argued that 

reactive methyl groups could have been plentiful in Hadean vents, perhaps in the form of CH3SH 

produced by the serpentinization process [34,57]. While CH3SH is uncommon in modern alkaline 

vents, and in at least one case seems to be derived from thermogenic decomposition [79], it could 

be consumed by cells living deeper in the crust [13,34,60] given that modern systems are carbon 

limited [80], may be swiftly oxidised in modern aerobic systems [60] or indeed reduced further by H2 

to form CH4 and H2S [79]. An alternative hypothesis from Mike Russell and Wolfgang Nitschke [81-

83] is that protometabolism proceeded via form of anaerobic methanotrophy, in which methane 

(derived from serpentinization) was oxidised by nitrate (derived from the oceans) to form methyl 

groups that could then react with CO (derived from partial reduction of CO2) to form acetate. The 

difficulty here is that if the oceans really were as oxidising as this chemistry suggests, then the net 

synthesis of organic matter would not be favoured [69,70]. That problem could be solved by the 

redox compartmentalization of alkaline vents (in which some pores are highly reducing [13,60]). But 
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again the point is not whether these hypotheses are correct or not; that is a matter of experimental 

testing. Neither of them specifically require proton gradients in vents to drive primordial chemistry. 

This might be exactly what Jackson contends [9], but he omits to mention that these are explicit 

hypotheses laid out in earlier papers [34,27,57,81-83]. 

 

An alternative hypothesis more germane to the Jackson paper is that the reduction of CO2 to methyl 

groups could be driven by natural pH gradients within vents [60,84]. Critically, this process does not 

depend on proton transfer across barriers, and the thickness of the barriers is practically irrelevant, 

dispelling much of Jackson’s argument. The barriers need to be semi-conducting for electrons, not 

protons. The reason relates to the pH modulation of reduction potential. At pH 7, H2 cannot reduce 

CO2 to CH2O (formaldehyde, not some generic carbohydrate as Jackson mistakenly claims) because 

its reduction potential is not low enough [60,61,84-86]. But reduction potential depends on pH 

whenever protons are involved in a reaction [73]. In alkaline conditions, H2 becomes more reducing 

(by about –59 mV per pH unit), and is likely to reduce any Fe3+ to Fe2+ within the barrier. Across the 

barrier, in acidic conditions, CO2 is more easily reduced, and so is more likely to be reduced by Fe2+ in 

the barrier. The semiconducting barrier should transfer electrons from Fe2+ on the alkaline side to 

Fe3+ on the acidic side. The thickness of the barrier does not matter, so long as it is semiconducting. 

The two phases do not come into direct contact – H2 and CO2 do not react directly (Figure 3). These 

are hardly stringent properties and have been demonstrated for equivalent FeS minerals in black 

smoker vents, which conduct electrical currents across entire chimneys up to 10 cm thick [87]. In 

principle, pH differences across Fe(Ni)S barriers could drive the entire incomplete reductive Krebs 

cycle, as in methanogens [86] 

 

So this is a pH dependent mechanism that involves an inorganic barrier separating two phases with 

different pH – alkaline hydrothermal fluids (pH 10-12) and relatively acidic ocean waters (pH 5-7). 

Both fluids percolate through the microporous labyrinth inside vents. The reduction of CO2 on the 

‘ocean side’ does not mean that any organics formed necessarily disappear into the ocean – they are 

formed inside the vent, where they could be concentrated by thermophoresis [84,88,89] (Figure 3). 

 

Contrary to Jackson’s claims, there is no requirement for ΔpH-utilizing molecular machines, just an 

inorganic barrier containing spontaneously precipitated FeS minerals. Electrons, not protons, are 

transferred across this barrier from H2 to CO2. This specific hypothesis was touched on in 2012 [61], 

laid out in detail in 2014 by Herschy et al [84] and is being explicitly tested in a simple bench-top 

reactor designed to simulate the pH gradients across thin inorganic barriers of alkaline hydrothermal 
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vents. Jackson claims that “A simple, crystalline array… would not have sufficed… the chance 

assembly of such a machine… is astronomically unlikely” [9]. But there is no need for a machine: we 

propose only that a pH gradient across a simple crystalline array should drive the reduction of CO2 to 

form organics such as formaldehyde (CH2O), and this is what we have reported [84]. The proton 

gradient should modulate reduction potential giving an overall effect not dissimilar to applying a 

voltage, and experiments by other groups have shown that a voltage of about 1V can indeed reduce 

CO2 to formate, acetate and even pyruvate [90,91]. 

 

Jackson is correct that the transfer of electrons across a barrier would generate a charge on the 

barrier, but this charge is dissipated by mixing of the hydrothermal fluids and ocean waters within 

the vent. That mixing is not equivalent to the retention of charge across a cell membrane, because in 

this case (unlike a cell, which is what Jackson discusses, incorrectly) the charged fluids physically mix. 

The slower passage of other ions, including protons, across inorganic barriers also forms salt bridges 

that help dissipate charge.  

 

This pH-dependent mechanism could promote the reduction of CO2 and the formation of organics 

within the vent pores, where they should concentrate by processes such as thermophoresis, and 

potentially form structures such as lipid membranes lining hydrophobic walls [1,17,27,60,61,64,65]. 

Herschy et al [84] showed that even small organics can be concentrated at least 5000-fold within an 

open microporous matrix by thermophoresis, so organics formed within vent pores as described can 

easily be concentrated to form lipid membranes. Jackson’s Figure 4, which shows a variety of pH 

gradients across thick inorganic walls of various structure, purportedly driving molecular machines 

embedded within the walls, utterly misrepresents this hypothesis, and the mechanisms he ascribes 

to us are nowhere to be found in our papers.  

 

Conclusions 

In condemning the hypothesis that natural proton gradients in alkaline hydrothermal vents played a 

role in the origin of life, Jackson ignores the biological and geochemical context for the hypothesis. 

Recent work in microbiology, comparative genomics and geochemistry all points to a congruence 

between conditions in alkaline hydrothermal vents and the physiology of anaerobic bacteria and 

archaea, which finally begins to close the gap between geochemistry and biochemistry. Jackson 

instead favours a cyanosulfidic protometabolism [38,39] or Zn sulfide photosynthesis [40], neither of 

which resembles the biochemistry of known cells [1,17,34,60].  
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Cells such as methanogens and acetogens use the short, linear, exergonic acetyl CoA pathway to 

reduce CO2 with H2 [16,27,32-34]. The reaction is catalysed by Fe(Ni)S proteins and the free energy is 

harnessed to generate electrochemical ion gradients across membranes – exactly what alkaline 

vents provide for free [1,8,13,26,27,48-55]. Methanogens use the proton-motive force to drive the 

reduction of ferredoxin via the energy-converting hydrogenase (Ech), as well as energy metabolism 

via ATP synthase [15-17,26,27,29-34], which we have postulated could have been the primordial 

metabolism in vents (Figure 1) [60]. This just is one of several different hypotheses for how natural 

proton gradients might have powered metabolism at the origin of life [13,27,57-61,64,65]. Not only 

does Jackson ignore the entire biological context for life originating in alkaline vents, but he 

conflates these different hypotheses, misrepresents them all, and makes basic errors in his 

calculations. His paper says little about the origins of life in alkaline hydrothermal vents, and rather 

too much about his own reading of the literature. Unfortunately, it is already being cited as evidence 

that life could not have started in alkaline hydrothermal vents [92,93]. That is not sustained in his 

paper. Whatever the detailed mechanisms of harnessing may turn out to be, there is little doubt that 

natural proton gradients in alkaline hydrothermal vents could in principle have helped power the 

origins of life.  
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Figure 1 

 

 

How natural proton gradients could promote CO2 reduction in organically lined vent pores 

A simple leaky protocell within a vent pore, with an energy-converting hydrogenase (Ech) and ATP 

synthase in the lipid membrane, driving both carbon and energy flux, hence growth and ultimately 

replication within the vent pores. CH3-R depicts a methyl group attached to a cofactor and is 

shorthand for one of the key products of the acetyl CoA pathway, en route to intermediary 

metabolism. 
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Figure 2 

 

 

How natural proton gradients can drive net work 

Even if equivalent proteins (blue half-ovals) are inserted in opposite sides of a leaky protocell (red 

dashed circle) in a natural H+ gradient, the H+ flux will drive net work (such as ATP synthesis). That is 

because the influx of H+ depends on both membrane permeability (which is taken to be equal for H+ 

and –OH) and concentration. Because the concentration of –OH at pH 10 is 1000-fold greater than 

the concentration of H+ at pH 7, the influx of –OH through the leaky membrane is much faster than 

the influx of H+. The inside of the protocell accordingly becomes relatively alkaline. The driving force 

for work through proteins on the ‘acid ocean’ side is therefore substantially greater than the driving 

force over the ‘alkaline side’. This enables net ATP synthesis. Only if the pH of the ocean were 4 and 

alkaline fluid 10 (symmetrical around pH 7) would the driving forces exactly balance, and net ATP 

synthesis would then fall to zero. 
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Figure 3 

 

 

Reduction of CO2 by H2 across Fe(Ni)S barriers deep within an alkaline hydrothermal vent 

(A) Electrons can theoretically be transferred across even quite thick (µm–cm) semiconducting 

barriers containing Fe(Ni)S minerals from H2 in alkaline hydrothermal solutions to CO2 in relatively 

acidic ocean waters to form organics (see text for more details). (B) Any organics formed are not lost 

to the ocean as the pores are part of a microporous labyrinth deep within the vent; this is a section 

of Lost City, courtesy of Deborah Kelley, University of Washington. (C) Alkaline vents can be up to 60 

m tall; thermal gradients and convection currents within the vent can concentrate organics by 

thermophoresis. 

 


