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A B S T R A C T

The ability to introspectively evaluate our experiences to form accurate metacognitive beliefs, or insight, is an
essential component of decision-making. Previous research suggests individuals vary substantially in their level
of insight, and that this variation is related to brain volume and function, particularly in the anterior prefrontal
cortex (aPFC). However, the neurobiological mechanisms underlying these effects are unclear, as qualitative,
macroscopic measures such as brain volume can be related to a variety of microstructural features. Here we
leverage a high-resolution (800 µm isotropic) multi-parameter mapping technique in 48 healthy individuals to
delineate quantitative markers of in vivo histological features underlying metacognitive ability. Specifically, we
examined how neuroimaging markers of local grey matter myelination and iron content relate to insight as
measured by a signal-theoretic model of subjective confidence. Our results revealed a pattern of microstructural
correlates of perceptual metacognition in the aPFC, precuneus, hippocampus, and visual cortices. In particular,
we extend previous volumetric findings to show that right aPFC myeloarchitecture positively relates to
metacognitive insight. In contrast, decreased myelination in the left hippocampus correlated with better
metacognitive insight. These results highlight the ability of quantitative neuroimaging to reveal novel brain-
behaviour correlates and may motivate future research on their environmental and developmental under-
pinnings.

Introduction

The metacognitive capacity for self-monitoring is at the core of
learning and decision-making (Flavell, 1979). As a general capacity,
metacognition is thought to enable the flexible monitoring and control
of perception, memory, and other cognitive processes (Fernandez-
Duque et al., 2000). An efficient approach to quantifying this ability lies
in the application of signal-detection theory to estimate the sensitivity
of self-reported confidence to objective discrimination performance
(Fleming and Lau, 2014). Individual differences in metacognitive
sensitivity thus quantified are related to the morphology, function,
and connectivity of the anterior prefrontal cortex (aPFC), precuneus,
and other cortical areas (Fleming and Dolan, 2012). Here, we expand
on these findings using a recently developed multi-parameter mapping
(MPM) and voxel-based quantification (VBQ) technique to better

elucidate the neurobiological mechanisms underpinning these effects.
The volume and function of the anterior prefrontal cortex (aPFC) and

precuneus have repeatedly been related to metacognitive ability (Fleming
et al., 2014, 2012, 2010a; McCurdy et al., 2013; Sinanaj et al., 2015).
Notably, several studies found a positive relationship between right aPFC
volume and metacognition (Fleming et al., 2010a; McCurdy et al., 2013;
Sinanaj et al., 2015). While convergent evidence from anatomical, lesion-
based, and functional connectivity studies suggest that the right aPFC is
specific to perceptual metacognition, metacognition for memory has
instead been related to midline cortical (e.g., mPFC and PCC/precuneus)
and hippocampal structures (Baird et al., 2013; Fleming et al., 2014,
2012; McCurdy et al., 2013). Although these studies suggest that the
ability to introspect on perception and memory depends on the develop-
ment of a neural mechanism involving both domain-specific and general
aspects, the underlying neurobiology driving the relationship between
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neuroanatomy and metacognition remains unclear.
One important source of uncertainty is the inherent lack of

specificity offered by volumetric measures of brain structure, which
are fundamentally qualitative in nature. Indeed, voxel-based morpho-
metry (VBM) yields measures in arbitrary units which can be driven by
a variety of macroscopic factors such as cortical thickness and
variability in cortical folding, owing to a non-specific variety of
microstructural features (Ashburner, 2009). It has recently been shown
that microstructural properties of brain tissue, such as myelination
levels and iron content can lead to the detection of spurious morpho-
logical changes (Lorio et al., 2016, 2014). As volumetric measures are
highly dependent on acquisition parameters which can vary widely
across scanners, field strengths, and other variables, they are difficult to
directly replicate across studies (Boekel et al., 2015).

The emerging field of in vivo histology aims to address these issues
by combining maps of specific MRI parameters measured via quanti-
tative imaging (qMRI) with biophysical models and voxel-based
quantification (VBQ) techniques to provide direct indicators of the
microstructural mechanisms driving morphological findings. This
approach quantifies biologically relevant metrics such as myelination
and iron concentrations, oligodendrocyte distributions, and the g-ratio
of fibre pathways (Mohammadi et al., 2015; Weiskopf et al., 2015). As
these measures are quantitative in nature, they are largely invariant to
specific scanner protocols and offer improved neurobiological specifi-
city, thus facilitating our understanding of brain-behaviour mechan-
isms, improving reproducibility, and identifying novel biomarkers for
clinical research.

In the present study, we used qMRI to map a number of key
contrast parameters with differential sensitivity to underlying biologi-
cal metrics, in order to better understand the microstructural correlates
of metacognitive ability. To do so, we acquired high-resolution (800 µm
isotropic) data using the Multi-Parametric Mapping (MPM) qMRI
protocol (Weiskopf et al., 2013). We then conducted voxel-based
quantification (VBQ) analysis (Draganski et al., 2011) in 48 healthy
participants to relate these microstructural markers to individual
differences in metacognitive sensitivity during an adaptive visual
motion discrimination task. Our results revealed that right aPFC
markers of myeloarchitecture (increased R1 & MT) positively correlate
with metacognitive ability, whereas the dentate gyrus of the left
hippocampus showed effects consistent with decreased myelination
(reduced MT). Cortical iron markers in the precuneus (increased R2*)
and visual cortex (decreased R2*) also covaried with metacognitive
ability. These results extend our understanding of the microstructural
neuroanatomy of metacognition and provide novel targets for future
clinical research.

Methods

Participants

48 healthy participants (29 female) were recruited from University
College London and the surrounding community. As age is a strong
determinant of brain microstructure (Callaghan et al., 2014), we
restricted our inclusion criteria to 20–40 years, resulting in a mean
age of 24 (SD = 5). All participants were right handed, and were
mentally and physically healthy with no history of neurological
disorders and with normal (or corrected-to normal) vision and hearing.
Participants were recruited from a local participant database using
broadcast emails. All participants gave informed written consent to all
procedures. In accordance with the Declaration of Helsinki, the
University College London Research Ethics Committee approved all
procedures.

Study design

Participants completed the experiment in two sessions, consisting

of a 2-h appointment at the Wellcome Trust Centre for Neuroimaging
to acquire all imaging data, and a separate 1-h appointment to
complete the metacognition task, a brief non-verbal auditory memory
measure (Harrison et al., 2016; Müllensiefen et al., 2014), a tonotopy
functional scan, and other auditory and behavioural measures as part
of a study on individual differences in the auditory cortex (data not
reported here). The neuroimaging session involved 30 min of multi-
parameter mapping (MPM) while subjects silently viewed a muted
nature documentary to maintain wakefulness (and hence limit motion).
During the behavioural session, participants completed an adaptive
psychophysical visual metacognition task (see Behaviour, below)
lasting 30 min.

Behaviour – Metacognition Global Motion Task

To measure participants' metacognitive ability, we employed a
global dot motion discrimination task comprising a forced-choice
motion judgement with retrospective confidence ratings on every trial.
As part of another investigation, in which we were investigating noise-
induced confidence bias (Spence et al., 2016; Allen et al., 2016), we
used a dual-staircase approach with two conditions in which either
mean direction or standard deviation across dot directions was
continuously adapted to stabilize discrimination performance. Thus,
to control sensory noise independently of task difficulty, in two
randomly interleaved conditions we presented either a stimulus with
a fixed 15-degree mean angle of motion from vertical and a variable
(adaptive) standard deviation (SD), or a variable (adaptive) mean angle
from vertical at a fixed 30° SD. In either case, the mean (μ-staircase
condition, μS) or standard deviation (σ-staircase condition, σS) of
motion was continuously adjusted according to a 2-up-1 down stair-
case, which converges on 71% performance. On each trial the motion
signal was thus constructed using the formula:
DotDirections Left Right MeanOrientation= ( | ) ×

GaussianNoise SD+ ( × )
In which the condition-specific staircase determined either mean

orientation or SD. Each trial consisted of a 500 ms fixation, followed by
a 250 ms central presentation of the motion stimulus, which was then
replaced by a central letter display “L R”. Participants then had 800 ms
to make their response to indicate whether the mean motion direction
was to the left or right of vertical. After this, a confidence rating scale
marked by 4 equal vertical lines appeared. Each line was labelled, from
left to right “no confidence, low, moderate, high confidence”.
Participants’ heads were fixed with a chin and forehead rest 72 cm
from the screen. Motion stimuli consisted of a central array of
1100 dots presented over a central fixation dot, within a circular
aperture of radius 9.5° visual angle (DVA), with dots advancing 0.02
DVA per frame. To ensure participants attended the global rather than
the local motion direction, dot lifetimes were randomized and limited
to a maximum of 93% stimulus duration.

Participants were instructed that the goal of the task was to
measure their perceptual and metacognitive ability. Metacognitive
ability was defined as a participant's insight into the correctness of
their motion judgements, i.e. how well their confidence reports
reflected their discrimination accuracy. Participants completed a short
practice block of 56 trials, in which they performed the motion
discrimination without confidence ratings, with choice accuracy feed-
back provided by changing the colour of the fixation to green or red. All
participants achieved better than 70% accuracy and indicated full
understanding of the task before continuing. Participants completed
320 trials divided evenly between the two staircase conditions. Trials
were divided into 10 blocks each with 40 trials, randomly interleaved
across conditions within each block. 14 participants did not complete
the last two blocks of the task due to a technical error, however all
participants had at least 100 trials per condition (Fleming and Lau,
2014). See Fig.1 for an graphical summary of our task.
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Quantitative Multi-Parameter Mapping (MPM)

Recent technical developments have enabled in vivo mapping of
neuroimaging markers of biologically relevant quantities to be per-
formed with high resolution and whole brain coverage (Deoni et al.,
2005; Helms et al., 2009, 2008a, 2008b). We used the Multi-Parameter
Mapping (MPM) protocol (Weiskopf et al., 2013) to obtain maps of the
percent saturation due to magnetization transfer (MT), longitudinal
relaxation rate (R1), and effective transverse relaxation rate (R2*).

Data acquisition

All imaging data were collected on a 3T whole body MR system
(Magnetom TIM Trio, Siemens Healthcare, Erlangen, Germany) using
the body coil for radio-frequency (RF) transmission and a standard 32-
channel RF head coil for reception. A whole-brain quantitative MPM
protocol consisting of 3 spoiled multi-echo 3D fast low angle shot
(FLASH) acquisitions with 800 µm isotropic resolution and 2 addi-
tional calibration sequences to correct for inhomogeneities in the RF
transmit field (Callaghan et al., 2015b; Lutti et al., 2012, 2010).

The FLASH acquisitions had predominantly proton density (PD),
T1 or MT weighting. The flip angle was 6° for the PD- and MT-
weighted volumes and 21° for the T1 weighted acquisition. MT-
weighting was achieved through the application of a Gaussian RF pulse
2 kHz off resonance with 4 ms duration and a nominal flip angle of
220°. The field of view was 256mm head-foot, 224 mm anterior-
posterior (AP), and 179 mm right-left (RL). Gradient echoes were
acquired with alternating readout gradient polarity at eight equidistant
echo times ranging from 2.34 to 18.44 ms in steps of 2.30 ms using a
readout bandwidth of 488 Hz/pixel. Only six echoes were acquired for
the MT-weighted acquisition in order to maintain a repetition time
(TR) of 25 ms for all FLASH volumes. To accelerate the data acquisi-
tion, partially parallel imaging using the GRAPPA algorithm was
employed with a speed-up factor of 2 in each phase-encoded direction
(AP and RL) with forty integrated reference lines.

To maximise the accuracy of the measurements, inhomogeneity in
the transmit field was mapped using the 2D STEAM approach
described in Lutti et al. (2010), including correcting for geometric
distortions of the EPI data due to B0 field inhomogeneity. Total
acquisition time for all MRI scans was less than 30 min.

Parameter Map Estimation and Voxel-Based Quantification (VBQ)

All images were processed using SPM12 (version 12.2, Wellcome
Trust Centre for Neuroimaging, http://www.fil.ion.ucl.ac.uk/spm/)
and bespoke tools implemented in the voxel-based quantification

(VBQ) toolbox version 2e (Draganski et al., 2011; Weiskopf et al.,
2015), implemented in MATLAB (Mathworks Inc, version R2014a).

To create the quantitative maps, all weighted volumes were co-
registered to address inter-scan motion. Maps of R2* were estimated
from the gradient echoes of all contrasts using the ordinary least
squares ESTATICS approach (Weiskopf et al., 2014). The image data
for each acquired weighting (PDw, T1w, MTw) were then averaged over
the first six echoes to increase the signal-to-noise ratio (SNR) (Helms
et al., 2009). The three resulting volumes were used to calculate MT
and R1 as described in Helms et al. (2008a, 2008b) including
corrections for transmit field inhomogeneity and imperfect spoiling
(Callaghan et al., 2015c; Preibisch and Deichmann, 2009a, 2009b). The
MT map depicts the percentage loss of signal (MT saturation) that
results from the application of the off-resonance MT pre-pulse and the
dynamics of the magnetization transfer (Helms et al., 2008b).

A Gaussian mixture model implemented within the unified seg-
mentation approach was used to classify MT maps into grey matter
(GM), white matter (WM) and cerebrospinal fluid (CSF) (Ashburner
and Friston, 2005). Diffeomorphic image registration (DARTEL) was
used for spatial non-linear registration of individual grey and white
matter tissue classes generated from the structural MT maps to a group
mean template image (Ashburner, 2007). The resulting DARTEL
template and participant-specific deformation fields were used to
register the MT, R1 and R2* maps of each participant to standard
MNI space. We based our non-linear registration of the quantitative
map on the MT maps because of their greatly improved contrast in
subcortical structures, e.g., basal ganglia, and similar WM/GM contrast
in the cortex to T1-weighted images (Helms et al., 2009). A 4 mm full-
width at half-maximum (FWHM) Gaussian smoothing kernel was
applied to the R1, MT, and R2* during non-linear registration using
the VBQ approach, which aims to minimise partial volume effects and
optimally preserve the quantitative values (Draganski et al., 2011). This
tissue-specific approach to smoothing generates grey and white matter
segments for each map. The grey matter segments were used in all
subsequent analyses. For results visualization, an average MT map in
standard MNI space was created from all participants.

Analysis

Behavioural Analysis – Detection Performance and Metacognitive
Ability

All behavioural data were pre-processed using MATLAB (The
Mathworks Inc, Natick, MA, USA). Following previous investigations
(Fleming et al., 2012, 2010a), we discarded the first block of trials to
allow for staircase stabilization. Any trial with reaction times (RT)

Fig. 1. Behavioural Paradigm and Metacognitive Accuracy. Schematic of global dot-motion metacognition task (A) and plot of metacognitive vs motion detection accuracy (B).
Participants were required to judge the global or average motion of a brief dot display, and then rate their confidence in this judgement from 0 (guessing) to 100 (certain). Performance
was held constant using an adaptive threshold adjusting either signal mean or variance on each trial (see Methods for more details). Right hand plot demonstrates substantial individual
differences in metacognitive accuracy, estimated as the type-II area under the curve (AROC), independently of motion discrimination performance. Inter-individual differences in AROC
were then used in a multiple regression analysis to explain variation in microstructural brain features (see VBQ Analysis).

M. Allen et al. NeuroImage 149 (2017) 415–423

417

http://www.fil.ion.ucl.ac.uk/spm/


below 100ms or more extreme than 3SD of mean RT was rejected from
analysis. To quantify metacognitive ability, we estimated the type-II
area under the receiver-operating curve (AROC) (Fleming et al., 2012,
2010a; Fleming and Lau, 2014) separately for each staircase condition.
AROC was calculated using the same metric as in Fleming et al.
(2010b) and Kornbrot (2006):
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where i indicates the four confidence rating bins, h depicts the relative
frequency of this rating for correct choices (h p confidence i correct= ( = = | )i )
and f describes the counterpart for incorrect responses
( f p confidence i incorrect= ( = = | )i ). Under equal performance the AROC
thus describes the sensitivity of a participant's confidence ratings relative to
their actual performance. For AROC estimation, confidence ratings were
binned into 4 equally sized quartiles in MATLAB. As a general index of
metacognitive ability, we then calculated average AROC, as well as average
confidence, mean accuracy (% correct responses), detection sensitivity (d’),
choice bias (c), and reaction time (RT). We also calculated median signal
mean, median signal variance, and accuracy within each condition to
characterize our thresholding procedure.

VBQ Analysis – Metacognitive Ability

We initially focused on extending previous volumetric findings
relating metacognitive ability to neuroanatomy (Fleming et al., 2014,
2010a; McCurdy et al., 2013, 2013; Sinanaj et al., 2015). To do so we
conducted volume of interest (VOI) multiple regression analyses using
5mm-radius spherical VOIs centred on the peak coordinates reported
by Fleming (2010a) and McCurdy (2013). This involved the creation of
VOIs in the left (−20, 53, 12), (−12, 54, 16) and right (24, 65, 18), (33,
50, 9), (32, 50, 7) aPFC, right dorsolateral PFC (36, 39, 21), and
precuneus (6, −57, 18), (8, −64, 24). All VOIs were generated using the
WFU Pickatlas Version 3.0.5 (Maldjian et al., 2003), and combined into
a single mask. The resulting 5492 voxel (inclusive) mask is available for
download at Neurovault.org (http://neurovault.org/collections/1260/
).

We then modelled inter-subject variation in the MT, R2*, and R1

grey matter maps in separate random-effects multiple regression
analyses, modelling average AROC as our key dependent variable.
Importantly, we followed previous investigations and controlled all
analyses for average discrimination sensitivity (d-prime), average
confidence, and response bias (c) (Fleming et al., 2010a).
Additionally, to control for any potential impact of our variance
manipulation of metacognitive ability, we included the variance-
induced confidence bias, and the difference in mean signal between
the two staircases. To estimate the variance-induced confidence bias,
we fit multiple regression models within each subject, modelling trial-
wise mean, variance, accuracy, and RT as predictors of confidence. This
provided beta-weights for each participant indicating the degree to
which their confidence report reflected variance-specific bias indepen-
dently of the other modelled factors, which were then included in our
VBQ multiple regression.

Following recommended procedures for computational neuroanat-
omy, we also included age, gender, and total intracranial volume as
nuisance covariates (Ridgway et al., 2008). We then conducted small-
volume corrected analyses of the positive and negative main effect of
metacognitive ability (AROC) within our a priori mask, correcting for
multiple comparisons using Gaussian Random Field Theory, FWE-
peak corrected alpha = 0.05. Further, we analysed the whole-brain
maps of the same contrasts, using a non-stationarity corrected FWE-
cluster p-value with a p < .001 inclusion threshold (Hupé, 2015;

Ridgway et al., 2008). All anatomical labels and percent activations
were determined using the SPM Anatomy Toolbox (Eickhoff et al.,
2005).

Results

Behavioural results

To confirm staircase stability, we first performed two-way repeated
measures ANOVA (factor A: block, levels 1–7; Factor B: staircase
condition, μS vs σS) on accuracy scores after removing the first block.
As several subjects did not complete the last two blocks, we first re-
binned trials into 8 equal size bins of 20% total trial length, before
analysing block stability. This analysis revealed a significant main effect
of variance on accuracy (F(1, 47) = 15.15, p < .001), but no main effect
of block (ps > .33) or block by condition interaction (p > .11), indicating
that although average performance was slightly higher in the σS
condition (Mean Accuracy μS=73.4%, Mean Accuracy σS = 76.6%),
this difference did not change over time, indicating stable performance
within each staircase. As a further check, we repeated this analysis
separately within each condition; in both cases the block main effect
was not significant (all ps > .13). All participants thus achieved stable
performance, with an average accuracy of 75.3% (SD = 3%) across the
two conditions. Metacognitive ability was comparable to previous
studies using the AROC (M = 0.68, SD=0.06) and did not differ
between conditions, t (47)=−0.67, p=.51. Table 1 presents descriptive
statistics for discrimination and metacognition performance.

Neuroimaging results

VOI analysis – extension of previous aPFC and precuneus
findings. Our VOI analysis revealed significant correlations within
the right retrosplenial cortex, precuneus, and aPFC. aPFC showed
overlapping, significant positive correlations of AROC with both R1

(peak voxel MNIxyz = [37 41 22]) and MT (peak voxel MNIxyz = [37 42
22]) maps. As both maps are sensitive to myelination to a varying
degree, this suggests previous volumetric findings in the aPFC are
related to the myelo-architecture of the cortical grey matter. We also
found that MT in the retrosplenial visual cortex (in a cluster which
partially overlaps the precuneus) was negatively related to AROC (peak
voxel MNIxyz = [10 −58 8]), whereas R2* in the precuneus was
positively related to AROC (peak voxel MNIxyz = [9 −64 24]). See
Table 2 and Fig. 2 for summary of these results.

Whole-brain AROC analysis

Our whole brain analysis revealed a striking relationship between
AROC and left hippocampal MT. Here, higher AROC related to reduced
MT in the left posterior-hippocampus (peak voxel MNIxyz = [−31 −25
−14]). Please see Table 2 and Fig. 3 for summary of these results.
Inspection of this result in the SPM anatomy toolbox revealed that the
majority of the cluster (68.2%) was in the dentate gyrus (43.6%

Table 1
Behavioural summary.

Variable μS (SD) σS (SD) μ (μS,σS) (SD)

d’ 1.40 (0.32) 1.60 (0.41) −0.20 (0.43)
RT (ms) 404.3 (66) 414.0 (69) 409.1 (66)
Accuracy % 73.4 (3.6) 76.8 (4.9) 75.3 (3)
Confidence (1–4) 2.75 (0.26) 2.39 (0.27) 2.56 (0.14)
Confidence (1–100) 73.4 (13.8) 62.6 (15.2) 62.64 (15.23)
AROC 0.68 (0.07) 0.69 (0.08) 0.68 (0.06)
Median μ or σ 6.46 (2.96) 53.34 (13.27) na

Note: μS = mean staircase, σS = variance staircase, SD = standard deviation.
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Table 2
Summary of brain results.

VOI Results

Map Region k pFWE peak pU peak t z x y z

MT + R aPFC 38 0.035 < 0.001 4.38 3.92 37 41 22
MT - R RSPC/Prec 25 0.024 < 0.001 4.54 4.03 10 −58 8
R2* + R Precuneus 51 0.040 < 0.001 4.20 3.78 9 −64 24
R1 + R aPFC 51 0.043 < 0.001 4.25 3.82 37 42 22

Whole Brain Results
Map Region k pFWE cluster pU cluster t z x y z
MT - L Hippo. 850 0.030 < 0.001 5.48 4.68 −31 −25 −14
R2* - L & R V1 598 0.016 < 0.001 4.89 4.28 1 −69 11
R2* + L MTG 568 0.011 < 0.001 5.72 4.83 −51 −48 2
R2* + R Subiculuma 417 0.044 < 0.001 6.17 5.10 14 −38 −5
R2* + L Hippo.b 2635 0.011 < 0.001 4.94 4.31 −26 −36 −13

Note: Hippo = hippocampus, MTG = middle temporal gyrus, aPFC = rostrolateral prefrontal cortex, V1 = primary visual cortex, RSPC = Retrosplenial cortex.
+- indicates positive or negative t-constrast. See VBQ analysis and VBQ Results for more details.

a indicates peak-corrected result and p-values.
b indicates result from exploratory p < 0.005 inclusion threshold. k = cluster extent in voxels, t = t-value, z = z-value, x,y,z = MNI peak coordinates. pFWE cluster = family-wise

corrected cluster p-value, pU cluster = uncorrected cluster p-value, pFWE peak = family-wise corrected peak p-value, pU cluster = uncorrected peak p-value.

Fig. 2. aPFC VBQ findings. Figure shows correlation of metacognitive ability (AROC) and anterior prefrontal (aPFC) microstructural measures of white-matter concentration (R1 and
MT) across 48 participants. Orientation of crosshairs given below the top left brain in MNI XYZ coordinates. Right side, scatter plots showing peak voxel vs AROC, with least-squares line
for illustration purposes. Bottom left, zoomed in view shows overlap of AROC correlation in both MT and R1 maps. Colour bars indicate t-values, blobs displayed on average MT map
from our 48 participants. Volume of interest analysis, FWE-peak corrected p < 0.05 within mask generated from previously reported coordinates (Fleming et al., 2010a; McCurdy et al.,
2013). See VBQ Analysis for more details.
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‘activated’), extending into areas CA1 (4.5%, 2.2% activated), CA2
(3.8%, 7.4% activated), and CA3 (5.1%, 13.2% activated). Additionally,
R2* correlated negatively with AROC in bilateral visual cortex (52.8%
in left V1, 2.0% activated, 35.6% in right V1, 1.3% activated, peak voxel
MNIxyz = [1 −69 11]) and positively in the left middle-temporal gyrus
(peak voxel MNIxyz = [−51 −48 2]). A positive iron effect which was just
above our cluster-level threshold (pFWE cluster = 0.052), but which
was FWE-peak significant (pFWE peak = 0.044, t = 6.17) was also
present in the right subiculum (peak voxel MNIxyz = [14 −38 −5]).

Finally, as previous studies suggest that decreased MT frequently
co-occurs with increased R2* and that this inverse pattern may indicate
a demyelination mechanism (Steiger et al., 2016), we were interested to
see if a similar pattern could be found in the left hippocampus at a
reduced (i.e., more exploratory) threshold. We thus lowered our
uncorrected inclusion threshold to p < 0.005, FWE-cluster corrected
to p < 0.05, and found that left hippocampal R2* (15.0% in left dentate
gyrus, 29.% activated, 18.6% in left subiculum, 16.2% activated) also
positively predicted AROC (peak voxel MNIxyz = [−26 −36 −13], pFWE
= 0.011, t = 4.94). All raw t-maps and FWE-thresholded maps have
been made available to view and freely download at Neurovault (http://
neurovault.org/collections/1260/).

Exploratory analyses

To further evaluate these effects, we performed several post-hoc
exploratory analyses, to inform future research on the microstructural
underpinnings of metacognition. To this end we assessed 1) whether
any of the hippocampus-metacognition correlation was related to a
measure of (auditory) memory capability, 2) whether brain iron in
other cortical areas was associated with the link between metacognition
and hippocampus, 3) whether any volumetric effects underpinned
these or our other results, and 4) whether any informative effects
could be found in the proton-density maps. Please see Supplementary
Methods and Supplementary Figures 1–5 for overview of these
analyses and their results.

Discussion

Our findings demonstrate that individual differences in perceptual
insight are related to quantitative markers of cortical myelination and
iron. Previous studies investigating individual metacognitive ability
indicated that the function, connectivity, and volume of anterior
prefrontal cortex (aPFC) underlie introspective accuracy (Baird et al.,
2013; Fleming et al., 2010a; McCurdy et al., 2013; Sinanaj et al., 2015).
Here we build on these findings using quantitative magnetic resonance
imaging to show that metacognition is related to the cortical myelina-

tion of the anterior-prefrontal cortex. Further, our hippocampus results
suggest that metacognition for perception may require the engagement
of both domain-specific and domain-general processes.

Although each of the multi-parameter maps have enhanced speci-
ficity over conventional weighted imaging and each exhibit sensitivity
to particular microstructural tissue properties, this relationship is not
unique. Histologically, differences in MT measures strongly correlate
with myelin content in both white (Mottershead et al., 2003; Schmierer
et al., 2007; Turati et al., 2015) and gray matter (Fjær et al., 2013).
While myelin is also a significant determinant of R1 (Gouw et al., 2008;
Koenig, 1991; Mottershead et al., 2003), other features of the
myeloarchitecture such as the axonal diameter, perhaps coupled to
the exposed myelin surface, may be a greater determinant, at least in
white matter (Harkins et al., 2016). Nonetheless, other factors such as
iron content (Callaghan et al., 2015a; Gelman et al., 2001; Rooney
et al., 2007) and cellular architecture (Gouw et al., 2008; Mottershead
et al., 2003) also play a role. Similarly, although R2* is highly correlated
with iron content (Langkammer et al., 2010) it can also be influenced
by fibre orientation and architecture (Wharton and Bowtell, 2012).
Considering these factors, we benefit from having a multi-modal view
to aid in interpreting our findings; the co-localisation of increases in
both MT and R1 in the aPFC suggests increased myelination indepen-
dent of changes in iron or other paramagnetic content that would also
be expected to impact R2*.

We also found that metacognition was negatively related to markers
of gray matter myelination (i.e., MT) in the left hippocampus, and
positively related to markers of microstructural iron (i.e., R2*) in the
precuneus, left hippocampus (albeit at exploratory thresholds), and
right subiculum. These areas are core nodes of a bilateral memory-
related network (Buckner et al., 2011; Choi et al., 2012; Greicius et al.,
2009; Yeo et al., 2011), and have previously been implicated in
confidence and metacognitive for memory rather than perception
(Baird et al., 2013; Chua et al., 2006; McCurdy et al., 2013;
Molenberghs et al., 2016). While the hippocampus itself has a central
role in visuospatial memory, scene perception, and learning (Hartley
et al., 2014; Maguire et al., 2016; Zeidman et al., 2014), as part of the
default mode network these areas are also more generally involved in
higher cognitive functions involving self-generated thought, episodic
memory, visual imagination, and prospection (Andrews-Hanna et al.,
2014; Zeidman et al., 2014; Zeidman and Maguire, 2016). Thus
although previous functional neuroanatomy studies have tended to
emphasize the domain-independence of brain areas involved in meta-
memory and perception, these results suggest these areas contribute a
domain-general input to metacognition ability. Future work may build
on these results by investigating the overlapping and independent
microstructural correlates for metacognition in a variety of perceptual

Fig. 3. Hippocampal markers of myelination and iron correlate with metacognitive ability. Voxel-based quantification results in the left hippocampus. Hippocampus MT negatively
relates to metacognitive ability (AROC) (top left, A), whereas iron levels in the same region positively predict metacognition, albeit at exploratory thresholds only (top right, B).
Orientation of crosshairs given below each brain in MNI XYZ coordinates. Blobs depict results of whole-brain multiple regression analyses vs each map type, while controlling for age,
gender, ICV, and a variety of performance-related variables (see Methods for more information). Results shown on average MT map in MNI space. Scatterplots are for illustration only
and depict the peak voxel from each SPM versus raw AROC. Colorbars indicate t-values at each voxel. SPMs are FWE-cluster corrected whole brain analysis, pFWE < 0.05.
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and cognitive domains.
It is interesting to further consider the possible neurobiology

underlying the negative relationship between hippocampal MT and
metacognition. While ex vivo studies suggest that R2* is strongly
correlated with brain iron (Langkammer et al., 2010), MT is sensitive
to macromolecules, with the primary determinant being myelin (Fjær
et al., 2013; Schmierer et al., 2007). In general, gray matter myelina-
tion is primarily found in local connections between neurons, which
bridge between adjacent cortical layers (Hellwig, 1993; Nieuwenhuys
et al., 2015). Metacognition requires an accurate mapping between the
accumulation of evidence determining perceptual accuracy and sub-
jective confidence (Fetsch et al., 2015; Fleming and Dolan, 2012; Kiani
and Shadlen, 2009), which is typically reported retrospectively (and
thus depends on accurate and efficient memory). Our finding of
reduced hippocampal MT relating to improved metacognition may
therefore suggest that a more sparse local connectivity structure in the
hippocampus is important for the accurate encoding and/or recall of
decision evidence. Although we can only speculate as to the exact
mechanism at play here, this result suggests that high resolution
imaging in conjunction with dynamic connectivity modelling of hippo-
campal subfields may further reveal the computational mechanisms
which facilitate accurate introspective insight.

Limitations and future directions

In the present study our paradigm was not designed to tease apart
these specific mechanisms; an important future step will therefore be to
examine the relationship of brain microstructure and specific decision
variables. A computational approach may also better explain some of
the divergence in our results, such as why better metacognition is
associated with reduced iron in the visual cortex but increased iron in
the precuneus and hippocampus. Furthermore, as brain myelination
and iron are closely related to a variety of environmental and
developmental factors, including stress and nutrition (Carlson et al.,
2009; Sparkman and Johnson, 2008), future studies may greatly
benefit from investigating the role of these variables in mediating the
microstructural effects reported here.

Methodological limitations common to all studies requiring spatial
normalisation are the potential for residual registration errors, as well
as partial volume effects. To minimise these sources of bias we used the
DARTEL algorithm for inter-subject registration, which results in
maximally accurate registration (Klein et al., 2009), and used the voxel
based quantification normalisation procedure to minimise partial
volume effects introduced by smoothing (Draganski et al., 2011).
Additionally, although here we report an effect of metacognition only
in the left hippocampus, this laterality effect is likely due to a statistical
thresholding effect. Indeed, both MT and R2* effects were observed in
the right hippocampus at more liberal statistical thresholds.

Finally, in this study we used a VOI analysis on the basis of regions
previously reported to show morphological covariation (Fleming et al.,
2010b; McCurdy et al., 2013). Although we found myelination and iron
effects in several of these areas (e.g., the dorsolateral/anterior PFC,
precuneus), we failed to find significant effects in others (e.g.,
rostrolateral prefrontal cortex, superior parietal cortex). These differ-
ences raise interesting questions about the biological basis of these
effects, and may suggest that the relationship between metacognition
and neuroanatomy in DLPFC and precuneus is related to changes in
underlying myeloarchitecture, rather than gray matter expansion.
However, VBM studies are complicated by their dependence on tissue
microstructure, algorithms used and the acquisition scheme which
generates the image contrast driving the segmentation (Lorio et al.,
2016, 2014). Ultimately, the quantitative nature of the analyses
presented here facilitate more direct replication testing in future
investigations of the biological basis for metacognition.

Conclusion

Here we use a quantitative multi-parameter mapping approach to
reveal the relationship of the brain microstructure to perceptual
metacognition. Importantly, as our method yields standardised metrics
sensitive to the underlying tissue microstructure, these results can be
used to inform future clinical research as they can be compared directly
across research sites. Our results suggest that microstructure of the
hippocampus is an important predictor for metacognitive ability. More
generally, these results suggest that memory-related systems may be
more important than previously realized for perceptual metacognition.
Future research into the genetic, environmental, and other develop-
mental factors underlying these findings are likely to yield strong
dividends in the study of metacognitive ability.
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