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Impact of Hepatitis C Treatment 
as Prevention for People Who 
Inject Drugs is sensitive to contact 
network structure
Cornelia Metzig 1,2, Julian Surey3, Marie Francis3, Jim Conneely4, Ibrahim Abubakar3,5,6 & 
Peter J. White  1,7

Treatment as Prevention (TasP) using directly-acting antivirals has been advocated for Hepatitis C 
Virus (HCV) in people who inject drugs (PWID), but treatment is expensive and TasP’s effectiveness is 
uncertain. Previous modelling has assumed a homogeneously-mixed population or a static network 
lacking turnover in the population and injecting partnerships. We developed a transmission-dynamic 
model on a dynamic network of injecting partnerships using data from survey of injecting behaviour 
carried out in London, UK. We studied transmission on a novel exponential-clustered network, as well 
as on two simpler networks for comparison, an exponential unclustered and a random network, and 
found that TasP’s effectiveness differs markedly. With respect to an exponential-clustered network, the 
random network (and homogeneously-mixed population) overestimate TasP’s effectiveness, whereas 
the exponential-unclustered network underestimates it. For all network types TasP’s effectiveness 
depends on whether treated patients change risk behaviour, and on treatment coverage: higher 
coverage requires fewer total treatments for the same health gain. Whilst TasP can greatly reduce 
HCV prevalence, incidence of infection, and incidence of reinfection in PWID, assessment of TasP’s 
effectiveness needs to take account of the injecting-partnership network structure and post-treatment 
behaviour change, and further empirical study is required.

Hepatitis C Virus (HCV) infection among people who inject drugs (PWID) is a public health priority, with preva-
lence in London being around 43%.[Aldridge et al. submitted] With the advent of direct-acting antivirals (DAAs), 
which are more tolerable and have higher efficacy than previous therapy, with cure rates up to 90%1, Treatment 
as Prevention (TasP) for HCV in PWID has received attention2–5. However, assessing the potential benefits of 
TasP is challenging because it depends greatly on the patterns of transmission, which are not yet well understood.

The effectiveness of TasP for HCV has been analysed with compartmental models (e.g.refs 5 and 6) in 
which individuals are assumed to share injecting paraphernalia at equal rate with everyone, making the pop-
ulation “well-mixed”. Recently, more-realistic models have considered the injecting-partnership network of 
PWID, simulating HCV transmission on exponential random networks7 or on empirical networks determined 
by respondent-driven sampling8, 9. However, it remains difficult to infer to the structure of the full network, as 
respondent-driven sampling generally overestimates small loops10, and often questionnaires have limited the 
maximum number of injecting partners that could be reported, so truncating the reported frequency distribu-
tion9, 11. Furthermore, these networks models are all static and so do not incorporate entry into and exit from the 
network of PWID, or changes over time in individuals’ injecting partners, which will be important for transmis-
sion dynamics since they occur on a similar timescale to the duration of infection12.
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Reinfection following treatment would clearly reduce the effectiveness of TasP, and therefore its frequency 
is an important consideration. Evidence from the US, the Netherlands, Norway and Canada13–17 suggest that 
reinfection risk after treatment of HCV infection is significantly lower than the risk of initial infection, indicating 
a change in the behaviour of individuals to reduce their risk. However, there is wide variation in reported rein-
fection rates after treatment18. Importantly, reinfection risk is determined by both the behaviour of treated indi-
viduals and the prevalence of HCV in their injecting partners (if they continue to inject drugs post-treatment). 
Therefore, if treatment were applied with high coverage then the reductions in prevalence would reduce rein-
fection frequency below the rates observed in small-scale trials. The magnitude of this population-level effect is 
expected to depend upon network structure and rates of treatment in the population, which we explore.

In this paper we introduce a model for a dynamic injecting network, which we use to study HCV transmission 
and the impact of TasP. Individuals enter and exit the system and change injecting partners, whilst the degree 
distribution and summary statistics remain stationary19 (see Table 1). The model structure and parameters are 
informed by data from a behavioural and demographic survey of PWID in London, England, a prevalence sur-
vey, [Aldridge et al. submitted] and other topological features of social networks20. We study the effectiveness of 
TasP at different coverage levels in our network model, compared with TasP on two simpler (but also dynamic) 
networks, as well as a compartmental model, to assess the impact of the network characteristics on TasP. We 
examine pessimistic and optimistic scenarios regarding the effect of post-treatment behaviour change preventing 
reinfection. We use several measures of TasP effectiveness: reduction in HCV prevalence and incidence, infec-
tions averted and life-years gained.

Results
Network structure and model calibration. Figure 1(a) shows the ‘exponential-clustered’ (ec) network 
we developed, which exhibits a number of features found in real social networks:21 an exponential degree distribu-
tion (which means that some individuals are highly connected)20, 22, positive clustering9, 23, positive assortiveness 
(degree correlations)20 and short average pathlength (i.e. number of ‘steps’) between individuals. To understand 
the effect of these features for HCV transmission and TasP, we compare it to TasP on two simpler networks: an 
exponential (unclustered) network and a (even simpler) Erdös-Renyi random network, shown in Fig. 1(b) and (c).  
To calibrate the prevalence in the random network to match the observed level, the transmission rate per network 
link was adjusted (see Table 1).

The short average pathlength of the ec-network facilitates HCV transmission to uninfected individuals who 
join the network and to infected individuals who have been treated, leading to high incidence and high frequency 
of reinfection (despite a lower transmission rate per contact). Conversely, clustering increases path-length (and 
therefore lowers prevalence) for a given degree distribution (see Fig. 2), and lowers prevalence and infections. 
This paper focuses on the stationary state (transient effects of TasP introduction are shown in Fig. 3, which shows 
that the majority of the reduction in prevalence occurs over the first ~5 years).

Effect of treatment in different networks. We consider initially a scenario in which PWID who have 
been successfully treated for HCV can get re-infected (Fig. 2). In all three of the networks, prevalence declines 
as coverage is increased from zero. These reductions in prevalence are reflected in life-years gained by the cohort 
of PWID, which increases markedly as coverage increases (Fig. 2e). Incidence increases at very low levels of cov-
erage, due to treatment increasing the number of susceptibles who can then become (re)infected, but incidence 
peaks and declines at higher treatment levels, due to the reduction in prevalence. On the ec-network there is 
relatively little decline in incidence as coverage is increased to high levels. Incidences are even higher on an expo-
nential unclustered network, and lower on a random network.

The effectiveness of TasP is also compared to a homogeneous-mixing compartmental model of SIS-type with 
population turnover (see equations 1 to 7). Here, in contrast to the network models, a relatively low incidence 
produces a 43% prevalence level in absence of treatment, and a relatively low coverage suffices to bring prevalence 
down to zero. The reason for the discrepancy in prevalence is the low number of neighbours in networks, and a 

Exponential-
clustered network

Exponential 
network Random network

Number of nodes (i.e. individuals in the network) 1000 1000 1000

Mean degree (i.e. number of partners per individual) at one time-point 
(90% credible interval) 3.7 (3.5–3.9) 3.62 

(3.4–3.86) 3.7 (3.6–3.8)

Average path-length (i.e. number of ‘steps’ between two individuals in the 
network) 6.1 4.5 6.9

Clustering coefficient41 (90% credible interval) 0.36 (0.34–0.38) 0.22 
(0.2–0.24) 0.065 (0.06–0.075)

Assortativity20 (standard deviation) 0.016 (0.011–0.021) 0.03 
(0.02–0.04) 0.0007 (0.0005–0.0009)

1/λmax of static network* 0.00407 0.0045 0.00225

<k>/<k^2>**42 0.113 0.101 0.204

Epidemic threshold for β (with heterogeneous mean field)**42 2.0 2.0 1.0

Transmission probability per partnership and month, β 0.053 0.053 0.068

Table 1. Comparison between the skewed-clustered-assortative network and random network (*λmax being the 
largest eigenvalue of the adjacency matrix, **<k> the degree).
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network-dynamic effect: the number of someone’s partners in dynamic networks, although random, increases 
on average with time spent in the network. People enter the system uninfected and with only one partner, but by 
the time they become infected and receive treatment they are more connected than the system average, and so 

Figure 1. The three networks compared in this analysis. Right column: distribution of path-lengths in the 
network, and average path-length Inlay: Counter-cumulative representation of the degree distributions of the 
three networks in log-linear scale, where a straight line corresponds to an exponential distribution (both for the 
counter-cumulative distribution and for the probability density, which is its derivative).
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can be reinfected more readily. In contrast, in a homogeneously mixed population, the number of infected neigh-
bours is equal for all, and there is no notion of time to infection: everyone is connected to everyone (although the 
population is represented in aggregate, not as discrete individuals). This means that as soon as someone becomes 
infected everyone who is uninfected has an increased risk of becoming infected, hence the low incidence required 
to produce the observed prevalence. Conversely, as soon as someone is cured by treatment, everyone who is 
uninfected has a reduced risk of becoming infected, hence the large impact of TasP in reducing reinfection risk 
and reducing prevalence.

Heterogeneity from turnover in partnerships is more pronounced for the (slowly decaying) exponential 
degree distributions, and is the reason why the initial increase in infections occurs even at higher treatment rate 
for a more skewed network. For high coverage, prevalence is reduced sufficiently so that infections also decline 
(see Fig. 2b and c).

Additionally, the number of reinfections (Fig. 2d) rises and has a peak at some level of coverage before 
declining again. This is not a network effect but is also present in the compartmental model, (equation 7), as 
re-infections are proportionate both to the (rising) number of treatments and to the (declining) prevalence. In 

Figure 2. Effect of different treatment rates on equilibrium (A) prevalence of HCV infection; incidence per year 
of (B) chronic infection (including arising from reinfection), (C) cured by successful treatment, (D) reinfection; 
and (E) life-years gained; for three different network structures, for treatment rates varied from 0 to 30% per 
year, in the absence of behaviour-change post-treatment. Points indicate median results and shading represents 
the 50% range (i.e. inter-quartile range) and 90% ranges of 100 simulations of a network with 1000 PWID over a 
time period of 20 years (i.e. turnover of 50 people entering and exiting per year). For prevalence and incidence, 
the behaviour of the homogeneous-mixing model is also shown: as it is a deterministic model there is no range 
of uncertainty.
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networks, in those with shorter average path-length, reinfections happen more frequently, and a high treatment 
level is required to reduce them.

Effect of post-treatment behaviour change preventing reinfection. Now we examine an optimistic 
scenario in which behaviour change post-treatment eliminates the risk of reinfection (Fig. 4). Numbers of infec-
tions and therefore required numbers of treatments are much lower than in the previous scenario, since the pool 
of susceptibles is smaller as cured individuals do not return to it (Fig. 4). This holds for all networks.

This difference in prevalence and incidence between the scenarios is highest for the networks with short aver-
age path-lengths, since they previously had the highest probability of reinfection (Fig. 4a and b). This implies that 
avoiding re-infections has a much more beneficial effect on the ec-network with respect to a random network. 
Even for the ec-network, without reinfections the incidence is reduced even at low coverage levels. For a treatment 
coverage of 10%, the annual number of treatments required is less than half of the treatments in the first scenario.

In the corresponding homogeneous-mixing model (SIR-type with population turnover: see equations 8–15)  
the annual number of treatments initially rises with increasing coverage before declining (Fig. 4c, both for 
simulations on networks and the homogeneous mixing solution, see equation 15). As in the first scenario, the 
homogeneous-mixing model predicts elimination of infection at a low coverage.

Discussion
To our knowledge we present the first dynamic network model for the study of TasP of HCV. It has stationary 
features in line with real networks (exponential degree distribution, positive clustering and positive assortativity) 
while allowing for entry and exit of PWID. As recognised by others (e.g. refs 7 and 8) a dynamic network model 
is essential for studying transmission and prevalence of long-term infections like HCV, where duration of infec-
tion and duration of injecting behaviour are comparable. This cannot be captured in a static network model12. As 
Fig. 2a and b clearly show, network models and a homogeneous-mixing model differ greatly in the relationship 
between prevalence of infection and incidence of infection and reinfection. Consequently the models predict very 
different impacts of TasP. When the injecting-partnership network is represented realistically, TasP can greatly 
reduce the prevalence of infection in PWID, even in the absence of post-treatment behaviour change, but a given 
reduction requires greater coverage than predicted by a homogeneous-mixing model.

Importantly, the impact of TasP depends on the scale of the intervention – i.e. the coverage of diagnosis and 
treatment, in all studied scenarios and contact patterns. An intervention with low coverage has relatively little 
benefit since it does little to reduce the prevalence of infection and so there is rapid reinfection of patients who 
are successfully treated. However, if the intervention has sufficiently-large coverage then it produces a substantial 
reduction in the prevalence of infection, leading to reductions in the incidence of new infections and reinfections. 
This means that a higher coverage actually results in fewer treatments being required overall. Similar results have 
been found for other infectious diseases, including gonorrhoea24, MRSA25 and Ebola26.

Comparison of effectiveness of TasP on different networks shows that the shorter the average path-length, 
the higher the frequency of reinfection, and the greater the number of treatments required to reduce prevalence 
(Fig. 2a–c). This intuitive result can be explained more rigorously by a lower endemic threshold for skewed net-
works (with heterogeneous mean-field theory27), which holds also for slowly evolving networks28. The relation-
ship holds despite an adjusted lower infection rate for exponential networks (see Table 1). With respect to our 
novel exponential-clustered network, the widely used Erdös-Renyi random network largely overestimates effec-
tiveness of TasP because of its long average path-length, which makes it an unsuitable approximation. In contrast, 
an unclustered network under-estimates the effect of TasP, although the difference is less pronounced, in line with 
more theoretical studies29 and ref. 30.

Figure 3. Prevalence of chronic infection over time following the introduction of treatment at different levels 
ranging from 2.5% to 30% on the same ec-network as in Fig. 2. The system is at equilibrium before treatment is 
introduced at time 0. Results of individual simulations are shown.
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The dynamics of reinfection after treatment are a major determinant of the impact of TasP for HCV in PWID. 
There are individual- and population-level aspects to these dynamics: the risk of reinfection depends upon both 
the behaviour of individuals who have been treated (i.e. if they inject drugs and the safety of their injecting prac-
tices if so) and the prevalence of infection in their injecting partners. This has consequences for the relationship 
between the scale of the TasP intervention and its effectiveness, and also for potential synergies arising from 
combining interventions.

At the individual level, if PWID who have been treated for HCV change their behaviour to reduce their risk 
of reinfection (as evidence suggests13–17) then this greatly increases the impact of TasP. We do not have estimates 
for our population so we compared two scenarios. In light of the variation in reported rates18 we recommend that 
post-treatment behaviour-change should be evaluated more thoroughly in relevant population groups, along with 
interventions to promote it.

At the population level, the greater the coverage of TasP the greater the reduction in prevalence and therefore 
the greater the reduction in reinfection risk – which in turn contributes to reducing prevalence. In addition, com-
bining TasP with other interventions, like opiate substitution therapy (to assist people in stopping injecting, so 

Figure 4. Effect of different treatment rates on equilibrium (A) prevalence of HCV infection; incidence per 
year of (B) chronic infection, (C) cured by successful treatment, (D) reinfection – which is always zero in this 
scenario because cured individuals change their behaviour to eliminate their reinfection risk; and (E) life-years 
gained; for three different network structures, for treatment rates varied from 0 to 30% per year, with behaviour-
change post-treatment preventing reinfection. Points indicate median results and shading represents the 50% 
range (i.e. inter-quartile range) and 90% ranges of 100 model realizations of a network with 1000 PWID over a 
time period of 20 years (i.e. turnover of 50 people entering and exiting per year). For prevalence and incidence, 
the behaviour of the homogeneous-mixing model is also shown: as it is a deterministic model there is no range 
of uncertainty.
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reducing the number of susceptible and infected individuals in the network) and needle exchange programmes 
(to reduce the infection risk of injecting) could be synergistic31, greatly reducing the burden of HCV. The effec-
tiveness of TasP may be increased by using “find and treat” services (e.g. ref. 32) for PWID to identify infec-
tions earlier to reduce the timespan in which they can transmit to others. (Furthermore, the acceptability of 
directly-acting antiviral treatment for HCV – which is far greater than previous treatments, which have unpleas-
ant side-effects – could be effective in encouraging PWID to engage with health services.)

To inform policy decisions, it is necessary to understand the characteristics of the particular population of 
interest. We conducted a survey of PWID in London to design and parameterize our model. It is important to 
note that some key parameter values derived from the empirical study are different from those used in other mod-
elling studies. With an average age of 44 years the cohort is older than the average age of 26 years used in ref. 6. As 
we showed in Fig. 5, injecting duration is a key parameter affecting the effectiveness of TasP, since it determines 
turnover and infection rate (assuming a given population size), on which TasP depends sensitively. As with all 
egocentric surveys, our empirical information on the structure of the network of PWID is limited, and we hope 
that our demonstration of the importance of having information on network clustering, degree distribution and 
population turnover will stimulate further empirical study to obtain this information, and on population turnover 
and changes in contacts over time. Although studies mapping networks of contacts are challenging, we showed 
that network structure is an important determinant of the effectiveness of TasP and decision-makers need to be 
aware of the uncertainty that arises from not having detailed information on network structure: all of the model 
networks that we examined are consistent with the data from our survey, highlighting the value of empirical study 
of the network. In addition, we recommend that those researchers who have conducted network studies and have 
detailed data available (e.g. refs 7, 8) analyse those data using dynamic rather than static networks.

In conclusion, treatment of PWID for HCV can produce substantial reductions in the prevalence and inci-
dence of infection and consequent burden of disease, resulting in substantial life-years gained. This is the case 
even in the absence of post-treatment behaviour change reducing individual risk of reinfection and subsequent 
onward transmission. Nevertheless, it is important to realise that reinfection risk is a key determinant of the 
impact of TasP, and that reinfection risk depends upon both individual-level behaviour and the scale of the inter-
vention applied to the population, and that small-scale trials are suitable only for measuring the individual-level 
component. Finally, it is important for policy-makers to know that commonly-used compartmental models (e.g. 
ref. 33) overestimate the benefits of TasP – in reality much larger interventions may be required to achieve the 
anticipated health benefits – and to improve assessment of the potential impact of TasP in different populations 
of PWID we recommend further empirical study of injecting-partnership networks, and use of dynamic network 
models to represent those networks realistically.

Methods
Survey of people who inject drugs. We conducted a survey of PWID asking about demographic infor-
mation and injecting behaviour, including numbers of injecting partners in last 6 months, the last year, the last 
five years and lifetime, and the length of time spent injecting drugs. The survey was conducted alongside com-
munity HCV testing offered at drug treatment services, homeless hostels, homeless day centres and congregate 
settings in London by the Hepatitis C Trust mobile screening van between June 2015 and January 2016. Written 
informed consent was obtained from all study participants. The study conforms to the ethical guidelines of the 
1975 Declaration of Helsinki; all protocols were approved by the Brent NRES Committee, London (Ref: 13/
LO/0077); methods were carried out in accordance with the relevant guidelines and regulations; informed con-
sent was obtained from all subjects.

The survey of PWID in London had a participation rate of 76% (97/127). Average age was 43.8 years, (range 
25–67, interquartile range 38–50), and the average duration of injecting career was 17.5 years (range 0–44, inter-
quartile range 10–23). 56% of respondents reported ever having shared syringes, and 80% reported ever having 
shared paraphernalia. Injecting frequency was on average 18 times per week (range 1–70). (Although our data 
come from a study of the relevant population, often modelling studies of HCV in PWID have assumed a shorter 
duration of injecting career, so we examined the effect of assuming a shorter average injecting career (Fig. 5): 
unsurprisingly, a higher rate of turnover results in a higher incidence for the same prevalence, and means that a 
given treatment level results in a smaller reduction in prevalence, and with more treatments required.)

Mathematical modelling of injecting contact networks. Based on information from the survey and 
evidence from the literature, we developed an algorithm by which simple behavioural rules of PWID produce a 
dynamic injecting-partnership network (termed “exponential-clustered network”) with characteristics found in 
real networks: i.e. an exponential degree distribution20, 22, clustering9, 23, as well as positive assortativity (degree 
correlations)20, and a short average path-length34 between two people (see Table 1 and Fig. 1). These features affect 
epidemic spreading, which has been studied on different types of networks in the complex networks literature, 
often with the so-called heterogeneous mean-field approximation27, quenched mean-field approximation29, 30, or 
spectral methods35, 36. To understand the effects of both degree distribution and clustering, we used networks with 
simpler characteristics for comparison: a skewed unclustered network (with the same exponential degree distri-
bution) and a random network. All networks have a stationary degree distribution, stationary number of people 
and stationary number of partnerships. The networks are dynamic since people (nodes) enter and exit, entering 
ones form new sharing partnerships (links) and exiting ones break theirs.

Network-generating algorithm: exponential-clustered (ec) network. The algorithm by which 
PWID find injecting partners operates as follows:
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 (i) A person entering the network selects a partner: for each potential partner, the probability of being select-
ed is proportional to the potential partner’s current number of partnerships.

 (ii) People can also leave the network after a given duration, such that the system has a constant number of 
people (nodes) and partnerships (links). If a person leaves then all their partnerships break.

 (iii) The total number of partnerships in the network is constant. New partnerships are therefore created as follows: 
a link (i.e. partnership) is selected at random, and one of its partners is chosen to receive an additional link 
(this means that every person is picked at random, with probability depending on its number of partnerships).

 (iv) This person’s new partner is picked at random among the first partners’ partners. Only in the rare cases 
where this is not possible (e.g. in a disconnected couple), a partner in the whole network is chosen as in 
(ii). This selection method leads to both positive degree correlations (assortativity) and clustering (see 
Fig. 1). In the case of zero or one partner, this is not possible, and a partner is again picked with probability 
proportionate to its number of partnerships.

 (v) People exit the system after a given time. If an exiting person leaves a partner unconnected then this former 
partner will form a new partnership, and a partnership picked at random is broken, to keep the number of 
partnerships constant.

Figure 5. Comparison of injecting career duration of 20 years (red) and 10 years (blue) for the ec-network on 
the effect of different treatment rates on equilibrium (A) prevalence of HCV infection; incidence per year of (B) 
chronic infection (including arising from reinfection), (C) cured by successful treatment, (D) reinfection; and 
(E) life-years gained, for treatment rates varied from 0 to 30% per year. For the shorter injecting career duration, 
the number of individuals entering and leaving is twice as high (100/year) for a system of the same size (1000 
individuals). The infection rate has been fitted to obtain 43% prevalence of chronic infection in the absence of 
treatment (α is 1.3 times the one for 20 years). For an infection duration of 10 years (close to the assumption in 
ref. 22), treatment is much less effective in reducing prevalence.
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The algorithm generate an exponential degree distribution numerically and theoretically19, in line with evi-
dence22 and irrespective of the initial topology (see inlay right in Fig. 1c). Step (iv) generates in addition a positive 
clustering coefficient (measured in the transitivity function of the R package igraph; assortativity coefficient is 
calculated as defined in ref. 37). This strengthens the plausibility of the simple network formation hypotheses 
used here, that people tend to find partners locally, as well as connect preferably to the well-connected.

Network-generating algorithm: exponential unclustered network. A skewed unclustered network 
with the same exponential degree distribution was generated by the following alternative step (iv):

(iv-a) A partner’s partners aren’t given priority and the partner is picked with probability depending on the 
person’s current number of partnerships.

Network-generating algorithm: random network. A random network was obtained by changing step 
(i) so that a new sharing partner is chosen at random. This means that the Erdös-Renyi network is recovered, 
which has binomial degree distribution (stationary under entry and exit), and a longer average path-length than 
both the exponential-clustered and the exponential network.

Modelling of transmission and treatment. To compare transmission dynamics on the three networks, 
we consider networks with the same number of nodes, entry and exit rate and same average degree (Table 2). Each 
of them has its transmission rate calibrated to produce HCV prevalence in PWID in London of 43%;[Aldridge et al.  
submitted] seroprevalence in PWID in London was 53%, which is similar to national estimate of 50%38.

We study two scenarios: one where cured individuals can get reinfected, and one where individu-
als change their behaviour to avoid reinfection; the former is a susceptible-infected-susceptible (SIS)-type 
transmission-dynamic model and the latter a susceptible-infected-recovered (SIR)-type model, both with entry 
and exit. These scenarios were simulated on each of the networks. In discrete time, the succession of events is

 1. Entry of new PWID
 2. Formation of new partnerships
 3. Infection of susceptible individuals (with rate β per contact with each infected partner)
 4. Exit of people from the network
 5. Treatment (of infecteds with probability α)

The system converges to an equilibrium prevalence level, although, as with any finite system, the dynamics 
will eventually stochastically reach a state of zero prevalence, from which it cannot rebound21. For our model, this 
probability is negligible in the considered timespan, unless equilibrium prevalence is close to zero.

We also compare the effect of the different scenarios in terms of life-years gained (both via increased life 
expectancy per treated case and avoided infections), using age at infection, life expectancy for UK39, and HCV 
progression parameters from40. This gives estimates on the number of cases of liver disease of each treatment 
scenario. The method is detailed at the end of the Methods section.

Comparison with homogeneous-mixing model with reinfection (SIS-type). If instead of a net-
work a system of infinite size and homogeneous mixing is assumed, the model follows the equations,

β α µ
τ

= − + + −
dS
dt

SI
N

I N S1
(1)init

β α
τ

= − −
dI
dt

SI
N

I I1
(2)

Parameter Value Reference

Infection rate β (per partnership per month) ec network: 0.053; exponential network: 0.053; 
random network: 0.068 Fitted to obtain 43% prevalence

Treatment rate α (varied in scenario analysis) 0–30% (scenarios)

Average number of partners at one point in time 3.7 Survey reported in this study

HCV prevalence without treatment 43% [Aldridge et al. submitted]

Duration of injecting career 20 years This study

Rate of new entrants per year 5% This study

Disease progression rates (varies by age) 40

Death rates (life tables from Office for National Statistics, age-
dependent) 39

Incremental annual death rate for PWID 0.01 6

Time period considered 20 years

Table 2. Demographic and natural history parameter values.
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where β is infection rate, α treatment rate, μ entry rate of susceptibles, τ time spent in the network, S susceptibles, 
I infecteds and N system size. It has as stationary state the equilibrium system size N = μτNinit and μ = 1/τ and for 
the fraction s of susceptibles and i infecteds

α τ
β

=
+s 1/

(3)

and

α τ
β

= −
+

= −i
R

1 1/ 1 1
(4)0

where

+ =s i 1 (5)

For no endemic state with i > 0 can persist, and R0 is the epidemic threshold. The rate of new infections and 
treatments is

β α µ α µ
β

= = +





−
+ 




siinfections ( ) 1
(6)

α α α µ
β

= =





−
+ 




itreatments 1
(7)

This however neglects the time to infection and therefore yields a much higher prevalence for a given infection 
rate. The epidemic threshold R0, above which endemic states can sustain would be finite even in that case, and 
treatment as prevention would appear much more effective than on any of the three studied networks.

The comparison to the results of differential equations is has some limitations since the studied networks are 
evolving, and time spent in the network plays an important role, which increases with average pathlength.

Comparison with homogeneous-mixing model without reinfection (SIR-type). The rates of entry 
and exit equal i.e. µ =

τ
1 . The compartments are now susceptibles s, infecteds i and recovered r (which are not at 

risk of infection). They follow the equations,

β µ
τ

= − + −
ds
dt

si s1
(8)

β α
τ

= − −
di
dt

si i i1
(9)

Figure 6. Probability for incidence of progression states as a function of time after infection. These probabilities 
are calculated separately for each infection age (in this figure this is 35 years of age), since we use age-dependent 
disease progression values40 as well as mortality data39. From these values, cumulative incidences as a time 
after infection can be calculated, and from that the average number of life years lost (again as a function of 
time of infection), which allows to calculate an estimate on the number of life-years saved at system-level via 
comparison of two scenarios. The lines of points are discontinuous because disease progression parameters are 
age-dependent and sometimes differ strongly between age-groups.
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α
τ

= −
dr
dt

i r1
(10)

with

+ + =s i r 1 (11)

equilibrium prevalence level as a function of treatment rate is then

µ β α µ
β α µ

=
− −

+
i ( )

( ) (12)

α µ
β

=
+s

(13)

and the rate of new infections and treatments is

β µ β α µ
β

= =
− −siinfections ( )

(14)

α α µ β α µ
β α µ

= =
− −

+
itreatments ( )

( ) (15)

Calculation of averted disease progression and averted infections. Separately from the trans-
mission dynamics, we modelled progression of a typical HCV infection to moderate liver disease, cirrhosis, 
decompensated cirrhosis and hepatocellular cancer, as shown in the inlay in Fig. 6. We used values based on a 
retrospective study17, which calculated age-dependent disease progression rates, which are comparable but more 
detailed and recent than the ones33 used in the NICE guidelines. In addition, we used life expectancy data from 
the UK39 to calculate the progression probability of a typical infection, separately for each infection age (see as 
an example Fig. 6 for age 35). We assumed the infected cohort was 70% male, and that there was an incremental 
death probability of 0.01 per year for PWID compared to the general population, as in33.

For a given infection age a0, the probability to be in progression state “moderate liver disease” can be calcu-
lated with the so-called master equation:

ρ ρ γ ρ γ ρ γ= − −− −moderate a age mild a age moderate age moderate a age cirrhosis age moderate a age death age, 0, , 0, 1 , 1 , 0, , , 0, ,

and for later progression states accordingly. From this probability, annual incidences (and cumulative incidences) 
can be calculated, following

ρ γ= − −imoderate age mild age moderate age 1, , 1 ,

Figure 7. Cumulative number of cases of liver disease progression states as a function of treatment level, 
calculated for a population of 1000 PWID for infections occurring over a 20 year timespan. The credible 
intervals given here are for 100 simulations; disease progression follows the age-dependent probabilities of40 
exactly. The lines are discontinuous because disease progression parameters are age-dependent and sometimes 
differ strongly between age groups.
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From the transmission-dynamic model, we then obtained time series of infections and successful treatments, 
as well as age at infection and treatment. Using this and the typical evolution of one infection, we calculated the 
number of cases occurring from a given treatment scenario (see Fig. 7). Comparison of scenarios allows calcula-
tion of the number of life-years saved, as well as averted cases of moderate liver disease, cirrhosis, decompensated 
cirrhosis ad cancer (see Figs 2e and 4e). The disease cases may arise long after the individual has left the network; 
the calculation considers the time period until the end of life of every person who has ever been in the network.
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