Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

Davina J Hensman Moss*, Antonio F. Pardiñas*, Douglas Langbehn, Kitty Lo, Blair R. Leavitt, Raymund Roos, Alexandra Durr, Simon Mead, Peter Holmans, Lesley Jones[§], Sarah J Tabrizi[§] and the REGISTRY and the TRACK-HD investigators. *Contributed equally; [§]Contributed equally.

The Lancet Neurology 2017

Supplementary Material: Table of Contents

Section	Subsection	Pages
Supplementary		3 - 11
text		
	Supplementary Methods	3-8
	Supplementary Results	8-9
	References for supplementary material	9 - 11
Investigator lists		11 – 17
	TRACK-HD Investigator list	11
	EHDN REGISTRY Investigator list	11 – 16
Supplementary	Brief titles given below, please refer to figure for full title. Figures are listed in	17 – 30
figures	the order in which they are referred to in the main then supplementary text.	
	1: Observed vs expected onset	17
	2: Registry progression vs onset	18
	3: Region plot of TRACK-HD GWAS signal in MSH3-DHFR region	19
	4: Regional plot of TRACK-HD and REGISTRY meta-analysis GWAS signal in the	20
	MSH3-DHFR region: conditioning on rs1232027	
	5: Regional plot of TRACK-HD and REGISTRY meta-analysis GWAS signal in the	21
	MSH3-DHFR: conditioning on rs557874766	
	6: Regional plot of REGISTRY GWAS signal in the MSH3-DHFR region:	22
	conditioning on rs557874766	
	7: Regional plot of TRACK-HD GWAS signal in MSH3-DHFR region, along with	23
	GTeX eQTL associations with DHFR expression	
	8: Regional plot of REGISTRY GWAS signal in the MSH3-DHFR region, along	24
	with GTeX eQTL associations with MSH3 expression	
	9: Scree plot for TRACK-HD progression principal component analysis	25
	10: Scree plot for REGISTRY progression principal component analysis	26
	11: Age-CAG severity function against clinical probability of onset in REGISTRY	27
	12: Longitudinal vs cross-sectional atypical severity scores in TRACK-HD	28
	13: QQ plots of the TRACK-HD, REGISTRY GWAS and meta-analysis	29
Supplementary	All supplementary tables are available in excel format via the UCL HD Centre website:	30 – 48
tables	http://hdresearch.ucl.ac.uk/data-resources/	
	supplementary text	
	Supplementary lexi.	20
	2: List of Variables to be used in TRACK HD progression analyses	20
	2: Correlations among Domain Specific Pesidual Dringinal Components in TPACK HD	30 21
	4: PCA of Recidual Longitudinal Change Among Variables form All 2 Domains in	21
	TRACK-HD.	21
	5: Factor pattern of the first two principal component analysis of the Registry severity	32
	score	
	6: Independent association signals from the TRACK-HD Progression GWAS (at p-value $< 10^{-5}$)	32 – 34
	7: Independent association signals from the meta-analysis of TRACK-HD and	34

	REGISTRY Progression GWAS (at p-value < 10-5)	
	8: Co-localisation between TRACK-HD GWAS signal on chromosome 5 and	34 – 35
	GTeX eQTLs for MSH3, DHFR	
	9: Co-localisation between REGISTRY GWAS signal on chromosome 5 and	35
	GTeX eQTLs for MSH3, DHFR	
	10: Significant (p<0.001) SNPs from TRACK-HD GWAS chromosome 5 region showing	35
	direction of effect (beta) on progression (GWAS) and expression (eQTL). Negative beta	
	means the reference allele associated with reduced progression or expression.	
	11: Independent association signals from the REGISTRY Progression GWAS (at	35 – 37
	p-value < 10-5)	
	12: Gene-wide p-values in TRACK-HD, REGISTRY, the TRACK-REGISTRY meta-analysis	37 – 41
	and GeM for all genes in the top 14 pathways from GeM	
	13: Setscreen enrichment p-values for the Pearl et al. (2015) pathways in	42 – 44
	TRACK-HD, REGISTRY, the TRACK-HD meta-analysis and GeM	
	14: Gene-wide p-values for the most significant genes in the two Pearl et al.	44
	pathways showing significant enrichment in TRACK	
	15: Summary of missing data in REGISTRY	44
	16: Parameter estimates of variables in the model used to generate the REGISTRY	44
	cross sectional severity score. Multiple imputation adjusted estimates of statistical	
	significance are given. CPO_1: clinical probability of onset; CPO_2: single	
	transformation of clinical probability of onset. DF: degrees of freedom.	
	17: Proportion of variance among variables present in TRACK-HD and Registry which	45
	are accounted for by the first PC in the combined analysis.	
	18: Effect of removing MSH3 on the Setscreen enrichment p-values for the	45
	top 14 GeM pathways in TRACK-HD, REGISTRY and the TRACK-REGISTRY meta-	
	analysis.	
	19: Effect of removing MSH3 on the Setscreen enrichment p-values for the	45 – 48
	Pearl et al. (2015) pathways in TRACK-HD, REGISTRY and the TRACK-REGISTRY	
	meta-analysis.	40
	20: Distribution of progression measure in 218 members of TRACK-HD cohort,	48
	showing numbers and percentage of TRACK-HD cohort in each bin of the	
	histogram shown in Figure 2C.	
	21: Distribution of atypical severity (compared to predicted severity at final	48
	visit) in in 1835 members of the REGISTRY cohort, showing numbers and	
	percentage of REGISTRY cohort in each bin of the histogram shown in Figure	
	2D.	
Supplementary	Due to their large size the tables below are not included on this PDF, but can	
tables available	be downloaded from the UCL HD Centre website:	
on UCL HD	http://hdresearch.ucl.ac.uk/data-resources/	
website only		
	22: Gene-wide p-values for all genes in TRACK-HD, REGISTRY, the TRACK-	
	REGISTRY meta-analysis, and Gelvi	
	23: Genome-wide significant SNPs in the MSH3-DHFR region, showing	
	Functional annotation, allele frequency, effect sizes and p-values in TRACK-HD,	
	REGISTRY and the TRACK-REGISTRY meta-analysis	
	24: Gene-wide p-values for all genes in TRACK-HD, REGISTRY and the TRACK-	
	KEGISTRY meta-analysis after conditioning on AAO, compared to their values	
	without conditioning.	
	25: Gene-wide p-values in TRACK-HD, REGISTRY, TRACK-REGISTRY meta-	
	analysis and GeM for all genes in the Pearl et al. pathways	
	26: Setscreen enrichment p-values for the large set of GeM pathways in TRACK-HD	
	27: Gene-wide n-values in TRACK and REGISTRY for genes in nathways with	
	enrichment q<0.05 in TRACK from the large set of GeM pathways.	

Supplementary text information *Methods*

Defining progression in TRACK-HD

Among the wide variety of potential cognitive and quantitative-motor variables, we analysed a subset of those that were previously used in a 36-month predefined primary analysis(1). A small number of quantitative-motor variables that were substantively redundant were eliminated and those with more tractable metric properties were chosen (**Supplementary Table 2**).

For the Track HD study, 10 subjects were excluded because they had no follow-up data. 15 other subjects were excluded because of missing brain MRI data there was no missing data for the other variables used in the analysis.

Our models controlled for study site, gender, education, and their interactions with follow-up time, consistent with the models used in the TRACK-HD standard analyses which are described elsewhere(1-4). The dominance of the first principal component is shown in the Scree plot in **Supplementary Figure 9**.

Progression analysis in REGISTRY

We used a square-root transform of TMS to improve approximate multivariate normality of the data. Missing data were considerable as documented **Supplementary Table 15**.

To deal with the missing data for clinical items, multiple imputation with 25 imputations was performed. Age, gender, and CAG expansion length were auxiliary variables for the imputations. Proper methods to account for imputation variation were used for all statistical inferences. Final parameter estimates and statistical significance were estimated by Rubin's method(5). We performed the above using the MI and MIANALYZE procedures of SAS/STAT 13.1(6).

In order to generate atypical severity scores, we needed to undertake three sequential procedures: (i) Multiple imputation of missing data (ii) Principal Component Analysis (PCA) and severity scoring of the combined imputed data replications (iii) Regression of the predictive effect of age, CAG length, and gender on the PCA-derived severity scores so that we are left with a measure of atypical (or "unexplained") severity. The steps were taken in the order above; given that these steps could be done in different orders we also confirmed that there were only minimal differences due to the order (*data not shown*). We also noted some evidence of study site effects in the eventual regressions. Thus we used a random effect for site in models adjusting for age and CAG. Atypical severity was defined as the residual between each subject's observed and marginal predicted value. The dominance of the first principal component is shown in **Supplementary Figure 10**.

The final averaged multiple imputation model used a 2 degree of freedom restricted cubic spline(7) of cumulative probability of onset (CPO), plus main effects of gender and CAG length and a random effect for

site. Marginal effects from this model, which represent the estimated effects after accounting for site fluctuations, were used for all predictions. The knot placement for the clinical probability of onset spline was defined a priori using a conventional standard at the 10th, 50th, and 90th percentiles of its observed distribution. The corresponding values were (0.131, 0.395, 0.885). Atypical severity was defined as the residual between each subject's observed and marginal predicted value. Final parameter estimates, along with estimates of statistical significance adjusted for the multiple imputation procedure are shown in the **Supplementary Table 16**.

We inspected the potential biasing influence of the CAG repeats, by classifying the individual in short (CAG < 41) and long (CAG > 55) repeats. We found an overrepresentation of people with larger atypical severity scores among those with short CAG, which implies that those with a small number of repeats are more likely to be in the study if atypically severely affected. This is likely to be due to the disease only being partially penetrant in those with short CAG repeats, resulting in bias (8). This prompted us to exclude subjects with short CAG from the creation of the severity scores, while retaining those with long CAG. However, we confirmed that the age-CAG severity function predicted using CAG > 41 gave sensible estimates for both the short and long ranges, enabling even those subjects with short CAG to be used in the final analysis (**Supplementary Figure 11**).

Comparing TRACK-HD and REGISTRY progression measures

There are four common measures between TRACK-HD and REGISTRY: TMS, symbol digit score, Stroop word reading score and TFC. We took the first principal component score from an analysis of these four measures at the last TRACK-HD visit: this accounted for 79.4% of the variance in the PCA and correlated approximately equally with each of the four observed variables (**Supplementary Table 21**). To calculate the measure of severity unaccounted for by age and CAG length in TRACK, we regressed these principal component scores on the same predictors used for the unified REGISTRY progression measure, to give TRACK-HD severity scores.

As explained in the manuscript page 13, within the TRACK-HD data, the last-visit severity scores had a Pearson correlation of 0.674 with the previously calculated longitudinal progression measure. It can be shown that the predicted values obtained from the TRACK-HD and REGISTRY formulas are nearly linear, hence that Pearson correlation should be an adequate descriptive statistic for the relationship (**Supplementary Figure 12**).

Genotyping and quality control

DNA was obtained from blood samples of the 218 TRACK-HD study participants who had complete serial phenotype data, using standard methods (2). Genotyping was performed in Illumina Omni2.5 v1.1 arrays at

UCL Genomics, in accordance with the Infinium LCG Assay (15023141_A, June 2010) protocol (Illumina Inc, San Diego, USA). Standard QC procedures (9) were performed using PLINK v1.9 (10), including controlling for coverage and call rates (5% of missing data allowed per SNP and individual), inbreeding (F < 0.2 required) and Hardy-Weinberg equilibrium (SNPs with $p < 10^{-6}$ in an exact test were removed). With these criteria, and after removing one individual of a twin pair, a total of 216 gene positive TRACK-HD subjects were left in the sample, genotyped for 2.34 million genome-wide markers (**Figure 1**).

Identity-by-descent analysis showed 9 pairs of individuals with a relatedness coefficient ($\hat{\pi}$) higher than 0.15, which included 6 putative first degree relatives, 2 putative second degree relatives and 1 putative pair of third degree relatives. Additionally, an ADMIXTURE analysis with a subset of the 1000 Genomes (11) populations revealed 6 individuals with more than 25% of non-European ancestry. All these individuals were retained in the TRACK-HD sample, as their relatedness and admixture can be accommodated well by using association methods based on mixed linear models (12, 13).

TRACK-HD was imputed in the Cardiff University high-performance computing cluster RAVEN(14), using the SHAPEIT/IMPUTE2 algorithms(15, 16) and a standardised pipeline(17). The 1000 Genomes phase 3 panel provided by the IMPUTE2 authors (release October 2014), was used as the reference imputation panel. Imputation probabilities ("dosages") were converted to best-guess genotypes in fcGENE v1.07(18) using a minimum probability threshold of 80% and a per-SNP missingness threshold of 5% of the sample. After this process an INFO score cutoff of 0.8 was applied in order to select well-imputed variants, and all monomorphic and singleton markers were excluded. With these filters 9.65 million biallelic markers remained in the dataset.

Genotypes for the REGISTRY subjects were obtained from the GeM-HD Consortium (19), where details of their genotyping, curation and imputation are provided. This dataset harboured 8.94 million biallelic markers of 1,773 individuals (**Figure 1**).

Mixed linear model GWAS

Association analyses were performed with the mixed linear model (MLM) functions included in GCTA v1.26(20), specifically the leave-one-chromosome-out (LOCO) procedure(21). As the genetic relationship matrix used by MLMs can accurately account for cryptic relatedness and ancestry, and phenotypic variables already controlled for relevant clinical covariates, no covariates were added to the analyses. In order to transform the results into independent GWAS signals, PLINK was again used to perform linkage disequilibrium (LD) clumping ($r^2 = 0.1$, $p < 1x10^{-4}$; window size < 3 Mb). Due to the relatively small size of the TRACK-HD and REGISTRY samples, calculation of SNP-based heritability (h^2_{SNP}) for our tested phenotypes was not possible using either genotyped or imputed markers(22, 23). Because of the small sample sizes, analyses were restricted to SNPs with minor allele frequency >1%.

Meta-analysis of the GWAS summary statistics from the TRACK-HD and REGISTRY studies was carried out using the fixed effects method with inverse-variance weights as implemented in METAL (24). The meta-analysis of TRACK-HD and REGISTRY studies was carried out using the fixed effects method with inverse-variance weights as implemented in METAL(24). To control for spurious results due to scale differences between the TRACK-HD and REGISTRY progression phenotypes, effect sizes from both summary statistics were standardised to have equal variances before meta-analysis.

QQ plots of observed log p-values (sorted by value) for each SNP versus their expected values in the absence of association are shown for TRACK-HD, REGISTRY and the meta-analysis in **Supplementary Figure 13**. If there is no association, and no systematic inflation in the test statistics (for example, from population stratification), the observed log p-values would follow their expected values (the red line in **Supplementary Figure 13**) exactly. Indeed, this is what is observed for the majority of data points, which do not show association. The extent to which such systematic inflation exists is measured by the genomic inflation factor λ (25), which is the median of the observed test statistics divided by 0.456 (the median of a chi-squared distribution on 1df). Values of λ close to 1 – as is the case here – indicate a lack of inflation. The 95% confidence interval for log p-values in the absence of association is shaded grey, and the points lying above this in the top right corner indicate genuine associations.

Conditional analyses of GWAS summary statistics were carried out using the COJO procedure included in GCTA v1.26(26).

Co-localisation analyses

In order to discern if our top GWAS signals were mediated by the same SNPs in both TRACK-HD and REGISTRY, we used the co-localisation method of Giambartolomei *et al.*(27), as implemented in GWAS-pw v0.21 (28). In summary, the GWAS summary statistics of our two samples were first divided into approximately independent LD blocks(29), and each block was then scanned to estimate the probability (in a hierarchical Bayesian framework) of harbouring an association common to the two samples. In contrast to the original algorithm, the model priors do not need to be pre-specified in GWAS-pw, as they are estimated directly from the summary statistics. This implementation has been thoroughly tested by simulation and applied to real data from heterogeneous sources (28). By testing the entire genome instead of a small number of candidate regions arising from the GWAS clumps, we follow a conservative approach towards estimating co-localisation, which also has the desirable property of allowing us to compare our candidates (to the resolution of single SNPs) with every other region in the genome.

A similar procedure was used to test for co-localisation between the region on chromosome 5 containing GWAS signal in TRACK-HD and REGISTRY and SNPs influencing expression (eQTLs), since this may indicate which gene in an association region is causal. Given that eQTLs close to the gene (cis-eQTLs) tend to replicate more reliably than those from other parts of the genome (30), these analyses were restricted to

the regions of GWAS signal and genes within 1Mb of these regions. These analyses used expression data from 53 tissues, accessed through GTeX (31). To minimise multiple testing, the two tissues showing the most significant eQTLs for each gene were used for the co-localisation analysis. Additionally, for DHFR and MSH3, analyses were performed using three brain tissues (caudate, cerebellum and cortex), since these are the most biologically relevant to HD a priori. Co-localisation results are shown for the TRACK-HD GWAS in **Supplementary Table 8**, and the REGISTRY GWAS in **Supplementary Table 9**. Plots of GWAS and eQTL signals with significant co-localisation are shown in in **Supplementary Figures 7 and 8**.

Gene-based and gene-set analyses

Gene-wide p-values were calculated using MAGMA v1.05 (32) on the TRACK-HD and REGISTRY summary statistics, by summing the p-values of all SNPs inside each gene. MAGMA aggregates the association evidence across all SNPs in a gene, while correcting for LD between SNPs (using the European data from Phase 3 of the 1000 Genomes Project as reference). This analysis increases power when a gene contains multiple causal SNPs (e.g. as a result of allelic heterogeneity), or when the causal SNP is not typed and its signal is partially captured by multiple genotyped SNPs in LD with it. We set a window of 35 kb upstream and 10 kb downstream of each gene in order to capture the signal of proximal regulatory SNPs(33, 34).

To maximise comparability with the GeM GWAS, our primary gene-set analyses used Setscreen (Moskvina et al. 2011). Setscreen sums the (log-) p-values of all SNPs in the gene set, similar to Fisher's method, but adjusts the distribution to allow for non-independence of SNPs due to linkage disequilibrium (Brown 1975). Significant enrichments from the Setscreen analyses were confirmed using the competitive gene-set analysis procedure implemented in MAGMA. This more conservative approach tests whether genes in a gene set have more significant gene-wide p-values than other genes, correcting for gene size, SNP density and intergenic linkage disequilibrium (de Leeuw et al. 2015), but may be less powerful than the Setscreen analysis for small gene sets.

Initially, we performed gene set analyses on the 14 pathways found to be significantly enriched for association signal in the GeM GWAS. Many of these pathways relate to DNA repair, so we investigated the biological specificity of this signal further by analysing 78 gene-sets taken from a recent review of DNA repair (Pearl et al 2015).

As a secondary analysis, to potentially uncover areas of novel disease-related biology, we tested the same gene sets used by GeM-HD Consortium (2015). This comprises a collection of 14,706 pathways containing between 3 and 500 genes from the Gene Ontology (GO)(35), Kyoto Encyclopedia of Genes and Genomes (KEGG)(36), Mouse Genome Informatics (MGI)(37), National Cancer Institute (NCI)(38), Protein ANalysis THrough Evolutionary Relationships (PANTHER)(39), BioCarta(40) and Reactome(41). Multiple testing correction was carried out for this analysis by calculating q-values (Storey and Tibshirani, 2003).

Linking genetic variation to clinical measures

To explain how our TRACK-HD lead variant (rs557874766) affected commonly used clinical measures of HD severity we first correlated TRACK-HD progression score with UHDRS Total Motor Score (TMS) and UHDRS Total Functional Capacity (TFC). We defined "raw" TMS rate as TMS change divided by followup years and "adjusted" TMS rate as the residual of raw TMS rate after regressing off effects of initial TMS, age, sex, CAG. We followed the same procedure for TFC.

Regressing these measures on progression gives the following estimates of the amount of change for one unit increase in progression (standard errors in brackets):

Raw TMS rate: 0.71(0.19) Adjusted TMS rate: 0.57 (0.18) Raw TFC rate: 0.21 (0.047) Adjusted TFC rate: 0.20 (0.044)

The effect size at the top MSH3 SNP in TRACK (rs557874766) is -0.58 (s.e. =0.087) units of progression per copy of the minor allele G (see **Supplementary Table 21**) – this corresponds to a change of -0.33 (95% CI =0.10, 0.56) to -0.41 (0.16,0.66) units in TMS rate compared to the major allele C, which can be interpreted as a reduction in the rate of TMS increase by 0.33-0.41 units per year for each copy of the G allele. Similarly, this corresponds to a reduction in the rate of TFC change of 0.12 (0.06,0.18) units per year per G allele.

Results

Since *MSH3* is a member of all the most significantly enriched pathways, we tested whether *MSH3* was individually responsible for the pathway enrichments by removing it and repeating the analyses. GO:32300 and KEGG:3430 are still nominally significant in TRACK (p=0.0413, p=0.0452 respectively) but not in REGISTRY. Neither of the two Pearl pathways is significant in TRACK or REGISTRY. The only pathways nominally significant both in TRACK and REGISTRY are GO:32389 (MutLalpha complex) and Pearl pathway "Repair_pathway/SSR/MMR/MutL_homologs", neither of which contain *MSH3*. Thus, it appears that the mismatch repair pathway enrichments are mainly driven by *MSH3*. However, in the TRACK-REGISTRY meta-analysis, the Pearl et al. MMR pathway (p= $1.27x10^{-4}$), GO:32300 (p= $1.02x10^{-3}$), KEGG 3430 ($1.07x10^{-4}$) and GO:30983 are at least nominally significant without *MSH3*. Pathway enrichments without *MSH3* are shown in **Supplementary Table 18** for the 14 GeM pathways and **Supplementary Table 19** for the Pearl et al. pathways.

Setscreen gene set analysis of the large set of pathways analysed by the GeM-HD Consortium (2015) is shown in **Supplementary Table 24.** There were 26 pathways showing significant (q<0.05) enrichment in

TRACK after correction for multiple testing of pathways. These pathways mainly relate to DNA repair and binding, and none is more significant than GO:32300 (mismatch repair complex). The genes in these 26 pathways are shown in **Supplementary Table 25**, and are similar to those in Tables 2 and 3, with the exception of DHFR (however, the pathways containing DHFR tend to be less strongly associated than the mismatch repair pathways in both TRACK and REGISTRY). Thus, analysis of the large set of pathways does not appear to throw up any novel areas of biology outside those indicated by the GeM paper.

References

1. Tabrizi SJ, Scahill RI, Owen G, Durr A, Leavitt BR, Roos RA, et al. Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington's disease in the TRACK-HD study: analysis of 36-month observational data. The Lancet Neurology. 2013;12(7):637-49.

2. Tabrizi SJ, Langbehn DR, Leavitt BR, Roos RA, Durr A, Craufurd D, et al. Biological and clinical manifestations of Huntington's disease in the longitudinal TRACK-HD study: cross-sectional analysis of baseline data. Lancet neurology. 2009;8(9):791-801.

3. Tabrizi SJ, Scahill RI, Durr A, Roos RA, Leavitt BR, Jones R, et al. Biological and clinical changes in premanifest and early stage Huntington's disease in the TRACK-HD study: the 12-month longitudinal analysis. Lancet neurology. 2011;10(1):31-42.

4. Tabrizi SJ, Reilmann R, Roos RA, Durr A, Leavitt B, Owen G, et al. Potential endpoints for clinical trials in premanifest and early Huntington's disease in the TRACK-HD study: analysis of 24 month observational data. Lancet neurology. 2012;11(1):42-53.

5. Rubin DB. Multiple Imputation for Nonresponse in Surveys. New York: Wiley; 2008.

6. Inc. SI. SAS/STAT 13.1 User's Guide: High-Performance Procedures. . In: Inc. SI, editor. NC2013.

7. Harrell FE. Regression Modeling Strategies. New York: Wiley; 2001.

8. Langbehn DR, Brinkman RR, Falush D, Paulsen JS, Hayden MR. A new model for prediction of the age of onset and penetrance for Huntington's disease based on CAG length. Clinical genetics. 2004;65(4):267-77.

9. Anderson CA, Pettersson FH, Clarke GM, Cardon LR, Morris AP, Zondervan KT. Data quality control in genetic case-control association studies. Nat Protocols. 2010;5(9):1564-73.

10. Chang CC, Chow CC, Tellier L, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4(7).

11. 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56-65.

12. Thornton T, Conomos MP, Sverdlov S, Blue EM, Cheung CY, Glazner CG, et al. Estimating and adjusting for ancestry admixture in statistical methods for relatedness inference, heritability estimation, and association testing. BMC Proceedings. 2014;8(1):1-7.

13. Shin J, Lee C. A mixed model reduces spurious genetic associations produced by population stratification in genome-wide association studies. Genomics. 2015;105(4):191-6.

14. Advanced Research Computing @ Cardiff (ARCCA). Introduction to RAVEN: accessed: 29/03/2016; [Available from: <u>http://www.cardiff.ac.uk/arcca/services/equipment/ravenintroduction.html</u>.

15. Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat Genet. 2012;44(8):955-9.

16. Delaneau O, Zagury J-F, Marchini J. Improved whole-chromosome phasing for disease and population genetic studies. Nature Methods. 2013;10(1):5-6.

van Leeuwen EM, Kanterakis A, Deelen P, Kattenberg MV, The Genome of the Netherlands C, Slagboom PE, et al. Population-specific genotype imputations using minimac or IMPUTE2. Nat Protocols. 2015;10(9):1285-96.
 Roshyara NR, Scholz M. fcGENE: a versatile tool for processing and transforming SNP datasets. PloS one. 2014;9(7):e97589.

19. Consortium GMoHsDG-H. Identification of Genetic Factors that Modify Clinical Onset of Huntington's Disease. Cell. 2015;162(3):516-26.

20. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: A Tool for Genome-wide Complex Trait Analysis. Am J Hum Genet. 2011;88(1):76-82.

21. Yang J, Zaitlen NA, Goddard ME, Visscher PM, Price AL. Advantages and pitfalls in the application of mixed-model association methods. Nat Genet. 2014;46(2):100-6.

22. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet. 2010;42(7):565-9.

23. Yang J, Bakshi A, Zhu Z, Hemani G, Vinkhuyzen AAE, Lee SH, et al. Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index. Nat Genet. 2015;47(10):1114-20.

24. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26(17):2190-1.

25. Devlin B, Roeder K. Genomic control for association studies. Biometrics. 1999;55(4):997-1004.

26. Yang J, Ferreira T, Morris AP, Medland SE, Madden PA, Heath AC, et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat Genet. 2012;44(4):369-75.

27. Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, et al. Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics. PLoS Genet. 2014;10(5):e1004383.

28. Pickrell JK, Berisa T, Liu JZ, Segurel L, Tung JY, Hinds DA. Detection and interpretation of shared genetic influences on 42 human traits. Nat Genet. 2016;48(7):709-17.

29. Berisa T, Pickrell JK. Approximately independent linkage disequilibrium blocks in human populations. Bioinformatics. 2016;32(2):283-5.

30. Ramasamy A, Trabzuni D, Guelfi S, Varghese V, Smith C, Walker R, et al. Genetic variability in the regulation of gene expression in ten regions of the human brain. Nature neuroscience. 2014;17(10):1418-28.

31. Consortium GT. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science (New York, NY). 2015;348(6235):648-60.

32. de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized gene-set analysis of GWAS data. PLoS computational biology. 2015;11(4):e1004219.

33. Maston GA, Evans SK, Green MR. Transcriptional Regulatory Elements in the Human Genome. Annu Rev Genomics Hum Genet. 2006;7(1):29-59.

34. The Network and Pathway Analysis Subgroup of the Psychiatric Genomics Consortium. Psychiatric genomewide association study analyses implicate neuronal, immune and histone pathways. Nat Neurosci. 2015;18(2):199-209.

35. Consortium TGO. Gene Ontology Consortium: going forward. Nucleic Acids Res. 2015;43(D1):D1049-D56.

36. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44(D1):D457-D62.

Eppig JT, Blake JA, Bult CJ, Kadin JA, Richardson JE, Group TMGD. The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease. Nucleic Acids Res. 2015;43(D1):D726-D36.
 Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, et al. PID: the Pathway Interaction Database. Nucleic Acids Res. 2009;37(Database issue):D674-D9.

39. Mi H, Muruganujan A, Casagrande JT, Thomas PD. Large-scale gene function analysis with the PANTHER classification system. Nat Protocols. 2013;8(8):1551-66.

40. Nishimura D. BioCarta. Biotech Software & Internet Report. 2001;2(3):117-20.

41. Fabregat A, Sidiropoulos K, Garapati P, Gillespie M, Hausmann K, Haw R, et al. The Reactome pathway Knowledgebase. Nucleic Acids Res. 2016;44(Database issue):D481-D7.

The TRACK-HD Investigators

CANADA

University of British Columbia, Vancouver: A Coleman, R Dar Santos, J Decolongon, A Sturrock

FRANCE

APHP, Hôpital Salpêtriere, Paris: E Bardinet, C Jauff ret, D Justo, S Lehericy, C Marelli, K Nigaud, R Valabrègue

NETHERLANDS

Leiden University Medical Centre, Leiden: SJA van den Bogaard, E M Dumas, J van der Grond, EP t'Hart, C Jurgens, M-N Witjes-Ane.

U.K.

St Mary's Hospital, Manchester: N Arran, J Callaghan, C Stopford;
London School of Hygiene and Tropical Medicine, London: C Frost, R Jones;
University College London, London: N Hobbs, N Lahiri, R Ordidge, G Owen, T Pepple, J Read, M Say, E Wild, A Patel, N C Fox, C Gibbard, I Malone, H Crawford, D Whitehead;
Imperial College London, London: S Keenan;
IXICO, London: D M Cash;
University of Oxford, Oxford: C Berna

GERMANY

University of Münster, Münster: N Bechtel, S Bohlen; University of Bochum, Bochum: A Hoff man, P Kraus.

U.S.A.

University of Iowa, Iowa City, IA: E Axelson, C Wang, T Acharya (University of Iowa, Iowa City, IA); Massachusetts General Hospital, Harvard, MA: S Lee, W Monaco Indiana University, IN: C Campbell, S Queller, K Whitlock.

AUSTRALIA

Monash University, Victoria: C Campbell, M Campbell, E Frajman, C Milchman, A O'Regan, I Labuschagne

The REGISTRY Investigators 2004-2012

Registry Steering committee: Anne-Catherine Bachoud-Lévi, Anna Rita Bentivoglio, Ida Biunno, Raphael Bonelli, Jean-Marc Burgunder, Stephen Dunnett, Joaquim Ferreira, Olivia Handley, Arvid Heiberg, Torsten Illmann, G. Bernhard Landwehrmeyer, Jamie Levey, Maria A. Ramos-Arroyo, Jørgen Nielsen, Susana Pro Koivisto, Markku Päivärinta, Raymund A.C. Roos, A Rojo Sebastián, Sarah Tabrizi, Wim Vandenberghe, Christine Verellen-Dumoulin, Tereza Uhrova, Jan Wahlström+, Jacek Zaremba

Language coordinators: Verena Baake, Katrin Barth, Monica Bascuñana Garde, Sabrina Betz, Reineke Bos, Jenny Callaghan, Adrien Come, Leonor Correia Guedes, Daniel Ecker, Ana Maria Finisterra, Ruth Fullam, Mette Gilling, Lena Gustafsson, Olivia J Handley, Carina Hvalstedt, Christine Held, Kerstin Koppers, Claudia Lamanna, Matilde Laurà, Asunción Martínez Descals, Saül Martinez-Horta, Tiago Mestre, Sara Minster, Daniela Monza, Lisanne Mütze, Martin Oehmen, Michael Orth, Hélène Padieu, Laurent Paterski, Nadia Peppa, Susana Pro Koivisto, Martina Di Renzo, Amandine Rialland, Niini Røren, Pavla Šašinková, Erika Timewell, Jenny Townhill, Patricia Trigo Cubillo, Wildson Vieira da Silva, Marleen R van Walsem, Carina Whalstedt, Marie-Noelle Witjes-Ané, Grzegorz Witkowski , Abigail Wright, Daniel Zielonka, Eugeniusz Zielonka, Paola Zinzi

AUSTRIA

Graz (Medizinische Universitäts Graz, Psychiatrie): Raphael M. Bonelli, Sabine Lilek, Karen Hecht, Brigitte Herranhof, Anna Holl (formerly Hödl), Hans-Peter Kapfhammer, Michael Koppitz, Markus Magnet, Nicole Müller, Daniela Otti, Annamaria Painold, Karin Reisinger, Monika Scheibl, Helmut Schöggl, Jasmin Ullah

Innsbruck (Universitätsklinik Innsbruck, Neurologie): Eva-Maria Braunwarth, Florian Brugger, Lisa Buratti, Eva-Maria Hametner, Caroline Hepperger, Christiane Holas, Anna Hotter, Anna Hussl, Christoph Müller, Werner Poewe, Klaus Seppi, Fabienne Sprenger, Gregor Wenning

Gregor Wenning

BELGIUM

Bierbeek: Andrea Boogaerts, Godelinde Calmeyn, Isabelle Delvaux, Dirk Liessens, Nele Somers

Charleroi (Institut de Pathologie et de Génétique (IPG)): Michel Dupuit, Cécile Minet, Dominique van Paemel, Pascale Ribaï, Christine Verellen-Dumoulin

Leuven: (Universitair Ziekenhuis Gasthuisberg,): Andrea Boogaerts, Wim Vandenberghe, Dimphna van Reijen

CZECH REPUBLIC

Prague (Extrapyramidové centrum, Neurologická klinika, 1. LF UK a VFN): Jiří Klempíř, Veronika Majerová, Jan Roth, Irena Stárková

DENMARK

Copenhagen (Neurogenetics Clinic, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen): Lena E. Hjermind, Oda Jacobsen, Jørgen E. Nielsen, Ida Unmack Larsen, Tua Vinther-Jensen

FINLAND

Turku-Suvituuli (Rehabilitation Centre Suvituuli): Heli Hiivola, Hannele Hyppönen, Kirsti Martikainen, Katri Tuuha

FRANCE

Angers (Centre de référence des maladies neurogénétique- CHU d'Angers): Philippe Allain, Dominique Bonneau, Marie Bost, Bénédicte Gohier, Marie-Anne Guérid, Audrey Olivier, Adriana Prundean, Clarisse Scherer-Gagou, Christophe Verny

Bordeaux (Hôpital CHU Pellegrin): Blandine Babiloni, Sabrina Debruxelles, Charlotte Duché, Cyril Goizet, Laetitia Jameau, Danielle Lafoucrière, Umberto Spampinato

Lille-Amiens :

Lille (CHRU Roger Salengro) : Rekha Barthélémy, Christelle De Bruycker, Maryline Cabaret, Anne-Sophie Carette, Eric Decorte Luc Defebvre, Marie Delliaux, Arnaud Delval, Alain Destee, Kathy Dujardin, Marie-Hélène Lemaire, Sylvie Manouvrier, Mireille Peter, Lucie Plomhouse, Bernard Sablonnière, Clémence Simonin, Stéphanie Thibault-Tanchou, Isabelle Vuillaume

Amiens (CHU Nord) : Marcellin Bellonet, Hassan Berrissoul, Stéphanie Blin, Françoise Courtin, Cécile Duru, Véronique Fasquel, Olivier Godefroy, Pierre Krystkowiak, Béatrice Mantaux, Martine Roussel, Sandrine Wannepain

Marseille (Hôpital La Timone) : Jean-Philippe Azulay, Marie Delfini, Alexandre Eusebio, Frédérique Fluchere, Laura Mundler

Strasbourg (Hôpital Civil) : Mathieu Anheim, Celine Julié, Ouhaid Lagha Boukbiza, Nadine Longato, Gabrielle Rudolf, Christine Tranchant, Marie-Agathe Zimmermann

GERMANY

Aachen (Universitätsklinikum Aachen, Neurologische Klinik): Christoph Michael Kosinski, Eva Milkereit, Daniela Probst, Kathrin Reetz, Christian Sass, Johannes Schiefer, Christiane Schlangen, Cornelius J. Werner

Berlin (Klinik und Poliklinik für Neurologie - Charité - Universitätsmedizin Berlin): Harald Gelderblom, Josef Priller, Harald Prüß, Eike Jakob Spruth

Bochum (Huntington-Zentrum (NRW) Bochum im St. Josef-Hospital): Gisa Ellrichmann, Lennard Herrmann, Rainer Hoffmann, Barbara Kaminski, Peter Kotz, Christian Prehn, Carsten Saft

Dinslaken (Reha Zentrum in Dinslaken im Gesundheitszentrums Lang): Herwig Lange, Robert Maiwald

Dresden (Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Klinik und Poliklinik für Neurologie): Matthias Löhle, Antonia Maass, Simone Schmidt, Cecile Bosredon, Alexander Storch, Annett Wolz, Martin Wolz

Freiburg (Universitätsklinik Freiburg, Neurologie): Philipp Capetian, Johann Lambeck, Birgit Zucker

Hamburg (Universitätsklinikum Hamburg-Eppendorf, Klinik und Poliklinik für Neurologie): Kai Boelmans, Christos Ganos, Walburgis Heinicke, Ute Hidding, Jan Lewerenz, Alexander Münchau, Michael Orth, Jenny Schmalfeld, Lars Stubbe, Simone Zittel

Hannover (Neurologische Klinik mit Klinischer Neurophysiologie, Medizinische Hochschule Hannover): Gabriele Diercks, Dirk Dressler, Heike Gorzolla, Christoph Schrader, Pawel Tacik Itzehoe (Schwerpunktpraxis Huntington, Neurologie und Psychiatrie): Michael Ribbat

Marburg KPP (Klinik für Psychiatrie und Psychotherapie Marburg-Süd): Bernhard Longinus

Marburg Uni (Universität Marburg, Neurologie): Katrin Bürk, Jens Carsten Möller, Ida Rissling

München (Huntington-Ambulanz im Neuro-Kopfzentrum - Klinikum rechts der Isar der Neurologischen Klinik und Poliklinik der Technischen Universität München): Mark Mühlau, Alexander Peinemann, Michael Städtler, Adolf Weindl, Juliane Winkelmann, Cornelia Ziegler

Münster (Universitätsklinikum Münster, Klinik und Poliklinik für Neurologie): Natalie Bechtel, Heike Beckmann, Stefan Bohlen, Eva Hölzner, Herwig Lange, Ralf Reilmann, Stefanie Rohm, Silke Rumpf, Sigrun Schepers, Natalia Weber

Taufkirchen (Isar-Amper-Klinikum - Klinik Taufkirchen (Vils)): Matthias Dose, Gabriele Leythäuser, Ralf Marquard, Tina Raab, Alexandra Wiedemann

Ulm (Universitätsklinikum Ulm, Neurologie): Katrin Barth, Andrea Buck, Julia Connemann, Daniel Ecker, Carolin Geitner, Christine Held, Andrea Kesse, Bernhard Landwehrmeyer, Christina Lang, Jan Lewerenz, Franziska Lezius, Solveig Nepper, Anke Niess, Michael Orth, Ariane Schneider, Daniela Schwenk, Sigurd Süßmuth, Sonja Trautmann, Patrick Weydt

ITALY

Bari Clinica Neurologica - Neurophysiopatology of Pain Unit UNIVERSITA' DI BARI): Claudia Cormio, Vittorio Sciruicchio, Claudia Serpino, Marina de Tommaso

Bologna (DIBINEM - Alma Mater Studiorum - Università di Bologna; IRCCS Istituto delle Scienze Neurologiche di Bologna): Sabina Capellari, Pietro Cortelli, Roberto Galassi, Rizzo Giovanni, Roberto Poda, Cesa Scaglione

Florence (Dipartimento di Scienze Neurologiche e Psichiatriche Universita' degli Studi di Firenze-Azienda Ospedaliera Universitaria Careggi): Elisabetta Bertini, Elena Ghelli, Andrea Ginestroni, Francesca Massaro, Claudia Mechi, Marco Paganini, Silvia Piacentini, Silvia Pradella, Anna Maria Romoli, Sandro Sorbi

Genoa (Dipartimento di Neuroscienze, Riabilitazione, Oftalmologia, Genetica e Scienze Materno-Infantili, Università di Genova): Giovanni Abbruzzese, Monica Bandettini di Poggio, Giovanna Ferrandes, Paola Mandich, Roberta Marchese

Milan (Fondazione IRCCS Istituto Neurologico Carlo Besta):

Alberto Albanese, Daniela Di Bella, Anna Castaldo, Stefano Di Donato, Cinzia Gellera, Silvia Genitrini, Caterina Mariotti, Daniela Monza, Lorenzo Nanetti, Dominga Paridi, Paola Soliveri, Chiara Tomasello

Naples (Dipartimento di Neuroscienze, Scienze Riproduttive e Odontostomatologiche, Università Federico II): Giuseppe De Michele, Luigi Di Maio, Marco Massarelli, Silvio Peluso, Alessandro Roca, Cinzia Valeria Russo, Elena Salvatore, Pierpaolo Sorrentino

Pozzilli (IS) (Centro di Neurogenetica e Malattie Rare - IRCCS Neuromed): Enrico Amico, Mariagrazia Favellato, Annamaria Griguoli, Irene Mazzante, Martina Petrollini, Ferdinando Squitieri and **Rome (Lega Italiana Ricerca Huntington e malattie correlate - onlus / www.LIRH.it):** Barbara D'Alessio, Chiara Esposito

Rome (Istituto di Farmacologia Traslazionale & Istituto di Scienze e Tecnologie della Cognizione /CNR, Istituto di Neurologia Università Cattolica del Sacro Cuore): Anna Rita Bentivoglio, Marina Frontali, Arianna Guidubaldi, Tamara Ialongo, Gioia Jacopini, Carla Piano, Silvia Romano, Francesco Soleti, Maria Spadaro, Paola Zinzi

NETHERLANDS

Enschede (Medisch Spectrum Twente): Monique S.E. van Hout, Marloes E. Verhoeven, Jeroen P.P. van Vugt, A. Marit de Weert

Groningen (Polikliniek Neurologie): J.J.W. Bolwijn, M. Dekker, B. Kremer, K.L. Leenders, J.C.H. van Oostrom

Leiden (Leiden University Medical Centre (LUMC)): Simon J. A. van den Bogaard, Reineke Bos, Eve M. Dumas, Ellen P. 't Hart, Raymund A.C. Roos

Nijmegen (Universitair Medisch Centrum St. Radboud, Neurology): Berry Kremer, C.C.P. Verstappen

NORWAY

Oslo University Hospital (Rikshospitalet, Dept. of Medical Genetics and Dept. of Neurology): Olaf Aaserud, Jan Frich C., Arvid Heiberg, Marleen R. van Walsem, Ragnhild Wehus

Oslo University Hospital (Ulleval, Dept. of Medical Genetics and Dept.of Neurorehabilitation): Kathrine Bjørgo, Madeleine Fannemel, Per F. Gørvell, Eirin Lorentzen, Susana Pro Koivisto, Lars Retterstøl, Bodil Stokke

Trondheim (St. Olavs Hospital): Inga Bjørnevoll, Sigrid Botne Sando

POLAND

Gdansk (St. Adalbert Hospital, Gdansk, Medical University of Gdansk, Neurological and Psychiatric Nursing Dpt.): Artur Dziadkiewicz, Malgorzata Nowak, Piotr Robowski, Emilia Sitek, Jaroslaw Slawek, Witold Soltan, Michal Szinwelski

Katowice (Medical University of Silesia, Katowice): Magdalena Blaszcyk, Magdalena Boczarska-Jedynak, Ewelina Ciach-Wysocka, Agnieszka Gorzkowska, Barbara Jasinska-Myga, Gabriela Kłodowska – Duda, Gregorz Opala, Daniel Stompel

Krakow (Krakowska Akademia Neurologii): Krzysztof Banaszkiewicz, Dorota Boćwińska, Kamila Bojakowska-Jaremek, Małgorzata Dec, Malgorzata Krawczyk, Monika Rudzińska, Elżbieta Szczygieł, Andrzej Szczudlik, Anna Wasielewska, Magdalena Wójcik

Poznan (Poznan University of Medical Sciences, Poland): Anna Bryl, Anna Ciesielska, Aneta Klimberg, Jerzy Marcinkowski, Husam Samara, Justyna Sempołowicz, Daniel Zielonka

Warsaw-MU (Medical University of Warsaw, Neurology): Anna Gogol (formerly Kalbarczyk), Piotr Janik, Hubert Kwiecinski, Zygmunt Jamrozik

Warsaw-IPiN (Institute of Psychiatry and Neurology Dep. of Genetics, First Dep. of Neurology): Jakub Antczak, Katarzyna Jachinska, Wioletta Krysa, Maryla Rakowicz, Przemyslaw Richter, Rafal Rola, Danuta Ryglewicz, Halina Sienkiewicz-Jarosz, Iwona Stępniak, Anna Sułek, Grzegorz Witkowski, Jacek Zaremba, Elzbieta Zdzienicka, Karolina Zieora-Jakutowicz

PORTUGAL

Coimbra (Hospital Universitário de Coimbra): Cristina Januário, Filipa Júlio

Lisbon (Clinical Pharmacology Unit, Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon): Joaquim J Ferreira, Miguel Coelho, Leonor Correia Guedes, Tiago Mendes, Tiago Mestre, Anabela Valadas

Porto (Hospital de São João, (Faculdade de Medicina da Universidade do Porto)): Carlos Andrade, Miguel Gago, Carolina Garrett, Maria Rosália Guerra.

SPAIN

Badajoz (Hospital Infanta Cristina): Carmen Durán Herrera, Patrocinio Moreno Garcia

Barcelona-Hospital Mútua de Terrassa : Miquel Aguilar Barbera, Dolors Badenes Guia, Laura Casas Hernanz, Judit López Catena, Pilar Quiléz Ferrer, Ana Rojo Sebastián, Gemma Tome Carruesco

Barcelona-Bellvitge (Hospital Universitari de Bellvitge): Jordi Bas, Núria Busquets, Matilde Calopa

Barcelona-Merced (Hospital Mare de Deu de La Merced): Misericordia Floriach Robert, Celia Mareca Viladrich, Jesús Miguel Ruiz Idiago, Antonio Villa Riballo

Burgos (Servicio de Neurología Hospital General Yagüe): Esther Cubo, Cecilia Gil Polo, Natividad Mariscal Perez, Jessica Rivadeneyra

Granada (Hospital Universitario San Cecilio, Neurología): Francisco Barrero, Blas Morales

Madrid-Clinico (Hospital Clínico Universitario San Carlos): María Fenollar, Rocío García-Ramos García, Paloma Ortega, Clara Villanueva

Madrid RYC (Hospital Ramón y Cajal, Neurología): Javier Alegre, Mónica Bascuñana, Juan Garcia Caldentey, Marta Fatás Ventura, Guillermo García Ribas, Justo García de Yébenes, José Luis López-Sendón Moreno, Patricia Trigo Cubillo

Madrid FJD (Madrid-Fundación Jiménez Díaz): Javier Alegre, Fernando Alonso Frech, Justo García de Yébenes, Pedro J García Ruíz, Asunción Martínez-Descals, Rosa Guerrero, María José Saiz Artiga, Vicenta Sánchez

Murcia (Hospital Universitario Virgen de la Arrixaca): María Fuensanta Noguera Perea, Lorenza Fortuna, Salvadora Manzanares, Gema Reinante, María Martirio Antequera Torres, Laura Vivancos Moreau

Oviedo (Hospital Central de Asturias): Sonia González González, Luis Menéndez Guisasola, Carlos Salvador, Esther Suaréz San Martín

Palma de Mallorca (Hospital Universitario Son Espases): Inés Legarda Ramirez, Aranzazú Gorospe, Mónica Rodriguez Lopera, Penelope Navas Arques, María José Torres Rodríguez, Barbara Vives Pastor

Pamplona (Complejo Hospitalario de Navarra): Itziar Gaston, Maria Dolores Martinez-Jaurrieta, Maria A. Ramos-Arroyo

Sevilla ("Hospital Virgen Macarena"): Jose Manuel Garcia Moreno, Carolina Mendez Lucena, Fatima Damas Hermoso, Eva Pacheco Cortegana, José Chacón Peña, Luis Redondo

Sevilla (Hospital Universitario Virgen del Rocío): Fátima Carrillo, María Teresa Cáceres, Pablo Mir, María José Lama Suarez, Laura Vargas-González

Valencia (Hospital la Fe): Maria E. Bosca, Francisco Castera Brugada, Juan Andres Burguera, Anabel Campos Garcia, Carmen Peiró Vilaplana

SWEDEN

Göteborg (Sahlgrenska University Hospital): Peter Berglund, Radu Constantinescu, Gunnel Fredlund, Ulrika Høsterey-Ugander, Petra Linnsand, Liselotte Neleborn-Lingefjärd, Jan Wahlström+, Magnus Wentzel

Umeå (Umeå University Hospital): Ghada Loutfi, Carina Olofsson, Eva-Lena Stattin, Laila Westman, Birgitta Wikström

SWITZERLAND

Bern: Jean-Marc Burgunder, Yanik Stebler (Swiss HD Zentrum), Alain Kaelin, Irene Romero, Michael Schüpbach, Sabine Weber Zaugg (Zentrum für Bewegungsstörungen, Neurologische Klinik und Poliklinik, Universität Bern)

Zürich (Department of Neurology, University Hospital Zürich): Maria Hauer, Roman Gonzenbach, Hans H. Jung, Violeta Mihaylova, Jens Petersen

U.K.

Aberdeen (NHS Grampian Clinical Genetics Centre & University of Aberdeen): Roisin Jack, Kirsty Matheson, Zosia Miedzybrodzka, Daniela Rae, Sheila A Simpson, Fiona Summers, Alexandra Ure, Vivien Vaughan

Birmingham (The Barberry Centre, Dept of Psychiatry): Shahbana Akhtar, Jenny Crooks, Adrienne Curtis, Jenny de Souza (Keylock), John Piedad, Hugh Rickards, Jan Wright

Bristol (North Bristol NHs Trust, Southmead hospital): Elizabeth Coulthard, Louise Gethin, Beverley Hayward, Kasia Sieradzan, Abigail Wright

Cambridge (Cambridge Centre for Brain Repair, Forvie Site): Matthew Armstrong, Roger A. Barker, Deidre O'Keefe, Anna Di Pietro, Kate Fisher, Anna Goodman, Susan Hill, Ann Kershaw, Sarah Mason, Nicole Paterson, Lucy Raymond, Rachel Swain, Natalie Valle Guzman

Cardiff (Schools of Medicine and Biosciences, Cardiff University): Monica Busse, Cynthia Butcher, Jenny Callaghan, Stephen Dunnett, Catherine Clenaghan, Ruth Fullam, Olivia Handley, Sarah Hunt, Lesley Jones, Una Jones, Hanan Khalil, Sara Minster, Michael Owen, Kathleen Price, Anne Rosser, Jenny Townhill

Edinburgh (Molecular Medicine Centre, Western General Hospital, Department of Clinical Genetics): Maureen Edwards, Carrie Ho (Scottish Huntington's Association), Teresa Hughes (Scottish Huntington's Association), Marie McGill, Pauline Pearson, Mary Porteous, Paul Smith (Scottish Huntington's Association)

Fife (Scottish Huntington's Association Whyteman's Brae Hospital): Peter Brockie, Jillian Foster, Nicola Johns, Sue McKenzie, Jean Rothery, Gareth Thomas, Shona Yates

Gloucester (Department of Neurology Gloucestershire Royal Hospital): Liz Burrows, Carol Chu, Amy Fletcher, Deena Gallantrae, Stephanie Hamer, Alison Harding, Stefan Klöppel, Alison Kraus, Fiona Laver, Monica Lewis, Mandy Longthorpe, Ivana Markova, Ashok Raman, Nicola Robertson, Mark Silva, Aileen Thomson, Sue Wild, Pam Yardumian

Hull (Castle Hill Hospital): Carol Chu, Carole Evans, Deena Gallentrae, Stephanie Hamer, Alison Kraus, Ivana Markova, Ashok Raman

Leeds (Chapel Allerton Hospital, Department of Clinical Genetics): Leeds (Chapel Allerton Hospital, Clinical Genetics): Carol Chu, Stephanie Hamer, Emma Hobson, Stuart Jamieson, Alison Kraus, Ivana Markova, Ashok Raman, Hannah Musgrave, Liz Rowett, Jean Toscano, Sue Wild, Pam Yardumian

Leicester (Leicestershire Partnership Trust, Mill Lodge): Colin Bourne, Jackie Clapton, Carole Clayton, Heather Dipple, Dawn Freire-Patino, Janet Grant, Diana Gross, Caroline Hallam, Julia Middleton, Ann Murch, Catherine Thompson

Liverpool (Walton Centre for Neurology and Neurosurgery): Sundus Alusi, Rhys Davies, Kevin Foy, Emily Gerrans, Louise Pate

London (Guy's Hospital): Thomasin Andrews, Andrew Dougherty, Charlotte Golding, Fred Kavalier, Hana Laing, Alison Lashwood, Dene Robertson, Deborah Ruddy, Alastair Santhouse, Anna Whaite

London (The National Hospital for Neurology and Neurosurgery): Thomasin Andrews, Stefania Bruno, Karen Doherty, Charlotte Golding, Salman Haider, Davina Hensman, Nayana Lahiri, Monica Lewis, Marianne Novak, Aakta Patel, Nicola Robertson, Elisabeth Rosser, Sarah Tabrizi, Rachel Taylor, Thomas Warner, Edward Wild

Manchester (Genetic Medicine, University of Manchester, Manchester Academic Health Sciences Centre and Central Manchester University Hospitals NHS Foundation Trust): Natalie Arran, Judith Bek, Jenny Callaghan, David Craufurd, Ruth Fullam, Marianne Hare, Liz Howard, Susan Huson, Liz Johnson, Mary Jones, Helen Murphy, Emma Oughton, Lucy Partington-Jones, Dawn Rogers, Andrea Sollom, Julie Snowden, Cheryl Stopford, Jennifer Thompson, Iris Trender-Gerhard, Nichola Verstraelen (formerly Ritchie), Leann Westmoreland

Oxford (Oxford University Hospitals NHS Trust, Dept. of Neurosciences, University of Oxford): Richard Armstrong, Kathryn Dixon, Andrea H Nemeth, Gill Siuda, Ruth Valentine

Plymouth (Plymouth Huntington Disease Service, Mount Gould Hospital): David Harrison, Max Hughes, Andrew Parkinson, Beverley Soltysiak

Sheffield (The Royal Hallamshire Hospital– Sheffield Children's Hospital): Oliver Bandmann, Alyson Bradbury, Paul Gill, Helen Fairtlough, Kay Fillingham, Isabella Foustanos, Mbombe Kazoka, Kirsty O'Donovan, Nadia Peppa, Cat Taylor, Katherine Tidswell, Oliver Quarrell

EHDN's associate site in SINGAPORE: National Neuroscience Institute Singapore: Jean-Marc Burgunder, Puay Ngoh Lau, Emmanul Pica, Louis Tan

Supplementary Figure 1: Observed versus Expected Age of Onset Among Those Who Have Experienced Onset in the TRACK-HD analysis: amongst these 96 subjects who had experienced onset, the rater AAO showed the expected relation with predicted AAO based on CAG length. Earlier than predicted onset age was correlated with faster progression (using the unified HD progression measure) (r=-0.315; p = 0.002)

Rater AOO

Supplementary Figure 2: REGISTRY progression measure and atypical onset age are modestly correlated in REGISTRY. Note bias for very late expected onset for those with low CAG repeats. SD = Standard deviation.

Supplementary Figure 3: Regional plot of TRACK-HD GWAS signal in the MSH3-DHFR region before(top) and after (bottom) conditioning on the most significant SNP in TRACK-HD (rs557874766). The lack of significant association after conditioning on this SNP is consistent with here being only one association signal in the region.

Hensman Moss et al 2017

Supplementary Figure 4: Regional plot of TRACK-HD and REGISTRY meta-analysis GWAS signal in the MSH3-DHFR region before(top) and after (bottom) conditioning on the most significant SNP in the meta-analysis (rs1232027). The lack of significant association after conditioning on this SNP is consistent with here being only one association signal in the region.

Chromosome 5 79.5 mb 79.9 mb 80.1 mb 80.3 mb 79.7 mb 79.8 mb 79.6 mb 80 mb 80.2 mb 80.4 mb 00 8 GWAS -log10 (p) 6 4 3 onditional GWAS -log10 (p) ZFYVE16 MTRNR2L2 RASGRF2 LOC644936 FAM151B MSH3 Genes CRSP8P ANKRD34B DHFR -SPZ1 21

Supplementary Figure 5: Regional plot of TRACK-HD and REGISTRY meta-analysis GWAS signal in the MSH3-DHFR region before(top) and after (bottom) conditioning on the most significant SNP in TRACK-HD (rs557874766). The lack of significant association after conditioning on this SNP is consistent with here being only one association signal in the region.

Hensman Moss et al 2017

Supplementary Figure 6: Regional plot of REGISTRY GWAS signal in the MSH3-DHFR region before(top) and after (bottom) conditioning on the most significant SNP in TRACK-HD (rs557874766). The significance of association is largely unaffected by conditioning on this SNP. This indicates that rs557874766 does not explain the REGISTRY association signal in this region.

Supplementary Figure 7: Regional plot of TRACK-HD GWAS signal in the MSH3-DHFR region (top, red), along with GTeX eQTL associations with DHFR expression in (top-bottom) whole blood, skeletal muscle, cerebellum, cortex.

Supplementary Figure 8: Regional plot of REGISTRY GWAS signal in the MSH3-DHFR region (top, blue), along with GTeX eQTL associations with MSH3 expression in (top-bottom) whole blood, transformed fibroblasts.

Supplementary Figure 9: (A) Scree Plot and (B) Plot showing proportion of variance explained in the TRACK-HD progression principal component analysis: the dominance of the first PC is illustrated.

Supplementary Figure 11: Age-CAG severity function against clinical probability of onset (CPO) in REGISTRY. A: plot showing predicted values for all subjects. B: plot of predicted values using only subjects in the CAG 41–55 range. C: Plot based on extrapolating the severity model to subjects with CAG in the 36-40 range (the appearance of two rather distinct lines are due to the gender effect, with women having lower predicted scores than men).

Supplementary Figure 13: QQ plots of the (A) TRACK-HD and (B) REGISTRY genome wide association studies. And (C) meta-analysis. λ close to 1 shows there is no systematic inflation of test statistics.

Supplementary tables:

Supplementary Table 1: Demographic details of TRACK-HD cohort. Further detail can be found in Tabrizi <i>et al</i> 2009, 2011, 2012, 2013.											
	Number (female) Age at baseline (years) CAG repeat length										
Manifest	122 (65)	48.0	43.5								
Premanifest	96 (53)	40.6	43.0								

Supplementary Table 2: List of Variables to be used in TRACK-HD progression analyses. Further detail regarding these measures can be found in Tabrizi <i>et al</i> 2009, 2011, 2012, 2013.
Symbol digit modality test (number correct)
Stroop word reading (number correct)
Paced Tapping 3 Hz (inverse std dev)
Spot the Change 5K
Emotion Recognition
Direct Circle (Log annulus length)
Indirect Circle (Log annulus length)
Total brain volume
Ventricular volume
Grey matter volume
White matter volume
Caudate volume
Metronome tapping, nondominant hand
Metronome tapping, nondominant hand
Speeded tapping, nondominant hand
Speeded tapping, nondominant hand
Speeded tapping, nondominant hand
Tongue force—heavy
Tongue force—light
Grip force, dom. hand, heavy condition
Grip force, dom. hand, heavy condition
Grip force, nondom. hand, heavy condition
Grip force, dom. hand, light condition
Grip force, nondom. hand, light condition

Supplementary Table 3: Correlations among Domain-Specific Residual Principal Components in the TRACK-HD analysis, showing that the first principle components of each domain are significantly correlated.

The prefaces "brain", "cog", and "mot" indicate the domain. The suffix f1, f2, etc, numbers the principal components within each domain. Having approximated the residual longitudinal variability within each of the three domains via principal components, we then examined cross-domain relationships among these components. For example, after accounting for CAG-age-risk, testing whether residual longitudinal change in the brain measures correlated with the Q-motor measures.

	brainf1	brainf2	brainf3	cogf1	cogf2	cogf3	cogf4	motf1	motf2	motf3	motf4
brainf1	1	0	0	-0.355	0.077	0.146	-0.068	0.43	0.096	-0.065	-0.139
р	0	1	1	<.0001	0.26	0.03	0.32	<.0001	0.16	0.34	0.04
brainf2	0	1	0	-0.097	-0.055	0.12	-0.016	0.005	-0.149	-0.043	0.041
р	1	0	1	0.15	0.42	0.08	0.81	0.94	0.03	0.53	0.55
brainf3	0	0	1	0.016	0.064	0.12	-0.009	0.15	0.05	-0.108	-0.161

р	1	1	0	0.81	0.35	0.08	0.89	0.03	0.46	0.11	0.02
cogf1				1	0	0	0	-0.434	-0.154	0.035	0.112
р				0	1	1	1	<0001	0.02	0.6	0.09
cogf2				0	1	0	0	0.035	0.07	-0.12	-0.163
р				1	0	1	1	0.59	0.29	0.07	0.01
cogf3				0	0	1	0	0.105	-0.017	-0.092	-0.143
р				1	1	0	1	0.11	0.8	0.16	0.03
cogf4				0	0	0	1	-0.019	-0.05	-0.011	-0.054
р				1	1	1	0	0.77	0.44	0.87	0.42

Supplementary Table 4: PCA of Residual Longitudinal Change Among Variables form All 3 Domains in the TRACK-HD analysis showing that the variables that correlated with the domain specific analyses also correlated with the common principal component analysis.

Measure	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8
Symbol Digit	-0.505	-0.027	0.135	0.194	0.034	0.047	-0.394	-0.121
Stroop Word	-0.391	-0.017	0.361	0.468	0.078	-0.232	0.087	0.123
Paced Tapping 3 Hz (inverse std dev)	-0.054	-0.123	-0.031	-0.066	0.032	0.621	-0.420	0.233
Spot the Change 5K	0.224	-0.123	0.113	-0.223	-0.016	0.190	0.427	0.479
Emotion Recognition	-0.226	0.188	0.228	0.086	-0.090	-0.415	0.098	0.264
Direct Circle (Log annulus length)	-0.374	-0.101	0.419	0.199	0.488	0.258	0.060	-0.027
Indirect Circle (Log annulus length)	-0.406	-0.076	0.407	0.418	0.161	0.336	0.036	0.130
Total brain volume	0.749	-0.457	0.168	0.077	-0.046	-0.100	-0.115	-0.079
Ventricular volume	-0.545	0.509	-0.079	-0.125	0.094	0.131	0.274	0.043
Grey matter volume	0.631	-0.491	0.173	-0.050	-0.088	-0.137	0.038	-0.022
White matter volume	0.699	-0.409	0.252	-0.085	-0.019	-0.048	0.062	0.044
Caudate volume	0.584	-0.426	0.082	0.223	0.086	0.083	-0.055	0.046
Metronome tapping, nondominant hand	0.433	-0.033	-0.206	-0.338	0.104	0.392	0.037	-0.081
(log of tap initiation SD for all trials)	0.433	-0.033	-0.206	-0.338	0.104	0.392	0.037	-0.081
Metronome tapping, nondominant hand	-0.033	-0.212	0.013	0.144	0.116	0.133	0.347	-0.705
(inv tap initiation SD for self-paced trials)								
Speeded tapping, nondominant hand	0.380	-0.022	-0.483	0.315	0.554	-0.206	-0.058	0.123
(log of repetition time SD)								
Speeded tapping, nondominant hand	0.594	0.028	-0.335	0.182	0.437	-0.061	0.027	0.206
(log of tap duration SD)								
Speeded tapping, nondominant hand	0.316	0.373	-0.219	0.006	0.411	-0.036	-0.002	-0.120
(mean intertap time)								
Tongue force—heavy	0.147	0.016	-0.332	0.586	-0.445	0.177	-0.033	0.012
(log coefficient of variation)								
Tongue force—light	0.247	0.114	-0.399	0.451	-0.407	0.191	0.217	0.066
(log coefficient of variation)								
Grip force, dom. hand, heavy condition	0.615	0.488	0.252	0.009	-0.078	-0.014	-0.336	-0.077
(log of mean orientation)								
Grip force, dom. hand, heavy condition	0.568	0.518	0.207	0.033	-0.027	-0.051	-0.381	-0.042
(log of mean position)								
Grip force, nondom. hand, heavy condition	0.516	0.400	0.213	0.108	0.003	0.122	0.231	-0.145
(log of coefficient of variation)	0.601	0.211	0.250	0.024	0.016	0.140	0.100	0.114
Grip force, dom. hand, light condition	0.681	0.311	0.250	0.034	0.016	0.140	0.188	0.114
	0.647	0.430	0 293	0.071	-0.061	0.071	0.163	-0.055
Grip torce, nondom. hand, light condition	0.047	0.450	0.295	0.071	-0.001	0.071	0.105	-0.055
Pct Variance Explained	23.4	95	71	6	57	51	19	43
гог, алинос Баришой	23.7	7.5	/.1	0	3.7	3.1	7.7	7.5

Supplementary Table 5: Factor pattern of the first two principal component analysis of the REGISTRY severity score which was used as a progression score for the Registry data. Factor 1 = 1st PC; Factor 2 = 2nd PC.

	Factor Pattern		
Variable	Factor1	Factor2	
sqrtmotor	Square root of the UHDRS total motor score	-0.84233	0.30062
verfl	UHDRS verbal fluency	0.79108	0.24136
sdmt	UHDRS symbol digit score	0.89833	0.1522
scnt	UHDRS Stroop color naming	0.89596	0.25872
swrt	UHDRS Stroop word reading	0.88978	0.2109
sit1	UHDRS Stroop interference score	0.87684	0.21789
tfc	UHDRS total functional capacity	0.8746	-0.39367
fasscore	UHDRS functional assessment scale	0.88355	-0.38555

Sup	plementary	Table 6: Inde	ependent asso	ociatio	on sig	nals from	the TH	RACK-H	D Prog	gression	GWA	AS (at]	p-value < 10-5)
				Re	Al						Nu		
				en	na						m		
Ch				ce	te	Minor					be		
ro				All	All	Allele	INF		Stan		r	-	
mo			Index SNP	ele	ele	Frequen	0		dard Evro	D	of SN	Leng	Cono(s) toggod (+/
me	Start (BP)	End (BP)	(ubsivi b146)	(A 1)	(A 2)	(MAF)	e	Beta	r	value	Ps	(KB)	20 KB)
5	79895/38	80196258	rs557874766	G	C	0.238	1.00	-0 581	0.10	5.80E-	38	300. 82	DHFR, MSH3, MTRNR2L2
5	17075450	80170258	13557674700	U	C	0.238	0	-0.501	,	00	0	02	
							1.00		0.31	1.34E-		297.	ANKRD17.
4	74064920	74362359	rs16849472	Т	С	0.019	0	1.677	8	07	10	44	LOC728040
				_			0.92		0.46	1.47E-		59.2	
3	20860340	20919615	rs111902872	Т	С	0.012	0	2.419	0	07	2	76	none
1	239493679	239917976	rs115206404	А	G	0.009	0.80 5	2.598	0.50 3	2.46E- 07	2	424. 3	CHRM3, CHRM3- AS2
10	00000010	00050005			0	0.000	0.94		0.50	2.50E-		26.0	
13	89829918	89856005	rs546753686	A	G	0.009	9	2.610	6	07	2	88	none
							1.00		0.38	4.30E-		3.14	C2, CFB,
6	31892827	31895971	rs188144048	G	С	0.016	0	-1.923	0	07	2	5	LOC102060414
4	52915077	52015077	151202071	C	т	0.070	0.99	0.0(2	0.19	4.98E-	1	0.00	
4	52815077	52815077	191313029/1	C	1	0.060	8 0.84	0.963	0.58	07 7 38F-	1	62.8	none
10	132818509	132881313	rs150136271	Т	С	0.007	5	2.881	2	07	3	05	TCERG1L
							1.00		0.51	7.68E-		18.3	
8	128074135	128092501	rs76712904	Т	A	0.009	0	2.532	2	07 8.42E	13	67	PCAT2, PRNCR1
6	147033320	147049507	rs76605780	G	А	0.009	0	2.524	0.51	8.42E- 07	4	88	ADGB
10	24684087	24684087	rs55795540	А	С	0.065	0.99 5	0.919	0.18 7	8.85E- 07	1	0.00	KIAA1217
													EP300, EP300-AS1,
22	41220451	41552210	105116510	T	G	0.000	0.99	0.400	0.50	9.51E-	2	241.	MIR1281, RBX1,
22	41330451	415/2210	rs185116512	1	C	0.009	8	2.482	6	07	2	/6	XPNPEP3
													BRD2, HLA-DMA,
													HLA-DMB, HLA- DOA HLA-DOB
													HLA-DPA1, HLA-
													DPB1, HLA-DQA1,
													HLA-DQA2, HLA-
													DQB1, HLA-DQB2, HI A-DRB1 HI A-
													DRB6,
													LOC100294145,
							1.00		0.51	1.225		500	PSMB8, PSMB9,
6	32537468	33038283	rs1062481	Т	С	0.009	1.00	2.477	2	1.53E- 06	6	500. 82	TAP1, TAP2, TAPSAR1
	52557100	55050205	101002101		A	0.007	0.99	2.177	0.45	1.44E-		51.7	
11	125957124	126008830	rs200669142	Α	Т	0.012	9	2.177	2	06	3	07	none
2	67244370	67346420	rs56349456	А	G	0.032	0.99	1.334	0.27 7	1.50E- 06	13	102. 05	LOC644838, LOC102800447
				l			0.98		0.51	1.50E-		0.00	
4	141111891	141111891	rs57282598	G	Α	0.009	5	2.453	0	06	1	1	none

11	4521374	4879985	rs117945252	G	С	0.012	0.84	2.188	0.45	1.60E- 06	3	358. 61	C11orf40, OR51D1, OR51E1, OR51E2, OR51F1, OR51F2, OR51S1, OR5211, OR5212, OR52K1, OR52M1, OR52R1, TRIM68
11	6750653	6917038	rs3889139	А	G	0.007	0.97 2	2.795	0.58 4	1.67E- 06	4	166. 39	GVINP1, OR2AG1, OR2AG2, OR2D2, OR6A2, OR10A2, OR10A4, OR10A5
5	128287222	128679437	rs146180907	Т	С	0.009	0.99 9	2.405	0.50 5	1.93E- 06	6	392. 22	ISOC1, MIR4633, SLC27A6
14	78805174	78901796	rs117746737	G	А	0.044	0.86 0	1.152	0.24	2.10E- 06	9	96.6 23	NRXN3
2	58253090	58774645	rs146045300	G	А	0.009	0.99 9	1.940	0.41 2	2.46E- 06	5	521. 56	FANCL, LINC01122, VRK2
				A TT									
3	36891939	36956117	rs146080846	A T	А	0.014	0.95 3	1.965	0.41 8	2.54E- 06	2	64.1 79	TRANK1
19	6675794	6675794	rs183566601	G	С	0.012	0.90 8	2.139	0.45 5	2.56E- 06	1	0.00	C3, TNFSF14
1	74500787	74665215	rs75274216	G	С	0.016	1.00 0	1.551	0.33 1	2.77E- 06	2	164. 43	FPGT, FPGT- TNNI3K, LRRIQ3
8	58860626	58860626	rs577181066	Т	С	0.009	1.00 0	-2.314	0.49 5	3.00E- 06	1	0.00	none
7	153670448	153672048	rs39153	Т	А	0.035	1.00 0	1.264	0.27 2	3.23E- 06	6	1.60 1	DPP6
9	107972517	107982792	rs33922537	T A	Т	0.088	0.99 1	0.813	0.17 5	3.25E- 06	44	10.2 76	none
2	182396359	182396359	rs185077546	А	G	0.009	1.00 0	2.344	0.50 4	3.28E- 06	1	0.00	CERKL, ITGA4
2	131955255	132160922	rs377754762	С	G	0.009	0.97	2.342	0.50	3.44E- 06	3	205. 67	LINC01120, LOC440910, POTEE, WTH3DI
7	37980409	37980409	rs7798464	C	Т	0.478	0.99	-0.515	0.11	3.48E- 06	1	0.00	EPDR1
6	136578804	136578804	rs182174986	C	Т	0.007	1.00	2 694	0.58	3.70E- 06	1	0.00	BCLAF1 MTFR2
1	10849645	108/96/5	rs10864471	G		0.076	0.99	0.798	0.17	3.85E-	1	0.00	CASZ1
16	84533672	85735002	1510004477	T	C	0.007	0.99	2.692	0.58	3.90E- 06	3	1201	C16orf74, COTL1, CRISPLD2, FAM92B, GINS2, GSE1, KIAA0513, KLHL36, LINC00311, LOC400548, MIR5093, MIR7851, TLDC1, USP10, ZDHHC7
9	140124101	140326510	rs576074352	Т	C	0.009	1.00	2.320	0.50	4.26E- 06	3	202. 41	C9orf169, C9orf173, ENTPD8, EXD3, FAM166A, LOC100129722, MIR7114, NDOR1, NELFB, NOXA1, NRARP, NSMF, RNF208, RNF224, SLC34A3, TOR4A, TUBB4B
3	147917	147917	rs190854428	Т	С	0.014	0.99	1.920	0.41	4.29E- 06	1	0.00	none
7	20723109	20725291	rs78036476	G	Т	0.024	1.00 0	1.515	0.33	4.44E- 06	2	2.18	ABCB5
10	6409502	6409502	rs7915166	C	Т	0.308	1.00 0	0.496	0.10	4.80E- 06	1	0.00	none
4	178648851	178648851	rs191350537	А	G	0.014	0.99 9	1.882	0.41	5.15E- 06	1	0.00	LINC01098
2	121177685	121177685	rs542948395	Т	С	0.009	1.00 0	2.291	0.50 4	5.37E- 06	1	0.00	none
19	40114782	40248603	rs544526021	Т	G	0.009	1.00 0	2.301	0.50	5.42E- 06	3	133. 82	CLC, LEUTX, LGALS13, LGALS14, LGALS16, LGALS17A, LOC100129935
8	15256069	15266930	rs11203702	Α	Т	0.118	0.99	0.680	0.15	5.56E-	3	10.8	none

Hensman	Moss	et al	2017
---------	------	-------	------

							6		0	06		62	
							1.00		0.35	5.74E-		60.2	
7	126436990	126497288	rs139456699	Α	G	0.019	0	-1.608	4	06	3	99	GRM8
							1.00		0.50	5.80E-		0.00	
4	144227742	144227742	rs185067403	Α	G	0.009	0	2.294	6	06	1	1	none
				G			0.99		0.11	6.11E-		152.	
13	20224902	20377448	rs35231784	С	G	0.260	5	-0.495	0	06	36	55	MPHOSPH8, PSPC1
							1.00		0.35	6.26E-		0.00	
3	71536485	71536485	rs139096029	Α	G	0.019	0	1.603	5	06	1	1	FOXP1
							0.97		0.18	6.28E-		48.6	
2	6216990	6265656	rs13017659	Α	С	0.068	5	0.818	1	06	4	67	none
							1.00		0.50	6.30E-		0.00	
8	141293251	141293251	rs186776689	Т	С	0.009	0	2.277	4	06	1	1	TRAPPC9
							1.00		0.50	6.42E-		73.8	
6	117738434	117812254	rs143087465	Т	С	0.009	0	2.289	7	06	3	21	DCBLD1, ROS1
							0.95		0.39	6.45E-		0.00	
1	71806741	71806741	rs615589	С	Т	0.017	3	1.772	3	06	1	1	none
							1.00		0.14	6.94E-		51.2	
1	34835613	34886817	rs10753307	С	G	0.146	0	0.646	4	06	35	05	none
							1.00		0.11	7.28E-		14.0	
13	73610584	73624638	rs13378884	G	A	0.280	0	0.500	1	06	2	55	KLF5, PIBF1
							0.99		0.15	7.32E-		42.6	
3	21479214	21521820	rs73045437	Α	G	0.131	6	0.683	2	06	2	07	ZNF385D
							0.99		0.23	7.39E-		113.	
6	24188337	24301530	rs138968896	A	С	0.047	8	1.058	6	06	21	19	DCDC2
							0.99		0.50	8.55E-		0.00	
18	64640322	64640322	rs11663556	Т	С	0.009	7	2.246	5	06	1	1	none
							0.88		0.45	9.82E-			IGSF6. METTL9.
16	21651427	21706726	rs139057628	С	Т	0.012	1	1.999	2	06	2	55.3	OTOA
					G		0.98		0.13	9.91E-		0.00	
11	122679684	122679684	rs5795348	G	Α	0.201	7	0.587	3	06	1	1	UBASH3B
							1.00		0.38	9.92E-		0.00	
10	51520713	51520713	rs74922941	С	Т	0.016	0	1.701	5	06	1	1	TIMM23B

Supplemen REGISTR	Supplementary Table 7: Independent association signals from the meta-analysis of TRACK-HD and REGISTRY Progression GWAS (at p-value < 10-5)											
Index SNP	P-value	Clump coordinates	Clump size (KB)	Gene(s) tagged								
rs1232027	1.12E-10	chr5:7989543880198404	302.967	DHFR, MSH3, MTRNR2L2								
rs73786719	8.53E-07	chr6:147034576147037984	3.409	ADGB								
rs114688092	1.51E-06	chr3:4702610147315538	289.438	CCDC12, KIF9, KIF9-AS1, KLHL18, NBEAL2, NRADDP, SETD2								
rs79029191	1.67E-06	chr18:80538638080538	26.676	PTPRM								
rs932428	1.79E-06	chr20:3751836137876772	358.412	DHX35, FAM83D, LOC339568, PPP1R16B								
rs3889139	2.13E-06	chr11:68854296917038	31.61	OR2D2, OR10A2, OR10A4, OR10A5								
rs114643193	2.65E-06	chr4:28446822939191	94.51	ADD1, MFSD10, NOP14, NOP14-AS1, SH3BP2								
rs6882169	2.72E-06	chr5:167668230167668230	0.001	CTB-178M22.2, TENM2								
rs80260687	2.92E-06	chr8:9723236497304966	72.603	MTERFD1, PTDSS1, UQCRB								
rs28406206	3.13E-06	chr14:105680474105688082	7.609	BRF1								
rs4736525	3.37E-06	chr8:132924474133030989	106.516	EFR3A, OC90								
rs78621558	4.44E-06	chr5:8001273580012735	0.001	MSH3								
rs72715653	4.80E-06	chr4:178641337178730329	88.993	LINC01098, LINC01099								
rs4720024	4.94E-06	chr7:3094125530942312	1.058	AQP1, FAM188B, INMT-FAM188B								
rs117933444	5.75E-06	chr6:167362873167410443	47.571	FGFR1OP, MIR3939, RNASET2								
rs116220136	5.82E-06	chr5:2335325523436446	83.192	none								
rs8031584	8.15E-06	chr15:3118561631292023	106.408	FAN1, MTMR10, TRPM1								
rs3013648	9.10E-06	chr13:8529664485374146	77.503	none								
rs11197481	9.12E-06	chr10:117708803117708803	0.001	ATRNL1								
rs117440785	9.15E-06	chr10:1741145117531334	119.884	ST8SIA6, ST8SIA6-AS1								
rs111258354	9.87E-06	chr2:6082322460883232	60.009	none								

Supplementary Table 8: Co-localisation between TRACK-HD GWAS signal on chromosome 5 and GTeX eQTLs for MSH3, DHFR									
Dataset	Dataset source	Most significant eQTL p-value	N Overlapping SNPs	COLOC probability (of shared variants)					
MSH3 (Blood)	GTEx	1.70E-28	647	1.76%					
MSH3 (Fibroblasts)	GTEx	3.10E-39	646	1.76%					

MSH3 (Cerebellum)	GTEx	1.10E-06	592	8.83%
MSH3 (Caudate)	GTEx	1.65E-05	588	25.20%
MSH3 (Cortex)	GTEx	5.53E-05	582	53.10%
DHFR (Blood)	GTEx	5.20E-45	647	98.10%
DHFR (Skeletal muscle)	GTEx	1.30E-68	655	99.20%
DHFR (Cerebellum)	GTEx	7.60E-13	592	28.30%
DHFR (Caudate)	GTEx	2.60E-12	588	99.00%
DHFR (Cortex)	GTEx	4.90E-15	582	96.10%

Supplementary Table 9: Co-localisation between REGISTRY GWAS signal on chromosome 5 and GTeX eQTLs for MSH3, DHFR

······································											
Dataset	Dataset source	Most significant eQTL p-value	N Common SNPs	COLOC probability (of shared variants)							
MSH3 (Blood)	GTEx	1.70E-28	3289	97.80%							
MSH3 (Fibroblasts)	GTEx	3.10E-39	3224	97.80%							
MSH3 (Cerebellum)	GTEx	1.10E-06	2888	12.50%							
MSH3 (Caudate)	GTEx	1.65E-05	2866	10.40%							
MSH3 (Cortex)	GTEx	5.53E-05	2853	23.10%							
DHFR (Blood)	GTEx	5.20E-45	3289	36.40%							
DHFR (Skeletal muscle)	GTEx	1.30E-68	3336	34.10%							
DHFR (Cerebellum)	GTEx	7.60E-13	2888	0.88%							
DHFR (Caudate)	GTEx	2.60E-12	2866	43.30%							
DHFR (Cortex)	GTEx	4.90E-15	2853	23.10%							

Supplementary Table 10: Co-localisation between TRACK-HD GWAS signal on chromosome 5 and GTeX eQTLs for MSH3, DHFR										
Dataset	Dataset source	Most significant eQTL p-value	N Overlapping SNPs	COLOC probability (of shared variants)						
MSH3 (Blood)	GTEx	1.70E-28	647	1.76%						
MSH3 (Fibroblasts)	GTEx	3.10E-39	646	1.76%						
MSH3 (Cerebellum)	GTEx	1.10E-06	592	8.83%						
MSH3 (Caudate)	GTEx	1.65E-05	588	25.20%						
MSH3 (Cortex)	GTEx	5.53E-05	582	53.10%						
DHFR (Blood)	GTEx	5.20E-45	647	98.10%						
DHFR (Skeletal muscle)	GTEx	1.30E-68	655	99.20%						
DHFR (Cerebellum)	GTEx	7.60E-13	592	28.30%						
DHFR (Caudate)	GTEx	2.60E-12	588	99.00%						
DHFR (Cortex)	GTEx	4.90E-15	582	96.10%						

Г

Sup	Supplementary Table 11: Independent association signals from the REGISTRY Progression GWAS (at p-value < 10-5)												
Chr omo som	Start (BP)	End (BP)	Index SNP (dbSNP b146)	Ref ere nce Alle le (A1	Altern ate Allele (A2)	Minor Allele Frequ ency (MAF)	INFO score	Beta	Stand ard Error	P-value	Nu mb er of SN Ps	Length (KB)	Gene(s) tagged (+/- 20 KB)
	~~~~~		(1000112 00210)		()	0.17	0.99		0.03			()	om () mgo ( ( 10112)
10	117708803	117708803	rs11197481	А	G	6	7	0.193	7	2.14E-07	1	0.001	ATRNL1
15	30996093	31314317	rs10611148	А	AAG TT	0.27 4	0.99 9	0.160	0.03	2.84E-07	72	318.22 5	FAN1, HERC2P10, LOC100288637, MTMR10, TRPM1
						0.26	0.52		0.03				
6	67807895	67905502	rs75695330	С	Т	8	2	0.176	4	2.88E-07	12	97.608	none

					F	lensmar	n Moss e	et al 2017					
						0.19	0.99		0.03				
12	117967637	117989548	rs10774933	С	Т	7	2	0.171	5	1.08E-06	10	21.912	KSR2
3	86317304	86321260	rs78656706	۸	G	0.02	0.61	0.440	0.09	1.15E.06	2	3 867	nona
5	80317394	80321200	13/8030/00	А	AAT	5	0	-0.440	1	1.1512-00	2	5.807	none
			rs76171298		AAA	0.08	0.85		0.04				
1	151576174	151614297	0	Α	Т	9	8	-0.231	9	2.21E-06	3	38.124	SNX27
						0.01	0.50		0.11			159.36	ARL13B, PROS1,
3	93566149	93725515	rs62266135	Т	G	5	0	0.542	6	2.77E-06	2	7	STX19
5	23353255	23436446	rs72754785	G	А	0.04 5	0.90 8	0.316	0.06 7	2.87E-06	4	83.192	none
5	36704641	36954077	rs62356368	Т	G	0.01	0.98 5	0.531	0.11	2.92E-06	4	249.43 7	LOC646719, NIPBL, SLC1A3
			rs759901/11		тст	0.15	0.85		0.03				
20	13209795	13245958	6	Т	CTT	6	7	0.183	9	3.33E-06	3	36.164	ISM1, ISM1-AS1
10	6403262	6407737	rs2387399	Т	С	0.35	0.99 7	0.136	0.02 9	3.42E-06	2	4.476	none
14	33262946	33284981	rs991550	G	А	0.07	0.99	-0 248	0.05	3 60E-06	3	22.036	AK AP6
	55262516	00201701	rs14055051	Ŭ		0.01	0.84	0.2.10	0.11	5.001 00	5	22.000	
10	85432343	85432343	0	G	С	4	9	0.549	9	4.00E-06	1	0.001	none
	000000	000070(0	rs14527168	m		0.02	0.90	0.450	0.09	1.655.06		14.504	
15	92882676	92897269	3	T	С	1	8	-0.450	8	4.65E-06	4	14.594	none
4	3860844	3863228	rs28501173	т	G	0.27	0.99	0 145	2	4 66E-06	15	2 385	none
	5000011	5005220	rs14485439	-		0.33	0.89	0.110	0.03		10	2.5 00	
12	117075057	117079318	6	Т	TC	1	0	0.135	0	6.01E-06	8	4.262	none
16	(0.45.427	(0.45.427	rs18873831		6	0.11	0.65	0.005	0.04	( 225 0(		0.001	DDDOWI
16	6945437	6945437	6	A	G	8	2	0.205	5	6.22E-06	1	0.001	KBFUXI
5	81062170	81062170	rs4703843	G	Т	5	5	0.172	8	6.27E-06	1	0.001	SSBP2
11	62532798	62614506	rs41542313	Т	С	0.03	0.99 9	0.367	0.08	6.31E-06	3	81.709	MIR6514, MIR6748, NXF1, POLR2G, SLC3A2, SNHG1, SNORD22, SNORD25, SNORD26, SNORD27, SNORD28, SNORD29, SNORD30, SNORD31, STX5, TAF6L, TMEM179B, TMEM223, WDR74, ZBTB3
21	45715620	45734831	rs3746965	A	G	0.23	1.00 0	0.150	0.03	6.75E-06	4	19.212	AIRE, C21orf2, PFKL

3	49451639	52028491	rs28587738	A	С	0.01 4 0.02	0.56 3 0.62	0.555	0.12 4 0.09	7.54E-06	5	2576.8 5 150.07	ABHD14A, ABHD14A, ABHD14A-ACY1, ABHD14B, ACY1, AMIGO3, AMT, APEH, BSN, BSN- AS2, C3orf18, CACNA2D2, CAMKV, CDHR4, CISH, CYB561D2, DAG1, DOCK3, FAM212A, GMPPB, GNA12, GNAT1, GPR62, GRM2, HEMK1, HYAL3, IFRD2, IP6K1, IQCF1, IQCF2, IQCF3, IQCF4, IQCF5, IQCF3, IQCF4, IQCF5, IQCF3-AS1, IQCF6, LSMEM2, MANF, MAPKAPK3, MIR4787, MIR5193, MIR5787, MIR5193, MIR5194, MIR5194, MIR5194, MIR5194, MIR5194, MIR5194, MIR519
15	31126401	31276476	rs7180337	G	Т	0 24	1	-0.442	9	7.77E-06	22	6	MTMR10, TRPM1
15	31345498	31367837	rs28632121	С	Т	7	8	-0.144	2	7.96E-06	8	22.34	MIR211, TRPM1
5	158949420	158950938	5	G	Т	0.02	0.79 9	0.450	1	8.58E-06	2	1.519	none
19	17164401	17164401	rs73022346	Т	G	0.01	0.64 9	-0.550	0.12	8.93E-06	1	0.001	HAUS8
7	70111666	70238809	rs80237739	С	Т	0.02 5	0.85 0	-0.405	0.09 2	9.80E-06	4	127.14 4	AUTS2

Supplementary Table 12: Gene-wide p-values in TRACK-HD, REGISTRY, the TRACK-REGISTRY meta-analysis and GeM for all genes in the top 14 pathways from GeM											
Pathway	Entr ez	Gene Symbol	Ch r	Start	End	p(TRAC K)	p(REGI STRY)	p(META )	p(GeM)	Description	
GO:32300	4437	MSH3	5	79950467	80172634	2.94E-08	9.52E-04	8.88E-11	2.03E-02	mismatch repair complex	
GO:30983	4437	MSH3	5	79950467	80172634	2.94E-08	9.52E-04	8.88E-11	2.03E-02	mismatched DNA binding	
GO:6298	4437	MSH3	5	79950467	80172634	2.94E-08	9.52E-04	8.88E-11	2.03E-02	mismatch repair	
KEGG 3430	4437	MSH3	5	79950467	80172634	2.94E-08	9.52E-04	8.88E-11	2.03E-02	KEGG_MISMATCH_REPAIR	
KEGG 3430	5425	POLD2	7	44154279	44163169	7.21E-04	3.12E-01	2.75E-03	5.20E-01	KEGG_MISMATCH_REPAIR	
KEGG 3430	3978	LIG1	19	48618703	48673560	1.65E-02	8.28E-02	5.35E-04	6.51E-02	KEGG_MISMATCH_REPAIR	
KEGG 3430	2703 0	MLH3	14	75480467	75518235	1.69E-02	6.69E-01	1.47E-01	6.59E-03	KEGG_MISMATCH_REPAIR	
GO:6298	2703 0	MLH3	14	75480467	75518235	1.69E-02	6.69E-01	1.47E-01	6.59E-03	mismatch repair	
GO:32407	2703 0	MLH3	14	75480467	75518235	1.69E-02	6.69E-01	1.47E-01	6.59E-03	MutSalpha complex binding	
GO:32300	2703 0	MLH3	14	75480467	75518235	1.69E-02	6.69E-01	1.47E-01	6.59E-03	mismatch repair complex	
GO:30983	2703 0	MLH3	14	75480467	75518235	1.69E-02	6.69E-01	1.47E-01	6.59E-03	mismatched DNA binding	
GO:10822	5534	PPP3R1	2	68405989	68479651	1.82E-02	4.76E-01	6.12E-01	8.40E-01	positive regulation of mitochondrion organization	

GO: 33683	2068	ERCC2	19	45854649	45873845	2 03E-02	8 83F-01	3 45E-01	7 45F-01	nucleotide-excision repair, DNA
	8433	LILCOL				2.002.02	0.0012-01			positive regulation of release of
GO: 90200	4 8433	APOPTI	14	104029299	104057236	2.51E-02	8.19E-01	4.40E-01	8.18E-01	cytochrome c from mitochondria
GO: 10822	4	APOPT1	14	104029299	104057236	2.51E-02	8.19E-01	4.40E-01	8.18E-01	mitochondrion organization
GO: 32389	5395	PMS2	7	6012870	6048737	2.58E-02	3.66E-01	8.84E-03	1.91E-05	MutLalpha complex
GO: 32300	5395	PMS2	7	6012870	6048737	2.58E-02	3.66E-01	8.84E-03	1.91E-05	mismatch repair complex
GO: 30983 KEGG	5395	PMS2	7	6012870	6048737	2.58E-02	3.66E-01	8.84E-03	1.91E-05	mismatched DNA binding
3430	5395	PMS2	7	6012870	6048737	2.58E-02	3.66E-01	8.84E-03	1.91E-05	KEGG_MISMATCH_REPAIR
GO: 6298	5395	PMS2	7	6012870	6048737	2.58E-02	3.66E-01	8.84E-03	1.91E-05	mismatch repair
GO: 32407	5395	PMS2	7	6012870	6048737	2.58E-02	3.66E-01	8.84E-03	1.91E-05	MutSalpha complex binding
GO: 30983	4439	MSH5	6	31707725	31730455	4.35E-02	8.54E-01	7.73E-01	5.14E-01	mismatched DNA binding
GO: 6298 KEGG	4439	MSH5	6	31707725	31730455	4.35E-02	8.54E-01	7.73E-01	5.14E-01	mismatch repair
3430	5982	RFC2	7	73645832	73668738	4.80E-02	5.91E-01	2.02E-02	4.46E-01	KEGG_MISMATCH_REPAIR
GO: 30983	7508	XPC	3	14186647	14220172	5.52E-02	1.04E-01	2.77E-02	5.53E-01	mismatched DNA binding
3430	6119	RPA3	7	7676575	7758238	6.55E-02	7.22E-01	9.17E-02	4.40E-01	KEGG_MISMATCH_REPAIR
GO: 32300	4292	MLH1	3	37034841	37092337	6.98E-02	3.97E-04	1.28E-04	4.13E-04	mismatch repair complex
GO: 6298	4292	MLH1	3	37034841	37092337	6.98E-02	3.97E-04	1.28E-04	4.13E-04	mismatch repair
KEGG 3430	4292	MLH1	3	37034841	37092337	6.98E-02	3.97E-04	1.28E-04	4.13E-04	KEGG_MISMATCH_REPAIR
GO: 30983	4292	MLH1	3	37034841	37092337	6.98E-02	3.97E-04	1.28E-04	4.13E-04	mismatched DNA binding
GO: 32407	4292	MLH1	3	37034841	37092337	6.98E-02	3.97E-04	1.28E-04	4.13E-04	MutSalpha complex binding
GO: 32389	4292	MLH1	3	37034841	37092337	6.98E-02	3.97E-04	1.28E-04	4.13E-04	MutLalpha complex
GO: 33683	2067	ERCC1	19	45910591	45927177	7.32E-02	3.96E-01	2.69E-01	3.30E-01	nucleotide-excision repair, DNA incision
GO: 32407	545	ATR	3	142168077	142297668	7.62E-02	7.94E-01	2.71E-01	2.97E-01	MutSalpha complex binding
GO: 90140	7959 4	MUL1	1	20825941	20834674	8.94E-02	5.22E-01	5.27E-01	4.68E-01	regulation of mitochondrial fission
GO: 90141	7959 4	MUL1	1	20825941	20834674	8.94E-02	5.22E-01	5.27E-01	4.68E-01	positive regulation of mitochondrial fission
GO: 10822	7959 4	MUL1	1	20825941	20834674	8.94E-02	5.22E-01	5.27E-01	4.68E-01	positive regulation of mitochondrion organization
GO: 90200	2635 5	FAM162 A	3	122103023	122128961	1.32E-01	7.57E-01	6.93E-01	8.40E-01	positive regulation of release of cytochrome c from mitochondria
GO: 10822	2635 5	FAM162 A	3	122103023	122128961	1.32E-01	7.57E-01	6.93E-01	8.40E-01	positive regulation of mitochondrion organization
GO:190006	5694	MEE	2	228102228	228222540	1.525.01	0.(25.01	5 02E 01	2 205 01	regulation of peroxisome
3	5694	WIFF	2	228192228	228222349	1.32E-01	9.03E-01	3.92E-01	3.29E-01	positive regulation of
GO: 10822	7	MFF	2	228192228	228222549	1.52E-01	9.63E-01	5.92E-01	3.29E-01	mitochondrion organization
GO: 90200	5694 7	MFF	2	228192228	228222549	1.52E-01	9.63E-01	5.92E-01	3.29E-01	positive regulation of release of cytochrome c from mitochondria
GO: 32389	7486	WRN	8	30890778	31031277	1.66E-01	5.59E-01	6.60E-01	3.60E-01	MutLalpha complex
GO: 32300	7486	WRN	8	30890778	31031277	1.66E-01	5.59E-01	6.60E-01	3.60E-01	mismatch repair complex
GO: 10822	637	BID	22	18216906	18257431	1.77E-01	2.99E-02	7.33E-02	2.11E-01	positive regulation of mitochondrion organization
GO: 90200	637	BID	22	18216906	18257431	1.77E-01	2.99E-02	7.33E-02	2.11E-01	positive regulation of release of cytochrome c from mitochondria
GO: 90141	5470 8	MARCH _5	10	94050920	94113721	1.81E-01	8.26E-03	4.51E-01	5.33E-02	positive regulation of mitochondrial fission
GO: 10822	5470 8	MARCH _5	10	94050920	94113721	1.81E-01	8.26E-03	4.51E-01	5.33E-02	positive regulation of mitochondrion organization
GO: 90140	5470 8	MARCH 5	10	94050920	94113721	1.81E-01	8.26E-03	4.51E-01	5.33E-02	regulation of mitochondrial fission
KEGG 3430	2993 5	RPA4	23	96138907	96140466	1.81E-01	N/A	N/A	N/A	KEGG MISMATCH REPAIR
GO: 10822	572	BAD	11	64037300	64052176	1.87E-01	2.48E-01	4.16E-01	1.79E-01	positive regulation of mitochondrion organization
			-							positive regulation of release of
GO: 90200	572	BAD	11	64037300	64052176	1.87E-01	2.48E-01	4.16E-01	1.79E-01	cytochrome c from mitochondria
GO: 33683	2071	ERCC3	2	128014866	128051752	1.97E-01	4.27E-01	8.61E-01	7.39E-03	incision

GO: 10822	708	C1QBP	17	5336099	5342471	2.05E-01	8.72E-01	2.59E-01	5.99E-01	positive regulation of mitochondrion organization
GO:190006 3	5750 6	MAVS	20	3827446	3856770	2.13E-01	7.14E-02	2.31E-01	8.82E-01	regulation of peroxisome organization
GO: 10822	5366	PMAIP1	18	57567192	57571538	2.38E-01	1.05E-01	2.58E-02	1.10E-01	positive regulation of mitochondrion organization
GO: 90200	5366	PMAIP1	18	57567192	57571538	2.38E-01	1.05E-01	2.58E-02	1.10E-01	positive regulation of release of cvtochrome c from mitochondria
GO: 90200	2910 8	PYCAR D	16	31212807	31214097	2.44E-01	4.42E-01	1.57E-01	N/A	positive regulation of release of cytochrome c from mitochondria
GO: 10822	2910 8	PYCAR D	16	31212807	31214097	2 44E-01	4 42E-01	1 57E-01	N/A	positive regulation of mitochondrion organization
GO: 30983	2956	MSH6	2	48010221	48034092	2.46E-01	3.15E-01	1.58E-01	9.36E-02	mismatched DNA binding
GO: 32300	2956	MSH6	2	48010221	48034092	2.46E-01	3.15E-01	1.58E-01	9.36E-02	mismatch repair complex
KEGG 3430	2956	MSH6	2	48010221	48034092	2.46E-01	3.15E-01	1.58E-01	9.36E-02	KEGG_MISMATCH_REPAIR
GO: 6298	2956	MSH6	2	48010221	48034092	2.46E-01	3.15E-01	1.58E-01	9.36E-02	mismatch repair
GO: 10822	5110 0	SH3GLB 1	1	87170253	87213867	2.55E-01	7.63E-01	2.92E-01	5.27E-01	positive regulation of mitochondrion organization
GO: 90141	664	BNIP3	10	133781204	133795435	2.63E-01	1.17E-01	7.70E-01	7.19E-01	positive regulation of mitochondrial fission
GO: 90140	664	BNIP3	10	133781204	133795435	2.63E-01	1.17E-01	7.70E-01	7.19E-01	regulation of mitochondrial fission
GO: 10822	664	BNIP3	10	133781204	133795435	2.63E-01	1.17E-01	7.70E-01	7.19E-01	positive regulation of mitochondrion organization
GO: 90200	664	BNIP3	10	133781204	133795435	2.63E-01	1.17E-01	7.70E-01	7.19E-01	positive regulation of release of cvtochrome c from mitochondria
GO: 32407	4595	MUTYH	1	45794914	45806142	2.75E-01	4.31E-01	1.97E-01	1.97E-01	MutSalpha complex binding
GO: 6298	4595	MUTYH	1	45794914	45806142	2.75E-01	4.31E-01	1.97E-01	1.97E-01	mismatch repair
GO: 10822	2810	SFN	1	27189633	27190947	2.78E-01	4.30E-01	2.23E-01	7.65E-01	positive regulation of mitochondrion organization
KEGG 3430	5424	POLD1	19	50887580	50921275	2.84E-01	6.48E-01	6.86E-01	2.11E-01	KEGG_MISMATCH_REPAIR
KEGG 3430	6118	RPA2	1	28218049	28241236	2.94E-01	2.04E-02	1.18E-01	7.45E-01	KEGG MISMATCH REPAIR
GO: 6298	2072	ERCC4	16	14014014	14046205	3.00E-01	5.58E-01	2.66E-01	6.21E-01	mismatch repair
GO: 33683	2072	ERCC4	16	14014014	14046205	3.00E-01	5.58E-01	2.66E-01	6.21E-01	nucleotide-excision repair, DNA incision
KEGG 3430	5983	RFC3	13	34392206	34540695	3.15E-01	7.80E-01	7.18E-01	6.12E-01	KEGG_MISMATCH_REPAIR
GO: 90200	7157	TP53	17	7571720	7590868	3.21E-01	5.79E-01	2.20E-01	2.47E-01	positive regulation of release of cytochrome c from mitochondria
GO: 10822	7157	TP53	17	7571720	7590868	3.21E-01	5.79E-01	2.20E-01	2.47E-01	positive regulation of mitochondrion organization
GO: 10822	207	AKT1	14	105235686	105262080	3.62E-01	4.10E-01	5.64E-01	3.96E-01	positive regulation of mitochondrion organization
KEGG 3430	5981	RFC1	4	39289069	39368001	3.64E-01	6.29E-01	7.60E-01	6.19E-01	KEGG_MISMATCH_REPAIR
GO: 90200	581	BAX	19	49458117	49465055	3.65E-01	1 25E-01	2 47E-01	8 13E-01	positive regulation of release of cytochrome c from mitochondria
CO: 10822	591	DAV	10	40459117	40465055	2.65E.01	1.25E 01	2.47E 01	0.13E 01	positive regulation of
GO: 00200	9042	DAA	19	49438117	49403033	2.71E.01	5.25E-01	2.4/E-01	6.13E-01	positive regulation of release of
GO: 90200	9042	BMF	15	40380091	40401075	3./1E-01	5.25E-02	3.21E-02	5.08E-01	positive regulation of
GO: 10822	7	BMF	15	40380091	40401075	3.71E-01	5.25E-02	3.21E-02	5.08E-01	mitochondrion organization
GO: 10822	1	1A IA	4	23793644	23891700	3.79E-01	1.49E-01	1.47E-01	3.43E-01	mitochondrion organization
GO: 10822	6501 8	PINK1	1	20959948	20978004	3.83E-01	8.71E-01	5.33E-01	4.83E-01	mitochondrion organization
GO: 90200	6501 8	PINK1	1	20959948	20978004	3.83E-01	8.71E-01	5.33E-01	4.83E-01	positive regulation of release of cytochrome c from mitochondria
GO: 90200	1096 2	MLLT11	1	151032151	151040973	3.90E-01	7.62E-01	9.23E-01	4.75E-01	positive regulation of release of cytochrome c from mitochondria
GO: 10822	1096	MLLT11	1	151032151	151040973	3.90E-01	7.62E-01	9.23E-01	4.75E-01	positive regulation of mitochondrion organization
GO: 32300	4436	MSH2	2	47630206	47710367	3.98E-01	3.10E-01	7.03E-01	5.49E-01	mismatch repair complex
GO: 30983	4436	MSH2	2	47630206	47710367	3.98E-01	3.10E-01	7.03E-01	5.49E-01	mismatched DNA binding
	1.100									

KEGG										
3430	4436	MSH2	2	47630206	47710367	3.98E-01	3.10E-01	7.03E-01	5.49E-01	KEGG_MISMATCH_REPAIR
GO: 10822	841	CASP8	2	202098166	202152434	4.15E-01	8.81E-01	4.49E-01	3.35E-01	mitochondrion organization
GO: 10822	7533	YWHAH	22	32340479	32353590	4.25E-01	7.16E-01	2.86E-01	6.25E-01	positive regulation of mitochondrion organization
GO: 10822	8655	DYNLL1	12	120907660	120936298	4.50E-01	3.11E-01	4.07E-01	4.21E-01	positive regulation of mitochondrion organization
GO: 32407	5378	PMS1	2	190648811	190742355	4.57E-01	8.23E-01	3.36E-01	7.24E-02	MutSalpha complex binding
GO: 32389	5378	PMS1	2	190648811	190742355	4.57E-01	8.23E-01	3.36E-01	7.24E-02	MutLalpha complex
GO: 32300	5378	PMS1	2	190648811	190742355	4.57E-01	8.23E-01	3.36E-01	7.24E-02	mismatch repair complex
GO: 30983	5378	PMS1	2	190648811	190742355	4.57E-01	8.23E-01	3.36E-01	7.24E-02	mismatched DNA binding
GO: 6298	5378	PMS1	2	190648811	190742355	4.57E-01	8.23E-01	3.36E-01	7.24E-02	mismatch repair
GO: 33683	2073	ERCC5	13	103498191	103528351	4.73E-01	7.10E-01	3.43E-01	2.62E-01	nucleotide-excision repair, DNA incision
GO: 10822	7755	ZNF205	16	3162563	3170518	4.74E-01	9.01E-01	7.24E-01	9.47E-01	positive regulation of mitochondrion organization
GO:90200	8743	TNFSF1 0	3	172223298	172241297	4.77E-01	6.95E-01	6.77E-01	6.09E-01	positive regulation of release of cytochrome c from mitochondria
GO:10822	8743	TNFSF1 0	3	172223298	172241297	4.77E-01	6.95E-01	6.77E-01	6.09E-01	positive regulation of mitochondrion organization
3430	6742	SSBP1	7	141438121	141450288	4.81E-01	8.18E-01	8.67E-01	5.17E-01	KEGG_MISMATCH_REPAIR
GO:10822	2895 8	COA3	17	40949652	40950704	4.87E-01	1.75E-03	5.11E-01	N/A	mitochondrion organization
GO:6298	7	TREX1	3	48506919	48509044	4.91E-01	4.76E-01	7.94E-01	4.11E-01	mismatch repair
GO:32407	1127 7	TREX1	3	48506919	48509044	4.91E-01	4.76E-01	7.94E-01	4.11E-01	MutSalpha complex binding
GO:33683	2290 9	FAN1	15	31196055	31235311	5.30E-01	2.16E-06	1.15E-04	2.10E-09	nucleotide-excision repair, DNA incision
GO:10822	1057 2	SIVA1	14	105219470	105225996	5.32E-01	1.48E-01	6.74E-01	8.89E-01	positive regulation of mitochondrion organization
GO:6298	9156	EXO1	1	242011493	242053241	5.56E-01	9.35E-01	9.03E-01	2.23E-01	mismatch repair
KEGG 3430	9156	EXO1	1	242011493	242053241	5.56E-01	9.35E-01	9.03E-01	2.23E-01	KEGG_MISMATCH_REPAIR
GO: 90200	1010 5	PPIF	10	81107220	81115090	5.62E-01	2.02E-01	4.28E-01	4.88E-01	positive regulation of release of cytochrome c from mitochondria
GO: 10822	1010 5	PPIF	10	81107220	81115090	5.62E-01	2.02E-01	4.28E-01	4.88E-01	positive regulation of mitochondrion organization
GO: 6298	7161	TP73	1	3569129	3652765	5.69E-01	3.18E-01	4.40E-01	5.54E-01	mismatch repair
GO:10822	7531	YWHAE	17	1247834	1303556	5.70E-01	8.16E-01	4.96E-01	5.15E-01	positive regulation of mitochondrion organization
GO: 10822	7532	YWHAG	7	75956108	75988342	5.78E-01	4.82E-01	9.74E-01	8.36E-02	positive regulation of mitochondrion organization
GO: 10822	7534	VWH A 7	8	101930804	101965623	5 89E-01	1.51E-01	1.89E-01	5.93E-02	positive regulation of mitochondrion organization
GO: 90140	6442 3	INF2	14	105155943	105185947	5.93E-01	2.11E-01	2.83E-01	5 52E-01	regulation of mitochondrial
GO: 10822	578	BAK1	6	33540323	33548070	5 98E-01	7 98E-01	7 78E-01	3.03E-01	positive regulation of mitochondrion organization
00.10022	570	Diffe	0	55510525	55510070	5.50E 01	7.502 01	7.762 01	5.052 01	positive regulation of release of
GO: 90200	578	BAK1	6	33540323	33548070	5.98E-01	7.98E-01	7.78E-01	3.03E-01	cytochrome c from mitochondria
GO: 33683	4913	NTHL1	16	2089816	2097867	6.25E-01	5.50E-01	4.66E-01	6.35E-01	nucleotide-excision repair, DNA incision
GO: 90200	1001	BCL2L1 1	2	111878491	111926022	6.27E-01	8.58E-01	8.05E-01	1.51E-02	positive regulation of release of cytochrome c from mitochondria
GO: 10822	1001	BCL2L1 1	2	111878491	111926022	6.27E-01	8.58E-01	8.05E-01	1.51E-02	positive regulation of mitochondrion organization
GO: 10822	4836	NMT1	17	43138680	43186384	6.37E-01	9.42E-01	9.35E-01	4.65E-01	positive regulation of mitochondrion organization
GO: 10822	1097 1	YWHAQ	2	9724106	9771106	6.38E-01	1.92E-01	6.28E-01	7.69E-01	positive regulation of mitochondrion organization
GO: 10822	7529	YWHAB	20	43514344	43537161	6.50E-01	2.53E-01	4.98E-01	8.31E-01	positive regulation of mitochondrion organization
GO [.] 6298	1071 4	POLD3	11	74303575	74354105	6.51E-01	8.79E-01	6.36E-01	1.52E-01	mismatch repair
KEGG	1071	DOTE		, 1565575	, 155 1105	0.010.01	0.505.01	0.000 01	1.020 01	
3430	4	POLD3	11	74303575	74354105	6.51E-01	8.79E-01	6.36E-01	1.52E-01	KEGG_MISMATCH_REPAIR
GO: 30983	0996	IDG	12	104359593	104382656	0.84E-01	1.83E-01	2.10E-01	4./8E-01	mismatched DNA binding

GO: 6298	6996	TDG	12	104359593	104382656	6 84F-01	1.83E-01	2 10F-01	4 78F-01	mismatch renair
00. 02/0	1722	DUODU	12	104557575	704502050	0.042.01	0.505.01	2.102 01	4.055 01	regulation of mitochondrial
GO: 90140	1723	DHODH	16	72042643	72059316	6.96E-01	9.59E-01	7.30E-01	4.85E-01	fission
GO: 0298 GO: 30983	4438	ABL1 MSH4	9	76262556	76378923	6.97E-01	0.47E-01	9.21E-01	1.81E-01	mismatched DNA binding
KEGG 3430	5985	RFC5	12	118454506	118470044	7.38E-01	1.15E-01	2.33E-01	3.95E-01	KEGG MISMATCH REPAIR
GO:190006	1005	DNM1L	12	32832137	32898584	7 55E-01	8 32E-01	6 94E-01	1 36E-03	regulation of peroxisome
GO: 90141	1005 9	DNM1L	12	32832137	32898584	7.55E-01	8.32E-01	6.94E-01	1.36E-03	positive regulation of mitochondrial fission
GO: 90200	1005 9	DNM1L	12	32832137	32898584	7.55E-01	8.32E-01	6.94E-01	1.36E-03	positive regulation of release of cytochrome c from mitochondria
GO: 10822	1005 9	DNM1L	12	32832137	32898584	7.55E-01	8.32E-01	6.94E-01	1.36E-03	positive regulation of mitochondrion organization
GO: 90140	1005 9	DNM1L	12	32832137	32898584	7.55E-01	8.32E-01	6.94E-01	1.36E-03	regulation of mitochondrial fission
KEGG 3430	6117	RPA1	17	1733273	1802848	7.75E-01	2.96E-01	5.51E-01	4.76E-01	KEGG_MISMATCH_REPAIR
GO: 10822	5533	PPP3CC	8	22298483	22398657	7 99E-01	4 58E-01	7 29E-01	3 38E-01	positive regulation of mitochondrion organization
KEGG	5084	PEC4	2	186507681	196524494	8 08E 01	7.04E.01	7.05E.01	2.01E.01	KEGG MISMATCH DEDAID
GO: 4748	6240	RRM1	11	4115924	4160106	8.20E-01	6.60E-01	9.85E-01	3.40E-01	ribonucleoside-diphosphate reductase activity, thioredoxin disulfide as acceptor
GO: 16728	6240	RRM1	11	4115924	4160106	8 20E-01	6 60E-01	9.85E-01	3 40E-01	oxidoreductase activity, acting on CH or CH2 groups, disulfide
GO: 10728 GO: 30983	5111	PCNA	20	5095599	5107268	8.29E-01	2.76E-01	6.40E-01	3.55E-01	mismatched DNA binding
KEGG 3//30	5111	PCNA	20	5095599	5107268	8 29E-01	2 76E-01	6.40E-01	3 55E-01	KEGG MISMATCH REPAIR
GO: 6298	5111	PCNA	20	5095599	5107268	8.29E-01	2.76E-01	6.40E-01	3.55E-01	mismatch repair
										positive regulation of release of
GO: 90200	638	BIK	22	43506754	43525718	8.52E-01	6.42E-01	8.52E-01	1.19E-01	cytochrome c from mitochondria positive regulation of
GO: 10822	638	BIK	22	43506754	43525718	8.52E-01	6.42E-01	8.52E-01	1.19E-01	positive regulation of
GO: 10822	596	BCL2	18	60790579	60986613	8.65E-01	5.93E-01	4.81E-01	6.54E-01	mitochondrion organization positive regulation of
GO: 10822	3002	GZMB	14	25100160	25103432	8.84E-01	8.26E-01	8.18E-01	6.33E-01	mitochondrion organization
GO: 10822	2711	BBC3	19	47724079	47736023	8.89E-01	4.98E-01	7.87E-01	2.78E-01	mitochondrion organization
GO: 90200	3	BBC3	19	47724079	47736023	8.89E-01	4.98E-01	7.87E-01	2.78E-01	cytochrome c from mitochondria
GO: 16728	6241	RRM2	2	10262695	10271546	8.96E-01	3.35E-01	3.69E-01	2.65E-01	on CH or CH2 groups, disulfide as acceptor
GO: 4748	6241	RRM2	2	10262695	10271546	8.96E-01	3.35E-01	3.69E-01	2.65E-01	ribonucleoside-diphosphate reductase activity, thioredoxin disulfide as acceptor
GO: 10822	8398	PLA2G6	22	38507502	38577836	9.01E-01	2.91E-01	6.64E-01	1.80E-01	positive regulation of mitochondrion organization
GO: 90200	8398	PLA2G6	22	38507502	38577836	9.01E-01	2.91E-01	6.64E-01	1.80E-01	positive regulation of release of cytochrome c from mitochondria
GO: 90200	8739	HRK	12	117299027	117319232	9.10E-01	6.48E-01	8.21E-01	4.30E-01	positive regulation of release of cytochrome c from mitochondria
GO: 10822	8739	HRK	12	117299027	117319232	9.10E-01	6.48E-01	8.21E-01	4.30E-01	positive regulation of mitochondrion organization
GO: 10822	5599	MAPK8	10	49609687	49643183	9 32E-01	7 42E-01	8 49E-01	7 87E-01	positive regulation of mitochondrion organization
00.10022	5048		10			7.020 01	7.122 01	0.1913 01	7.072 01	ribonucleoside-diphosphate reductase activity, thioredoxin
GO: 4748	4 5048	RRM2B	8	103216729	103251346	9.38E-01	6.29E-01	8.45E-01	6.44E-06	disulfide as acceptor oxidoreductase activity, acting on CH or CH2 groups, disulfide
GU: 16/28	4	ккм2В	8	103216729	103251346	9.38E-01	6.29E-01	8.45E-01	0.44E-06	as acceptor positive regulation of
GO: 10822 KEGG	35 5780	DYNLL2	17	56160780	56167618	9.58E-01	8.08E-01	8.19E-01	8.93E-01	mitochondrion organization
3430	4	POLD4	11	67118236	67121067	9.59E-01	6.48E-01	9.21E-01	3.74E-01	KEGG_MISMATCH_REPAIR
GO: 10822	8470	MGARP	4	140187317	140201492	9 78E-01	8 81E-01	8 98E-01	1 51E-01	positive regulation of mitochondrion organization

Supplem REGIST	Supplementary Table 13: Setscreen enrichment p-values for the Pearl et al. (2015) pathways in TRACK-HD, REGISTRY, the TRACK-HD meta-analysis and GeM												
G 6.	p(TRAC	p(REGI	p(META		D		D	D					
Gene Set	K)	STRY)	)	p (GeM)	Description1	Description2	Description3	Description4					
2071015	9.05E-07	4.43E-03	2.93E-11	2.01E-02	Repair_pathway	SSR	MMR	recognition_factors					
2071000	2.43E-06	6.85E-02	1.49E-14	5.15E-04	Repair_pathway	SSR	MMR						
2070000	5.77E-03	4.76E-02	3.32E-07	1.42E-02	Repair_pathway	SSR							
2071017	1.95E-02	2.44E-02	5.84E-05	8.92E-08	Repair_pathway	SSR	MMR	MutL_homologs					
2111513	4.71E-02	2.55E-01	8.12E-01	2.86E-03	Repair pathway	Associated process	TLS	DNA polymerases					
2070600	5.02E-02	7.99E-01	1.10E-01	2.92E-01	Repair_pathway	SSR	NER						
2070607	5.18E-02	7.61E-01	3.02E-02	2.26E-01	Repair_pathway	SSR	NER	TCR_(Transcription_ coupled_repair)					
2071104	5.35E-02	3.90E-01	2.07E-02	5.37E-02	Repair_pathway	SSR	BER	LONG_PATCH- BER_factors					
2022100	6.69E-02	3.19E-02	7.21E-04	7.29E-02	Repair_pathway	DSR	Alt-NHEJ						
1100000	7.52E-02	6.14E-01	1.94E-01	6.13E-01	Associated_process	DNA_replication							
1080700	8.99E-02	8.35E-01	2.82E-01	4.92E-01	Associated_process	Checkpoint_factors	S-CC_phase						
1051930	1.02E-01	5.68E-01	1.30E-01	7.62E-01	Associated_process	Ubiquitin_response	Ubiquitin- _conjugating_enz ymes_(E2)	UBL- conjugating_enzymes					
2000000	1.13E-01	2.60E-01	1.03E-03	1.11E-02	Repair_pathway								
2070605	1.14E-01	5.00E-01	8.14E-01	4.64E-01	Repair_pathway	SSR	NER	DNA_polymerase_ep silon					
1030000	1 59E-01	1 90E-01	3 59E-01	2.63E-01	Associated process	Telomere_maintena							
2070606	1.60E-01	9.56E-01	6 55E-01	5 49E-01	Repair pathway	SSR	NER	DNA_polymerase_ka					
2071020	1.73E-01	3.14E-01	9.86E-03	7.97E-02	Repair pathway	SSR	MMR	Other MMR factors					
20/1020	1.75E-01	5.14E-01	9.8012-03	7.9712-02	Kepan_pauiway	551	Ubiquitin-						
1051900	1.97E-01	7.69E-01	1.71E-01	8.19E-01	Associated_process	Ubiquitin_response	_conjugating_enz ymes_(E2)						
2071023	2.15E-01	1.73E-01	7.67E-02	5.90E-01	Repair pathway	SSR	MMR	RPA_(replication_fac tor A)					
1081300	2.15E-01	8.71E-01	4.25E-01	6.96E-01	Associated_process	Checkpoint_factors	HRAD17(Rad24)- _RFC_complex						
1051208	2.41E-01	2.50E-01	3.12E-01	5.81E-01	Associated_process	Ubiquitin_response	Ubiquitin_ligases _(E3)	single_Ring- finger_type_E3					
1080900	2 50E-01	4 77E-01	9.41E-01	2 74F-01	Associated process	Checknoint factors	G1-S checkpoint						
2071003	2.50E 01	9.69E 01	2 40E 01	1.57E.01	Popair pathway		MMP	DNA_polymerase_de					
20/1005	2.561-01	0.001-01	J.40L-01	1.571-01	Kepan_patiway	551	Ubiquitin_ligases	114					
1051222	2.87E-01	2.82E-01	1.50E-01	6.61E-01	Associated_process	Ubiquitin_response	_(E3)	Riddle_syndrome!					
1080800	2.87E-01	3.88E-01	7.69E-01	2.52E-01	Associated_process	Checkpoint_factors	G1-CC_phase						
2070603	2.92E-01	8.34E-01	5.37E-01	4.50E-01	Repair_pathway	SSR	NER	DNA_polymerase_de lta					
2071010	2.92E-01	7.60E-01	6.37E-01	7.12E-01	Repair_pathway	SSR	MMR	RFC_(replication_fac tor_C)					
1051221	3.18E-01	1.56E-01	1.06E-02	2.79E-01	Associated_process	Ubiquitin_response	Ubiquitin_ligases _(E3)	Other_single_Ring- _finger_type_E3					
1010000	3.23E-01	4.39E-01	3.23E-01	8.30E-01	Associated_process	Chromatin_remodell ing							
							Ubiquitin-	UDI					
1051829	3.28E-01	5.91E-01	5.58E-01	9.17E-01	Associated process	Ubiquitin_response	_activating_enzy mes_(E1)	OBL- activating_enzymes					
1051000	2 205 01	5.010.01	5 50E 01	0.175.01	Associated a	Ilbiquitia	Ubiquitin- _activating_enzy						
1051800	3.29E-01	5.91E-01	3.38E-01	9.17E-01	Associated_process	Ubiquitin_response	Ibiquitin-						
1051027	2.215.01	7.000-01	4.165-01		A	T The imposite	_conjugating_enz	Ubiquitin-					
1051927	5.51E-01	7.89E-01	4.15E-01	o./4E-01	Associated_process Genes with probabl	Direct Repair (not	ymes_(E2)	conjugating_enzymes					
3060000	3.41E-01	1.70E-01	3.61E-01	7.39E-01	e_DDR_role	in_humans)							

	1031600	3.86E-01	8.44E-01	5.12E-01	6.69E-01	Associated_process	Telomere_maintena nce	Alternative_mech anism	
	1031616	3 86E-01	8 44F-01	5 12E-01	6 69E-01	Associated process	Telomere_maintena	Alternative_mech	MRN Complex
-	1051010	5.002 01	0.442 01	5.12E 01	0.092.01	Associated_process		amon	where complex
	2020200	4.09E-01	6.98E-01	5.00E-01	4.77E-01	Repair pathway	DSR	HR_(Homologous Recombination)	
								Ubiquitins_and_U	
	1052000	4.20E-01	3.11E-01	4.35E-01	8.24E-01	Associated_process	Ubiquitin_response	biquitin- like_proteins	
								Ubiquitins_and_U	
	1052028	4.20E-01	3.11E-01	4.35E-01	8.24E-01	Associated_process	Ubiquitin_response	biquitin- like_proteins	Ubiquitins
	1000000	4 26E-01	4 38F-01	5 76E-01	3 21E-01	Associated process			
-	1000000	4.202 01	4.562 01	5.762.01	5.212.01	Associated_process			
	1082500	4.29E-01	1.79E-01	5.65E-01	6.91E-01	Associated process	Checkpoint factors	FPC_(fork_protec tion_complex)	
									Y-
	2111531	4.30E-01	2.91E-01	2.99E-01	7.84E-01	Repair pathway	Associated process	TLS	family_DNA_polyme rases
	2071018	4.44E-01	2.64E-01	2.34E-01	1.12E-01	Repair_pathway	SSR	MMR	MutS_homologs_spe cialized_for_meiosis
	2110000	4.48E.01	4 49E 01	5 96E 01	4 80E 02	Papair pathway	Associated process		
-	2110000	4.461-01	4.492-01	3.90E-01	4.8012-02	Kepan_paulway	Associated_process		
-	2111500	4.48E-01	4.49E-01	5.96E-01	4.80E-02	Repair_pathway	Associated_process	TLS	
_	2020000	4.71E-01	4.39E-01	8.35E-02	4.20E-02	Repair_pathway	DSR		
								Deubiquitinating_	
_	1050500	4.76E-01	8.55E-01	8.56E-01	7.18E-01	Associated_process	Ubiquitin_response	enzyme_(DUB)	UDI
								Deubiquitinating_	specific_proteases_(U
_	1050501	4.76E-01	8.55E-01	8.56E-01	7.18E-01	Associated_process	Ubiquitin_response	enzyme_(DUB)	LPs)
	1080000	4.86E-01	4.50E-01	8.20E-01	2.85E-01	Associated_process	Checkpoint_factors		
	2072800	4.97E-01	5.82E-01	7.02E-02	3.98E-02	Repair_pathway	SSR	Other_SSR_genes	
	2020400	5.07E-01	7.84E-01	8.18E-01	5.80E-01	Repair_pathway	DSR	NHEJ	
	2071100	5.18E-01	1.14E-01	2.76E-01	1.65E-01	Repair_pathway	SSR	BER	
	1082600	5.20E-01	5.64E-01	6.17E-01	5.95E-01	Associated_process	Checkpoint_factors	G2-CC_phase	
	1090000	5.70E-01	5.67E-01	6.15E-01	6.62E-01	Associated_process	p53_pathway		
	1050000	5.88E-01	3.44E-01	2.17E-01	7.47E-01	Associated_process	Ubiquitin_response		
	2070602	5.93E-01	1.61E-01	3.08E-01	5.35E-01	Repair pathway	SSR	NER	GGR_(Global_genom e repair)
-	2070002				0.000 01				
	2020300	6.05E-01	5.24E-01	6.24E-01	8.22E-01	Repair_pathway	DSR	Other_DSR_genes	
-	2071119	6.09E-01	6.72E-02	9.07E-01	2.64E-01	Repair_pathway	SSR	DED	Other_BER_factors
	20/1111	0.11E-01	2.27E-01	5.24E-01	9.70E-01	Repair_pathway	55K	BEK	AP_endonucleases
_	1082700	6.14E-01	6.85E-01	9.25E-01	1.51E-01	Associated_process	Checkpoint_factors	G2-M_checkpoint	
	2021400	6.22E-01	4.96E-02	1.45E-01	9.20E-01	Repair_pathway	DSR	HR_(Homologous Recombination)	
								Ubiquitin-	
	1051700	6.42E-01	4.61E-01	5.63E-01	1.52E-01	Associated_process	Ubiquitin_response	Ls)	
								Ubiquitin-	
1	1051725	6.42E-01	4.61E-01	5.63E-01	1.52E-01	Associated_process	Ubiquitin_response	Ls)	SUMO
L		1				Associated process	Ubiquitin response	Ubiquitin_ligases	
	1051200	6.61E-01	7.44E-02	5.58E-02	3 70E-01	Associated brocess			
	1051200	6.61E-01	7.44E-02	5.58E-02	3.70E-01	Associated_process	obiquitii_tesponse	_(L3)	
_	1051200	6.61E-01	7.44E-02 8 72E-01	5.58E-02	3.70E-01	Associated process	Checkpoint factors	Rad17-Mec3-	
	1051200 1082900	6.61E-01 6.63E-01	7.44E-02 8.72E-01	5.58E-02 8.87E-01	3.70E-01 4.58E-01	Associated_process	Checkpoint_factors	Rad17-Mec3- _Ddc1_complex damage_in_S_pha	
	1051200 1082900 1082200	6.61E-01 6.63E-01 6.69E-01	7.44E-02 8.72E-01 8.04E-02	5.58E-02 8.87E-01 2.30E-01	3.70E-01 4.58E-01 2.61E-01	Associated_process Associated_process	Checkpoint_factors	Rad17-Mec3- _Ddc1_complex damage_in_S_pha se	

2020100	7.23E-01	5.41E-01	5.70E-01	2.93E-04	Repair_pathway	DSR	FA_(Fanconi_ane mia_pathway)	
1040000	7.46E-01	5.93E-01	6.62E-01	3.78E-01	Associated_process	Chromosome_segre gation		
3000000	7.86E-01	6.19E-01	3.00E-01	7.39E-01	Genes_with_probabl e_DDR_role			
2072300	7.97E-01	3.24E-01	8.88E-01	8.75E-01	Repair_pathway	SSR	Direct_Repair	
2072400	8.27E-01	3.89E-03	6.87E-02	2.76E-01	Repair_pathway	SSR	DNA_replication	
2071124	8.39E-01	8.94E-01	8.19E-01	3.16E-01	Repair_pathway	SSR	BER	SHORT_PATCH- BER_factors
2071112	9.02E-01	1.67E-01	3.58E-01	5.51E-01	Repair_pathway	SSR	BER	DNA_glycosylases
1051209	9.25E-01	1.38E-02	5.59E-02	7.56E-01	Associated_process	Ubiquitin_response	Ubiquitin_ligases _(E3)	single_Ring- finger_type_E4
1120000	9.58E-01	6.23E-01	9.97E-01	6.78E-05	Associated_process	Modulation_of_nucl eotide_pools		
1083000	9.62E-01	7.83E-01	9.16E-01	8.57E-01	Associated_process	Checkpoint_factors	RAD9-Hus1- Rad1_complex	

# Supplementary Table 14: Gene-wide p-values for the most significant genes in the two Pearl et al. pathways showing significant enrichment in TRACK

Entre z	Gene Symb ol	Ch r	Start	End	p(TRACK)	p(REG)	p(META)	p(GeM)	Pathways			
4437	MSH3	5	79950467	80172634	2.94E-08	9.52E-04	8.88E-11	1.98E-02	Repair_pathway/SSR/MMR/Mismatch_and_l oop_recognition_factors			
5425	POLD 2	7	44154279	44163169	7.21E-04	3.12E-01	2.75E-03	5.17E-01	Repair pathway/SSR/MMR			
3978	LIG1	19	48618703	48673560	1.65E-02	8.28E-02	5.35E-04	6.39E-02	Repair_pathway/SSR/MMR			
27030	MLH3	14	75480467	75518235	1.69E-02	6.69E-01	1.47E-01	6.39E-03	Repair_pathway/SSR/MMR			
5395	PMS2	7	6012870	6048737	2.58E-02	3.66E-01	8.84E-03	1.76E-05	Repair_pathway/SSR/MMR			
4439	MSH5	6	31707725	31730455	4.35E-02	8.54E-01	7.73E-01	5.11E-01	Repair_pathway/SSR/MMR			
5982	RFC2	7	73645832	73668738	4.80E-02	5.91E-01	2.02E-02	4.44E-01	Repair_pathway/SSR/MMR			
6119	RPA3	7	7676575	7758238	6.55E-02	7.22E-01	9.17E-02	4.37E-01	Repair_pathway/SSR/MMR			
4292	MLH1	3	37034841	37092337	6.98E-02	3.97E-04	1.28E-04	3.91E-04	Repair_pathway/SSR/MMR			

Supplementary Table 15: Summary of missing data in REGISTRY										
Variable	N		Missing Values							
variable	IN	Count	Percent							
Motor	1744	91	4.96							
Verbal Fluency	1145	690	37.6							
Stroop Color	1052	783	42.67							
Stroop Color	1116	719	39.18							
Stroop Word	1104	731	39.84							
Stroop Interference	1092	743	40.49							
TFC	1758	77	4.2							
FAS score	1616	219	11.93							

Supplementary Table 16: Parameter estimates of variables in the model used to generate the REGISTRY cross sectional severity score. Multiple imputation adjusted estimates of statistical significance are given. CPO_1: clinical probability of onset; CPO_2: single transformation of clinical probability of onset. DF: degrees of freedom.

	Parameter Estimates												
Parameter	gender	Estimate	Std Error	95% Confid	ence Limits	DF	t for H0:	P Val					
Intercept		2.075589	0.267283	1.55102	2.60016	897.01	7.77	<.0001					
cpo_1		-0.9142	0.21009	-1.32638	-0.50201	1191.6	-4.35	<.0001					
cpo_2		-7.00283	0.911001	-8.79025	-5.2154	1141.5	-7.69	<.0001					
cag		-0.01919	0.005133	-0.02927	-0.00912	862.96	-3.74	0.0002					
gender	F	-0.13631	0.042605	-0.21992	-0.05271	1030.1	-3.2	0.0014					
gender	М	0	0										

Supplementary Table 17: Proportion of variance arrow variables present in TRACK-HD and<br/>REGISTRY which are accounted for by the first PC in the combined analysis.FactorFactorSupplementary Table 17: Proportion of variance arrow variables present in TRACK-HD and<br/>malysis.FactorColspan="2">FactorSupplementary Table 17: Proportion of variance arrow variables present in TRACK-HD and<br/>malysis.FactorFactorSupplementary Table 17: Proportion of variance arrow variables present in TRACK-HD and<br/>malysis.Supplementary Table 17: Proportion of variance arrow variables present in TRACK-HD and<br/>malysis.Supplementary Table 17: Proportion of variance arrow variables present in TRACK-HD and<br/>malysis.Supplementary Table 17: Proportion of variance arrow variables present in TRACK-HD and<br/>malysis.Supplementary variables present in TRACK-HD and<br/>malysis.Supplementary variables present in TRACK-HD and<br/>malysis.Supplementary variables present in Tracket present arrow variables present in Tracket present arrow variables pre

Г

Supplem in TRAC	Supplementary Table 18: Effect of removing MSH3 on the Setscreen enrichment p-values for the top 14 GeM pathways in TRACK-HD, REGISTRY and the TRACK-REGISTRY meta-analysis.												
Pathway	p(TRACK)	p(TRACKno MSH3)	p(REGISTRY)	p(REGISTRY noMSH3)	p(META)	p(METAn oMSH3)	Description						
GO: 32300	3.455E-09	0.04127	0.0008336	0.07162	1.13E-11	0.001024	mismatch repair complex						
KEGG 3430	2.794E-07	0.04521	0.04795	0.1471	1.34E-16	0.000107	KEGG_MISMATCH_REPAIR						
GO: 30983	6.661E-07	0.1001	0.0004195	0.009264	3.17E-11	0.000274	mismatched DNA binding						
GO: 6298	0.000003533	0.2446	0.04589	0.1839	6.54E-09	0.0729	mismatch repair						
GO: 32407	0.01818	0.01818	0.1101	0.1101	0.000640	0.000640	MutSalpha complex binding						
GO: 32389	0.02249	0.02249	0.04688	0.04688	0.000523	0.000523	MutLalpha complex						
GO: 33683	0.08014	0.08014	0.0005874	0.0005874	0.00675	0.00675	nucleotide-excision repair, DNA incision						
GO: 90141	0.3318	0.3318	0.05934	0.05934	0.7872	0.7872	positive regulation of mitochondrial fission						
GO: 1900063	0.4103	0.4103	0.7287	0.7287	0.6926	0.6926	regulation of peroxisome organization						
GO: 90200	0.4582	0.4582	0.544	0.544	0.5280	0.5280	positive regulation of release of cvtochrome c from mitochondria						
GO: 90140	0.5385	0.5385	0.3316	0.3316	0.8098	0.8098	regulation of mitochondrial fission						
GO: 10822	0.621	0.6228	0.6276	0.6276	0.8527	0.8527	positive regulation of mitochondrion organization						
GO: 4748	0.9639	0.9639	0.6974	0.6974	0.9792	0.9792	ribonucleoside-diphosphate reductase activity, thioredoxin disulfide as acceptor						
GO: 16728	0.9639	0.9639	0.6974	0.6974	0.9792	0.9792	oxidoreductase activity, acting on CH or CH2 groups, disulfide as acceptor						

Supplementary Table 19: Effect of removing MSH3 on the Setscreen enrichment p-values for the Pearl et al. (2015)													
pathw	pathways in TRACK-HD, REGISTRY and the TRACK-REGISTRY meta-analysis.												
Gene Set	p(TRACK )	p(TRA CKnoM SH3)	p(REGIS TRY)	p(REGI STRYn oMSH3 )	p(MET A)	p(MET A noMSH 3)	Description1	Description2	Description3	Description4			
2071 015	9.051E- 07	0.3308	0.00443	0.2821	2.93E- 11	0.5436	Repair_pathway	SSR	MMR	Mismatch_and_l oop_recognition_ factors			
2071 000	0.000002 43	0.0822 5	0.06854	0.2285	1.49E- 14	0.0001 27	Repair_pathway	SSR	MMR				
2070 000	0.005767	0.2506	0.04762	0.1713	3.32E- 07	0.0549	Repair_pathway	SSR					
2071 017	0.01947	0.0194 7	0.02442	0.0244	5.84E- 05	5.84E- 05	Repair_pathway	SSR	MMR	MutL_homologs			
2111 513	0.04707	0.0470 7	0.2549	0.2549	0.8123	0.8123	Repair_pathway	Associated_pro cess	TLS	DNA_polymeras es			
2070 600	0.05024	0.0502	0.7989	0.7989	0.1098	0.1098	Repair_pathway	SSR	NER				

2070 607	0.05177	0.0517 7	0.7606	0.7606	0.0302	0.0302	Repair pathway	SSR	NER	TCR_(Transcript ion_coupled_rep air)
2071 104	0.05345	0.0534	0.3895	0.3895	0.0207	0.0207	Repair pathway	SSR	BER	LONG_PATCH- BER factors
2022				0.0318	0.0007	0.0007				
100 1100	0.0669	0.0669	0.03188	8	2	2	Repair_pathway	DSR DNA replicatio	Alt-NHEJ	
000	0.07519	9	0.6138	0.6138	0.1939	0.1939	Associated_process	n n		
1080 700	0.08987	0.0898 7	0.8346	0.8346	0.2817	0.2817	Associated_process	Checkpoint_fact ors	S-CC_phase	
1051 930	0 1015	0 1015	0 5677	0 5677	0 1303	0 1 3 0 3	Associated process	Ubiquitin_respo	Ubiquitin- _conjugating_e nzymes (E2)	UBL- conjugating_enzy mes
2000										
2070	0.1126	0.4184	0.2602	0.3906	0.0010	0.2586	Repair_pathway			DNA polymeras
605	0.1144	0.1144	0.4998	0.4998	0.8140	0.8140	Repair_pathway	SSR	NER	e_epsilon
1030 000	0.1588	0.1588	0.1897	0.1897	0.3588	0.3588	Associated process	Telomere_maint enance		
2070 606	0.1596	0.1596	0.9556	0.9556	0.6550	0.6550	Repair_pathway	SSR	NER	DNA_polymeras e_kappa
2071 020	0.1726	0.1726	0.3142	0.3142	0.0099	0.0099	Repair pathway	SSR	MMR	Other_MMR_fac tors
1051 900	0.1973	0.1973	0.7689	0.7689	0.1711	0.1711	Associated_process	Ubiquitin_respo	Ubiquitin- _conjugating_e nzymes_(E2)	
2071 023	0.2149	0.2149	0.1725	0.1725	0.0767	0.0767	Repair pathway	SSR	MMR	RPA_(replication factor A)
1081 300	0.215	0.215	0.8705	0.8705	0.4249	0.4249	Associated process	Checkpoint_fact	HRAD17(Rad2 4)- RFC complex	
1051	0.2400	0.2400	0.25	0.25	0.2120	0.2120		Ubiquitin_respo	Ubiquitin_ligas	single_Ring-
1080	0.2409	0.2409	0.25	0.25	0.3120	0.3120	Associated_process	Checkpoint_fact	G1-	Inger_type_E3
900 2071	0.2499	0.2499	0.4774	0.4774	0.9412	0.9412	Associated_process	ors	S_checkpoint	DNA_polymeras
003	0.258	0.258	0.8678	0.8678	0.3397	0.3397	Repair_pathway	SSR Ubiquitin respo	MMR Ubiquitin ligas	e_delta Riddle_syndrome
222	0.2873	0.2873	0.2823	0.2823	0.1495	0.1495	Associated_process	nse	es_(E3)	!
1080 800	0.2874	0.2874	0.3878	0.3878	0.7688	0.7688	Associated_process	ors	G1-CC_phase	
2070 603	0.292	0.292	0.8344	0.8344	0.5370	0.5370	Repair pathway	SSR	NER	DNA_polymeras e delta
2071 010	0.2921	0.2921	0.7597	0.7597	0.6366	0.6366	Repair_pathway	SSR	MMR	RFC_(replication _factor_C)
1051 221	0.3184	0.3184	0.1559	0.1559	0.0106	0.0106	Associated_process	Ubiquitin_respo nse	Ubiquitin_ligas es_(E3)	Other_single_Rin g- _finger_type_E3
1010 000	0.3225	0.3225	0.4385	0.4385	0.3231	0.3231	Associated process	Chromatin_rem odelling		
1051 829	0.3284	0.3284	0.5913	0.5913	0.5578	0.5578	Associated_process	Ubiquitin_respo	Ubiquitin- _activating_enz ymes_(E1)	UBL- activating_enzym es
1051 800	0.329	0.329	0.5913	0.5913	0.5578	0.5578	Associated_process	Ubiquitin_respo nse	Ubiquitin- _activating_enz ymes_(E1)	
1051 927	0.3313	0.3313	0.7885	0.7885	0.4152	0.4152	Associated_process	Ubiquitin_respo nse	Ubiquitin- _conjugating_e nzymes_(E2)	Ubiquitin- conjugating_enzy mes
3060 000	0.3405	0.3405	0.1703	0.1703	0.3608	0.3608	Genes_with_probable_ DDR_role	Direct_Repair_( not_in_humans)		
1031	0 3856	0 3856	0.8438	0 8/138	0 5110	0 5110	Associated process	Telomere_maint	Alternative_me	
1031	0.2056	0.2856	0.0420	0.0420	0.5110	0.5110	Associated process	Telomere_maint	Alternative_me	MRN Complex
2020	0.3830	0.3630	0.6981	0.6981	0.5119	0.5119	Renair nathway	DSR	HR_(Homologo us_Recombinati	wikiv_Complex

1052 000	0.42	0.42	0.3114	0.3114	0.4350	0.4350	Associated_process	Ubiquitin_respo nse	Ubiquitins_and _Ubiquitin- like_proteins	
1052 028	0.42	0.42	0.3114	0.3114	0.4350	0.4350	Associated process	Ubiquitin_respo	Ubiquitins_and _Ubiquitin- like proteins	Ubiquitins
1000	0 426	0 426	0 4378	0 4378	0 5759	0 5759	Associated process			
1082 500	0.4288	0.4288	0.1787	0.1787	0.5650	0.5650	Associated_process	Checkpoint_fact ors	FPC_(fork_prot ection_complex )	
2111 531	0.43	0.43	0.2914	0.2914	0.2994	0.2994	Repair_pathway	Associated_pro cess	TLS	Y- family_DNA_pol ymerases
2071 018	0.4438	0.4438	0.2644	0.2644	0.2335	0.2335	Repair_pathway	SSR	MMR	MutS_homologs _specialized_for_ meiosis
2110 000	0.4479	0.4479	0.4485	0.4485	0.5960	0.5960	Repair_pathway	Associated_pro cess		
2111 500	0.4479	0.4479	0.4485	0.4485	0.5960	0.5960	Repair pathway	Associated_pro cess	TLS	
2020 000	0 471	0 471	0 4388	0 4388	0.0835	0.0835	Repair pathway	DSR		
1050 500	0.4757	0.4757	0.8548	0.8548	0.8561	0.8561	Associated_process	Ubiquitin_respo	Deubiquitinatin g_enzyme_(DU B)	
1050 501	0.4757	0.4757	0.8548	0.8548	0.8561	0.8561	Associated_process	Ubiquitin_respo nse	Deubiquitinatin g_enzyme_(DU B)	UBL- specific_protease s_(ULPs)
1080 000	0.4863	0.4863	0.4497	0.4497	0.8204	0.8204	Associated_process	Checkpoint_fact ors		
2072 800	0.4971	0.4971	0.5818	0.5818	0.0702	0.0702	Repair pathway	SSR	Other_SSR_gen es	
2020 400	0.5069	0.5069	0.7838	0.7838	0.8179	0.8179	Repair pathway	DSR	NHEJ	
2071 100	0.5175	0.5175	0.1144	0.1144	0.2760	0.2760	Repair pathway	SSR	BER	
1082	0 5196	0 5196	0 5642	0 5642	0.6168	0.6168	Associated process	Checkpoint_fact	G2-CC phase	
1090	0.5699	0.5699	0.567	0.567	0.6151	0.6151	Associated process	n53 nathway	G2 CC_phase	
1050	0.5870	0.5870	0 3/35	0.3435	0.2168	0.2168	Associated process	Ubiquitin_respo		
2070	0.502	0.507	0.1407	0.1(07	0.2001	0.2001	P i d			GGR_(Global_ge
2020	0.593	0.593	0.1607	0.1607	0.3081	0.3081	Repair_pathway	SSK	Other_DSR_ge	nome_repair)
300 2071	0.6054	0.6054	0.5235	0.5235	0.6240	0.6240	Repair_pathway	DSR	nes	Other_BER_fact
119 2071	0.6093	0.6093	0.06716	6	0.9067	0.9067	Repair_pathway	SSR	BER	ors AP endonucleas
111	0.6105	0.6105	0.2266	0.2266	0.5242	0.5242	Repair_pathway	SSR Chaolmaint faat	BER	es
700	0.6144	0.6144	0.6852	0.6852	0.9253	0.9253	Associated_process	ors	M_checkpoint	
2021 400	0.6216	0.6216	0.04964	0.0496 4	0.1448	0.1448	Repair_pathway	DSR	HR_(Homologo usRecombinatio n)	
1051 700	0.642	0.642	0.461	0.461	0.5626	0.5626	Associated_process	Ubiquitin_respo nse	Ubiquitin- like_proteins_( UBLs)	
1051 725	0.642	0.642	0.461	0.461	0.5626	0.5626	Associated_process	Ubiquitin_respo	Ubiquitin- like_proteins_( UBLs)	SUMO
1051 200	0.6607	0.6607	0.07437	0.0743 7	0.0558	0.0558	Associated_process	Ubiquitin_respo nse	Ubiquitin_ligas es_(E3)	
1082 900	0.6626	0.6626	0.8717	0.8717	0.8865	0.8865	Associated_process	Checkpoint_fact ors	Rad17-Mec3- _Ddc1_complex	
1082 200	0.6692	0.6692	0.08041	0.0804	0.2304	0.2304	Associated_process	Checkpoint_fact ors	damage_in_S_p hase	
2111 514	0.7197	0.7197	0.5245	0.5245	0.7104	0.7104	Repair_pathway	Associated_pro cess	TLS	epistasis_group

2020 100	0.7228	0.7228	0.5406	0.5406	0.5703	0.5703	Repair_pathway	DSR	FA_(Fanconi_a nemia_pathway )	
1040 000	0.7462	0.7462	0.5933	0.5933	0.6618	0.6618	Associated_process	Chromosome_s egregation		
3000 000	0.7855	0.7855	0.6186	0.6186	0.3003	0.3003	Genes_with_probable_ DDR_role			
2072 300	0.7965	0.7965	0.3243	0.3243	0.8883	0.8883	Repair_pathway	SSR	Direct_Repair	
2072 400	0.8269	0.8269	0.00389	0.0038 91	0.0687	0.0687	Repair_pathway	SSR	DNA_replicatio	
2071 124	0.8385	0.8385	0.894	0.894	0.8192	0.8192	Repair_pathway	SSR	BER	SHORT_PATCH -BER_factors
2071 112	0.9015	0.9015	0.1669	0.1669	0.3575	0.3575	Repair_pathway	SSR	BER	DNA_glycosylas es
1051 209	0.9247	0.9247	0.01381	0.0138 1	0.0559	0.0559	Associated_process	Ubiquitin_respo nse	Ubiquitin_ligas es_(E3)	single_Ring- finger_type_E4
1120 000	0.9579	0.9579	0.6229	0.6229	0.9969	0.9969	Associated process	Modulation_of_ nucleotide_pool s		
1083 000	0.9619	0.9619	0.7832	0.7832	0.9161	0.9161	Associated_process	Checkpoint_fact ors	RAD9-Hus1- Rad1_complex	

# Supplementary Table 20: Distribution of progression measure in 218 members of TRACK-HD cohort, showing numbers and percentage of TRACK-HD cohort in each bin of the histogram shown in Figure 2C.

shown in Figure 20.		
Observed percent	Number (total = 218)	
0.054	1	
0.109	2	
1.798	33	
4.796	88	
11.717	215	
17.057	313	
21.907	402	
22.016	404	
14.114	259	
4.85	89	
1.308	24	
0.272	5	
	Observed percent           0.054           0.109           1.798           4.796           11.717           17.057           21.907           22.016           14.114           4.85           1.308           0.272	

Supplementary Table 21: Distribution of atypical severity (compared to predicted severity at final visit) in in 1835 members of the REGISTRY cohort, showing numbers and percentage of REGISTRY cohort in each bin of the histogram shown in Figure 2D.

Bin midpoint	Observed percent	Number (total = 1835)
-2.5	1.376	3
-2	1.376	3
-1.5	4.128	9
-1	15.596	34
-0.5	21.56	47
0	18.807	41
0.5	17.89	39
1	9.633	21
1.5	4.587	10
2	1.835	4
2.5	2.294	5
3	0.459	1
3.5	0	0
4	0.459	1