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Abstract: 

Chronic traumatic encephalopathy (CTE) is a long-term neurodegenerative consequence of 

repetitive head impacts which can only be definitively diagnosed in post-mortem. Recently, 

the consensus neuropathological criteria for the diagnosis of CTE was published requiring the 

presence of the accumulation of abnormal tau in neurons and astroglia distributed around 

small blood vessels at the depths of cortical sulci in an irregular pattern as the mandatory 

features. The clinical diagnosis and antemortem prediction of CTE pathology remain 

challenging if not impossible due to the common co-existing underlying neurodegenerative 

pathologies and the lack of specific clinical pointers and reliable biomarkers. This review 

summarises the historical evolution of CTE as a neuropathological entity and highlights the 

latest advances and future directions of research studies on the topic of CTE. 

 

 

  



Introduction 

In 1928, Martland described the clinical features of ‘punch drunk’ in boxers[1], a condition 

later known as ‘dementia pugilistica’[2]. ‘Chronic traumatic encephalopathy’, first coined by 

Critchley[3], then became the preferred term which has been widely used in the recent surge 

in scientific and public interest in this neurodegenerative consequence linked with past 

exposure to subconcussive or concussive repetitive head impacts (RHI).  

The seminal paper by Corsellis and colleagues describing neuropathological features of the 

brains of 15 retired boxers delineated CTE as a distinct entity which can only be definitively 

diagnosed post-mortem[4]. CTE has not only been reported in athletes who had participated 

in various contact sports (boxing, American football, rugby, Association football/soccer, 

baseball, wrestling, ice hockey)[5], but also in military personnel exposed to explosive 

blast[6] and individuals exposed to RHI including physical abuse[7], head banging[8, 9], 

intractable epilepsy[8], and dwarf-throwing[10].  

 

Historical perspectives  

The neuropathological concept of CTE is relatively new. Corsellis and colleagues identified 

generalized cerebral atrophy, enlargement of the ventricles, widespread neocortical 

neurofibrillary tangles (NFTs), neuropil threads (NTs) in elderly retired boxers[4]. Similar 

neuropathological features were also described in other case series of retired boxers[11-13]. 

Subsequent re-examination of the Corsellis series of boxers identified the presence of diffuse 

amyloid-β (Aβ) plaques as a characteristic feature of CTE[4, 11, 14]. Cavum septi pellucidi 

(CSP) and septal fenestration were found in all 11 professional boxers in Corsellis’s original 

series, except in one case in whom the CSP was not observed as ‘the septum was nevertheless 

fenestrated to destruction’ [4]. The prevalence of these septal abnormalities was found in up 

to 6% of non-boxers in the same autopsy series, supporting of their association with RHI 

exposure[4]. In 1999, Geddes and colleagues reported the early histological changes of five 

men who had died in their 20’s with a history of RHI exposure[8]. The study confirmed 

predominantly neocortical NFT formation, but the lack of amyloid β-protein (Aβ) deposits in 

these young individuals. Importantly, the predominant deposition of NFTs and neuropil 

threads around blood vessels in the cortices with predilection to the depths of the sulci was 

highlighted as a distinctive feature of CTE[8] differentiating CTE from the NFT pathology 



seen in Alzheimer’s disease (AD). This corroborated the same significant observation 

previously reported by Hof and colleagues[9]. The transactive response (TAR) DNA binding 

protein with a molecular weight of 43-kDa (TDP-43) is the major ubiquitinated protein in 

frontotemporal lobar degeneration with TDP-positive inclusions (FTLD-TDP) and in 

amyotrophic lateral sclerosis(ALS) or motor neuron disease (MND)[15, 16]. In 2010, King 

and colleagues identified TDP-43 inclusions in all of the three screened cases with CTE, 

highlighting TDP-43 as a common concurrent feature in CTE[17]. The similarity in the 

distribution of TDP-43 inclusions between CTE and FTLD-TDP led the authors to propose a 

potential shared pathogenic mechanism between the two conditions. 

 

CTE and AD 

Like the disease-associated tau in AD, the abnormally hyperphosphorylated tau aggregates in 

CTE are composed of both 4-repeat and 3-repeat tau isoforms[18]. Histologically, the 

preferential accumulation of tau aggregates in superficial cortical layers differentiates CTE 

from AD, in which NFTs are predominant in the deeper cortical laminae[19]. Occasionally, 

confluent tau pathology in severe AD may preclude the definitive delineation of concurrent 

CTE pathology. The accumulation of hyperphosphorylated tau in CTE following traumatic 

brain injury is believed to be the result of mechanical microtubule breakage at the sites of 

axonal injury, leading to tau liberation and its hyperphosphorylation[20]. Nevertheless, 

abnormal tau accumulation is not an immediate consequence as tau pathology was not 

observed in autopsy studies of patients dying in the acute phase, up to four weeks’ survival, 

following a single event of traumatic brain injury[21]. However, this was observed in some 

patients dying one year or more after a single event of traumatic brain injury[22] and 

consistently in cases of CTE[23]. Furthermore, recent immunohistochemical and biochemical 

studies demonstrated distinct differences in the constellation of tau epitopes between the 

filamentous tau inclusions in CTE and those in AD[24], which may shed light in the 

pathogenesis of tau in CTE.  

Amyloid-β deposition, another pathological hallmark of AD, is also a common feature in 

older individuals with CTE[23]. A recent study showed that diffuse plaques were present in 

52% and neuritic plaques in 36% of pathologically confirmed CTE cases, and that Aβ 

deposition was associated with older age at symptom onset and at death, possession of the 



APOE4 allele and more severe tau burden, suggesting its potential modulating effect in the 

pathological progression of CTE[25]. 

Current evidence supports the notion that head injury increases the risk of AD, although the 

definition of head injury varies between studies ranging from a single concussive episode 

with loss of consciousness or various severity and frequency of shead impacts. The 

association of a history of head injury and AD-like dementia is supported by epidemiological 

studies[26, 27], however the link between head injury and the development of AD pathology 

will require post-mortem confirmation in future studies. Other studies have demonstrated 

excessive Aβ genesis following traumatic brain injury[28]. Increased accumulation of Aβ 

precursor protein (APP) in injured axons are observed acutely hours after traumatic brain 

injury[29, 30]. Components of both the  and  cleavage of APP such as BACE (β-site-APP-

cleaving enzyme) and presenilin-1 have also been shown to co-localise with APP in injured 

neurons[31]. Amyloid β-diffuse plaques, similar to those observed in early AD, are observed 

more frequently in brain tissue of individuals, including young adults, following acute 

traumatic brain injury, than in age-matched subjects[32-34]. The normal order in amyloid 

cycling is gradually restored in the months following brain trauma with clearance of acute 

Aβ-plaques[35]. Nevertheless, in a proportion of susceptible individuals, the Aβ-plaque 

formation process may persist beyond the acute phase of traumatic brain injury, and factors 

such as age, APOE4 carrier status, force and interval of RHI, and other hitherto unknown 

genetic and environmental factors, are likely to come into play. This notion is supported by 

autopsy studies demonstrating Aβ-plaques in brain tissue of individuals who survived one 

year or more after a single event of traumatic brain injury in significantly higher density and 

in more widespread distribution than in age-matched uninjured control brains[22]. More 

research effort focusing on amyloid pathologies in CTE is required[36]. 

 

Recent neuropathological diagnostic criteria 

In 2013, the delineation of the neuropathological characteristics of CTE was consolidated by 

McKee and colleagues’ landmark clinico-pathological series of 68 cases, which remains the 

largest case series to date[23]. The preliminary diagnostic criteria and a 4-tiered staging 

scheme, with increasing severity and distribution of tau accumulation correlating with 

progression of clinical symptoms, were proposed. This work led to the consensus National 



Institute of Neurological Disorders and Stroke (NINDS) neuropathological criteria for the 

diagnosis of CTE in 2016[19]. The criteria require the presence of the pathognomonic 

lesions, defined as accumulation of abnormal tau in neurons and astroglia distributed around 

small blood vessels at the depths of cortical sulci in an irregular pattern[19](Figure 1). 

Supportive microscopic features include tau depositions in the superficial cortical layers 

(layers II-III), NFTs found preferentially in the hippocampal CA2 subregion, prominent 

proximal dendritic swellings in CA4, neuronal and astrocytic tau aggregates in subcortical 

nuclei, thorny astrocytes in the subpial and periventricular regions, and large tau-positive 

grain-like and dot-like structures in the cell processes that are most dense in the perivascular 

areas. Other non-tau related supportive features are dilatation of the third ventricle, CSP and 

septal fenestration, mammillary body atrophy and TDP-43 pathology (Table 1).  

 

Aging-related tau astrogliopathy  

Astroglial tau aggregates are commonly observed in the aging brain without association with 

any co-existing neuropathological disorders or clinical symptoms such as dementia, and are 

now referred as aging-related tau astrogliopathy (ARTAG)[37]. The frequency of ARTAG 

increases with age and is rare in individuals below the age of 60[37]. Wharton and colleagues 

reported thorn-shaped astrocytes (TSAs), a characteristic feature of ARTAG, in 40% of aged 

brains in a large population-based cohort (mean age: 85.9 years)[38], whereas Liu and 

colleagues identified ARTAG in 33.8% of aged brains with either Lewy body disorders, AD 

and healthy controls (mean age: 78.8 years)[39].  

Some of the ARTAG features previously described in the 2013 series by McKee and 

colleagues[23], including  patchy TSAs in subcortical white matter, mediobasal regions, 

amygdala and hippocampus, are now considered by the NINDS consensus criteria as non-

specific and non-diagnostic for CTE[19]. The reverse is likely to be true that, prior to the 

publication of the systematic evaluation of ARTAG in 2016[37], CTE-tau pathology 

observed in aged brains might have been considered as non-specific age-related astrocytic 

changes which, in the past, had been poorly characterized and commonly disregarded in 

neuropathological assessments.  

In both CTE[19] and ARTAG[37], there is a predilection of TSAs in the perivascular, subpial 

and periventricular regions. Nevertheless, the predilection of tau aggregates at the depths of 



the sulci is specific for CTE[19, 37]. The shared characteristic of perivascular accentuation of 

astroglial tau pathology suggests a common down-stream mechanism of impaired blood-brain 

barrier; one that is caused by age-related processes in ARTAG, and the other caused by 

chronic neuroinflammation following RHI in CTE[40-43]. Whether CTE represents an 

advanced form of ARTAG pathology with additional neuronal tau aggregates remains to be 

established.  

 

Neuroinflammation  

Chronic neuroinflammation is increasingly recognised as a consequence of RHI (Figure 2). 

Many studies have demonstrated the occurrence of acute neuroinflammation following head 

impact[6, 44, 45]. Mouse models exposed to RHI have shown astroglial and microglial 

activation preceding the formation of tau pathology[46-48]. These findings may be of 

significant relevance for the selection of biomarkers related to neuroinflammation to identify 

the early changes of CTE and potential therapeutic targets in at risk population[40, 42, 43, 

49]. 

In a quantitative study using post-mortem brain tissue of American football athletes from the 

Boston cohort, Cherry and colleagues reported an association between an increased number 

of CD68 immunoreactive microglia in the dorsolateral frontal cortex and the duration of RHI 

exposure as well as the development and severity of CTE[40]. A clinical diagnosis of 

dementia was also significantly predicted by CD68 cell density independent of age[40]. The 

findings of this study support the notion that RHI is associated with chronic activation of 

microglia which in turn contributes to the manifestation of dementia and the development of 

CTE-tau pathology. Interestingly, this study also reported an elevated CD68 cell density in 

athletes exposed to RHI but did not have CTE-tau pathology[40]. These individuals were 

younger and had shorter duration of RHI exposure when compared to the CTE group and 

possibly represent a prodromal subgroup [40].  

 



CTE and neurodegenerative disorders 

CTE is increasingly recognised as a mixed proteinopathy with accumulation of mixed 3-

repeat and 4-repeat tau within neurons, which is frequently accompanied by TDP-43 and Aβ 

depositions. In aged brains with CTE, the findings of other co-morbid neurodegenerative 

pathologies are common and were identified in almost half of all CTE cases in the Boston 

cohort[23, 50]. Of the 103 pathologically confirmed CTE cases, co-existing AD, MND, Lewy 

body disease and FTLD were found in 15%, 13%, 12% and 6%, respectively[23, 50]. To 

establish the prevalence of CTE pathology in elderly individuals, our group screened 268 

consecutive cases of various NDDs and healthy controls in the Queen Square Brain Bank for 

Neurological Disorders[51] using the preliminary 2013 McKee diagnostic criteria. The study 

identified early histological evidence of CTE in 11.9% of NDDs and 12.8% of controls over 

the age of 60[51]. Of the 32 CTE-positive cases, 93.8% had a history of TBI established by 

retrospective review of medical records and telephone interview. Interestingly, the highest 

prevalence of CTE was 24% identified in cases with the primary neuropathological diagnosis 

of progressive supranuclear palsy (PSP), a condition that leads to frequent falls and RHI as a 

result even at the early disease stage[51, 52]. The high prevalence of co-morbid 

neurodegenerative diseases (NDDs) in these studies suggest that either CTE and NDDs share 

the common risk factor of RHI or CTE-tau accumulation predisposes the aging brain to the 

deposition of other disease-associated proteins. Likewise, the association of RHI in athletes 

and MND has been proposed[53-55].  There is a higher incidence of ALS in Association 

footballers (soccer players) in Italian epidemiological studies[53, 54]. McKee and colleagues 

reported a 29-yar old semi-professional footballer who was clinically diagnosed with ALS 

and post-mortem examination not only confirmed TDP-43 proteinopathy affecting the brain 

and spinal cord consistent with the pathological diagnosis of MND, but also demonstrated 

early CTE histological changes[5]. American football players who played professionally for 

more than five seasons also showed a four-fold increased risk of dying from ALS.  

 

Clinico-pathological correlations 

The delineation of the clinical features of CTE can be challenging due to co-existing 

NDDs[52] and, in some cases, persistent post-concussive symptoms[41]. The clinical 

presentation is generally characterized by involvement of four domains: mood, behaviour, 



cognitive and motor impairments[56, 57]. Motor impairment, including dysarthria, 

dysphagia, parkinsonism and cerebellar ataxia, was frequently described in retired 

boxers[58]. Clinical criteria have been proposed for the diagnosis of CTE[56, 59, 60], but 

validation using a large clinico-pathological series with longitudinal clinical follow-up is 

required.  

Stern and colleagues reviewed 36 cases with pure CTE pathology and found that individuals 

with younger age of onset (mean age: 35 years) were more likely to present with initial 

behavioural and mood changes and later progress to cognitive impairment, whereas those 

with older age of onset (mean age: 59 years) tended to present with cognitive impairment 

such as difficulties with episodic memory and executive function[61]. With lack of reliable 

biomarkers, the clinical diagnosis is challenging as these clinical phenotypes mimic the 

clinical features of frontotemporal dementia and AD. In addition, a small proportion of 

pathologically confirmed CTE cases were clinically asymptomatic and they are associated 

with mild focal rather than advanced CTE pathology. In the Boston series, 3 of the 36 pure 

CTE cases (8%)[61] and 11% of all pathologically confirmed CTE cases were clinically 

asymptomatic[23]. 

 

Risk factors 

The duration of exposure to contact sports is significantly associated with more severe CTE-

tau pathology, suggesting that the chronic and cumulative nature of RHI is the most 

important risk factor of CTE[23, 62]. This notion is supported by the absence of a concussion 

history (i.e. head impacts associated with significant neurological symptoms) in 16% of 

published CTE cases[62]. Recently, our group reported the pathological findings of CTE 

fulfilling the latest NINDS diagnostic criteria in 4 of 6 retired Association footballers, whose 

brains were examined[63]. Association football (soccer) is unique as players are exposed to 

substantial amount of various types of RHI throughout their career, including heading of the 

ball and head collisions, which are rarely associated with overt neurological symptoms, 

unlike in boxing or American football. The retired footballers included in our series had long 

career averaging of 26 years and all were skilled headers of the ball. Most importantly, 

concussion associated with loss of consciousness was reported in 5 of 6 ex-footballers 



limiting to only one episode each. This suggests that subconcussive RHI exposure is the main 

potential link to the development of CTE in these cases.  

Not all individuals develop CTE pathology following exposure to RHI. In a Mayo Clinic 

Brain Bank Study, Bieniek and colleagues found a prevalence of criteria-defined CTE 

pathology[19] in 21 of 66 (32%) former athletes in their archival cohort of 1721 men after 

excluding cases with primary tauopathies including PSP, CBD, Pick’s disease and FTLD-

17MAPT[64]. Dose-response relationship including threshold of impact force, frequency, 

intervals and their associated risk of CTE remain to be established[65]. Genetic susceptibility, 

such as APOE allele[25], MAPT H1 haplotype and TMEM106B[64], may modify CTE risk, 

but their significance will need to be validated future studies. Furthermore, age of RHI 

exposure[66-68], biomechanics of the impact force, cognitive reserve[69], and lifestyle 

choices including alcohol and substance abuse, chronic use of analgesics and performance-

enhancing drugs[70] have all been hypothesized to influence the susceptibility to CTE 

development and modulate the clinical manifestation. 

 

Mouse and computational models 

The findings of mouse models of CTE have been inconsistent with only half of the studies 

demonstrating tau aggregates following exposure to RHI[71]. When interpreting the results of 

mouse models, fundamental differences between human and rodent brains should be taken 

into consideration. For instance, increased levels of 4-repeat tau are found in rodent cortex, 

which promotes binding to microtubules leaving less 4-repeat tau available for 

hyperphosphorylation and NFT formation[72]. Human and mouse tau differ significantly in 

the length of amino acid sequence at the amino terminus and this prevents tau-tau interactions 

and inhibits fast axonal transport, both of which hinder the potential for the formation of tau 

inclusions in mice[71]. In a recent mouse study, lightly anaesthetized unrestrained mice 

exposed to 30 RHIs over six weeks were sacrificed 53 days after the final head impacts[48]. 

Neuropathological examination of mouse brains approximately two months after the last head 

impact showed CTE-like features with neuroinflammation inferred by the presence of 

astrogliosis and microgliosis, depositions of hyperphosphorylated tau, Aβ, and TDP-43[48]. 

The findings of this study support the causal relationship between RHI and CTE. 



A computational model of brain injury biomechanics was developed to improve the 

understanding between RHI and the pattern of CTE pathology[73]. The study showed brain 

tissue deformation induced by head impact loading was greatest in sulcal locations, where the 

CTE-tau pathology predominated. Diffusion tensor imaging, a neuroimaging technique 

widely used to estimate the long-term effects of RHI, showed converging imaging 

abnormalities within the cortical sulcal regions in RHI patients with decrease in fractional 

anisotrophy when compared to controls[73] 

 

Future directions 

The aetiology of CTE is a topic of significant public health interest. There is a pressing need 

to identify the key risk factors to implement protective strategies for athletes and military 

personnel. To identify potential risk factors for CTE will require well designed and large-

scaled longitudinal prospective studies with sequential collection of objective measurement 

of head impact exposure, clinical data, genetic analysis, neurocognitive testing, neuroimaging 

and fluid biomarkers. Studies involving fluid biomarkers are essential to identify the early 

and, potentially reversible, stages of CTE in populations exposed to RHI before any structural 

changes become irreversible. Promising biomarkers in at risk populations include CSF levels 

of Aβ, tau and neurofilament light (NF-L), diffusion tensor imaging[74], and PET imaging 

using FDDNP (2-(1-[6-[(2-[F-18]fluoroethyl)(methyl)amino]-2-

naphthyl]ethylidene)malononitrile)[75], a ligand that binds to both NFTs and Aβ aggregates 

in the brain. These data will finally require both validation and correlation with the newly 

established neuropathological criteria of CTE obtained by post-mortem examination to 

provide answers to some of the questions raised in this review. 

 

  



Table 1:  

Preliminary NINDS criteria for the pathologic diagnosis of CTE [19]. 

 

Mandatory features: 

 

1. Tau inclusions in neurons, astrocytes, cell processes around small vessels in an 

irregular pattern at the depths of the cortical sulci 

Supportive neuropathological features of CTE: 

 

Tau pathologies: 

 

1. Pretangles and NFTs preferentially accumulating in the superficial cortical layers 

2. NFTs or ghost tangles preferentially observed in hippocampal CA2 subregion and 

prominent proximal dendritic swellings in CA4 subregion 

3. Neuronal and astrocytic lesions in subcortical nuclei, including the mammillary 

bodies, hypothalamic nuclei, amygdala, nucleus accumbens, thalamus, midbrain 

tegmentum, nucleus basalis of Meynert, raphe nuclei, substantia nigra and locus 

coeruleus 

4. Thorn-shaped astrocytes in the glial limitans in the subpial and periventricular regions 

5. Large grain-like and dot-like structures in the cell processes in addition to threadlike 

neurites 

Non-tau pathologies: 

 

1. Disproportionate dilatation of the third ventricle, septal abnormalities, mammillary 

body atrophy, and contusions or other signs of previous traumatic injury 

2. TDP-43 immunoreactive neuronal cytoplasmic inclusions and dot-like structures in 

the hippocampus, anteromedial temporal cortex and amygdala 

 



 

  



Figure 1: 

The characteristic histological features of CTE. Tau immunohistochemistry demonstrates 

neuronal lesions preferentially affecting the superficial cortical layers (a), and the 

pathognomonic lesions consisting of patchy tau aggregates in neurons, astrocytes and cell 

processes in the perivascular regions at the depth of the cortical sulci marked by asterisks (b-

e).  

 

Figure 2: 

Illustration of the cascade of events following RHI based on findings of recent studies[40, 42-

44, 48]. Following head impact, different forms of tissue pathology, including axonal injury, 

blood-brain barrier disruption with inflammatory cell extravasation, deafferentation and 

synapse degeneration caused by distal axonal injury, triggers an acute neuroinflammatory 

response causing reactive astrogliosis and the initiation of an immune response to repair or 

limit tissue damage[43]. A combination of factors including the frequency and interval of 

RHI[40, 76] and other unknown genetic and environmental risks collectively impacts on the 

long-term outcome: neurorestoration and complete recovery or the trigger of a chronic 

neuroinflammatory state leading to the neurodegenerative cascade and formation of tau 

pathology.  
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