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ABSTRACT  

Fault detection has become increasingly important for improving the reliability and safety of 

process systems. This paper presents a model-based fault detection methodology for nonlinear 

process systems. The objective of this work is to detect faults by estimating the model 

parameters using multiparametric programming. The parameter estimates are obtained as an 

explicit function of the measurements by using multiparametric programming. The diagnosis of 

fault is carried out by monitoring the changes of the residual of model parameters. Case studies 

of fault detection for single stage evaporator system and quadruple tank system are presented. A 

number of faulty and fault free scenarios are considered to show the effectiveness of the 
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presented approach.  The proposed approach successfully estimates the model parameters and 

detects the faults through simple function evaluation of explicit functions. 

 

1. INTRODUCTION 

Fault can be defined as an unpermitted deviation of at least one characteristic of a variable 

from an acceptable behavior while failure can be characterized as a permanent interruption of a 

system's ability to perform a required function under specified operating conditions.
1
 Faults may 

take place in any system component such as actuators, sensors, plant components, or a 

combination of these. In any case, the fault is the primary cause of changes in the system 

parameters and may result in fatal damage and economic loss if the faults are not properly 

handled. These issues provide the motivation to develop an efficient and timely response to 

detecting faults and the faulty equipment to be accurately located so that corrective control action 

can be taken before the faults turn into a catastrophic failure. Hence, fault detection techniques 

have been developed for the diagnosis problem for process systems due to the increasing demand 

for high performance, efficiency, reliability, and safety.  These requirements must be taken into 

account when designing, operating and maintaining the process systems to ensure that potential 

common mode failures are minimized and system reliability is optimized.
2-4

  

Model-based approaches for fault detection (FD) have received much attention over the last 

decades. Model-based methods utilize a mathematical model of the process in order to detect a 

fault as early as possible and as accurately as possible and utilizing the concept of analytical 

redundancy. Analytical redundancy techniques are more cost effective compared with hardware 

redundancy but are more challenging due to environmental noise / disturbance and modelling 

error.
5
 Analytical redundancy is achieved through a comparison between measured signals with 
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its estimation from the mathematical model of the system. Hence, the basic idea in model-based 

fault detection scheme is to compare the available system measurements with a priori 

information represented by the system's mathematical model through generation of residual 

quantities. In the residual evaluation, an evaluated residual is compared with a threshold and 

fault existence decision is made if the former exceeds the latter.
6,7

 Most of the model-based FD 

techniques are based on observer-based, parity relation, parameter estimation, or a combination 

of the three.
8–11

 Among all the model-based FD schemes, the observer-based FD is one of the 

widely used techniques in fault detection. The basic idea of observer approach is to estimate the 

outputs of the system from the measurements by using some type of observer, and then construct 

the residual by an output estimate error.
12–14

 The parity relation approach uses the parity check 

on the consistency of parity equation to generate residuals (parity vector). The inconsistency in 

the parity relations indicates the presence of faults.
15-17

 On the other hand, the parameter 

estimation approach is based on the assumption that the faults are reflected in the physical 

system parameters and only the model structure is needed to be known.
18-20

 The parameters of 

the actual process are repeatedly estimated on-line and the results are compared with the 

reference model. The parameter estimation approach is straightforward if the model parameters 

have an explicit mapping with the physical coefficients. The key limitation however is that it 

requires solving an optimization online at regular time interval. The solution of an online 

optimization problem is not only time consuming, but also that the solution may not converge in 

a reasonable time. 

Work in the area of fault detection and diagnosis in the context of controller design for closed-

loop system has also been reported in the literature in 
21,22

. In 
23

, a closed-loop structure with a 

feedback control law is designed to decouple the dependency between certain state variables for 
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fault detection and isolation. While in 
24

, distributed model predictive control systems is utilized 

to ensure the system stability when actuator faults occur. 

In this work, a new model-based fault detection scheme using parameter estimation is 

proposed (Section 2). The objective is to detect faults by estimating the model parameters using 

multiparametric programming (MPP) to obtain the parameter estimates as an explicit function of 

the measurements. The estimates of model parameter are thus obtained without the need to solve 

an online optimization problem. The diagnosis of fault is carried out by monitoring the changes 

of the residual of model parameters. Any substantial discrepancy between estimated model 

parameters and the observed model parameters indicates changes in the process and may be 

interpreted as a fault.  The application of the methodology is illustrated for a single stage 

evaporator system and quadruple tank system case studies (Section 3). A number of faulty and 

fault free scenarios are considered to show the effectiveness of the presented approach. 

Concluding remarks are presented in Section 4. 

 

2. METHODOLOGY  

2.1.  General formulation for fault detection using parameter estimation 

Fault detection using parameter estimation techniques were amongst the first methodologies to 

be considered for the purpose of performing early fault detection and diagnosis for critical 

systems.
3,25-26

 This method relies on the principle that possible faults in the monitored system can 

be associated with specific parameters and the mathematical model of the system represented by 

nonlinear ordinary differential equations (ODEs). Parameter estimation method for fault 

detection can be successful if (a) the mathematical model of process system is accurate; (b) the 

experimental data is available; (c) and the model parameters are related to physical system 
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parameters of the equipment or process fluids.
7
 The objective of fault detection is to solve the 

following: 

Problem 1: 

𝜀𝐹𝐷= min𝛉,𝐱(𝑡) ∑ ∑ {𝑥̂𝑗(𝑡𝑖) − 𝑥𝑗(𝑡𝑖)}
2

𝑖∈𝐼𝑗∈𝐽               (1) 

Subject to: 

𝑑𝑥𝑗(𝑡)

𝑑𝑡
=𝑓𝑗(𝐱(𝑡), 𝐮(𝑡), 𝛉, 𝑡), 𝑗 ∈ 𝐽               (2) 

𝑥𝑗(𝑡 = 0) = 𝑥𝑗
0, 𝑗 ∈ 𝐽                (3) 

𝑡 ∈ [0, 𝑡𝑓]                    (4) 

where 𝑥(𝑡) is the J-dimensional vector of state variables in the given ODE system, 𝑥̂𝑗(𝑡𝑖) 

represents the measurements of the state variables at the time points 𝑡𝑖 and θ is the vector of 

parameters that must be estimated such that the error, 𝜀𝐹𝐷 , between the measurements, 𝑥̂𝑗 and 

model predicted values of state variables, 𝑥𝑗 is minimized. There are several approaches for 

solving the parameter estimation problem, and can be categorized as decomposition 

approaches
27-29

 and sequential/simultaneous approaches
30-33

. However, these methods are 

computationally expensive to implement for on-line fault detection method.
34-38

 To overcome 

this problem, we present the parameter estimates for fault detection using multiparametric 

programming.   

 

2.2.  Discretization of Ordinary Differential Equation 

Consider that the ODE initial value problem (2)–(3) is to be solved on the interval, 

𝑡 ∈  [0, 𝑡𝑓] and step size is given by ∆𝑡, the Euler method provides 

𝑥𝑗(𝑘 + 1) = 𝑥𝑗(𝑘) + ∆𝑡𝑓𝑗(𝐱(𝑘), 𝐮(𝑘), 𝛉)                 (5) 
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For 𝐼 = 1, substituting (5) in Problem 1, the fault detection is given by the following Nonlinear 

Program (NLP): 

Problem 2: 

𝜀𝑀𝑃𝑃 =  𝑚𝑖𝑛 𝜃,𝑥𝑗(𝑘=1) ∑ {𝑥̂𝑗(𝑘 + 1) − 𝑥𝑗(𝑘 + 1)}
2

𝑗∈𝐽              (6) 

Subject to: 

ℎ𝑗 = 𝑥𝑗(𝑘 + 1) −  𝑥𝑗(𝑘) − ∆𝑡𝑓𝑗(𝐱(𝑘), 𝐮(𝑘), 𝛉) = 0, 𝑗 ∈ 𝐽           (7) 

𝑥𝑗(𝑘 = 0) = 𝑥𝑗
0, 𝑗 ∈ 𝐽                (8) 

where ℎ𝑗  represents the set of nonlinear algebraic equations obtained by discretizing the ODEs 

given by equation (2). 

 

2.3.  Parameter estimation using multiparametric programming 

Various researchers have employed different methods for estimating the model parameters, θ. 

One key issue in fault detection is to estimate the model parameters precisely (accuracy) and as 

fast as possible (speed). Accuracy is important to avoid false-positives, while speed ensures that 

the faults are identified quick enough to be able to take corrective actions in a timely manner. In 

this work, we will focus on developing a solution technique for fault detection using 

multiparametric programming (MPP) to estimate the model parameters, θ. Multiparametric 

programming provides the optimization variables as an explicit function of the parameter.
39-44

 In 

this work, the model parameters, θ are considered as optimization variables and the 

measurements, 𝑥̂𝑗(𝑘 + 1) as the parameters, in the context of multiparametric programming. To 

obtain this, the Karush-Kuhn-Tucker (KKT) conditions for Problem 2 are first obtained as 

follows. 

The Lagrangian function is given by 
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𝐿 = 𝑔 + ∑ 𝜆𝑗ℎ𝑗𝑗∈𝐽                  (9) 

where 

𝑔 = ∑ {𝑥̂𝑗(𝑘 + 1) − 𝑥𝑗(𝑘 + 1)}
2

𝑗∈𝐽                        (10) 

ℎ𝑗 =  𝑥𝑗(𝑘 + 1) −  𝑥𝑗(𝑘) − ∆𝑡𝑓𝑗(𝐱(𝑘), 𝐮(𝑘), 𝛉) = 0, 𝑗 ∈ 𝐽         (11) 

The KKT conditions are given by the Equality Constraints as follows 

𝛻𝜃𝐿 = 𝛻𝜃𝑔 + 𝛻𝜃𝑗
∑ 𝜆𝑗ℎ𝑗              (12) 

ℎ𝑗=0                (13) 

Equations (12) and (13) represent a square system of multiparametric nonlinear algebraic 

equations. In this work, these equations are solved symbolically using Mathematica
45

 to obtain θ 

as an explicit function of  𝒙̂  i.e. 𝛉(𝒙̂) is obtained. This allows computation of parameter 

estimates, θ, by simple function evaluation of 𝛉(𝒙̂). The algorithm for model-based parameter 

estimation for fault detection using multiparametric programming is summarized in Table 1 and 

fault detection based upon the estimates obtain is described in the next section. 

 

2.4.  Fault detection analysis 

Fault detection and diagnosis (FDD) is carried out by monitoring the changes of the residual of 

model parameters. In order to define the residual generator for the aforementioned analysis, the 

residual, 𝒓  which is a scalar or vector valued signal containing information on the time and 

location of the occurrence of the fault is designed. The residual for fault detection method is 

defined as  

𝒓 = |𝛉 − 𝛉̂|                 (14) 

The estimated model parameters, θ, should be close to “true” model parameters, θ̂, when no fault 

is present. The abnormal condition can be detected by comparing the residual with a decision or 
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threshold function, 𝑻. Any substantial discrepancy indicates changes in the process and may be 

interpreted as a fault. A fault is then declared if 𝒓 surpasses a certain threshold, 𝑻, as follows: 

𝒓 < 𝑻  no fault has occurred             (15) 

𝒓 ≥ 𝑻  a fault has occurred             (16) 

 

3. CASE STUDIES 

In this section, two case studies are presented to demonstrate the applicability of the approach 

proposed in the previous section. 

  

3.1 Single Stage Evaporator System 

In this section, we present single stage evaporator system
46

 as a case study to illustrate the 

solution steps. A mathematical model of single stage evaporator system is described as: 

𝑑𝑊

𝑑𝑡
= 𝐹 − (𝛿𝑊 + 𝐸𝐶) − 𝑉              (17) 

𝑑𝑇

𝑑𝑡
=

𝛽𝐹𝑥𝐹+(𝑉−𝐹)(𝑇−𝑇𝐵)

𝑊
                   (18) 

where 

𝑉 = (
𝑈𝐴(𝑇𝑠−𝑇)−𝐹𝐶𝑝(𝑇−𝑇𝐹)−𝑄𝐿

∆𝐻𝑉
)                  (19) 

𝑊 and 𝑇 are the state variables representing the holdup and temperature respectively and the 

model parameters for this process system are heat transfer coefficient, UA  and composition of 

feed,  𝑥𝐹.  V is the vapor flowrate from evaporator, 𝐹 is the feed flowrate, 𝑇𝑠 is the steam 

temperature, 𝑇𝐵 is the temperature for normal boiling point of solvent, 𝑇𝐹  is the temperature of 

the feed system,  𝐶𝑝 is the heat capacity of the solution, 𝑄𝐿 is the rate of heat loss to the 

surroundings and ∆𝐻𝑣 is the heat of vaporization of the solvent. The diagram of the evaporator 



 9 

plant is shown in Figure 1. The parameter values used for simulation of the reactor are shown in 

Table 2. In this system, the evaporator operation is assumed to be at 1 atm (101.3 kPa) of 

pressure. The temperature for normal boiling point of solvent, 𝑇𝐵 is 100 ˚C and boiling point, 𝛽 

is 8.33 ˚C per 10% solute. The rate of heat loss to the surroundings, 𝑄𝐿 is 400 kJ/min and a steam 

temperature, 𝑇𝑠 is 136 ˚C to correspond to a typical low-pressure steam line of about 200 kPa 

gauge.  

The formulation and solution of the parameter estimation problem using multiparametric 

programming for single stage evaporator is summarized as follow:  

i)  The nonlinear ODE model (17)-(19) is discretized and reformulated as the following 

algebraic equations: 

𝑊(𝑘 + 1) = 𝑊(𝑘) + ∆𝑡(𝐹 − (𝛿𝑊(𝑘) + 𝐸𝐶) − 𝑉)           (20) 

𝑇(𝑘 + 1) = 𝑇(𝑘) + ∆𝑡 (
𝛽𝐹𝑥𝐹+(𝑉−𝐹)(𝑇(𝑘)−𝑇𝐵)

𝑊(𝑘)
)            (21) 

where  

𝑉 = (
𝑈𝐴(𝑇𝑠−𝑇(𝑘))−𝐹𝐶𝑝(𝑇(𝑘)−𝑇𝐹)−𝑄𝐿

∆𝐻𝑉
)             (22) 

 

(ii)  The discrete-time fault detection problem is formulated as the following NLP: 

Problem 3: 

𝜀𝑀𝑃𝑃 =  𝑚𝑖𝑛 𝑈𝐴,𝑥𝐹
∑ {(𝑊̂(𝑘 + 1) − 𝑊(𝑘 + 1))

2

+ (𝑇̂(𝑘 + 1) − 𝑇(𝑘 + 1))
2

}𝐾
𝑘=0       (23) 

Subject to: 

ℎ1 = 𝑊(𝑘 + 1) − 𝑊(𝑘) − ∆𝑡(𝐹 − (𝛿𝑊(𝑘) + 𝐸𝐶) − 𝑉) = 0         (24) 

ℎ2 = 𝑇(𝑘 + 1) − 𝑇(𝑘) − ∆𝑡 (
𝛽𝐹𝑥𝐹+(𝑉−𝐹)(𝑇(𝑘)−𝑇𝐵)

𝑊(𝑘)
) = 0          (25) 

𝑘 ∈ [0,500]                (26) 
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(iii) Substituting (22),(24) and (25) into (23), we obtain the following: 

 𝑔 = (𝑊̂(𝑘 + 1) − 𝑊(𝑘) − ∆𝑡 (𝐹 − (𝛿𝑊(𝑘) + 𝐸𝐶) − (
𝑈𝐴(𝑇𝑠−𝑇(𝑘))−𝐹𝐶𝑝(𝑇(𝑘)−𝑇𝐹)−𝑄𝐿

∆𝐻𝑉
)))

2

+

(𝑇̂(𝑘 + 1) − 𝑇(𝑘) − ∆𝑡 (
𝛽𝐹𝑥𝐹+((

𝑈𝐴(𝑇𝑠−𝑇(𝑘))−𝐹𝐶𝑝(𝑇(𝑘)−𝑇𝐹)−𝑄𝐿
∆𝐻𝑉

)−𝐹)(𝑇(𝑘)−𝑇𝐵)

𝑊(𝑘)
))

2

                            (27) 

The gradient of 𝑔 with respect to 𝑈𝐴 and 𝑥𝐹 is given by 

𝜕𝑔

𝜕𝑈𝐴
= −(−((

1

∆𝐻𝑉
) − ∆𝐻𝑉∆𝑡𝐸𝑐 + ∆𝐻𝑉∆𝑡𝐹 + ∆𝑡𝑄𝐿 + 𝐶𝑝∆𝑡𝐹𝑇(𝑘) − 𝐶𝑝∆𝑡𝐹𝑇𝐹 + ∆𝑡𝑇(𝑘)𝑈𝐴 −

∆𝑡𝑇𝑠𝑈𝐴 + ∆𝐻𝑉𝑊(𝑘) − ∆𝐻𝑉∆𝑡𝛿𝑊(𝑘))(
1

∆𝐻𝑉
)(2(∆𝑡𝑇(−∆𝑡𝑇𝑠) + 𝑊̂(𝑘 + 1))) −

(
1

∆𝐻𝑉𝑊(𝑘)
)(2∆𝑡(𝑇(𝑘) − 𝑇𝐵)(−𝑇(𝑘) + 𝑇𝑠)(𝑇̂(𝑘 + 1) − ∆𝑡(

𝑇(𝑘)

∆𝑡
+

(𝑇(𝑘)−𝑇𝐵)(−𝐹+
−𝑄𝐿−𝐶𝑝𝐹(𝑇(𝑘)−𝑇𝐹)+(−𝑇(𝑘)+𝑇𝑠)𝑈𝐴

∆𝐻𝑉
)+𝛽𝐹𝑥𝐹

𝑊(𝑘)
))) = 0                                                              (28) 

𝜕𝑔

𝜕𝑥𝐹
=

−(
1

𝑊(𝑘)
)(2𝛽∆𝑡𝐹(𝑇̂(𝑘 + 1) − 𝑑𝑡(

𝑇(𝑘)

∆𝑡
+ (

1

𝑊(𝑘)
) ((𝑇(𝑘) − 𝑇𝐵) (−𝐹 +

−𝑄𝐿−𝐶𝑝𝐹(𝑇(𝑘)−𝑇𝐹)+(−𝑇(𝑘)+𝑇𝑠)𝑈𝐴

∆𝐻𝑉
) + 𝛽𝐹𝑥𝐹)))) = 0                                                                       (29) 

 

 (iv) Equality Constrains in (28) and (29) are solved analytically in Mathematica and the 

solution is given by 

𝑈𝐴(𝑘) = −
−∆𝐻𝑉∆𝑡𝐸𝑐+∆𝐻𝑉𝑑𝑡𝐹+∆𝑡𝑄𝐿+𝐶𝑝∆𝑡𝐹𝑇(𝑘)−𝐶𝑝∆𝑡𝐹𝑇𝐹+∆𝐻𝑉𝑊(𝑘)−∆𝐻𝑉∆𝑡𝛿𝑊(𝑘)−∆𝐻𝑉𝑊̂(𝑘+1)

∆𝑡(𝑇(𝑘)−𝑇𝑠)
         (30) 

𝑥𝐹(𝑘) = −(
1

𝛽∆𝑡𝐹
)(−∆𝑡𝐸𝑐𝑇(𝑘) + ∆𝑡𝐸𝑐𝑇𝐵 + 2𝑇(𝑘)𝑊(𝑘) − 𝑇̂(𝑘 + 1)𝑊(𝑘) − 𝑇𝐵𝑊(𝑘) −

                     ∆𝑡𝑇(𝑘)𝛿𝑊(𝑘) + ∆𝑡𝑇(𝑘)𝛽𝛿𝑊(𝑘) − 𝑇(𝑘)𝑊̂(𝑘 + 1) + 𝑇(𝑘)𝛽𝑊̂(𝑘 + 1))      (31) 
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(v)  The estimated model parameters, (𝑈𝐴 and 𝑥𝐹) are calculated using the measurements (𝑊̂ 

and 𝑇̂) and control variable, 𝐹 and the value of the residuals of model parameters is monitored 

for fault detection and diagnosis.  

The model parameters, 𝑈𝐴 and 𝑥𝐹 are obtained as explicit functions of the measurements and 

control variable, (𝑊̂(𝑘), 𝑇̂(𝑘) and 𝐹) as in Equations (30) and (31). Simple function evaluation 

can be carried out to estimate the model parameter and detect faults without the need to solve the 

online optimization problem. 

 

Fault-free scenario 

In the fault-free scenario, the measured value and model predicted value of state variables for 

holdup, 𝑊  and temperature,  𝑇 are shown in Figure 2 and Figure 3 respectively. Noise has been 

added to the system as random data to evaluate the effectiveness of the proposed method using 

multiparametric programming. The model parameters are calculated using the measurements and 

step size, ∆𝑡 = 1 min. The model parameters are only estimated after state variables have 

reached the steady state value at 50 min. The evaluation of parameter estimation for step size, 

∆𝑡 = 1 min are shown in Figure 4 and Figure 5 for 𝑈𝐴 and 𝑥𝐹. It can be seen from Figure 4 and 

Figure 5 that the estimated model parameters are close to true model parameters. The diagnosis 

of fault is carried out by monitoring the value of the residuals of model parameters. The result is 

shown in Figure 6 and Figure 7. No fault was detected since the residual is less than the 

threshold. Threshold is chosen as 5% from the nominal system parameter values. 
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Faulty scenario 

An investigation for faulty scenario was implemented for this case study. To demonstrate the 

application of parameter estimation for the evaporator, the model parameter (𝑈𝐴 and  

𝑥𝐹) are changed as shown in Table 3 and the model is simulated to obtain data for parameter 

estimation.  

In this faulty scenario, the state variable for holdup, 𝑊 and temperature,  𝑇 are simulated based 

on faulty condition as described in Table 3.  Noise has been added to the system as random data 

to evaluate the effectiveness of the proposed method using multiparametric programming. Figure 

8 and Figure 9 show the measured value and model predicted value of state variables for faulty 

scenario for holdup and temperature. The model parameters are only estimated after state 

variables have reached the steady state value at 50 min with step size,∆𝑡 = 1 min. Figure 10 and 

Figure 11 show the evaluation of estimated model parameters, 𝑈𝐴 and 𝑥𝐹 respectively. From 

these figures, we can see that the estimated parameter, 𝑈𝐴 decreases from 40.548 kJ m/min ˚C at 

75 min to 36.50 kJ m/min ˚C (at 375 min). Estimated model parameter for 𝑥𝐹 also changes from 

0.032 mass fraction (at 165 min) to 0.025 mass fraction (at 285 min).  

The diagnosis of fault is carried out by monitoring the value of the residuals of model 

parameters and the result is shown in Figure 12 and Figure 13. Figure 12 shows that from 75 min 

to 375 min, percentage of residual for 𝑈𝐴 increases slowly up to 10 % and fault is declared from 

225 min to 375 min since the residual for 𝑈𝐴 is more or equal to 5% of threshold value. As 

shown in Figure 13, fault for 𝑥𝐹 is declared at 165 min to 285 min as the percentage of residual 

for 𝑥𝐹 is 20 %. Multiparametric programming based parameter estimation is thus able to 

accurately and quickly identify the faults in the evaporator system. 
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3.2 Quadruple Tank System 

The implementation of fault detection using multiparametric programming is further discussed 

using quadruple tank system. A simulation study on the quadruple-tank system
47

 with faults 

event was simulated. The system consists of four interacting tanks, two pumps and two valves as 

shown in Figure 14. The system aims at controlling the liquid levels in the lower tanks. By 

adjusting the bypass valves of the system, the proportion of the water pumped into different 

tanks can be changed to adjust the degree of interaction between the pump throughputs and the 

water levels. The mathematical model of quadruple tank system is described as: 

𝑑𝐻1

𝑑𝑡
= − 

𝑎1

𝐴1
√2𝑔𝐻1 +

𝑎3

𝐴1
√2𝑔𝐻3 +  

𝛾1𝜅1

𝐴1
 𝑣1            (32) 

𝑑𝐻2

𝑑𝑡
= − 

𝑎2

𝐴2
√2𝑔𝐻2 +

𝑎4

𝐴2
√2𝑔𝐻4 +  

𝛾2𝜅2

𝐴2
 𝑣2           (33) 

𝑑𝐻3

𝑑𝑡
= − 

𝑎3

𝐴3
√2𝑔𝐻 +  

(1−𝛾2)𝜅2

𝐴3
 𝑣2             (34) 

𝑑𝐻4

𝑑𝑡
= − 

𝑎4

𝐴4
√2𝑔𝐻4 +  

(1−𝛾1)𝜅1

𝐴4
 𝑣1             (35) 

For tank 𝑖, 𝐴𝑖 is the cross –section of the tank, 𝑎𝑖 is the cross-section of the outlet hole, and 𝐻𝑖 

is the water level. The voltage applied to pump 𝑖 is 𝑣𝑖, and the corresponding flow is 𝜅𝑖𝑣𝑖. Tank 

leakage faults are considered to test the proposed fault detection. These leaks are assumed to be 

produced by holes at the bottom of the tanks, such that the outflow is lost. The parameter values 

of the quadruple tank system are given in Table 4.  

 

The formulation and solution of the parameter estimation problem using multiparametric 

programming for quadruple tank system is summarized as follow:  

i)  The nonlinear ODE model (32)-(35) is discretised and reformulated as the following 

algebraic equations: 
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𝐻1(𝑘 + 1) = 𝐻1(𝑘) + ∆𝑡 (− 
𝑎1

𝐴1
√2𝑔𝐻1(𝑘) +

𝑎3

𝐴1
√2𝑔𝐻3(𝑘) + 

𝛾1𝜅1

𝐴1
 𝑣1)        (36) 

𝐻2(𝑘 + 1) = 𝐻2(𝑘) + ∆𝑡 (− 
𝑎2

𝐴2
√2𝑔𝐻2(𝑘) +

𝑎4

𝐴2
√2𝑔𝐻4(𝑘) +  

𝛾2𝜅2

𝐴2
 𝑣2)        (37) 

𝐻3(𝑘 + 1) = 𝐻3(𝑘) + ∆𝑡 (− 
𝑎3

𝐴3
√2𝑔𝐻3(𝑘) +  

(1−𝛾2)𝜅2

𝐴3
 𝑣2)         (38) 

𝐻4(𝑘 + 1) = 𝐻4(𝑘) + ∆𝑡 (− 
𝑎4

𝐴4
√2𝑔𝐻4(𝑘) +  

(1−𝛾1)𝜅1

𝐴4
 𝑣1)         (39) 

(ii)  The discrete-time fault detection problem is formulated as the following NLP: 

Problem 4: 

𝜀𝑀𝑃𝑃 =  𝑚𝑖𝑛 𝑎1,𝑎2,𝑎3,𝑎4
∑ {(𝐻̂1(𝑘 + 1) − 𝐻1(𝑘 + 1))2 + (𝐻̂2(𝑘 + 1) − 𝐻2(𝑘 + 1))2 +𝐾

𝑘=0

(𝐻̂3(𝑘 + 1) − 𝐻3(𝑘 + 1))2 + (𝐻̂4(𝑘 + 1) − 𝐻4(𝑘 + 1))2} (40) 

Subject to: 

ℎ1 = 𝐻1(𝑘 + 1) − 𝐻1(𝑘) − ∆𝑡 (− 
𝑎1

𝐴1
√2𝑔𝐻1(𝑘) +

𝑎3

𝐴1
√2𝑔𝐻3(𝑘) +  

𝛾1𝜅1

𝐴1
 𝑣1) = 0      (41) 

ℎ2 = 𝐻2(𝑘 + 1) − 𝐻2(𝑘) − ∆𝑡 (− 
𝑎2

𝐴2
√2𝑔𝐻2(𝑘) +

𝑎4

𝐴2
√2𝑔𝐻4(𝑘) +  

𝛾2𝜅2

𝐴2
 𝑣2) = 0      (42) 

ℎ3 = 𝐻3(𝑘 + 1) − 𝐻3(𝑘) − ∆𝑡 (− 
𝑎3

𝐴3
√2𝑔𝐻3(𝑘) +  

(1−𝛾2)𝜅2

𝐴3
 𝑣2) = 0        (43) 

ℎ4 = 𝐻4(𝑘 + 1) − 𝐻4(𝑘) − ∆𝑡 (− 
𝑎4

𝐴4
√2𝑔𝐻4(𝑘) +  

(1−𝛾1)𝜅1

𝐴4
 𝑣1) = 0        (44) 

𝑘𝜖[0,650]                 (45) 

 

 

(iii)  Substituting (41)-(44) into (40), we obtain the following: 

𝑔 = (𝐻̂1(𝑘 + 1) − 𝐻1(𝑘) − ∆𝑡 (− 
𝑎1

𝐴1
√2𝑔𝐻1(𝑘) +

𝑎3

𝐴1
√2𝑔𝐻3(𝑘) +  

𝛾1𝜅1

𝐴1
 𝑣1))2 +

(𝐻̂2(𝑘 + 1) − 𝐻2(𝑘) − ∆𝑡 (− 
𝑎2

𝐴2
√2𝑔𝐻2(𝑘) +

𝑎4

𝐴2
√2𝑔𝐻4(𝑘) +  

𝛾2𝜅2

𝐴2
 𝑣2))2 + (𝐻̂3(𝑘 + 1) −

𝐻3(𝑘) − ∆𝑡 (− 
𝑎3

𝐴3
√2𝑔𝐻3(𝑘) +  

(1−𝛾2)𝜅2

𝐴3
 𝑣2))2 +

(𝐻̂4(𝑘 + 1) − 𝐻4(𝑘) − ∆𝑡 (− 
𝑎4

𝐴4
√2𝑔𝐻4(𝑘) +  

(1−𝛾1)𝜅1

𝐴4
 𝑣1))2                                                (46) 
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The gradient of 𝑔 with respect to 𝑎1, 𝑎2, 𝑎3 and 𝑎4 is given by 

𝜕𝑔

𝜕𝑎1
= (

1

𝐴1
) (2.829𝛥𝑡√𝑔𝐻1(𝑘) (𝐻̂1(𝑘 + 1) − 𝛥𝑡 (

𝐻1(𝑘)

𝛥𝑡
−

√2𝑔𝐻1(𝑘)𝑎1

𝐴1
+

√2𝑔𝐻3(𝑘)𝑎3

𝐴1
+

𝛾1𝜅1𝑣1

𝐴1
))) = 0                     (47) 

𝜕𝑔

𝜕𝑎2
= (

1

𝐴2
)(2.829𝛥𝑡√𝑔𝐻2(𝑘)(𝐻̂2(𝑘 + 1) − 𝛥𝑡(

𝐻2(𝑘)

𝛥𝑡
−

√2𝑔𝐻2(𝑘)𝑎2

𝐴2
+

√2𝑔𝐻4(𝑘)𝑎4

𝐴2
+

𝛾2𝜅2𝑣2

𝐴2
))) =

0                        (48) 

𝜕𝑔

𝜕𝑎3
= −(

1

𝐴1
)(2.829𝛥𝑡√𝑔𝐻3(𝑘)(𝐻̂1(𝑘 + 1) − 𝛥𝑡(

𝐻1(𝑘)

𝛥𝑡
−

√2𝑔𝐻1(𝑘)𝑎1

𝐴1
+

√2𝑔𝐻3(𝑘)𝑎3

𝐴1
+

𝛾1𝜅1𝑣1

𝐴1
))) − 2𝛥𝑡(0  −

√2𝑔𝐻3(𝑘)

𝐴3
)(𝐻̂3(𝑘 + 1) − 𝛥𝑡(

1.𝐻3(𝑘)

𝛥𝑡
−

𝑎3√2𝑔𝐻3(𝑘)

𝐴3
+

𝜅2𝑣2(1 −𝛾2)

𝐴3
)) = 0        (49) 

𝜕𝑔

𝜕𝑎4
= −(

1

𝐴2
)(2.829𝛥𝑡√𝑔𝐻4(𝑘)(𝐻̂2(𝑘 + 1) − 𝛥𝑡(

𝐻2(𝑘)

𝛥𝑡
−

√2𝑔𝐻2(𝑘)𝑎2

𝐴2
+

𝑎3√2𝑔𝐻3(𝑘)

𝐴2
+

𝛾2𝜅2𝑣2

𝐴2
))) − 2𝛥𝑡(0  −

√2𝑔𝐻4(𝑘)

4
)(𝐻̂4(𝑘 + 1) − 𝛥𝑡(

1.𝐻4(𝑘)

𝛥𝑡
−

𝑎4√2𝑔𝐻4(𝑘)

𝐴4
+

𝜅11(1 −𝛾1)

𝐴4
)) = 0          (50)   

 

(iv) The Equality Constrains in (47)-(50) are solved analytically in Mathematica and the 

solution is given by 

𝑎1 =

−(
1

0. −
16∆𝑡4(𝑔𝐻1(𝑘))

1.
(𝑔𝐻3(𝑘))

1.

𝐴1
2𝐴3

2

)(1. (−1. (
4∆𝑡2(𝑔𝐻3(𝑘))

1.

𝐴1
2 −

(
1

𝐴3
)(2.829∆𝑡2√𝑔𝐻3(𝑘)(0.  −

√2𝑔𝐻3(𝑘)

𝐴3
)))(−

2.829∆𝑡𝐻1(𝑘)√𝑔𝐻1(𝑘)

𝐴1
+

2.829∆𝑡√𝑔𝐻1(𝑘)𝐻̂1(𝑘+1)

𝐴1
−

2.829∆𝑡2√𝑔𝐻1(𝑘)𝛾1𝜅1𝑣1

𝐴1
2 ) − (

1

𝐴1
2)(4∆𝑡2√𝑔𝐻1(𝑘)√𝑔𝐻3(𝑘)(

2.829∆𝑡𝐻1(𝑘)√𝑔𝐻3(𝑘)

𝐴1
−
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2.829∆𝑡𝐻̂1(𝑘+1)√𝑔𝐻3(𝑘)

𝐴1
+ 2. ∆𝑡𝐻3(𝑘)(0.  −

√2𝑔𝐻3(𝑘)

𝐴3
) − 2∆𝑡(0.  −

√2𝑔𝐻3(𝑘)

𝐴3
)𝐻̂3(𝑘 + 1) +

2.829∆𝑡2√𝑔𝐻3(𝑘)𝛾1𝜅1𝑣1

𝐴1
2 +

2.∆𝑡2(0. −
√2𝑔𝐻3(𝑘)

𝐴3
)𝜅2𝑣2(1 −𝛾2)

𝐴3
)))                                    (51) 

𝑎2 =

−(
1

𝐴2
2∆𝑡(𝑔𝐻2(𝑘))

1.5
(𝑔𝐻4(𝑘))

1.)(0.707(0.  −𝐴2
3𝐻2(𝑘)(𝑔𝐻2(𝑘))1.(𝑔𝐻4(𝑘))1. + 𝐴2

3(𝑔𝐻2(𝑘))1.𝐻̂2(𝑘 +

1)(𝑔𝐻4(𝑘))1. − 1. 𝐴2
2𝐴4(𝑔𝐻2(𝑘))1.𝐻4(𝑘)(𝑔𝐻4(𝑘))1. + 1. 𝐴2

2𝐴4(𝑔𝐻2(𝑘))1.(𝑔𝐻4(𝑘))1.𝐻̂4(𝑘 +

1) − 1. 𝐴2
2∆𝑡(𝑔𝐻2(𝑘))1.(𝑔𝐻4(𝑘))1.𝜅1𝑣1 + 1. 𝐴2

2∆𝑡(𝑔𝐻2(𝑘))1.(𝑔𝐻4(𝑘))1.𝛾1𝜅1𝑣1 −

𝐴2
2∆𝑡(𝑔𝐻2(𝑘))1.(𝑔𝐻4(𝑘))1.𝛾2𝜅2𝑣2))                 (52) 

𝑎3 = −(
1

𝐴1
2∆𝑡(𝑔𝐻1(𝑘))

1
(𝑔𝐻3(𝑘))

1.5)(0.707(0.  −2.22 × 10−16𝐴1
3𝐻1(𝑘)(𝑔𝐻1(𝑘))

1.
(𝑔𝐻3(𝑘))

1.
+

2.22 × 10−16𝐴1
3(𝑔𝐻1(𝑘))

1.
𝐻̂1(𝑘 + 1)(𝑔𝐻3(𝑘))

1.
− 1. 𝐴1

2𝐴3(𝑔𝐻1(𝑘))
1.

𝐻3(𝑘)(𝑔𝐻3(𝑘))
1.

+

1. 𝐴1
2𝐴3(𝑔𝐻1(𝑘))

1.
(𝑔𝐻3(𝑘))

1.
𝐻̂3(𝑘 + 1) − 1. 𝐴1

2∆𝑡(𝑔𝐻1(𝑘))
1.

(𝑔𝐻3(𝑘))
1.

𝜅2𝑣2 − 2.22 ×

10−16. 𝐴1
2∆𝑡(𝑔𝐻1(𝑘))1.(𝑔𝐻3(𝑘))1.𝛾1𝜅1𝑣1 − 1. 𝐴1

2∆𝑡(𝑔𝐻1(𝑘))1.(𝑔𝐻3(𝑘))1.𝛾2𝜅2𝑣2))       (53) 

𝑎4 = −(
1

0. −
16∆𝑡4(𝑔𝐻2(𝑘))

1.
(𝑔𝐻4(𝑘))

1.

𝐴2
2𝐴4

2

) 1. ((
1

𝐴2
2)(4∆𝑡2√𝑔𝐻2(𝑘)√𝑔𝐻4(𝑘)(−

2.829∆𝑡𝐻2(𝑘)√𝑔𝐻2(𝑘)

𝐴2
+

2.829∆𝑡√𝑔𝐻2(𝑘)𝐻̂2(𝑘+1)

𝐴2
−

2.829∆𝑡2√𝑔𝐻2(𝑘)𝛾2𝜅2𝑣2

𝐴2
2 )) +

1

𝐴2
2 (4∆𝑡2(𝑔𝐻2(𝑘))1.(

2.829∆𝑡𝐻2(𝑘)√𝑔𝐻4(𝑘)

𝐴2
−

2.829∆𝑡√𝑔𝐻4(𝑘)𝐻̂2(𝑘+1)

𝐴2
+ 2. ∆𝑡𝐻4(𝑘)(0.  −

√2𝑔𝐻4(𝑘)

𝐴4
) − 2. ∆𝑡(0.  −

√2𝑔𝐻4(𝑘)

𝐴4
)𝐻̂4(𝑘 + 1) +

2.∆𝑡2(0. −
√2𝑔𝐻4(𝑘)

𝐴4
)𝜅1𝑣1(1. −𝛾1)

𝐴4
+

2.829∆𝑡2√2𝑔𝐻4(𝑘)𝛾2𝜅2𝑣2

𝐴2
2 ))               (54) 

 

 

 (v)  The estimated model parameters, 𝑎𝑖 is evaluated using the measurements, 𝐻̂𝑖(𝑘) and 

control variables, (𝑉1 and 𝑉2) and the value of the residuals of model parameters is monitored for 

fault detection and diagnosis. 
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The model parameters,𝑎𝑖 are obtained as explicit functions of the measurements, 𝐻̂𝑖(𝑘) and 

control variables, (𝑉1 and 𝑉2) as in Equations (51)-(54). Simple function evaluation can be 

carried out to estimate the model parameter without the need to solve the online optimization 

problem. 

 

Fault-free scenario 

In the fault-free scenario, the measured value and model predicted value for water level, 𝐻𝑖 is 

shown in Figure 15. Noise has been added to the system as random data to evaluate the 

effectiveness of the proposed method using multiparametric programming. The model 

parameters, 𝑎𝑖 are calculated using the measurements and step size, ∆𝑡 = 5 s. The evaluation of 

model parameters parameter estimation for step size, ∆𝑡 = 5 s are shown in Figure 16. As shown 

in Figure 16, the estimated model parameters, 𝑎𝑖 are close to true model parameters. The 

diagnosis of fault is carried out by monitoring the value of the residuals of model parameters. 

The result is shown in Figure 17 and no leakage was detected since the residual is less than the 

threshold. Threshold is chosen as 5% from the nominal system. 

 

Faulty scenario 

An investigation for faulty scenario was implemented for this case study. It is assumed that the 

fault takes place due to leak of Tank 1 and Tank 2, resulting in changes in cross section of outlet 

holes, 𝑎1 and 𝑎2, in Tank 1 and Tank 2. The faults considered are modelled as changes in model 

parameters as shown in Table 5.  In this faulty scenario, the state variables for water level tank, 

𝐻𝑖 are simulated based on faulty condition as described in Table 5.  Noise has been added to the 

system as random data to evaluate the effectiveness of the proposed method using 
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multiparametric programming. Figure 18 shows the noisy measured value and model predicted 

value for water level, 𝐻𝑖 used to evaluate the model parameters.  

Figure 19 shows the evaluation of estimated model parameter value, 𝑎1. We can see that 

the estimated parameter for 𝑎1 have increased from 0.071 cm
2
 to 0.08165 cm

2
 at 50 s to 150 s 

and increased from 0.071 cm
2
 to 0.0781 cm

2
 from 350 s to 450 s. While in estimated the model 

parameter for 𝑎2, the result shows that from 200 sec to 300 sec, there is an increased of model 

parameter, 𝑎2 from 0.057 cm
2
 to 0.06556 cm

2
 and increased from 0.057 cm

2
 to 0.0627 cm

2
 from 

350 s to 450 s. There are no changes in a cross section of output holes in Tank 3 and Tank 4 as 

the estimated model parameter for 𝑎3 and 𝑎4 shows no difference.  

The residual of model parameters is monitored for FDD and the result is shown in Figure 

20. This figure shows that the fault is declared for Tank 1 as residual for  𝑎1 achieves threshold 

value at 50 s to 150 s and 350 s to 450 s while fault in Tank 2 is declared at 200 s to 300 s and 

350 s to 450 s. These results indicate that there are leakages at Tank 1 and Tank 2 at specified 

times as discussed above. The figure also shows that no leakages are detected in Tank 3 and 

Tank 4.  

 

 

4. CONCLUDING REMARKS 

In this work, we proposed the multiparametric programming method to estimate the parameter 

estimation for fault detection. In this method, a square system of parametric nonlinear algebraic 

equations is solved symbolically to obtain model parameter as an explicit function of 

measurements. A limitation of the proposed approach is that the symbolic solution of the 

parametric nonlinear algebraic equations may not always be possible and in this work 

Mathematica© was used for obtaining the solution. The model parameters are thus computed 
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efficiently by performing simple function evaluations, without the need to solve an online 

optimization problem. An implementation of proposed methods is performed by two case studies 

(single stage evaporator and quadruple tank system). The results show that the implementation of 

multiparametric programming for parameter estimation successfully obtained model parameters 

as an explicit function of measurements. Noise was added to the system as random data to test 

the effectiveness of the proposed method. This method is able to accurately estimate the model 

parameters and quickly identify fault. In multiparametric programming, the online computational 

burden is replaced by simple function evaluations. Replacing the optimization problem of fault 

detection with simple and efficient computations has given multiparametric programming 

significant advantages in estimating model parameters. The proposed fault detection approach 

using multiparametric programming thus provides quick and accurate fault detection. The issues 

pertaining fault tolerant control will be the subject of future work. 
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Table 1. Parameter estimation using multiparametric programming algorithm 

Step 1. Discretize nonlinear ODE model (2) to algebraic equations as given in (5) 

Step 2. Formulate fault detection optimization problem as a nonlinear programming 

(NLP) problem as given in (6) - (8) 

Step 3. Formulate KKT conditions for (6) - (8) as given (9) - (13) 

Step 4. Solve the Equality Constrains (12) - (13) of the KKT conditions parametrically 

to obtain Lagrange multiplies and model parameters, 𝜽(𝒙̂) as a function of 

measurements, 𝒙 

Step 4. Screen the solutions obtained in the previous step and ignore solutions with 

imaginary parts  

Step 5. Calculate the estimated model parameters, 𝜽  using the measurement, 𝒙̂ by 

simple evaluation of 𝜽(𝒙) 
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Table 2. Model parameters for single-stage evaporator system 

Parameter Value Description 

𝑈 43.6 kJ/(min m ˚C) heat transfer coefficient 

𝐴 0.93 m2 area of heat transfer 

𝑥𝐹 0.032 mass fraction composition of the feed 

𝑇𝑠 136 ˚C steam temperature in the steam chest 

𝑇𝐵 100 ˚C normal boiling point of solvent 

𝐶𝑝 4.18 kJ/(kg ˚C) heat capacity of the solution 

𝑇𝐹 88 ˚C temperature of the feed system 

𝑄𝐿 400.0 kJ/min rate of heat loss to the surroundings 

∆𝐻𝑣 2240 kJ/kg heat of vaporization of the solvent 

𝛽 8.33 ˚C boiling point elevation per mass fraction of 

solute 

𝛿 0.06 (kg/min)/kg holdup constant 

𝐸𝑐 0.0454 kg/min constant 

𝐹 2.27 kg/min feed flowrate 

 

Table 3. Faulty scenario for single stage evaporator system 

Fault parameter 𝑈𝐴𝐹 𝑥𝐹
𝐹  

% change in value -10.0 -20.0 

Type of change ramp step 

Starting time of change (min) 75 165 

Stop time of change (min) 375 285 
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Table 4. Model parameters for the quadruple tank system 

Parameters Values Units Description 

𝐴1; 𝐴2; 𝐴3; 𝐴4 28; 32; 28; 32 cm
2
 Cross-section of Tank i 

𝑎1; 𝑎2; 𝑎3; 𝑎4 0.071; 0.057; 0.071; 0.057 cm
2
 Cross-section of the outlet hole 

𝑣1 ; 𝑣2 3.00; 3.00 V Input voltage 

𝜅1; 𝜅2 3.33; 3.35 cm
3
 / Vs  

𝛾1; 𝛾2 0.7; 0.6 -  

𝑔 981.0 cm / s
2
   Acceleration of gravity 

 

Table 5. Faulty scenario for quadruple tank system 

Time Fault parameter 𝑎1
𝐹 𝑎2

𝐹 

50 s – 150 s % change in value + 15.0 0 

200 s – 300 s % change in value 0 + 15.0 

350s – 450 s % change in value + 10.0 + 10.0 
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Figure 1. Evaporator configuration and notation  



 31 

 

Figure 2. (a) 𝑊̂, measured value of state variable, 𝑊 (b) 𝑊, model predicted value of state 

variable, 𝑊 

 

Figure 3. (a) 𝑇̂, measured value of state variable, 𝑇 (b) 𝑇, model predicted value of state 

variable, 𝑇 
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Figure 4. Model parameter values: (a) 𝑈𝐴̂, true value of 𝑈𝐴 (b) 𝑈𝐴, estimated model parameter 

value of 𝑈𝐴 

 

Figure 5. Model parameter values: (a) 𝑥̂𝐹, true value of 𝑥𝐹 (b) 𝑥𝐹, estimated model parameter 

value of 𝑥𝐹 
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Figure 6.  (a) Threshold value (b) Residual evaluation of estimated model parameters for 𝑈𝐴 

 

Figure 7.  (a) Threshold value (b) Residual evaluation of estimated model parameters for 𝑥𝐹 
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Figure 8. Faulty scenario (a) 𝑊̂F, measured value of state variable, 𝑊 (b) 𝑊, model predicted 

value of state variable, 𝑊  

 

Figure 9. Faulty scenario (a) 𝑇̂𝐹, measured value of state variable, 𝑇 (b) 𝑇, model predicted 

value of state variable, 𝑇  
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Figure 10. Model parameter values: (a) 𝑈𝐴̂, true value of 𝑈𝐴 (b)  𝑈𝐴𝐹, estimated model 

parameter value of 𝑈𝐴

 

Figure 11. Model parameter values: (a) 𝑥̂𝐹, true value of 𝑥𝐹 (b)  𝑥𝐹
𝐹 , estimated model parameter 

value of 𝑥𝐹 
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Figure 12.  (a) Threshold value (b) Residual evaluation of estimated model parameters for 𝑈𝐴𝐹 

 

Figure 13.  (a) Threshold value (b) Residual evaluation of estimated model parameters for 𝑥𝐹
𝐹  
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Figure 14. Quadruple tank process 
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Figure 15. (a) 𝐻̂𝑖, measured value of water level (b) Model predicted value of state variable, 𝐻𝑖 
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Figure 16. Model parameter values: (a) 𝑎̂𝑖, true value of 𝑎𝑖 (b) 𝑎𝑖, estimated model parameter 

value of 𝑎𝑖 
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Figure 17.  (a) Threshold value (b) Residual evaluation of estimated model parameters for 𝑎𝑖  
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Figure 18. Faulty scenario (a) 𝐻̂𝑖
𝐹, measured value of water level (b) Model predicted value of 

state variable, 𝐻𝑖
𝐹  
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Figure 19. Model parameter values: (a) 𝑎̂𝑖, true value of 𝑎𝑖 (b) 𝑎𝑖
𝐹, estimated model parameter 

value of 𝑎𝑖 
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Figure 20. (a) Threshold value (b) Residual evaluation of estimated model parameters for 𝑎𝑖

𝐹 
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Figure 21. For Table of Contents Only  

 


