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Abstract 

Background: Disease prevalence models have been widely used to estimate health, lifestyle and disability charac‑
teristics for small geographical units when other data are not available. Yet, knowledge is often lacking about how to 
make informed decisions around the specification of such models, especially regarding spatial assumptions placed on 
their covariance structure. This paper is concerned with understanding processes of spatial dependency in unex‑
plained variation in chronic morbidity.

Methods: 2011 UK census data on limiting long‑term illness (LLTI) is used to look at the spatial structure in chronic 
morbidity across England and Wales. The variance and spatial clustering of the odds of LLTI across local authority dis‑
tricts (LADs) and middle layer super output areas are measured across 40 demographic cross‑classifications. A series 
of adjacency matrices based on distance, contiguity and migration flows are tested to examine the spatial structure 
in LLTI. Odds are then modelled using a logistic mixed model to examine the association with district‑level covariates 
and their predictive power.

Results: The odds of chronic illness are more dispersed than local age characteristics, mortality, hospitalisation rates 
and chance alone would suggest. Of all adjacency matrices, the three‑nearest neighbour method is identified as the 
best fitting. Migration flows can also be used to construct spatial weights matrices which uncover non‑negligible 
autocorrelation. Once the most important characteristics observable at the LAD‑level are taken into account, substan‑
tial spatial autocorrelation remains which can be modelled explicitly to improve disease prevalence predictions.

Conclusions: Systematic investigation of spatial structures and dependency is important to develop model‑based 
estimation tools in chronic disease mapping. Spatial structures reflecting migration interactions are easy to develop 
and capture autocorrelation in LLTI. Patterns of spatial dependency in the geographical distribution of LLTI are not 
comparable across ethnic groups. Ethnic stratification of local health information is needed and there is potential to 
further address complexity in prevalence models by improving access to disaggregated data.

Keywords: Spatial autocorrelation, Spatial dependency, Spatial interaction, Spatial weights, Neighbourhood 
matrices, Disease mapping, Chronic morbidity, Limiting longstanding illness
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Background
The spatial distribution of chronic morbidity at a subna-
tional level attracts considerable policy interest with rel-
evance for health inequalities, health care planning, and 
resource allocation. Yet, information on the spatial dis-
tribution of morbidity is typically scarce with research-
ers often reverting to data on mortality or using data on 

health service use. Intelligence on the small area popula-
tion prevalence of morbidity has tended to focus on can-
cer incidence and mortality [1, 2], cancer risk factors and 
screening uptake [3], the prevalence of long-term condi-
tions [4, 5], healthy lifestyles and behaviours [6, 7]. There 
has also been interest in measuring geographical varia-
tions in health needs [8, 9] and underdiagnosis of long-
term conditions [10].

The challenges involved in developing small area 
measures of morbidity have led to a range of techniques 
known as small area estimation. Model-based approaches 
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to small area estimation rely on the premise that a chosen 
statistical model accurately predicts the odds of illness 
for the entire population. They raise a series of chal-
lenges in terms of validity. In the absence of systematic 
procedures guaranteeing optimal model specification 
and selection, there is a risk that this modelling process 
will be ill-informed, introducing bias in the resulting esti-
mates. Reviews have argued that assumptions around the 
treatment of spatial effects introduces a particular ele-
ment of subjectivity [11, 12, p. 87].

The objective of this paper is to assess spatial depend-
ence between small geographical areas for chronic 
morbidity. We analyse the geographical distribution of 
limiting long-term illness (LLTI) across England and 
Wales, focusing on the spatial structure in morbidity 
both with and without controls for confounders (mor-
tality and hospitalisation rates). We consider global and 
local autocorrelation statistics for three types of depend-
ence structures: contiguity, nearest k-neighbours and 
a novel approach building a spatial interaction matrix 
using origin-destination migration flows. Our analyses 
are stratified by ethnicity to isolate differences in the spa-
tial structure of morbidity across different population 
subgroups. This results from existing interest in monitor-
ing health inequities across ethnic groups. It is currently 
unclear from the literature how homogenous the spatial 
structure of morbidity is across ethnic groups, especially 
given the complex interaction with existing processes of 
residential segregation.

The following background section gives a review of 
existing knowledge on spatial aspects of health determi-
nants, to inform model selection. Aims and methods are 
then outlined, with a particular emphasis on concepts 
used to describe spatial structures. A results section then 
presents both descriptive statistics and model-based 
analyses of the geographical distribution of LLTI, intro-
ducing mortality, hospital admissions and adjacency 
matrices as predictors of this structure. The paper then 
concludes by identifying implications for the routine pre-
diction of morbidity prevalence for different geographical 
units.

Existing knowledge on the spatial structure of chronic 
morbidity
Much of what is known on the distribution of chronic 
diseases comes from data on validated self-reported 
health statuses. LLTI has emerged as a very strong pre-
dictor both of chronic morbidity and mortality [13–15]. 
It has also proved instrumental in measuring health 
inequalities both across socioeconomic categories and 
space [16–18]. LLTI has been recorded since 1991 in 
UK decennial censuses in the form of a question asking 
whether respondent’s day-to-day activities were reduced 

by a health problem or disability. This information has 
supported important research into the determinants of 
health care needs of different populations in different 
places [19, 20].

The literature provides some information regarding 
ecological determinants of chronic morbidity and their 
spatial structure. Analyses have showed that, even once 
population age and essential demographic confounders 
are controlled for, adjusted morbidity levels correlate 
significantly with local socioeconomic characteristics 
[17], and the remaining between-area heterogeneity is 
spatially structured [21]. To examine these ‘place effects’, 
Bentham et al. [22], Martin et al. [23], Senior et al. [16], 
Shouls et  al. [21, 24], Congdon [4, 25, 26] and Stafford 
et  al. [27] have all investigated the association of LLTI 
prevalence with both individual-level characteristics and 
area-level contextual variables. Their work has showed 
that local mortality, unemployment, household over-
crowding, ethnic diversity, social renting, proportions 
of workers employed in mining and other heavy indus-
tries all correlated strongly with standardised ratios of 
LLTI. These confounders often prove to be similar in 
places that are near to each other (for instance across 
urban areas), pointing to distinctive underpinning spa-
tial structures.

A variety of processes have been hypothesised to 
explain this apparent clustering of long-term conditions 
across places. On the one hand, it is the case with many 
health outcomes that a residual spatial pattern can sub-
sist even once observable risk factors or confounders 
are taken into account [28]. On the other hand, research 
has argued that population migration not only deter-
mines the dispersion of communicable disease, but also 
provides one of the factors driving the spatial cluster-
ing of chronic morbidity. The literature has in particu-
lar examined ‘health selective’ residential migrations as 
life course processes of selection [29]. Boyle et  al. [30] 
have produced evidence that Scottish migrants tend 
to be healthier than non-migrants, and that healthy 
migrants are likely to travel longer distances. Further 
evidence supporting the theory of a ‘sorting’ effect of 
migrations on health has been presented by Norman 
et al. [31], emphasising the existence of a strong flow of 
healthy migrants aged 20–59 years towards areas with 
lower levels of material deprivation. A review by Smith 
& Easterlow [32] argues that the influence of residen-
tial mobility processes on geographical inequalities 
in morbidity and mortality remains little understood, 
with mixed results depending on the geographical level 
of analysis and the health outcomes under considera-
tion. Despite the absence of clear evidence claims for 
the health sorting effects of migration point to a need 
to consider how we might use migration data to capture 
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some of the spatial structure in morbidity in a way that 
proximity may not.

All the above evidence has implications for disease 
prevalence models. In its most elementary form, model-
based small area estimation fits a model predicting the 
probability of having a given illness as a function of age, 
sex, and other individual characteristics. This model is 
then applied to local population estimates and auxiliary 
data known for every individual residing in a catchment 
area in order to produce a local prevalence estimate. This 
amounts to interpolating prevalence levels known at the 
national level to local populations using a combination 
of:

(a) fixed individual-level risk confounders
(b) spatially varying area-level confounders
(c) residual unobserved risk (between-area residual 

heterogeneity in prevalence)

This last component (c) is essential and explains the 
popularity of multilevel health models in recent dec-
ades [33], being one of the preconditions to the model’s 
unbiasedness. Residuals capture local departures from 
the overall average which signals, for instance, excess 
morbidity. This random component avoids assuming for 
instance that all persons aged 16–24 years have the same 
prevalence across all areas. This component is difficult 
to estimate because sample data will typically be small, 
often well under a few dozen cases. More importantly, 
the underpinning method assumes that these residu-
als are independent from one another and often ignores 
the fact that spatial dependence may persist. Recognising 
underlying spatial structure makes it possible to borrow 
information from other areas in order to estimate these 
components in a more efficient manner (see for instance 
simulation results by Praseti & Salvati [34]).

More research is needed to understand spatial depend-
ence. Spatial structures have previously been described 
as the result of ‘the operation of processes in which spa-
tial relationships enter explicitly into the way the pro-
cess behaves’ [35, p.  24]. They are often understood as 
functions of distance or spatial adjacency (neighbours). 
The science of spatial autocorrelation has largely been 
dominated by Tobler’s First Law of Geography, summa-
rised as ‘everything is related to everything else, but near 
things are more related than distant things’ [36]. Conti-
guity methods, such as Queen, Rook or Bishop, and the 
k-nearest neighbours method have traditionally been 
privileged. Although this standard approach is appeal-
ing, there are many more ways in which spatial interac-
tion could be defined. In particular, origin/destination 
migration flow statistics constitute additional evidence 

of processes of spatial interaction and therefore between-
area dependence. Although using such flow metrics to 
produce spatial weights has been envisaged before [37, 
p. 271], they have, to the best of our knowledge, not been 
applied to empirical investigation to date.

Internationally, most research has tended to demon-
strate that there is global spatial autocorrelation in many 
health outcomes even after age standardisation [38]. This 
autocorrelation is a sign of spatial similarity in unob-
served risk factors [28]. Yet, it remains unclear whether 
these spatial patterns are homogeneous once we disag-
gregate by demographic subgroup, and add explicit spa-
tially varying area-level confounders.

This justifies looking further into spatial structures 
themselves, to inform non-communicable disease map-
ping methods with a particular focus on the type of 
constraints placed on the treatment of residual between-
place heterogeneity. On the basis of this background we 
propose to examine the spatial structures of LLTI in a 
more systematic way, investigating (a) what structures 
can be uncovered in terms of dispersion, autocorrelation, 
and contextual effects, (b) whether they are the same 
across different subgroups (age and ethnicity) and (c) 
whether they subsist once good area-level covariates are 
introduced. We aim to address a current gap in knowl-
edge regarding the spatial structure of morbidity in Eng-
land and Wales, but also to reconsider the specification 
of disease prevalence models.

Methods
Data source
We use 2011 census data on LLTI for England and Wales 
[39]. Although the quality issues concerning self-assessed 
health information are well documented [40], a key 
advantage of using census data lies in the absence of sam-
ple size restriction. The 2011 census met a high quality 
93  % person coverage rate for England and Wales [41], 
and thus constitutes a unique source of information to 
establish prior knowledge on the spatial structure of ill-
ness. Census data provide sufficient statistical power to 
examine model-fitting hypotheses which usually cannot 
be tested with survey data due to lack of power. This is 
especially true for small population subgroups such as 
older people and ethnic minorities, whose representa-
tion in health surveys is too weak in comparison to the 
amount of interest they attract. This reduces risks of 
model overfitting when using a large number of param-
eters. With the census coverage survey’s adjustments for 
nonresponse [42], the final sample size used for this anal-
ysis is n = 56,075,912.

We examine private households’ returns for question 
no. 23:
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‘Are your day-to-day activities limited because of a 
health problem or disability which has lasted, or is 
expected to last, at least 12 months? Include prob-
lems related to old age’.

Respondents were able to answer ‘Yes, limited a lot’, 
‘Yes, limited a little’, or ‘No’. Throughout this paper ‘LLTI’ 
refers to strong activity limitations (‘limited a lot’) which 
has been found to have a better rate of agreement in the 
post-enumeration Census Quality Survey [40].

The choice of indicator is justified by two main reasons. 
First, LLTI has become a central indicator to measure ine-
qualities in health and health needs, to the point of being 
included in most UK household surveys. It underpins indi-
cators such as the Slope Index of Inequality in health, the 
disability-free life expectancy, as well as gender and ethnic-
ity gaps in health. These have been for a number of years 
to inform health service policy aiming to reduce health 
inequalities [43]. Several of the Office for National Statis-
tics’ products estimate these indicators for local authori-
ties [44, 45], and efforts have been made to publish them 
for smaller units [20]. Second, although self-reported, the 
LLTI health status correlates with important indicators of 
chronic conditions. In addition to being a good predic-
tor of health service use [19], it is also a strong predictor 
of diagnoses as defined in the International Classification 
of Diseases [46], although evidence tends to suggest that 
LLTI tends to underestimate morbidity compared to clini-
cal records or the more demanding SF-36 tool [14].

Statistical methods
This paper aims to address gaps in knowledge regarding 
the spatial structure of chronic morbidity and provide 
evidence relevant to build small area estimation mod-
els. We explore spatial heterogeneity in the odds of LLTI 
at a scale for predictions to be feasible for small ethnic 
groups: local authority districts (LADs), areas with pop-
ulations ranging from 34,000 to 1.1 million inhabitants; 
and middle layer super output areas (MSOAs), census 
geographical units averaging 7700 residents. Standard 
descriptive statistics are used to characterise the spatial 
structure in odds: variance and autocorrelation. A series 
of models then analyse this structure conditionally on 
contextual data (mortality, hospitalisations), using a typi-
cal logistic binomial parameterisation:

where yid is the number of individuals belonging to a 
cross-classification i of gender (1, 2), age group (‘0–15’, 
‘16–49’, ‘50–64’, ‘65+’), and ethnic group (‘White’, ‘Mixed’, 
‘Asian’, ‘Black’, ‘Other’) reporting an LLTI in a given area 
d. nid denotes the total number of residents of private 

(1)log

(

yid + .5

nid − yid + .5

)

= µid + υd = xidβ + υd

households at risk for this same cross-classification, µid 
the conditional mean log-odds of having an LLTI (fixed 
part of the model), β a column vector of fixed effect 
coefficients, and xid a vector of covariates known for 
all individuals: age, sex and ethnicity dummy variables, 
as well as area-level characteristics tested in this paper. 
Random intercepts υd are realisations of a random vari-
able υ of mean zero and variance σ 2. We add 0.5 to both 
the numerator and the denominator of odds to produce 
‘empirical logits’, addressing bias arising from the pres-
ence of null denominators [47, 48].

Models are estimated using Laplace approximation 
with the R package lme4 [49, 50]. We use classical model 
selection techniques; likelihood ratio tests, the Akaike 
Information Criterion (AIC) and regression coefficient 
significance. During model selection, attention was 
also paid to σ 2, the variance of random effects υ, which 
reflects the between-area dispersion in prevalence that 
is not attributed to differences in covariates included in 
the fixed part. The reason why σ 2 is used as a decision 
factor is that it plays a considerable part in the efficiency 
of estimation [51]. Approximations of the mean squared 
error of prediction developed by Prasad and Rao [52] 
and extended to log-linear models [53, 54] show that the 
main determinant of prediction error is the size of σ 2 
compared to the within-group variance. By attempting 
to reduce σ 2 as much as possible, we focus on improv-
ing the predictive power of the fixed part. This is impor-
tant when conducting small area estimation in real world 
conditions because residuals υd will often be estimated 
with very small sample sizes and therefore subject to sub-
stantial error. A strong fixed part µid is likely to produced 
better predictions overall.

Defining ‘spatial structures’
Global spatial autocorrelation is measured using the 
Moran’s I statistic, with a random permutation test for 
significance testing [55]. Local autocorrelation of regres-
sion residuals is also examined using a local indicator of 
spatial autocorrelation (LISA) [56] and the Moran scat-
terplot [57]. These are used to detect significant leverage 
of one set of neighbours on the global (average) level of 
autocorrelation, thereby signalling a cluster of high or 
low similarity.

Four types of adjacency matrices were tested (see Table 1). 
L.A and M.A follow the standard approach and were gen-
erated using the spdep package [58, 59] and boundary 
shapefiles [60]. They are based on the Queen method: areas 
were coded as neighbours in the adjacency matrix if their 
digital boundaries shared at least one point or if two of their 
respective points were separated by less than 500 m. This 
ensures for instance that London boroughs separated by 
the River Thames are coded as neighbours. The final matrix 
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was edited manually to attach islands to mainland neigh-
bours and verify that no area was left without neighbours. 
L.Bk and M.Bk were produced using the k-nearest neigh-
bours method for k values of 2–10, with the view of deter-
mining an optimal k. All matrices were row-standardised, a 
procedure that is traditionally used to ensure the positive-
definitiveness of correlation matrices in various conditional 
autoregressive models when spatial weight matrices are not 
symmetric [61].

For LADs, additional matrices L.C and L.D were built 
using migration flows as a proxy for spatial dependence. 
There are good reasons why areas further apart could be 
more closely related to each other given the UK’s urban 
and rural structure. Proximity is not the only reason why 
risk factors would be more alike in areas. Intra-national 
origin-destination migration data published by the Office 
for National Statistics [62] were used to construct spatial 
weights based on the intensity of flows (see R syntax in 
Additional file 1). For every LAD, we defined neighbours 
as the k areas from which the most migrants originate, 
based on the ratio of the total migrants they contrib-
uted relative to their respective population sizes. In other 
words, neighbours are not just those that send most 
migrants to a given district, they are the ones for which 
these migrants represent the highest proportion of their 
respective populations. This is to ensure a fair weighting 
across all LADs in the process of averaging odds of LLTI, 
and especially ensure that the resulting neighbours would 
not systematically be the biggest LADs. If a district A sent 
a large number of migrants to district B, but this flow in 
fact represented a very modest volume relative the entire 
population of A, it would seem excessive to use the odds 
of poor health of the entirety of district A as a smoothing 
reference for district B.

Sensitivity analyses on a subset of LADs suggested that 
selecting neighbours who send the highest number of 
migrants or those who send migrants flows which repre-
sent the highest proportion of their total population did not 
alter the eventual list of neighbours substantially. Further 
analyses (see Additional file  2) were conducted to estab-
lish whether origins and destinations differed substantially 
depending on the age of migrants. Results showed that 
excluding younger migrants did not have a strong influence 

on the resulting matrices. However, we hypothesised that 
student migrations, which are only temporary, are likely 
be less determinant of the structure of LLTI than other 
types of migrations taking place across life. Final spatial 
weight matrices were therefore generated exclusively based 
on flows for migrants aged 30 years and over.

Results
Descriptive characteristics
Overall across English and Welsh LADs, the mean odds 
of LLTI is 9.23× 10−2 (equivalent to an 8.40  % mean 
prevalence) with a variance of 7.01× 10−4, equivalent to 
a 28.7 % coefficient of variation. This masks huge differ-
ences across subgroups. Examining age, Table 2 suggests 
that the between-area variance in odds of LLTI among 
older groups is several hundred times that of younger 
groups. This implies that the level-2 variance is expected 
to be higher for older age groups. Much of this effect can 
be attributed to the higher prevalence of LLTIs among 
older populations; larger odds by definition have larger 
variances. Coefficients of variation reported in Table  3 
confirm this; relative to the average of all odds across 
England and Wales, the dispersion is of the same order 
of magnitude across age and gender groups for White 
populations.

This pattern differs substantially across minority eth-
nic groups. In the case of ethnic minorities in general, 
it seems that between-area differences in prevalence are 
strong for younger groups; even age groups 0–15 exhibit 
high dispersion in the case of categories ‘Black’ and 
‘Other’. We also find higher between-area variance esti-
mates at the MSOA level for these groups: while for the 
White group, the between-MSOA variance in odds of 
LLTI is on average two to three times the between-LAD 
variance, for most other cross-classifications the variance 
is multiplied by a factor of five to ten.

For both LADs and MSOAs, highest levels of autocor-
relation are measured using the three-nearest matrix ·.B3 
(see Table 4). Similar measurements taken for higher val-
ues of k (up to 10 neighbours), not reported in the table, 
confirmed that increasing the number of neighbours only 
reduces Moran’s I estimates. Estimates for White popula-
tions show that odds for older age groups exhibit higher 

Table 1 Standardised proximity matrices tested in this paper for between-LADs and between-MSOAs autocorrelation

Matrix identifiers Method of construction

LADs MSOAs

L.A M.A Contiguity matrix (with isles attached to the mainland) [spdep + manual adjustments]

L.Bk M.Bk k‑nearest neighbours (based on Euclidian distances between population centroids) [spdep]

L.Ck – Up to k LADs from which most new residents originate [62], binary weights

L.Dk – Up to k LADs from which most new residents originate [62], proximity weights k, …, 3, 2, 1
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levels of spatial autocorrelation than younger groups. 
In other words, the spatial clustering of poor health is 
higher for older age groups. Around retirement age a 
final wave of intra-national migrations emphasises the 
clustering of people by health.

Interestingly, there is no evidence of the same pattern 
occurring for Other ethnic groups. On the contrary, the 
older the individuals reporting an LLTI, the less they are 
found to cluster in areas. This implies that odds of poor 
health for ethnic minorities are not only more dispersed 
than those of White people; they are also less predictable 
or, in spatial terms, more random. None of the matrices 
tested in this investigation uncovered substantial spatial 
structure in the patterns of illness experienced by ethnic 

minorities, and these structures are very different from 
those of White populations. We hypothesise that such 
heterogeneity relates to the presence of stronger socio-
economic differences across space for ethnic minorities. In 
these circumstances, it is unlikely that borrowing strength 
from the structure exhibited by White populations would 
help make precise inferences about the health of other 
populations. There is more potential in using other infor-
mation such as ethnic density data to reduce the variability 
in the model, as we show in the next section.

These descriptive estimates also provide indications 
regarding best fitting adjacency matrices. In the case of 
LADs, levels of autocorrelation measured using the ‘migra-
tion neighbourhoods’ L.C· and L.D· are lower than with 

Table 2 Between-area variance in odds of LLTI by demographic group for LADs and MSOAs Source: Authors’ calculations, 
2011 census table DC3201EW [39]

MSOA LAD
Age 0-15 16-49 50-64 65+ 0-15 16-49 50-64 65+

Females

White 0.000 0.000 0.007 0.032 0.000 0.000 0.003 0.012

Black 0.145 0.053 0.251 0.585 0.010 0.004 0.013 0.203

Mixed 0.002 0.009 0.401 1.241 0.000 0.000 0.014 0.065

Asian 0.028 0.002 0.071 0.699 0.003 0.000 0.010 0.057

Other 0.181 0.100 0.397 0.882 0.009 0.002 0.033 0.433

Males

White 0.000 0.001 0.008 0.026 0.000 0.000 0.003 0.011

Black 0.172 0.049 0.231 0.653 0.010 0.001 0.008 0.111

Mixed 0.004 0.011 0.437 1.165 0.000 0.001 0.015 0.074

Asian 0.029 0.004 0.082 0.511 0.003 0.003 0.006 0.023

Other 0.184 0.092 0.355 0.572 0.009 0.002 0.014 0.228

Cells are shaded according to the decile corresponding to their value

Table 3 Between-area coefficients of variation for odds of LLTI by demographic group for LADs and MSOAs Source: Authors’ 
calculations, 2011 census table DC3201EW, [39, 60]

MSOA LAD
Age 0-15 16-49 50-64 65+ 0-15 16-49 50-64 65+
White 0.535 0.476 0.627 0.399 0.222 0.311 0.440 0.266

Black 1.359 1.752 1.208 0.901 2.593 1.583 0.895 0.911

Females Mixed 1.158 1.187 1.418 1.176 0.882 0.461 0.670 0.540

Asian 2.002 1.053 1.227 1.092 3.565 0.937 0.812 0.522

Other 1.076 1.427 0.990 0.898 1.924 0.950 0.971 0.987

White 0.469 0.535 0.640 0.446 0.245 0.337 0.456 0.326

Black 1.450 1.773 1.243 1.002 2.288 0.714 0.844 0.810

Males Mixed 1.304 1.209 1.437 1.198 0.431 0.506 0.673 0.637

Asian 1.884 1.329 1.392 1.217 2.761 2.261 0.791 0.498

Other 1.093 1.713 1.161 0.850 1.869 0.967 0.851 1.147

Cells are shaded according to the decile corresponding to their value
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more traditional matrices. Table  4 only reports results 
for row-standardised, ranked neighbours matrix L.D3, 
because the specification of L.Ck (binary weights) did not 
perform as well. In addition, sensitivity analyses found that 
the age categories included to generate those migration 
neighbourhood matrices did not have a strong influence on 
measures of spatial autocorrelation. More research on age-
specific adjacency matrices could refine this observation.

We conclude from this exploratory work that lev-
els of dispersion in odds of LLTIs, although compara-
ble between sexes, are very dissimilar depending on age 
and ethnic groups. They may require separate treat-
ment when it comes to their modelling and prediction. 
Descriptive estimates of autocorrelation provide a strong 
suggestion that the three-nearest neighbours method ·.
B· is likely to be the most efficient since it captures high-
est levels of homogeneity in odds of LLTI. This finding is 
consistent across all demographic cross-classifications.

Modelling with covariates: area classifications and data 
on ethnicity
We now examine the residual geographical variance 
in odds of LLTI once contextual information (area 

classification, ethnic density, mortality rates, and health 
service data) is introduced in a multivariate framework. 
We seek to establish whether this contextual information 
predicts the spatial structure in residuals υ, that is to say, 
shrinks their variance σ 2. In this section, we build a series 
of models predicting LLTI prevalence for LADs exclu-
sively, since they are the level at which contextual data is 
most commonly available. We begin by introducing some 
disaggregation using the 2001 National Statistics area 
classification of English local authorities produced by 
cluster analysis [63]. This allows us to treat LADs differ-
ently according to the following typology;

  • Cities and Services; London Suburbs; London Cos-
mopolitan (reference category)

  • London Centre
  • Prospering UK
  • Coastal and Countryside
  • Mining and Manufacturing.

Welsh contextual data being unavailable for LADs, 
a coarser specification involving a single dummy vari-
able reflecting higher odds of poor health in Wales is 

Table 4 Moran’s I statistics of spatial autocorrelation in odds of LLTI by adjacency matrix and demographic group Source: 
Authors’ calculations, 2011 census table DC3201EW [39], Office for National Statistics migration and digital boundary data 
[60, 62]

M.A M.B3 M.B5
0-15 16-49 50-64 65+ 0-15 16-49 50-64 65+ 0-15 16-49 50-64 65+

Females

White 0.164 0.485 0.556 0.538 0.381 0.644 0.676 0.653 0.310 0.579 0.621 0.604
Black 0.426 0.228 0.198 0.066 0.569 0.415 0.396 0.307 0.505 0.342 0.331 0.225
Mixed 0.233 0.133 0.082 0.032 0.403 0.352 0.322 0.282 0.340 0.281 0.244 0.204
Asian 0.226 0.164 0.109 0.060 0.391 0.347 0.327 0.297 0.317 0.282 0.257 0.218
Other 0.364 0.245 0.102 0.015 0.526 0.436 0.341 0.257 0.465 0.364 0.264 0.179

Males

White 0.241 0.464 0.564 0.605 0.440 0.626 0.686 0.713 0.364 0.563 0.630 0.664
Black 0.354 0.221 0.204 0.083 0.511 0.401 0.409 0.318 0.446 0.339 0.342 0.241
Mixed 0.125 0.111 0.082 0.044 0.344 0.333 0.315 0.281 0.266 0.266 0.237 0.196
Asian 0.256 0.162 0.119 0.052 0.409 0.357 0.345 0.301 0.332 0.281 0.258 0.218
Other 0.358 0.164 0.088 0.044 0.517 0.377 0.319 0.284 0.454 0.299 0.241 0.204

L.A L.B3 L.D3
0-15 16-49 50-64 65+ 0-15 16-49 50-64 65+ 0-15 16-49 50-64 65+

Females

White 0.348 0.556 0.539 0.566 0.540 0.731 0.694 0.717 0.298 0.471 0.459 0.468
Black 0.075 0.025 0.169 0.096 0.326 0.265 0.332 0.259 0.094 -0.008 0.137 0.088
Mixed 0.012 0.345 0.287 0.205 0.300 0.573 0.539 0.398 0.028 0.250 0.263 0.176
Asian -0.003 0.081 0.384 0.358 0.252 0.317 0.547 0.559 -0.001 0.048 0.256 0.265
Other 0.114 0.057 0.093 0.114 0.355 0.311 0.316 0.345 0.101 0.039 0.063 0.064

Males

White 0.353 0.548 0.556 0.596 0.529 0.723 0.712 0.751 0.292 0.455 0.457 0.478
Black 0.042 0.150 0.140 -0.004 0.313 0.342 0.366 0.279 0.066 0.099 0.098 0.063
Mixed 0.048 0.298 0.206 0.205 0.315 0.517 0.447 0.396 0.044 0.210 0.186 0.198
Asian -0.010 0.007 0.194 0.266 0.250 0.259 0.389 0.445 -0.005 0.005 0.145 0.186
Other 0.118 0.088 0.059 -0.044 0.328 0.292 0.291 0.232 0.110 0.065 0.086 0.046

Cells are shaded according to the decile corresponding to their value
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retained. To reflect hypotheses of an ethnic density effect 
in the literature [64], the census estimate of the propor-
tion of the district population identifying as the same 
ethnicity is incorporated as a covariate for those eth-
nic groups where such an addition improves the model 
fit. This is the case for all groups but Black and White 
populations. With other groups, this covariate improves 
fit as measured by the AIC and substantially reduces 
the between-area variance (−12 % for Asian and Other, 
−7 % for Mixed). This forms specifications for a baseline 
model (M0) fitted separately on data for each of the five 
ethnic groups (see Table 5). Area-level residuals exhibit 
mild autocorrelation (Moran’s I comprised between 0.3 
and 0.6).

Local mortality and hospitalisation data
We continue with contextual information on mortality 
and hospitalisations which are expected to be associ-
ated with some of the unobserved risk factors modelled 
through random effects until now. We aim to test 
whether this information absorbs either between-area 
heterogeneity or its spatial structure.

Existing evidence [14, 19, 65] demonstrates that indi-
viduals are very likely to report an LLTI if they have had 
or are about to seek a medical diagnosis. In addition, 
there is a well-known association at the population level 
between self-reported poor health and local mortality 
rates [22]. Though non-linear, this association has been 
exploited for small area estimation using bivariate life 
table models [20] and relational logistic models [66]. The 

bivariate response model, relevant for the data at hand, 
gave a particularly poor fit and was immediately dis-
carded. Instead age-standardised mortality rates (SMRs) 
from death registrations [67] were transformed through 
Z-standardisation and used as a straightforward covari-
ate. Models (M1) (see Table  6) result from best model 
selection among a range of specifications for each ethnic 
group separately. We compared sex-specific SMRs, over-
all SMRs, and interaction with gender dummies. In the 
case of Black populations, no association with mortality 
was found. Gains in terms of reduction of between-area 
variance in random intercepts are important, especially 
in the case of Mixed ethnic groups, where σ 2 is almost 
halved.

While mortality data does help predict local prevalence 
of LLTI, it arguably remains distantly related to chronic 
morbidity amongst the living. We compare its predic-
tive power with that of indirectly standardised ratio of 
emergency admissions (SARs) for 2008–2013 [68] on 
the one hand, and elective admissions [69] on the other 
hand. This is with the hypothesis that prevalence of 
LLTI and rates of hospitalisation share common deter-
minants (socio-economic characteristics, lifelong expo-
sure to health determinants). For all ethnicities, rates of 
emergency admissions are found to be associated with 
larger regression coefficients and improvements in fit. 
They are thus selected as the preferred covariate. We 
then test interaction effects between (a) sex and age vari-
ables, (b) mortality and (c) emergency admissions pro-
ceeding by backward elimination based on the best sets 

Table 5 Regression coefficients: baseline models

M0 White Black Asian Mixed Other

b SE p b SE p b SE p b SE p b SE p

(Intercept) −4.046 0.025 <.001 −4.179 0.034 <.001 −4.493 0.059 <.001 −3.911 0.054 <.001 −4.239 0.049 <.001

Male −0.080 0.001 <.001 −0.054 0.007 <.001 −0.248 0.005 <.001 0.138 0.009 <.001 −0.089 0.012 <.001

Aged 16–49 0.914 0.003 <.001 0.816 0.012 <.001 0.658 0.009 <.001 0.980 0.012 <.001 0.924 0.023 <.001

Aged 50–64 2.036 0.003 <.001 1.975 0.013 <.001 2.466 0.009 <.001 2.342 0.015 <.001 2.417 0.024 <.001

Aged 65+ 3.179 0.003 <.001 3.232 0.013 <.001 3.623 0.009 <.001 3.201 0.016 <.001 3.353 0.025 <.001

Wales 0.274 0.047 <.001 0.191 0.080 0.017 −0.028 0.079 0.727 0.269 0.056 <.001 0.181 0.080 0.024

Lond. centre −0.255 0.076 0.001 0.491 0.097 <.001 −0.019 0.115 0.872 0.069 0.085 0.416 0.165 0.103 0.108

Prospering −0.341 0.029 <.001 −0.219 0.040 <.001 −0.337 0.056 <.001 −0.351 0.041 <.001 −0.296 0.047 <.001

Coastal −0.181 0.040 <.001 0.147 0.069 0.033 −0.316 0.079 <.001 −0.075 0.059 0.206 −0.097 0.077 0.208

Mining 0.163 0.037 <.001 0.008 0.054 0.876 0.034 0.069 0.620 0.088 0.053 0.093 0.024 0.061 0.698

% same ethnicity 1.887 0.297 <.001 −6.016 1.329 <.001 6.477 1.634 <.001

σ 2 0.041 0.202 0.062 0.248 0.092 0.303 0.042 0.205 0.051 0.227

Shapiro–Wilks 0.996 0.519 0.994 0.148 0.995 0.362 0.997 0.724 0.989 0.009

Moran’s I 0.511 <.001 0.431 <.001 0.550 <.001 0.503 <.001 0.394 <.001

AIC 97,530 15,517 21,760 16,112 12,298
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of covariates, leading us to the set of final models (M2) 
reported in Table 7.

Overall, for White populations, the new specifications 
reduce the AIC by over 9800, and the between-area resid-
ual variance by 45 %. The effect is less marked for ethnic 
minorities. The between-area residual variance remains 
stable for Black populations and is cut by about 20  % 
for other minorities. Emergency hospitalisations exhibit 
a strong association with morbidity rates and make the 
biggest improvement to the models. English areas with 
observed emergency admissions in excess of 10 % relative 
to the expected number of admissions (based on age-spe-
cific rates of admission for England overall) exhibit odds 
of LLTI for White persons aged 50–64 years on average 
16  % higher compared to areas in line with England’s 
overall admissions rate. Models remain very different 
across ethnic groups and the association with admissions 
rates is weaker for non-White population. Disaggrega-
tion of admissions statistics by ethnic group could yield 
stronger associations in future investigations.

Residuals of each of the final models were examined 
in detail. Table  8 shows that residuals correlate only 
very weakly across ethnic categories. This constitutes 
further evidence that the spatial structure is specific to 
each of those population groups. Autocorrelation statis-
tics confirm that accounting for differences in mortal-
ity and hospitalisation rates does not reduce the spatial 

autocorrelation in residuals. It reduces the random vari-
ability across LADs substantially without offsetting the 
extent to which deviations of a district’s odds of LLTI 
from the mean correlate with the deviation measured 
in neighbouring LADs. From the viewpoint of predic-
tive modelling, it constitutes an advantage; introducing 
area-level covariates does not reduce the potential to 
borrow information from neighbouring areas using rel-
evant autoregressive model specifications. In addition, 
area-level predictors did not lead to important outli-
ers emerging which could signify local departures from 
the global association with mortality and hospitalisation 
rates. Aside for individuals from Other ethnic minorities, 
there is strong evidence both from normal Q–Q plots 
and Shapiro–Wilks tests that residuals follow a normal 
distribution.

Figures 1 and 2 present a series of maps of final model 
residuals (on the odds ratio scale), which illustrate by 
how much the fixed part of the model should be mul-
tiplied in order to reach the census estimate of odds of 
LLTI. Unshaded areas indicate predictions falling within 
+/−10 % of the census estimate. Red shades signal LADs 
where the fixed part of the model underestimates odds 
by more than 10  % while blue shades LADs where it 
overestimates odds by over 10  %. With Moran’s I esti-
mates close to 0.5, we conclude that half of the devia-
tion between odds for a given district and the national 

Table 6 Regression coefficients: testing models with  LAD-level mortality SMRs as  predictors of  LAD-level prevalence 
of LLTI

SMR directly standardised mortality rate
‡ Variable Z‑standardised

M1 White Black Asian Mixed Other

b SE p b SE p b SE p b SE p b SE p

(Intercept) −4.046 0.024 <.001 −4.189 0.035 <.001 −4.305 0.037 <.001 −4.210 0.024 <.001 −4.167 0.039 <.001

Male −0.095 0.001 <.001 −0.054 0.007 <.001 −0.248 0.005 <.001 0.137 0.009 <.001 −0.090 0.012 <.001

Aged 16–49 0.914 0.003 <.001 0.814 0.012 <.001 0.658 0.009 <.001 0.979 0.012 <.001 0.934 0.023 <.001

Aged 50–64 2.036 0.003 <.001 1.974 0.013 <.001 2.466 0.009 <.001 2.344 0.015 <.001 2.431 0.024 <.001

Aged 65+ 3.179 0.003 <.001 3.231 0.013 <.001 3.624 0.009 <.001 3.204 0.016 <.001 3.362 0.025 <.001

Wales 0.270 0.046 <.001 0.184 0.080 0.022 −0.088 0.075 0.243 0.248 0.046 <.001 0.132 0.082 0.106

Lond. centre −0.253 0.074 0.001 0.500 0.097 <.001 0.090 0.109 0.412 0.063 0.064 0.325 0.392 0.094 <.001

Prospering −0.330 0.028 <.001 −0.195 0.045 <.001 −0.348 0.048 <.001 −0.052 0.029 0.071 −0.290 0.046 <.001

Coastal −0.173 0.039 <.001 0.153 0.069 0.026 −0.477 0.066 <.001 0.169 0.040 <.001 −0.168 0.073 0.021

Mining 0.162 0.036 <.001 −0.012 0.055 0.822 −0.295 0.056 <.001 0.137 0.034 <.001 −0.125 0.058 0.032

SMR‡ 0.028 0.021 0.180 0.191 0.021 <.001 0.180 0.013 <.001 0.091 0.022 <.001

Male SMR‡ × male 0.033 0.002 <.001

Female SMR‡ × female −0.014 0.002 <.001

σ 2 0.039 0.198 0.061 0.247 0.081 0.285 0.024 0.155 0.056 0.237

Moran’s I 0.512 <.001 0.419 <.001 0.456 <.001 0.439 <.001 0.354 <.001

AIC 95,594 15,517 21,726 15,981 12,225

Reduction in AIC (M0) 1936 0 34 131 73
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mean is on average shared by its three nearest neigh-
bours. Figures  3 and 4 examine the local contribution 
of each clique of LADs towards the global measure of 
spatial autocorrelation. LISAs are calculated, regressed 

against the model residuals and plotted for each eth-
nic group separately. Each of the bottom left quadrants 
signals statistically significant outliers in red, which can 
be regarded as area residuals which exhibit significant 
higher or lower similarity with their three nearest neigh-
bours than average, and therefore have particular lever-
age of the global level of autocorrelation. Together with 
the maps, it becomes apparent that the chosen model-
ling and spatial specifications leave important clusters of 
unexplained risk factors, which are dissimilar across eth-
nic groups. The Asian model in particular exhibits a lot 
of heterogeneity in the strength of spatial dependence 
between LADs, with very strong clusters emerging for 
instance in parts of Lancashire, Merseyside and York-
shire, Nottingham and Leicester, as well as North East 
and South West London boroughs. 

Table 7 Regression coefficients: final models predicting LAD-level prevalence of LLTI

SAR indirectly standardised emergency admission ratio, SMR directly standardised mortality rate
† Variable centred around 1.00
‡ Variable Z‑standardised

M2 White Black Asian Mixed Other

b SE p b SE p b SE p b SE p b SE p

Intercept −4.121 0.019 <.001 −4.187 0.035 <.001 −4.528 0.053 <.001 −4.086 0.045 <.001 −4.398 0.050 <.001

Male −0.095 0.001 <.001 −0.054 0.007 <.001 −0.233 0.006 <.001 0.137 0.009 <.001 −0.089 0.012 <.001

Aged 16–49 0.888 0.003 <.001 0.814 0.012 <.001 0.589 0.011 <.001 0.981 0.012 <.001 0.954 0.023 <.001

Aged 50–64 1.968 0.003 <.001 1.947 0.014 <.001 2.353 0.011 <.001 2.304 0.016 <.001 2.466 0.025 <.001

Aged 65+ 3.150 0.003 <.001 3.181 0.014 <.001 3.554 0.010 <.001 3.183 0.016 <.001 3.381 0.025 <.001

Wales 0.344 0.034 <.001 0.222 0.081 0.007 −0.050 0.072 0.491 0.275 0.047 <.001 0.178 0.079 0.024

Lond. Centre −0.104 0.056 0.062 0.526 0.096 <.001 0.100 0.101 0.321 0.140 0.063 0.028 0.180 0.096 0.060

Prospering −0.135 0.024 <.001 −0.173 0.046 <.001 −0.114 0.054 0.034 −0.106 0.036 0.003 −0.091 0.052 0.078

Coastal −0.018 0.030 0.549 0.184 0.070 0.008 −0.201 0.072 0.005 0.103 0.049 0.035 −0.002 0.075 0.977

Mining 0.092 0.027 <.001 −0.012 0.054 0.819 −0.066 0.061 0.278 0.043 0.041 0.292 −0.008 0.058 0.886

% same ethnicity 1.898 0.260 0.000 −3.493 1.029 0.001 8.926 1.598 <.001

SAR† 0.004 0.001 <.001 0.003 0.002 0.068 0.002 0.002 0.302 0.003 0.001 0.001 0.005 0.002 0.005

 SAR† × male 0.001 0.000 <.001 −0.003 0.001 <.001

 SAR† × 16–49 0.004 0.000 <.001 0.003 0.001 <.001

 SAR† × 50–64 0.010 0.000 <.001 0.002 0.001 0.015 −0.004 0.001 <.001

 SAR† × 65+ 0.004 0.000 <.001 0.002 0.001 0.040

SMR‡ −0.062 0.029 0.030 0.061 0.028 0.032 0.098 0.018 <.001 0.147 0.030 <.001

 SMR‡ × male 0.037 0.008 <.001

 SMR‡ × 16–49 0.028 0.012 0.020 0.119 0.011 <.001 −0.152 0.012 <.001

 SMR‡ × 50 − 64 0.092 0.010 <.001 0.178 0.012 <.001 0.086 0.013 <.001

 SMR‡ × 65+ 0.121 0.013 <.001 0.101 0.010 <.001

Male SMR† × male 0.027 0.002 <.001

Female SMR† × female −0.010 0.002 <.001

σ 2 0.021 0.146 0.059 0.243 0.068 0.260 0.022 0.147 0.042 0.205

Shapiro–Wilks 0.994 0.192 0.996 0.423 0.995 0.314 0.997 0.863 0.987 0.003

Moran’s I 0.555 <.001 0.412 <.001 0.449 <.001 0.410 <.001 0.344 <.001

AIC 85,779 15,239 20,925 15,837 12,040

Table 8 Matrix of  pairwise correlation in  random inter-
cepts between models (M2)

White Black Asian Mixed Other
White -
Black 0.181 -
Asian 0.107 0.375 -
Mixed 0.405 0.432 0.311 -
Other 0.212 0.360 0.338 0.364 -

Cells are shaded according to the decile corresponding to their value
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Fig. 1 Model (M2): Q—Q plots of area residuals against a normal distribution and maps of transformed residuals eυd (odds ratio scale) for White 
(a), Mixed (b) and Asian (c) populations. Plots Residuals of model (M2) are compared to a theoretical normal distribution with the same mean and 
standard deviation to assess normality. Choropleths Model residuals are converted on the odds ratio scale using the exponential function to map 
heterogeneity in odds of LLTI across areas once differences in covariates are taken into account. Shades of red (blue) signal areas where the preva‑
lence of LLTI is higher (lower) than expected given their population age, area classification and local rates of emergency hospitalisations
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Discussion
Previous work on the 2011 census has highlighted the 
presence of a strong spatial structure in univariate mor-
bidity statistics [70]. Analysis reported in this paper pre-
sents a deeper examination of multivariate aspects of this 
spatial dependence. Descriptive estimates suggest that 
the variability in odds of poor health across groups and 
places is larger than can be expected from just looking at 
crude prevalence estimates. For instance, area effects are 
often thought to correlate strongly across age groups, as 
reflected in random walk priors proposed by Congdon 
[25]. Our analysis looking at ethnicity provides strong 

evidence that patterns of spatial dependency in the odds 
of LLTI differ substantially across ethnic groups. The 
covariate-adjusted spatial structure of LLTI in White 
people only moderately correlates with that for Mixed 
ethnic groups. Structures of LLTI of all other groups cor-
relate very weakly with each other. Descriptive estimates 
for ethnic minorities also reveal that levels of spatial auto-
correlation are higher for young people, in constrast with 
the increased autocorrelation measured among older age 
groups in White people. Reasons for this difference are 
unclear and call for further research. One can hypothe-
sise that cohort exposure is different for ethnic minorities 

Fig. 2 Model (M2): Q—Q plots of area residuals against a normal distribution and maps of transformed residuals eυd (odds ratio scale) for Black 
(a) and Other (b) populations. Plots Residuals of model (M2) are compared to a theoretical normal distribution with the same mean and standard 
deviation to assess normality. Choropleths Model residuals are converted on the odds ratio scale using the exponential function to map heterogene‑
ity in odds of LLTI across areas once differences in covariates are taken into account. Shades of red (blue) signal areas where the prevalence of LLTI is 
higher (lower) than expected given their population age, area classification and local rates of emergency hospitalisations
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Fig. 3 Model (M2): Maps of LISA with significant clusters (asterisks) and Moran scatterplots of area residuals for White (a), Mixed (b) and Asian (c) 
populations. Moran scatterplots Global spatial clustering of LLTI is represented graphically as the relationship between area residuals (on the logit 
scale) and the spatially lagged area residuals. Some neighbourhoods exhibit higher‑than‑average clustering and appear above the line of best fit. 
Significant clusters are marked with a red dot. Choropleths Shades of yellow indicate areas with a high LISA, while shades of blue indicate areas with a 
low LISA. Statistically significantly higher‑than‑average LISAs are marked with an asterisk (*) and indicate presence of a statistically significant spatial 
cluster at the 95 % confidence level
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and that older people reporting a minority ethnic identity 
have more diverse histories of exposure to risk factors, or 
are not affected by the same health-selecting processes of 
residential segregation.

The rationale for stratifying our analysis by eth-
nic group resides in the substantial interest in under-
standing variations in health care need across different 
population  groups. Since the LLTI indicator has been 
used as a proxy for health care need [71], it is inter-
esting to understand whether care needs of different 
ethnic groups are stable across different places. Our 
findings are in line with Finney’s work [72] and confirm 
that knowledge on patterns and determinants of local 
ethnic health gaps remains insufficient. Overall, dis-
aggregation of ethnicities reveals more variation than 

would arise purely out of the combination of local age 
characteristics and chance. Our finding is also consist-
ent with previous investigations by Shouls et al. [21, 24] 
relying on factor analysis to classify LADs with respect 
to known area-level aggregate health estimates. Our 
analysis of spatial autocorrelation patterns confirms 
that even when accounting for other common popula-
tion health measurements such as rates of hospitalisa-
tion and mortality, which we assume capture important 
unobserved risk factors, the significant remaining 
between-area heterogeneity still exhibits strong, almost 
unaffected spatial patterns in a way that is specific to 
each ethnic group. This is a sign of very different health 
needs and has been identified as an important area of 
current research [73].

Fig. 4 Model (M2): Maps of LISA with significant clusters (asterisks) and Moran scatterplots of area residuals for Black (a) and Other (b) populations. 
Moran scatterplots Global spatial clustering of LLTI is represented graphically as the relationship between area residuals (on the logit scale) and 
the spatially lagged area residuals. Some neighbourhoods exhibit higher‑than‑average clustering and appear above the line of best fit. Significant 
clusters are marked with a red dot. Choropleths Shades of yellow indicate areas with a high LISA, while shades of blue indicate areas with a low LISA. 
Statistically significantly higher‑than‑average LISAs are marked with an asterisk (*) and indicate presence of a statistically significant spatial cluster at 
the 95 % confidence level
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We can draw implications for predictive modelling. In 
addition to measuring disparities in health needs which 
are not already contained in mortality and hospitalisation 
statistics, the distinct spatial pattern of overdispersion 
in the final model confirms the importance of reviewing 
assumptions on random effects in multilevel health mod-
els. While the assumption of spatially independent resid-
uals may be sufficient in many descriptive epidemiology 
studies, it introduces risks of substantial variation and 
clustering in the quality of small area prediction across 
space, especially in the presence of underpowered sam-
ple data. This has seldom been raised as a validity issue 
with disease prevalence prediction models [74] though 
the importance of testing for the existence of significant 
between-area heterogeneity was noted by Datta et  al. 
[75].

This paper gives a practical illustration of the implica-
tions of assuming independence of random effects across 
areas. In our results, the degree to which the fixed part of 
the model underestimates or overestimates odds of LLTI 
is highly dependent on error in neighbouring areas. It 
implies that, in the absence of sufficient individual-level 
auxiliary data (e.g. from a census) or area-level predictors 
(e.g. statistics on health utilisation, social or occupational 
characteristics), there is a greater need to explicitly model 
these spatial structures not just using covariate adjust-
ments, but also incorporating spatial information explic-
itly into regression models. The literature has identified 
several routes for doing so [76]. A common stochastic 
approach is the use of spatial or conditional autocorrela-
tion functions, by introducing spatial matrices into the 
model’s covariance structure [77]. A competing approach 
is the use of spatial trend surfaces (polynomial functions 
of the geographic coordinates) [35], or Euclidean distance 
matrix eigenvalues [78–80] as regressors in a standard 
generalised linear model.

All these techniques presuppose that the struc-
ture underpinning spatial processes in the data is well 
understood. In addition to reviewing existing structures 
defined around both adjacency and proximity (k-nearest 
method), the purpose of this paper was to test the rel-
evance of an alternative definition of spatial structure 
based on residential migration. Levels of autocorrelation 
reached with this method indicate that while it is not the 
best fitting method for LLTI, it does capture a non-negli-
gible spatial interaction.

Incorporating spatial information explicitly into regres-
sion models requires good prior knowledge regarding the 
study outcome. The main benefit of using a large popula-
tion source, such as the census in this paper, is to be able 
to conduct additional tests on local levels of autocorrela-
tion. In our case, substantial local clusters were apparent 
in the residuals for the Asian model, suggesting that the 

range of covariates used was particularly inappropriate 
to predict local odds, even once global autocorrelation 
was taken into account. This constitutes further evidence 
of the need to better understand the spatial structure of 
chronic conditions.

Our study indicates that small area estimation remains 
a data intensive task. It remains difficult to predict LLTI 
with simple models without introducing socio-economic 
information on local populations from a source such as 
the census [81]. Looking at between-area heterogene-
ity (Figs. 1, 2), it is apparent that geographical inequali-
ties remain which prove difficult to predict. With these 
models, about 46.8 % of LADs require an adjustment of 
the fixed part of the model by at least +/−10 % for White 
populations while 15.8 % require an adjustment of at least 
+/−20 % in order to reach the actual odds of LLTI. The 
latter figure is of 9.5 % for Mixed ethnic groups, 15.8 % 
for Other ethnic groups, 33.6  % for Black populations 
and as high as 40.2 % for Asian populations. A reasonably 
large sample of data is required for every area of interest 
in order to reach a precise predictor of random param-
eters υ. This has implications for power calculations to 
obtain good quality empirical best predictors in pres-
ence of such residual variability. Moreover there are also 
questions around the properties of synthetic estimators, 
which only make use of the fixed part of the prevalence 
model, in  situations where the between area residual 
variance σ 2 is not negligible. Such estimators currently 
underpin the majority of UK disease prevalence models. 
These issues point to the importance of tests for hetero-
geneity recently examined by Datta et al. [75] and Molina 
et al. [82].

While models can help produce estimates for small 
populations, hypothesis testing can prove limiting. The 
range of possible small area model specifications is vir-
tually limitless. Shortcomings are likely to arise espe-
cially in cases where models demonstrate similar levels of 
unexplained variance and spatial clustering in their ran-
dom part. This highlights the importance of large-scales 
studies such as censuses in providing reliable auxiliary 
information for small groups.

Conclusions
The key contributions of this paper relate to (1) new 
descriptions of the spatial structure in LLTI both in terms 
of dispersion and autocorrelation and (2) implications for 
predictive modelling and small area estimation.

With regard to the first point, we present greater dis-
aggregation than previous investigations in this area [21, 
24, 70] and emphasise the importance of ethnicity and 
alternative conceptualisations of ‘spatial structure’. We 
provide a systematic analysis of best-fitting spatial struc-
tures and give an applied example of a new method to 
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build adjacency matrices using migration data. Further 
research could examine the predictive power of disaggre-
gating migration interaction according to demographic 
characteristics (age and ethnicity being strong determi-
nants in spatial terms). It would also be worth consider-
ing spatial interaction beyond the notion of symmetry, 
by examining hypotheses where A being a ‘neighbour’ of 
B does not imply the reciprocal. Alternative approaches 
have proposed treating spatial weights as random param-
eters to be estimated rather than as fixed data [83]. This 
may reduce subjectivity in model specification, arguably 
at a certain computational and precision cost.

Our second contribution concerns the applied rel-
evance of the paper to concerns related to predictive 
modelling, particularly around planning efficient small 
area estimation strategies. In the UK, there is sustained 
interest in information for small geographical areas [84], 
in a context where local population health surveys have 
almost entirely disappeared due to rising fieldwork costs 
and falling nonresponse [85]. Persistent, and often wid-
ening health inequalities are a concern internationally 
[86–88], with improvements in small area public health 
monitoring among major policy recommendations to 
tackle such problems [89].

Subnational monitoring of morbidity levels raises par-
ticular statistical challenges. Our results show that geo-
graphical variability in the odds of LLTI are greater than 
expected not only from sampling error and differences in 
local populations’ age distributions, but also in relation 
to levels of mortality and healthcare utilisation. Odds of 
LLTI also exhibit a larger between-area variance for eth-
nic minorities compared to White populations.

From a methodological viewpoint, we acknowledge 
limitations commonly encountered in disease map-
ping. In addition to data limitations themselves (insuffi-
cient disaggregation of age bands, quality issues usually 
expected from hospital data), this research relies on com-
plex models. Only taking into account main fixed effects 
of model (M2), the number of candidate models is 212. 
When taking into account the different types of hospital 
and mortality covariates, the number of possibilities rises 
to millions. Specifications with complex random effects 
and spatial autocorrelation structures could in addition 
be considered, raising this number even higher. Overall, 
this concern, well-identified in predictive modelling [90–
92], represents a challenge in transparency and reproduc-
ibility of public health information.

Overall, our results emphasise the importance of 
detailed contextual information on population char-
acteristics and spatial structures in the production of 
working models that can be trusted to hold for the whole 
population. Modelling techniques can be applied which 

make use of the spatial clustering illustrated in this paper 
to improve prediction. Yet, like empirical prediction, 
these require access to good-quality survey data with 
individual geographical identifiers (for instance post-
code sectors) for all of the targeted small areas. In the 
future, geographic masking [93] may offer safer alterna-
tives in situations where geographical identifiers are too 
disclosive to be released. This study also highlights the 
importance of local health care statistics to improve the 
predictive capability of models. Further disaggregation of 
these data sources by ethnic group and groups of medi-
cal conditions at the local level is likely to help improve 
future disease prevalence models.
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