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 Introduction 

The offshore wind industry has grown to the point where it supplies 11.03GW of electricity within 

Europe, with a further 26.4GW of projects approved [1]. Approximately 80% of the offshore wind 

turbines (OWTs) generating this power are on monopile foundations. One of the key elements in 

designing offshore structures - or in assessing existing ones - is the estimation of the wind and wave 

loading likely to be encountered during their life time. The design and assessment of OWTs is 

currently based on deterministic (or semi-probabilistic) and prescriptive approaches, employing 

safety factors to be applied to deterministic design quantities (i.e., load and resistance) and notional 

return periods for the load conditions to be considered in the design. There are uncertainties associ-

ated with the calculation of structural capacity (e.g., geometry, materials) as well as bias in model-

ling assumptions. These uncertainties become particularly significant when considering extreme 

weather conditions which are intrinsically more difficult to predict. Poor characterisation of these 

uncertainties could lead to either too conservative designs or unsafe ones, with potentially cata-

strophic losses. This poses significant technical challenges but can also severely increase the cost 

of financing offshore projects.  

A framework based on Catastrophe (CAT) risk modelling is proposed here to assess structural and 

non-structural risk associated with OWTs exposed to European extra-tropical cyclones (ETCs; i.e., 

winter storms). The proposed approach can be used to test innovative design strategies – extending 
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However, failure of any of the primary structural components implies both complete 

loss of the OWT and loss of earnings associated with production stoppage (i.e., busi-

ness interruption).  

In this paper, we propose the use of the Catastrophe (CAT) Risk Modelling approach 

to assess the structural risk posed by extreme weather conditions to OWTs. To help 

achieving this, we develop fragility curves – a crucial element of any CAT models 

– for OWTs on monopile foundations. Fragility functions express the likelihood of 

different levels of damage (or damage states) sustained by a given asset over a range 

of hazard intensities.  We compare the effect of modelling and analysis decisions on 

the fragility curves, highlighting how different procedures could affect the estimated 

probability of failure. We apply the proposed framework to two case-study loca-

tions, one in the Baltic Sea and one in the North Sea.  



performance-based engineering frameworks (also accounting for combined hazards); to devise ef-

ficient and targeted asset management; and to develop resilience-enhancing solutions for combined 

wave and wind hazards (e.g., based on structural health monitoring and structural control). This can 

help to reduce overall costs and ultimately reduce the levelized electricity cost for offshore wind 

farms (OWFs). Figure 1 shows the basic structure of a CAT modelling approach  which has been 

adapted here for application to OWFs. The overall framework can be decomposed into a series of 

sequential components [2]: exposure (information about asset location, construction details and re-

placement values), hazard (reliable estimation of relevant hazard intensities and their recurrence 

periods), structural analysis (reliable estimation of engineering demand parameters, or EDPs, given 

hazard intensities), and fragility (reliable estimation of damage and downtime given hazard inten-

sities). The synthesis of such a framework (loss) provides many valuable decision-making and man-

agement metrics, for example, the average annual loss of an OWF or the association of total loss 

magnitudes with recurrence periods. 

Fragility functions, quantifying the probability of reaching certain limit-states, or performance lev-

els (e.g., minor damage to complete structural collapse), given events of different intensities, are 

fundamental tools in any CAT model. Damage-to-loss functions can then be used to convert the 

damage estimates (from fragility) to loss estimates. Very few examples of such functions exist, and 

no established guidance exist for calculating them. 
 

 

 

Figure 1: Catastrophe modelling framework applied to an OWF. 

In particular, analytical (i.e., structural simulation-based) fragility is commonly used, especially in 

earthquake engineering, where such curves have been developed for a range of civil engineering 

structures due to the lack of loss/damage statistics from past events. In wind engineering, Sorensen 

[3] developed a limit state for failure of onshore turbine towers and proposed a range of random 

variables to capture uncertainty in modelling assumptions. Assessment of OWT is more challeng-

ing because they are exposed to both wind and wave loading. The fragility of OWT on jackets was 

investigated by Wei et al [4], who developed a performance-based assessment using results from 

nonlinear static analysis to calculate the extreme response followed by Monte Carlo sampling to 

associate a probability of failure with different return periods. The result was fragility curves based 

on damage, first yield, and collapse limit states using the jacket base shear as an EDP. Similarly, 

fragility of OWT on monopile foundations exposed to wind, wave and earthquake hazards was 

investigated by Mardfekri [5]. Fragility curves investigated wind speed and wave height inde-

pendently as the focus was quantifying simulation bias using high-performance computing. Tech-

niques for assessing wind- and wave- induced demand on OWTs include Incremental Wind Wave 



Analysis (IWWA) [6] where the structural response to progressively increasing waves heights and 

wind speeds is calculated. In IWWA, wind and wave conditions are coupled using mean return 

period (MRP) or a joint probability distribution and the output is the structural response to increas-

ingly rare environmental conditions. The existing implementation of the IWWA is based on non-

linear static analysis [6]. Due to the larger flexibility of OWT on monopiles and the need to capture 

rotor dynamics, we propose the use of IWWA [6] with coupled time-history analysis; we also con-

sider additional random variables to represent modelling uncertainty. Additionally, there has been 

little research comparing the effect of different modelling and analysis assumptions on the fragility 

of an OWT. The work referenced has continually identified the low probability of failure associated 

with OWT structures exposed to normal (non-hurricane) conditions, therefore there is benefit to 

investigating the lower tail of the fragility curve. Plain Monte Carlo techniques are poor in this 

region and alternative, more advanced techniques may be more appropriate.  

The paper investigates the sensitivity of fragility functions to different modelling and analysis de-

cisions. We develop fragility functions for a reference OWT support structure at two different OWF 

sites. The influence of analysis length, extreme load calculation, definition of limit state function 

and the influence of including uncertainties is discussed. In addition, we investigate improving pre-

diction of the lower tail of the fragility curve using the subset simulation [7] technique. 
 

 

Figure 2: Flowchart describing the fragility calculation procedure. 

 Fragility Calculations 

2.1 Methodology 

The fragility calculation procedure is comprised of the six steps described on the flowchart in Figure 

2. The details required to implement the calculation are discussed in Section 2.3. This process al-

lows a structural analysis package, such as Fatigue Aerodynamics Structures and Turbulence 

(FAST) to be incorporated within the fragility calculation. It is also sufficiently general to encom-

pass most forms of simulation technique, in this paper we apply both plain Monte Carlo and subset 
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simulation [7]. The 3rd and 4th steps of the fragility calculation are different when using subset sim-

ulation as this technique is based on generating values of each input sample adaptively during the 

reliability calculation, therefore they cannot be generated in advance. Separately two techniques are 

used to compute EDP values used in the reliability calculation: 

Non-parametric - EDPs are calculated by running structural analysis directly using the desired 

environmental conditions as inputs. This means we directly simulate a broad range of environmen-

tal conditions and each sample used in the fragility calculation corresponds directly to the output 

from a structural analysis runs. At higher MRP the analysis might start to produce physically mean-

ingless results, for example waves that have troughs lower than the seabed. As a result, the envelope 

of environmental conditions directly assessed has been limited to a maximum MRP of 109. 

Parametric - A second approach to EDP calculation attempted to alleviate the problem of having 

a limited number of samples at each MRP by fitting a conditional distribution of EDP given a MRP 

to output from structural analysis and substituting the resulting distribution into the limit state equa-

tion. A Generalised Extreme Value (GEV), Weibull and Lognormal distribution were also tested 

but the GEV was found have the consistently highest log-likelihood. This made it faster to recalcu-

late the limit state, allowing a larger sample sizes to be generated.  

2.2 Case Study Site and Environment 

Two sites were investigated in this study because of their contrasting environmental conditions: 

Ijmuiden [8], located in the Netherlands, and Krieger’s Flak [9], located in Denmark. Ijmuiden has 

22 years’ worth of wind and wave measurements [8], and distributions representing the occurrence 

of different mean wind speeds and significant wave heights [10] have been published [8]. Krieger’s 

Flak has 10 years’ metocean data and the full set of hourly wind and wave recordings were pub-

lished, a 3-parameter Weibull distribution was fit to estimate the probability of different extreme 

wind and wave results. The environmental conditions associated with a set of different MRP are 

plotted on Figure 3 (left) and all data has a 10-minute averaging period. Intensity levels were sim-

plified by combining the wind and wave conditions into a single metric – the MRP, this approach 

is conservative [6] but simplified the analysis substantially. Both sites have water depth around 

20m, making them suitable locations for the wind turbine model used.  
 

  
Figure 3: Comparison of the wind and wave conditions at different MRP for Krieger‘s Flak and Ijmuiden OWF sites 

(left), inset map shows site location. OWT structural model in FAST (right), main elevations highlighted. 



2.3 Structural Model 

The OWT considered in this study is based on the National Renewable Energy Laboratory (NREL) 

5MW reference turbine [11], as shown on Figure 3 (right). A full list of dimensions and material 

properties are provided by Jonkman et al [11]. Dynamic response of the structure was calculated 

using the computer program FAST [12]. The turbulent wind profile across OWT was calculated 

externally using the program Turbsim [13], which generates turbulent wind histories for grid points 

covering the OWT by converting a Kaimal spectrum with turbulence type ‘B’ [14] into a stochastic 

time-history using Fast-Fourier transforms. The wave height time-history is generated by a similar 

process using the JONSWAP spectrum [10] then a 2nd order wave model to calculate water kine-

matics. The NREL 5MW turbine has a cut-off speed of 25𝑚/𝑠, in all analysis the mean wind speed 

was above the cut-off and so DLC 6.1a [14] was used to select analysis parameters. However, as 

discussed above, we assess mean wind speeds well above the prescribed 50-year extreme MRP. 

The assumptions used in this study introduce a number of inaccuracies into the load-response cal-

culation: firstly, no foundation is modelled. Secondly, the 2nd order wave model cannot capture the 

loads caused by large or breaking storm waves. However, the aim of this paper is to compare the 

relative properties of fragility curves dependant on different assumptions, therefore, the use of this 

simplified analysis is sufficient. Further studies are ongoing to investigate the impact of these as-

sumptions. 

2.4 Limit State Definition 

The focus of this work is ULS failure of the OWT with failure occurring if either monopile or tower 

collapse we assess this using two different limit state calculations. The first is taken from the work 

of Sorenson et al [3] failure occurs when the tower plastic moment, subtracted by a factor calculated 

from the cross sectional properties, is reached, Eq. (1): 

𝐺𝑀𝑐𝑟 =
1

6
(1 − 0.84 ⋅

𝐷

𝑡
⋅

𝑋𝑦𝐹𝑦

𝑋𝐸𝐸
  ) (𝐷3 − (𝐷 − 2𝑡)3)𝑋𝑦𝑋𝑐𝑟𝐹𝑦 −

                                                             𝑙𝑈𝐿𝑇(𝑖, ℎ𝑠 , 𝑣𝑤)𝑋𝑑𝑦𝑛𝑋𝑠𝑡𝑋𝑒𝑥𝑡𝑋𝑠𝑖𝑚𝑋𝑒𝑥𝑝𝑋𝑎𝑒𝑟𝑜𝑋𝑠𝑡𝑟                                                 (1)  

This will be referred to as the 𝑀𝑐𝑟 limit state for the remainder of the paper, 𝑙𝑈𝐿𝑇(𝑖, ℎ𝑠 , 𝑣𝑤) is the 

EDP and is defined as the maximum bending moment in structural analysis (i.e. a sample i-th) at a 

specific mean wind speed (𝑣𝑤) and significant wave height (ℎ𝑠). The 𝑋 terms are variables which 

capture modelling uncertainty and are defined on Table 1. In Eq. (1), 𝐷 is the component diameter, 

𝑡 is the thickness, 𝐹𝑦 is the yield stress, and 𝑀𝑐𝑟 is the critical moment. 

The NREL 5MW is a large utility scale OWT, therefore it has a low thickness to diameter ratio. 

Both the tower and monopile are non-compact according to the definition provided in DNV-OS-

J101 Section 7.3.1 [15] and exceed the Eurocode Class 3 cross-section limits [16], this indicates 

potential shell behaviour. As a result the DNV steel buckling code [17] was used as the second limit 

state, which uses Von Mises stress as the EDP. The monopile buckling resistance 

(𝑓𝑐𝑎𝑝,𝑀(𝐹𝑦, 𝜎𝑉𝑀.𝑀(𝑡))) was calculated using the provisions for local shell buckling in Section 3.4 

of [17]. The column buckling check was found to be unnecessary for the monopile, because it is 

fixed to the mudline which reduces its unconstrained length. The tower buckling resistance 

(𝑓𝑐𝑎𝑝,𝑇(𝐹𝑦, 𝜎𝑉𝑀.𝑇(𝑡))) was calculated using the provisions for column buckling in Section 3.8 of 

[17], which was found to be the most onerous provision. Both capacity variables are time-variant 

because the buckling strength is dependent on the stress state within the component, however it is 

demonstrated later, in Figure 6, that this variability is small. Structural demand is calculated by 



transforming the force and moment outputs from FAST at each time step into stresses using a mem-

brane shell calculation [17]. A single exceedance of the limit state was taken to result in failure of 

either component. The DNV limit state was also considered for both the tower (𝑇) and monopile 

(𝑀), Eq. (2): 

           𝐺𝐷𝑁𝑉,𝑇  = 𝑓𝑐𝑎𝑝,𝑇 (𝐹𝑦, 𝜎𝑉𝑀.𝑇(𝑡)) ⋅ 𝑋𝑦𝑋𝑐𝑟 − 𝜎𝑉𝑀.𝑇(𝑡) ⋅ 𝑋𝑑𝑦𝑛𝑋𝑠𝑡𝑋𝑒𝑥𝑡𝑋𝑠𝑖𝑚𝑋𝑒𝑥𝑝𝑋𝑎𝑒𝑟𝑜𝑋𝑠𝑡𝑟  

𝐺𝐷𝑁𝑉,𝑀 = 𝑓𝑐𝑎𝑝,𝑀 (𝐹𝑦 , 𝜎𝑉𝑀.𝑀(𝑡)) ⋅ 𝑋𝑦𝑋𝑐𝑟 − 𝜎𝑉𝑀.𝑀(𝑡) ⋅ 𝑋𝑑𝑦𝑛𝑋𝑠𝑡𝑋𝑒𝑥𝑡𝑋𝑠𝑖𝑚𝑋𝑒𝑥𝑝𝑋𝑎𝑒𝑟𝑜𝑋𝑠𝑡𝑟 (2) 

The variables are the limit state function (𝐺𝐷𝑁𝑉,𝑇 𝑜𝑟𝑀), tower Von Mises stress at each time step 

(𝜎𝑉𝑀.𝑇(𝑡)), and monopile Von Mises stress at each time step (𝜎𝑉𝑀.𝑀(𝑡)).  

Random variables, shown on Table 1, were defined to capture the uncertainty in modelling the 

OWT. Variables associated with the structural properties were selected based on published data [3], 

[18]. Additionally, the environmental load model utilizes Fourier transforms to convert stationary 

frequency spectra into random time signals, in this context the random variable is the random phase 

angle used in the transform.  

Table 1: Random variables associated with the structural model. 

Type Parameter Mean COV Distribution 

Structural 

Structural Dynamics (𝑋𝑑𝑦𝑛) 1 0.05 Lognormal 

Aerofoil data uncertainty (𝑋𝑎𝑒𝑟𝑜) 1 0.07 Gumbel 

Simulation statistics (𝑋𝑠𝑖𝑚) 1 0.05 Normal 

Exposure (terrain) (𝑋𝑒𝑥𝑝) 1 0.10 Normal 

Extrapolation (𝑋𝑒𝑥𝑡) 1 0.05 Lognormal 

Climate statistics (𝑋𝑠𝑡) 1 0.05 Lognormal 

Stress evaluation (𝑋𝑠𝑡𝑟) 1 0.03 Lognormal 

Blade deflection model uncertainty 

(𝑋𝛿𝑙) 
1 0.05 Lognormal 

Critical load capacity (𝑋𝑐𝑟) 1 0.10 Lognormal 

Steel yield strength – MPa (𝐹𝑦) 240 0.05 Lognormal 

Yield model uncertainty (𝑋𝑦) 1 0.05 Lognormal 

Young’s modulus model uncertainty 

(𝑋𝐸) 
1 0.02 Lognormal 

Environmental 
Wind Phase Angle 0 1 Uniform 

Wave Phase Angle 0 1 Uniform 

2.5 Reliability Calculation 

The probability of failure at different MRP can be estimated using the limit state function (𝐺𝑖 =

𝐺𝑀𝑐𝑟 , 𝐺𝐷𝑁𝑉,𝑇 , 𝐺𝐷𝑁𝑉,𝑀). The plain Monte Carlo simulation estimator takes the form: 

𝑝𝑓(𝑀𝑅𝑃𝑖) = 𝑃[𝐺𝑖 < 0|𝐼𝑀 = 𝑀𝑅𝑃𝑖] =
1

𝑁𝑖

∑ 𝐼(𝐺𝑖,𝑘 ≤ 0)

𝑁𝑖

𝑘=1

(3) 

Where 𝑁𝑖 is the number of samples generated at each MRP and 𝐼(𝐺 ≤ 0) is an indicator function 

which takes the value 1 when the relevant limit state function is less negative.  

Subset simulation is an efficient technique for simulating rare events, proposed by Au & Beck [7], 

based on splitting a rare event into a series of conditional probabilities which are easier to calculate. 

The probability of exceeding a threshold (𝑏) is calculated iteratively by estimating the probability 



of exceeding less rare thresholds 𝑃(𝑌 > 𝑏) = 𝑃(𝑌 > 𝑏𝑖|𝑌 > 𝑏𝑖−1) ⊂ ⋯ ⊂ 𝑃(𝑌 > 𝑏1). The first 

subspace 𝑃(𝑌 > 𝑏1) is calculated directly using Monte Carlo simulation and the samples that ex-

ceed the predefined limit (𝑏1) are used to define the limits of the conditional probability space 

𝑃(𝑌 > 𝑏2|𝑌 > 𝑏1). This procedure is repeated until the rare event threshold is met. Conditional 

samples are generated by using Metropolis algorithm Markov chains starting from point that ex-

ceeded the previous limit (𝑏𝑖−1). Then the overall probability of a rare event occurring can be cal-

culated by combining the initial and conditional probabilities: 

𝑃(𝑌 > 𝑏) = 𝑃(𝑌 > 𝑏1) ∏ 𝑃(𝑌 > 𝑏𝑖|𝑌 > 𝑏𝑖−1)

𝑚

𝑖=2

(4) 

An algorithm based on subset simulation adaptively samples each input random variable. It simu-

lates increasingly rare events until the point at which failure occurs (i.e. the limit state) is identified.  

The analyses summarised on Table 2 were run at each site, however, for brevity only the results 

from Krieger’s Flak are presented as they are representative also of the Ijmuiden results. When 

material and modelling random variables were not used, the X terms in the limit state Eq. (1) and 

(2) were set to 1 and the yield strength to the mean value of 𝐹𝑦 = 240𝑀𝑃𝑎. To generate samples, 

𝑁𝑖, multiple runs of the structural load calculation in FAST were generated for each MRP (𝑁𝑀𝑅𝑃 =

16) we generate 400 10-minute simulations, resulting in a total of 6400 individual analysis runs for 

each site. 

Table 2: Summary of analyses 

Analysis Limit States EDP Calculation 
Random 

Variables 

Reliability 

Calculation 

1 DNV Non-parameteric No Plain Monte Carlo 

2 𝑀𝑐𝑟 Non-parameteric No Plain Monte Carlo 

3 DNV + 𝑀𝑐𝑟 Non-parameteric Yes Plain Monte Carlo 

4 DNV + 𝑀𝑐𝑟 Parameteric Yes Plain Monte Carlo 

5 DNV + 𝑀𝑐𝑟 Parameteric Yes Subset Simulation 

 Results 

3.1 Analysis 1 - Influence of Analysis Length  

The limit state Eq. (1) and (2) used in this work are both assumed to be time independent, an ap-

proach that has been widely used for assessing structural reliability under stochastic loading. How-

ever, the fundamental problem is time-dependant, i.e., there is a correlation between the maximum 

load experienced within a finite length simulation and the length of simulation. Converting wind 

and wave spectra into finite time series is naturally associated with a probability that we will not 

simulate the worst case combination of loading that could be generated by the spectra [19], with 

this probability linked to the analysis length. We justify using a time independent approach based 

on 10-minute long analyses by noting that the wind speeds measurements used are averaged over 

10 minutes and that we assume the process of converting environmental spectra to time series ac-

curately represents the actual physical process. Therefore, to capture the probability of exceeding a 

MRP based on 10-minute averaged measurements it is appropriate to use a 10-minute long simula-

tion. In addition, we assume that the hazard component of the CAT modelling process, not consid-

ered here, will be based on 10-minute averages. There remains value in assessing the impact that 



analysis length has on the properties of the fragility curve as a wide range of values, from 1.6 

minutes [20] to 60 minutes [21] have been used in the literature.  

Figure 4 compares fragility curves produced by selecting different averaging periods. Response at 

the longer analysis periods was calculated by combining the corresponding number of 10-minute 

simulations. The graphs indicate that the slope of the fragility curve and not just its location is sen-

sitive to the analysis length, with longer analyses leading to a steeper fragility curves. This result 

demonstrates that the analysis period used to derive the fragility curve needs to be consistent with 

the hazard model otherwise bias will be introduced into the calculation of risk, which would com-

prise the later stages of the risk calculation.  
 

 

Figure 4: Comparisons of fragility curves produced for the tower and monopile of the NREL 5MW turbine at 

Krieger‘s Flak. The different curves indicate different analysis lengths. 

3.2 Analysis 1-3 - Comparison of Limit States 

The DNV and 𝑀𝑐𝑟 limit states are compared in Figure 5, the 𝑀𝑐𝑟 limit sate leads to failure at higher 

MRP than the DNV limit state. This effect occurs with both the tower and monopile, it can be 

explained by looking at the limit states in more detail. On Figure 6 (left) the moment capacity pre-

dicted using different limit states are compared; with the DNV limit state converted into an equiv-

alent bending moment using a membrane stress calculation. The small variations in DNV capacity 

are caused when the Von Mises stress approaching 0 and affects the characteristic buckling stress. 

As discussed earlier, the 𝑀𝑐𝑟 limit state is calculated by subtracting a factor from the cross-section 

the plastic moment, for the NREL 5MW the reduction factor is approximately 0.1. Therefore, using 

the 𝑀𝑐𝑟 limit state, failure of the monopile will occur well above the point at which the outer fibre 

of the cross section first yields. On the other hand, the DNV local buckling limit state is calculated 

by dividing the yield stress by one plus the slenderness ratio to the power of 4, therefore it will 

always be less than the material yield stress. The column buckling limit state is based on a similar 

process of reducing the buckling strength. This explains why the fragility curve is shifted to the 

higher probability region when the DNV limit state is used.  

Another useful comparison is to look at the effect of including additional random variables from 

Table 1 on the position and slope of the fragility curve. The results are also shown Figure 5 and 

demonstrate that, as expected, including random variables changes the slope of both limit state’s 

fragility curves by a similar angle but has no impact on the location of the curve. 



 

Figure 5: Comparisons of fragility curves produced for the tower and monopile of the NREL 5MW turbine at 

Krieger‘s Flak. The different curves indicate different limit states; all assessed using 10-minute length analyses. 

 

 
Figure 6: (left) Comparison between the limit states, all stresses converted into an equivalent bending moment. Graph 

is a segment of a full 600s time-history run at a MRP of 3 ⋅ 107. (right) Comparisons of fragility curves produced for 

the monopile when subset simulation is used to improve lower tail fitting. 

3.3 Analysis 4 and 5 – Low Probability Fitting 

The lower tail of the fragility curve was investigated in Analysis 4 and 5, using plain Monte Carlo 

and subset simulation. The general results computed for the monopile component are shown on 

Figure 6 (right). Details of the calculation for the 𝑀𝑐𝑟 limit state are representative of other limit 

states and are shown on Table 3. Subset simulation allowed the probability of failures to be calcu-

lated at the lower tail of the fragility curve, however for rare events the CoV in the probability of 

failure prediction grows large. In this analysis the EDP calculation involved sampling from a con-

ditional distribution that had previously been fit to the output of FAST analyses, therefore the limit 

state could be solved without running a dynamic analysis. This meant a large number of samples 

could be generated, for Monte Carlo simulation we used 5000 samples and for the subset simulation 

algorithm we used step sized of 500 samples and a conditional probability step of 0.1. As the prob-

ability of failure increases in Table 3, the Monte Carlo technique appears to become more accurate 

than subset simulation and this is misleading: a constant number of samples were generated at each 



MRP for plain Monte Carlo whereas for subset simulation the number of samples got progressively 

smaller (as less steps were required to find the failure region). The apparent increase in the accuracy 

of plain Monte Carlo simulation is therefore a result of the reducing sample size of the subset sam-

ple. The purpose of this comparison was to demonstrate the applicability of subset simulation to 

calculating the lower tail of a fragility curve as opposed to quantifying its accuracy. Subset simula-

tion is useful if the lower tail of the fragility curve is of specific interest, however if estimating the 

general position of the curve is desired then Monte Carlo is easier to apply. In addition, care must 

be taken when simulating extremely rare events to avoid values of the random variables that are 

physically meaningless. 

Table 3: Summary of analysis results at lower MRP at Krieger‘s Flak site for 𝑀𝑐𝑟  limit state. 

MRP 𝑃𝑓 Monte Carlo 𝑃𝑓 Subset CoV Monte Carlo CoV Subset 

1.00E+04 0 0 N/A N/A 

3.00E+04 0 2.60E-19 N/A 1.35 

1.00E+05 0 4.54E-14 N/A 1.13 

3.00E+05 0 6.64E-10 N/A 0.89 

1.00E+06 0 1.58E-05 N/A 0.55 

3.00E+06 0.0004 0.0005 0.71 0.41 

1.00E+07 0.0052 0.0082 0.20 0.20 

3.00E+07 0.0282 0.0366 0.09 0.14 

 Conclusions 

Offshore wind farms play a key role in achieving the renewable energy targets for Europe (and 

worldwide) over the next decades. Europe is at the forefront of existing and planned offshore wind 

installations due to the rich wind resources. As the contribution to the overall electricity supply 

increases to significant levels, the resilience of the installed assets both in the short and long term 

needs to be assured. This paper represents a first step towards a novel, CAT risk- and resilience-

based modelling approach for the asset management of offshore wind farms, taking both extreme 

weather conditions and structural fragility of the wind turbine system into account. In particular, the 

paper investigated the sensitivity of fragility functions to different modelling and analysis decisions, 

highlighting that: 

1) Parametric approaches allow a large number of samples to be generated from using a smaller 

number of simulation calls, allowing the lower tail of the fragility curve to be investigated effi-

ciently. It also allowed us to employ subset simulation to investigate more frequent but low 

probability of failure events which were unable to be investigated using non-parametric, plain 

Monte Carlo-based, simulations. 

2) Both the limit state definition and the analysis length had a significant impact on the location of 

the fragility curve. Therefore, the choice of a limit state that accurately describes the problem 

being investigated is important. In particular, for a large diameter utility scale OWT the DNV 

limit state appears to be more suitable. It is conservative and includes the potential for local or 

column buckling structural components, both of which are plausible modes of failure given di-

ameter to thickness ratios of OWT.  

3) The hazard model should explicitly account for the impact of analysis length on the fragility, 

otherwise as demonstrated, bias will be introduced into the risk calculation due discrepancy be-

tween analysis length and environmental averaging period.  
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