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ABSTRACT. This paper proposes using a performance-based engineering (PBE) 

approach to quantify the reliability of offshore wind turbines (OWT), for use in a 

larger assessment of wind farm resilience. The concept of resilience provides a 

useful framework for considering an OWT as a system that is comprised of both 

structural and mechanical components and to extrapolate these risks across a farm. 

An implementation based on the financial consequence of failure is used here, this 

allows failure states to be defined that combine analytical structural failure scenarios 

with empirical mechanical equipment failure rates within a unified calculation of 

material losses. The loss associated with the failure of each component is used to 

estimate the total annual loss for a case study farm. Results are presented in the 

form of a case study and indicate that failure of the structure may have an impact 

on the overall failure profile of the farm. This method provides a simple estimate of 

robustness for the farm, which is a component of any resilience assessment. It also 

provides a foundation from which a more detailed assessment of resilience, 

including adaptability and recovery, will be developed.  

 

Keywords: Offshore Wind, Structural Reliability, Resilience Framework, Loss Modelling, Site 
Assessment. 

 

1. INTRODUCTION 

The offshore wind industry has grown to the point where it supplies 11.03GW [1] of electricity 

within Europe [1], with a further 26.4GW worth of projects approved [2]. Within European 

waters most existing OWTs are supported on monopile foundations [3]; these are effectively 

large diameter cylinders that are hammered into the seabed; on top of which is fixed a rotor 

and tower, a tapered tubular member connecting the monopile to the rotor. However, the 

overall cost of offshore wind farms (OWF) remains high and a recent UK government report 

[4] has highlighted “integrated design” as an area that could improve cost reduction. This aim 

is challenging as OWTs are unique civil engineering structures in that they rely on both 

mechanical components (such as a generator, gearbox and control system) and structural 

components (the tower and monopile) in order to remain operational. Additionally, structural 

design of OWT is undertaken at the component level, with the tower and monopile commonly 

being designed by separate companies [5]. Prescriptive codes [6], [7] are used to evaluate 

potential designs but these do not explicitly consider (i.e., through a full probabilistic approach 

to analysis and design) the risk posed by uncertainties associated with variability in physical 

properties nor all of the highly variable natural hazards to which OWF are exposed. Safety 

factors are instead used to achieve a target (structural) reliability level at both component and 

system level. Any integrated assessment should account for the above uncertainties in an 
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explicit manner, also considering the possible complex interrelations between components; 

for example, stopping the rotor will change loading on the blades, which will in turn influence 

loads on the tower and monopile. The problem lies in quantifying the risk posed by these 

diverse sub-systems and accounting for the impact of failures on the overall operability of the 

farm.  

 

The concept of resilience provides a framework to consider this problem. It has been used 

within a large number of fields ranging from design to preparedness of communities exposed 

to environmental hazards [8] and when applied to structural systems [9] incorporates: 

robustness, redundancy, rapidity and resourcefulness. These represent the ability of a 

structure to withstand an extreme event and the time required to re-instate operability 

afterwards, as indicated on Figure 1. However, the properties are difficult to quantify especially 

from the perspective of a design stage study, where information regarding the capacity of an 

organisation to make budget available (i.e. resourcefulness) is unlikely to be available to the 

design engineer. Therefore, a technique for estimating resilience that only relies on the 

robustness and redundancy of the structure would allow the concept to be applied at the 

design stage. The initial design estimate of robustness could be used in a later resilience 

calculation by the asset operator, which also considers resourcefulness. One approach, 

investigated by Bruneau and Reinhorn [10], assumes that loss of functionality after an extreme 

event and the time to recovery are correlated. This is intuitive, as in the general case if an 

event (i.e. wind storm) causes more damage it will take longer to repair structures as a result. 

This assumption provides a starting point for considering resilience of OWF and has previously 

been applied to PBE of structures for blast [11] by defining a relative resilience indicator (𝑅𝑅𝐼), 

which is correlated to resilience (𝑅): 

 

𝑹(𝑬) ∝ 𝑹𝑹𝑰(𝑬) = 𝟏/𝑪(𝑬) (𝟏) 
 

Where RRI can be defined as the inverse of the consequence (C) of an extreme event (E). 

Under this assumption a structure that experiences a lower consequence (i.e. less damage) 

as the result of a hazard is viewed as more resilient.  

 

The measure of consequence needs to efficiently capture the impact of failure on the system. 

An OWT is a system comprised of structural and mechanical components, therefore some 

typical structural consequence measures are not applicable, such as percentage of the 

structure collapsing [11]. In this study we relate the consequence of failure to the financial 

impact of a system failure and specifically material loss incurred by failure. This allows the 

severity of different sub-systems to be compared by using a single measure which is easy to 

communicate to different stakeholders but neglects the operational costs of repair, such as 

hiring vessels, which are expensive but difficult to quantify. Metrics relating to life safety are 

not of primary importance as the wind turbine is normally unmanned, apart from brief periods 

for maintenance.  
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FIGURE 1. Graphical definition of resilience after an event (at 𝑡0). 

Adapted from: Brunneau et al [8]. 

 

A consequence metric based on component material cost requires a probabilistic model 

describing the likelihood of incurring these losses. The analytical method we apply to model 

combined losses of structural and mechanical components is discussed in Section 2. This 

includes a procedure for evaluating failure probability of the structure based on a PBE 

technique, which employs dynamic structural analysis. The overall calculation is illustrated 

through a case-study where a farm NREL 5MW OWT has been assessed at a real wind farm 

site. Section 3 introduces the case study site and describes the structural reliability calculation. 

While Section 4 demonstrates the loss calculation for the combined OWT system. 

 

2. LOSS FRAMEWORK 

Loss calculation for an OWT system requires both: information concerning costs of failure and 

the failure frequencies for all relevant components. In this work we focus on severe failure 

associated with major repairs or component replacement, and not on routine maintenance or 

loss of production. Failure of the equipment is relatively common and databases of empirical 

failure rates exist [12]. However, structural components fail less frequently, and they are 

designed specifically for each wind farm [5], therefore a site-specific approach is necessary to 

define average failure rates. This section summarises an approach for calculation structural 

failures and how these are used in a calculation of system loss. 

2.1 Structural Reliability  

A framework for calculating the probability of incurring different levels of loss arising from 

failure of an OWT structure has been developed previously by the authors [13]. This considers 

failure in the turbine’s ultimate limit state, i.e., the turbine locally collapsing during storm 

conditions. A brief overview of the background to the approach is presented here, full details 

are available in the reference.  

 

The approach is based on PBE which was originally proposed by the Pacific Earthquake 

Engineering Research (PEER) centre to assess failure of structures due to seismic hazards 

[14], and the approach has subsequently been expanded to consider a range of hazards 

including wind [15], [16] and blast [11]. It is based on downgrading risk into conditional 

distributions that are evaluated sequentially using total probability theorem. This approach can 
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express consequence as expected material loss (E(L)) in terms of conditional probability 

density functions (𝑓(⋅ | ⋅)): 

 

𝐸(𝐿) = ∫ ∫ ∫ 𝐸[𝐿|𝐷𝑀] ⋅ 𝑓[𝐷𝑀|𝐸𝐷𝑃] ⋅ 𝑓[𝐸𝐷𝑃|𝐼𝑀] ⋅ 𝑓(𝐼𝑀) ⋅  

                                                                                                                𝑑𝐷𝑀 ⋅ 𝑑𝐸𝐷𝑃 ⋅ 𝑑𝐼𝑀 (2) 

Where the terms are damage measure (or DM), a parameter describing structural response 

(engineering demand parameter, or EDP) e.g. a force or stress, and the intensity of a natural 

hazard (intensity measure, or IM) e.g. wind speed or wave height. This framework can be 

expressed in a flowchart, see Figure 2, where the individual tasks are: 

 

 Structural (exposure) characterisation – Defining the geometry of the structure, 

including uncertainties in material properties.  

 Hazard analysis –  Develop joint probability distribution for environmental conditions, 

includes wind and wave conditions in an OWF. 

 Fragility analysis – Captures uncertainty in mathematical models used to estimate 

structural capacity and express the probability of damage occurring conditioned on the 

load intensity. 

 Loss analysis – Probabilistic estimate of financial loss, which provides information for 

deciding whether or not system has sufficient capacity. 

 

 

FIGURE 2. PBE framework for a single OWT structure. 

The fully probabilistic formulation indicated by Equation (2) can be simplified by assuming that 

some of the parameters or models are deterministic, therefore reducing the order of the 

integration. Specifically, this paper assumes that the damage-to-cost value is constant (all 

towers are assumed to have the same material cost) for a single limit state corresponding to 

local failure of the structural components (tower and monopile). Where failure in the ultimate 

limit state (ULS) is evaluated using deterministic code provisions [13]. Based on these 

assumptions, the probability of failure required for the full loss calculation can be calculated 

using only the fragility and hazard components shown on Figure 2, as is shown later in Section 

3.3. 
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2.2 System Failure  

The wind turbine is modelled as a system comprised of mechanical and structural 

components. In the general case, a system with independent components (N), each of which 

has discrete failure states, will have a finite number of system failure conditions, i.e. 

combinations of all the component failure states. These combinations can be summarised in 

a matrix 𝐾 [17] where each individual component has two states, either: functioning or failure, 

where a value of 1 is used to indicate that the component fails and 0 to indicate that the 

component remains is operational. The matrix will have entries 𝑘𝑖𝑗 ∈ ℤ𝑁⋅2𝑁
; for the 12 OWT 

components listed on Table 3, the matrix will have entries 𝑘𝑖𝑗 ∈ ℤ12⋅4096, where the first column 

will read [0 0 0 0 0 0 0 0 0 0 0 0]𝑇 indicating the case in which all components are functional, 

and the last [1 1 1 1 1 1 1 1 1 1 1 1]𝑇 indicating the case where all components have failed. The 

intermediate columns contain all possible permutations of 1s and 0s indicating different partial 

failure states. 

 

If each component has a deterministic material replacement cost, the discrete system failure 

events can be combined to assess the probability of incurring a repair cost (𝑐𝑟). The matrix of 

the failure events 𝐾 is converted into a failure cost matrix 𝐾𝑐 by multiplying each column of 𝐾 

by a vector containing the failure cost of each component. This new matrix will contain the 

same number of elements as 𝐾 but the values will equal to the failure cost of each component 

as opposed to a logical (1 or 0). Then 𝑃𝑠𝑦𝑠(𝑐𝑟) can be defined as the probability that a set of 

components fail 𝑘∗ ∈ 𝐾𝑐 whose combined repair cost is equal to the target (𝑐𝑟): 

 

𝑷𝒔𝒚𝒔(𝒄𝒓) = ∑ ∏ 𝑷𝒊
𝒌𝒊(𝟏 − 𝑷𝒊)

𝟏−𝒌𝒊

𝑵

𝒊=𝟏𝒌∗∈𝑲𝒄

(𝟑) 

𝑃𝑠𝑦𝑠 (𝑐𝑟) is summed over all the columns of the 𝐾 matrix where the total repair cost of the 

components equals 𝑐𝑟, i.e. 𝑘∗ is a subset of 𝐾 containing all equal cost vectors of system 

status. The probability of each total material cost is the product of the individual component 

failure probabilities in the matrix of failure events 𝐾 as this calculation assumes each 

component is independent. When 𝑘𝑖 is 0 then the probability that the component survives is 

used (1 − 𝑃𝑖)1−𝑘𝑖 and if 𝑘𝑖 is 1 then the probability that the component fails is used 𝑃𝑖
𝑘𝑖. The 

result is the combined probability that a set of conditions (defined by 𝑘∗) will occur. 

3 CASE STUDY EXAMPLE – STRUCTURAL FRAGILTIY  

An example is used to illustrate applying the loss calculation framework, described in Section 

2, to the site of a real-world offshore wind farm. Here resilience is estimated using 

consequence of failure alone, in the form of financial material costs. The procedure described 

in Section 2 is implemented in two steps: firstly, fragility curves are defined for a 

representative, index turbine and, secondly, the loss calculation is performed, using the 

fragility curves combined with empirically derived equipment failure data. This section 

describes the fragility calculation for an OWT structural components.  
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3.1 Site Selection and Structural Model 

Environmental conditions for the Kriegers Flak OWF site [18] are shown on Figure 3 (right), 

where mean wind speeds and significant wave heights are plotted against their corresponding 

mean return period (MRP). The water depth of this is around 20m, making it a suitable location 

for the NREL 5MW OWT on a monopile foundation, as shown on Figure 3 (left) which has a 

30m long and 6m diameter monopile. As indicated on the figure the tower terminates at an 

elevation above mean sea level of 87.7m. A full list of dimensions and material properties of 

the turbine are provided by Jonkman et al [19]. 

 

The probability of incurring different repair costs was estimated using the calculation described 

in Section 4.1. The component failure rates for individual turbines were scaled to a farm by 

multiplying them by the number of turbines, assumed a medium sized wind farm with 80 

individual OWT (for comparison Rampion has 116 and London Array 175 turbines [20]).  

 

 

 

FIGURE 3. Image of the OWT structural model in FAST, with main elevations highlighted (left). 

Comparison of the extreme wind and wave conditions associated with different MRP at Kriegers Flak 

[18] and Ijmuiden [21] OWF sites (right), inset map shows the locations of both sites.  

3.2 Fragility Curves  

Fragility curves were developed for the NREL 5MW OWT located at the Kriegers Flak site 

using MRP as IM parameter by the authors [13] by selecting 16 MRP (as indicated on Table 

1) and calculating the probability of failure. At each 400 structural simulations were run where 

the only statistical variability between the 400 simulation runs is a result of the stochastic wind 

and wave loading.  

 

A one or zero was assigned to each analysis depending on whether the tower or monopile 

was predicted to fail during the simulation. The probability of failure was taken to be the mean 

of this index over all 400 samples, for example a probability of failure of 0.5 is just the average 

of a vector comprised of 200 ones and 200 zeros. Error in the probability of failure prediction 

was predicted by assuming that the scatter in probability of failure follows a binomial 
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distribution [22], which is suitable as each analysis is assumed independent, the probability 

mass function (PMF) shown in Equation (4): 

 

𝑷(𝒙 = 𝒌) = (
𝒏
𝒌

) ⋅ 𝒑𝒌 ⋅ (𝟏 − 𝒑)𝒏−𝒌 (𝟒) 

 

Where 𝑛 is the sample size, 𝑝 is the probability of failure calculated by taking the mean of the 

indicator variables and 𝑘 is the number of observed failure samples. Based on Equation (4) 

the variability in prediction of the probability of failure will hold a maximum value when the 

probability of failure is 0.5 and will be 0 when the probability of failure is either 0 or 1, as the 

standard deviation will be 0 at these points.  

 

The data on Table 1 was used to fit a fragility curve, which provided a continuous prediction 

of probability of failure, by using the maximum likelihood estimation to fit a lognormal 

distribution (which has the parameters log mean 𝜇𝐿𝑁 and log standard deviation 𝜎𝐿𝑁). The 

mean value of fragility is the probability of failure calculated as described in the previous 

paragraphs, and the best fit lognormal distribution is described by the ‘mean’ parameters 

shown on Table 2 with the curves defined by these parameters are shown in black on Figure 

4 for both structural components. The MRP in Table 1 were scaled by a factor of 100 when 

fitting the distribution parameters defined on Table 2 to improve the stability of the fit.  

 

Additional post-processing was conducted to assess the error introduced by using a limited 

sample size on the parameters of the lognormal distribution. Monte Carlo simulation was used 

to sampling from each normal distribution at the 16 MRP, using the calculated mean and error 

as the distribution parameters. The resulting variability in lognormal curves, shown in grey 

lines on Figure 4, can be used to estimate the variability in the lognormal distribution 

parameters. This means that the fragility curves for the monopile and tower can be defined as 

stochastic with both the mean and standard deviation parameters as random variables, as 

indicated on Table 2. The normality of the lognormal distribution parameters is confirmed on 

Figure 5, where the four random variables are found to be approximately normally distributed 

with kurtosis values around 3, per the definition of a normally distribution [23]. 

 

TABLE 1. MRP with corresponding probability of failure and standard error for the monopile and 

tower. 

MRP 
Pf  

Monopile 

Pf 

Tower 

1.00E+02 0 0 

3.00E+02 0 0 

1.00E+03 0 0 

3.00E+03 0 0 

1.00E+04 0 0 

3.00E+04 0 0.0025 

1.00E+05 0 0.0125 
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3.00E+05 0 0.13 

1.00E+06 0 0.4975 

3.00E+06 0 0.8775 

1.00E+07 0.005 0.9825 

3.00E+07 0.0125 1 

1.00E+08 0.095 1 

3.00E+08 0.2425 1 

1.00E+09 0.6525 1 

3.00E+09 0.95 1 

 

 

FIGURE 4. Fragility curves for the tower (left) and monopile (right). The grey lines indicate 100 

Monte Carlo samples of from the normal distributions at the 16 MRP used to fit the fragility curve.   
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FIGURE 5. Histograms showing variability in parameters which were used to define the tower 

and monopile fragility curve. Based on 1000 samples of each normally distributed MRP Pf. Black 

lines are the best fit normal distributions. 

 

TABLE 2. Random variables associated with the fragility curve fit parameters. 

  Tower Monopile 

𝜇𝐿𝑁 
Mean 9.1925 15.6401 
Standard deviation 0.0456 0.0467 

𝜎𝐿𝑁 
Mean 1.0078 1.1196 
Standard deviation 0.0458 0.0574 

 

3.3 Structural Component Probability of Failure  

As discussed previously, fragility curves represent the expected damage to a component given 

a level of hazard intensity (𝐼𝑀) and can be expressed as a conditional probability of failure 

(𝐺[𝐷𝑀|𝐼𝑀]). However, to combine structural failure with the failure rates of the other OWT 

sub-systems, we need to convert the distribution into the yearly probability of failure (𝑃𝑓
𝑌𝑟) by 

applying the total probability theorem: 

 

𝑃𝑓
𝑌𝑟 = ∫ 𝐺[𝐷𝑀|𝐼𝑀] ⋅ 𝑓(𝐼𝑀) ⋅ 𝑑𝐼𝑀 ≈ ∑ 𝐺[𝐷𝑀|𝐼𝑀] ⋅ (

1

𝑀𝑅𝑃𝑖
−

1

𝑀𝑅𝑃𝑖+1
) ⋅ 𝑑𝐼𝑀 (5) 

In previous work [13] fragility curves for the tower and monopile of the NREL 5MW OWT were 

calculated at the Krieger’s Flak OWF site, the set used in this work are shown on Figure 4. 

These are based on 10-minute length time-history analyses with MRP is used as the IM; which 

can be thought of as the inverse of an average rate of exceedance, and therefore the annual 

probability of occurrence can be summarised using a Binomial distribution as indicated in 

Equation (4). The annual probability of occurrence was calculated using numerical integration 

with a step size (𝑑𝐼𝑀) of 20 to solve Equation (5).  

 

The mean yearly probability of failure of an individual turbine monopile using Equation (5) is 

assessed to be 1.7e-7 and the tower 1.7e-4, also shown on Table 3, the standard deviation of 
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both is a factor of 5 times smaller than the mean. This indicates the variability in loss due to 

statistical uncertainty in the fragility curve is will be small and is therefore neglected in the 

following analysis. 

3 CASE STUDY EXAMPLE – LOSS  

4.1 Structural Failure Cost 

The material cost of the two structural components was calculated independently and are 

indicated on Table 3, the following paragraph describes the background and assumptions. 

 

Total offshore turbine cost (𝑐𝑊𝑇) in k€, including blades and drivetrain but excluding 

foundations, was estimated using an equation derived by fitting a relationship between turbine 

costs at seven different power ratings, 2MW through to 5MW, parameterised on the rated 

power of the turbine (𝑃𝑊𝑇) in MW [25]. The equation was converted into Euros by Dicorato et 

[26]: 

 

𝑐𝑊𝑇 = 2.95 ⋅ 103 ⋅ 𝑙𝑛(𝑃𝑊𝑇) − 375.2 (6) 

Analysis by the National Renewable Energy Laboratory (NREL) [27] reported that cost of the 

tower of an onshore wind turbine comprised 17.6% of the total turbine cost. We calculate the 

tower for an OWT cost assuming that the relative cost of components on an onshore and OWT 

remains constant, using 17.6% of the value predicted from Equation (6).  

 

The OWT foundation cost in k€ (𝑐𝐹𝑁) was estimated using a parametric equation [26]: 

 

𝑐𝐹𝑁 = 320 ⋅ 𝑃𝑊𝑇 ⋅ (1 + 0.02(𝐷 − 8)) ⋅ (1 + 8 ⋅ 10−7(ℎ(0.5𝑑)2 − 105)) (7) 

 

Where the cost estimate depends on: 𝐷 the water depth (m), ℎ the hub height above mean 

sea level (m) and 𝑑 the rotor diameter (m). The equation originated from a 2003 feasibility 

study into OWT, and was validated against actual foundation costs from five real OWF. The 

average error was large, at 8.7%, but Equation (7) was found to predict foundation cost better 

than two other models derived using fewer parameters [26]. 

4.2 Equipment Failure Rates and Cost  

Failure data for the non-structural components of the OWT were taken from the work of Carroll 

et al [12]. They analysed data from maintenance records of ~350 OWT ranging from 2MW to 

4MW and presented the results for different sub-systems, details of the portfolio are not clear 

as commercial sensitivity means the data was anonymised. Only the failure rates and material 

costs relating to the top 10 sub-systems in terms of major replacement cost (out of a total of 

19 sub-systems) were used in this work and are shown on Table 3. Additionally, costs were 

rounded to the nearest €1000, to improve computational efficiency when evaluating Equation 

(3).  

 

 

 

 



127 
 

TABLE 3. Material cost for major replacement of OWT sub-assemblies. 

1 Equation (6) with data – [𝑃𝑊𝑇 = 5𝑀𝑊]. 2 Equation (7) with data – [𝐷 = 20𝑚; ℎ = 87.6𝑚; 𝑑 =

126𝑚 ]. 

Source Component 
Major 

replacement [€] 

Failure rate 

[/turbine/year] 

Carroll 

[12] 

Gearbox 230,000 0.154 

Hub 95,000 0.001 

Blades 90,000 0.001 

Transformer 70,000 0.001 

Generator 60,000 0.095 

Circuit breaker 14,000 0.002 

Power supply 13,000 0.005 

Pitch system 14,000 0.001 

Yaw system 13,000 0.001 

Controller 13,000 0.001 

Parametric 

equations 

Tower 770,0001 1.70 ⋅ 10−4 

Monopile 2,380,0002 1.70 ⋅ 10−7 

 Total Cost 3,762,000  

 

4.3 Combined Loss Assessment  

The loss estimation was computed using the mean parameters for the fragility curve described 

in Table 1, therefore the fragility curve has no uncertainty associated prediction of the 

probability of failure. Three loss calculations are compared:  

1. Equipment only, using just empirical data, 

2. Structural and equipment components, where all are independent, 

3. Structural and equipment components, where failure of the tower causes all equipment 

to fail and failure of the monopile causes all equipment and the tower to fail too.  

The resulting loss profile is shown on Figure 6. Low repair cost failures occur with relatively 

large probability and these are driven by the more frequently occurring equipment failures, see 

profile is approximately the same shape for all methods. However, the PMF which excludes 

structural failures cannot predict repair costs above 1M€ all of which include the tower or 

monopile. The PMF with independent components predicts a range of failure modes involving 

the tower, whereas the PMF with combined failure modes only predicts a higher probability 

larger repair cost. This is more accurate as any failure involving the tower will likely have 

consequences for all equipment in the hub. The very high repair cost failure at 3,762,000€, 

which is driven by failure of the monopile in conjunction with other components is not visible 

due to their rarity, correlated annual failure probability is 1.331e-5. This low occurrence is a 

result of the MRP at which the monopile begins to fail from the fragility curve, see Figure 4. 
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FIGURE 6. Loss PMF using three calculated using 3 assumptions: only equipment (thin black line), 

equipment and structure where all components are independent (cyan), and equipment and 

structure where the failure of the structure results in failure of all other equipment (grey).  

4 CONCLUSION 

The developing concept of resilience provides an alternative approach, which may allow us to 

consider performance of OWF as a whole. This paper proposes a framework for estimating 

resilience of OWF by applying the existing framework of PBE. A case study demonstrates how 

this calculation may be implemented to estimate potential loss associated with the multiple 

sub-systems present on individual turbines at the OWF level.  

 

In this study, structural resilience is simplified to estimation of the consequence of the turbines 

failure, which is defined in terms of material cost alone. This allows the idea of resilience to be 

applied by practicing engineers who will not have access to data required for a full evaluation 

of resilience, including potential recovery phases. As robustness is a component of a full 

resilience calculation, the simplified method presented in this paper could be used as an input 

to a more comprehensive resilience assessment.  

 

The case study presented included both generation equipment and structural. Although 

structural failure was found to be rare it was associated with very high material costs, which 

are relevant when considering the overall vulnerability of a wind farm that is comprised of 

many individual turbines. Additionally, the structure will be site specific, therefore need to 

include details of site loading into risk calculation, fragility will vary between sites [13].   

 

Future steps will involve considering the risk posed to an array or whole OWF in greater detail, 

due to correlated hazards i.e. a wind storm effects the whole installation simultaneously. Many 

challenges remain to be answered, particularly relating to the choice of performance indicators 

[13]. However, if successful, this approach will aid in the development of integrated design 

techniques for OWF and therefore works towards meeting the goals set by the UK government 

cost reduction framework for offshore wind. 
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