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Abstract

Background: Several biomedical imaging techniques have recently been

developed to probe hypoxia in tumours, including oxygen-enhanced (OE) and Invited Referees
blood oxygen level-dependent (BOLD) magnetic resonance imaging (MRI). 1 2
These techniques have strong potential for measuring both chronic and

transient (cycling) changes in hypoxia, and to assess response to version 1 ? v
vascular-targeting therapies in the clinic. published report report
Methods: In this study, we investigated the use of BOLD and OE-MRI to assess 06 Jun 2017

changes in cycling hypoxia, tissue oxygenation and vascular reactivity to

hyperoxic gas challenges, in mouse models of colorectal therapy, following 4 Mark W. Dewhirst, Duke University, USA

treatment with the PDGF-receptor inhibitor, imatinib mesylate (Glivec). . o
Results: Whilst no changes were observed in imaging biomarkers of cycling Rl (Rl ey P S T, B
hypoxia (from BOLD) or chronic hypoxia (from OE-MRI), the BOLD response to Xiaojie Zhang, Duke University, USA
carbogen-breathing became significantly more positive in some tumour regions
and more negative in other regions, thereby increasing overall heterogeneity.
Conclusions: Imatinib did not affect the magnitude of cycling hypoxia or
OE-MRlI signal, but increased the heterogeneity of the spatial distribution of
BOLD MRI changes in response to gas challenges. Discuss this article
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Introduction

Changes in tumour blood oxygen saturation, blood flow and tis-
sue oxygen concentration can each be detected noninvasively via
recent advances in magnetic resonance imaging (MRI). In particu-
lar, blood oxygen level dependent (BOLD) MRI allows changes
in tumour deoxyhaemoglobin concentration to be detected'* and
oxygen-enhanced (OE) MRI uses the change in longitudinal
relaxation time to detect changes in oxygen concentration in tissue,
resulting from inhalation of a hyperoxic gas™’.

Using these biomedical techniques, alongside others, it has been
found that numerous solid tumours exhibit cyclical variations in
blood flow and/or oxygenation, resulting in cycling hypoxia in
tumour tissue, with a period of minutes to hours or even days**.
This effect has been detected non-invasively with biomedical
imaging in a number of studies®~', but remains relatively
under-studied".

Both cycling and chronic hypoxia can impact on treatment effi-
cacy. Cycling hypoxia has been found to contribute to therapeutic
resistance by limiting tumour drug delivery'® or, alongside chronic
hypoxia, by lowering oxygen concentration (which can impact on
response to both radiotherapy and chemotherapy'’). A better under-
standing of the effects of both cycling and chronic hypoxia on treat-
ment efficacy and drug delivery is critically needed. Moreover, the
use of therapeutic agents with previously established and well-
understood mechanisms of action can provide novel insights into
the mechanisms underpinning cycling hypoxia.

We therefore sought to investigate the effect of treatment with
imatinib mesylate, a tyrosine-kinase inhibitor of platelet-derived
growth factor (PDGF) receptor'®" on cycling and chronic hypoxia.
‘We hypothesised that potential vascular normalisation induced by
imatinib®’ would alleviate hypoxia and decrease the occurrence
of blood flow fluctuations associated with cycling hypoxia, via
remodelling of the vasculature, and with a similar effect on chronic
hypoxia. PDGF has an important role in angiogenesis® > and
imatinib has been found to reduce microvascular density”*,
reduce pericyte coverage’’’!, decrease interstitial fluid pressure
(IFP) in human xenograft models of lung (A549) and colorectal
carcinoma’*> and improve the uptake of chemotherapeutic and
radioimmunotherapeutic agents®**>-*_If these changes impact on
cycling hypoxia, this would allow the development of non-invasive
imaging biomarkers of early response to antiangiogenic therapy, for
use in the clinic®.

In this study, BOLD and OE-MRI were used to assess changes
in cycling hypoxia and oxygen delivery in colorectal tumour
xenograft models (LS174T), during treatment with imatinib. Cycling
hypoxia was assessed prior to and following imatinib therapy, using
an hour-long, dynamic measurement that was sensitive to changes
in blood oxygen concentration. We have previously detected
and characterised cycling hypoxia in these models, detecting
cyclical fluctuations with a period of approximately 3 cycles/
hour*®. BOLD and OE-MRI changes in response to hyperoxia and
hypercapnia challenges were also assessed, and compared with
gold-standard histological measures.
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Our linked hypotheses to evaluate in this study were that imat-
inib therapy would: 1) reduce hypoxia, which would be detect-
able through BOLD and OE-MRI measurements; 2) reduce the
amplitude and prevalence of cycling hypoxia via a reduction in
blood volume and improvement in flow, due to pruning of imma-
ture vessels; and 3) increase responsiveness to gas challenges
through similar mechanisms.

Materials and methods

Animal models

All in vivo experiments were performed in accordance with the
UK Home Office Animals Scientific Procedures Act, 1986 and
United Kingdom Coordinating Committee on Cancer Research
(UKCCCR) guidelines’’, and with the approval of the University
College London Animal Ethics Committee. Female, CD1 nude
mice (6-9 weeks old) were sourced from Harlan (UK) and were
housed in groups of 5 in isolated ventilated cages (IVCs) containing
environmental stimulation. Mice had access to food and water ad
libitum.

LS174T human colorectal adenocarcinoma cells (provided by
Prof. Pedley, UCL Cancer Institute) were grown for 2 weeks prior
to injection in complete media (Minimum Essential Medium
Eagle with L-Glutamine (EMEM) (Lonza, Belgium) + 10% fetal
bovine serum (Invitrogen, UK)) in a ratio 1:20 (v/v) and incubated
at 37°C and 5% CO,. To prepare for injection, cells were washed
with DPBS and detached with trypsin-EDTA (7-8 min, 37°C, 5%
CO,). 5x10° cells were injected subcutaneously into the left flank
the mice.

Imatinib therapy protocol

Imatinib (Glivec, Novartis Pharma GmbH, Germany) was admin-
istered by oral gavage (100 mg kg day') immediately after each
animal’s first MRI scan (day 0), and then daily for five consecutive
days (n = 10). Animals in the control group were treated with saline
(n =9). Daily calliper measurements were taken to assess tumour
growth rate. Tumour volume (V) was estimated according to:
V = (/6) x a x b*, where a is the longest diameter of the tumour,
and b is the diameter orthogonal to a.

In vivo MR

All MRI scans were performed on a 9.4 T VNMRS Varian
scanner (20 cm bore) using a 39 mm birdcage coil (Rapid MR
International, Columbus, Ohio). Prior to MR imaging, anaesthesia
was induced in mice with 5% isoflurane in medical air (78% N,
+ 21% O, + traces of Ar, CO,, H,, water vapour and others) and
subsequently maintained in the scanner with 1.25-1.5% isoflurane
in medical air, oxygen, or other gas mixtures, at 1 L/minute, admin-
istered via a nose cone. During scanning, core temperature was
measured using a rectal thermometer and maintained using a
warm air blower and warm water pipes. Respiratory rate was also
monitored using bellows (SA Instruments, Stony Brook, US) and
maintained at 60 — 90 breaths per minute by adjusting isoflu-
rane concentration. Tumours were set in dental paste (Charmflex,
Dentkist, South Korea) throughout scanning, to eliminate motion
artefacts.
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Baseline MRI scans were performed following approximately two
weeks of tumour growth (day 0). Following pilot scans and shim-
ming, three sets of data were acquired. The first acquisition was a
60-minute, dynamic BOLD scan, acquired using a gradient echo
multi-slice sequence, which was used to detect periodic changes
in deoxyhaemoglobin concentration (see post-processing below).
Sequence parameters included: repetition time (TR), 59.62 ms;
5 echoes; first echo time (TE), 2 ms; echo spacing, 2 ms; in-plane
field of view, 20x20 mm?;, matrix size, 64x64; slice thickness,
1.5 mm; 5 slices; 3.8 s per image.

The second acquisition was a 40-minute BOLD ‘gas challenge’
scan, during which different gas mixtures were administered in
10-minute intervals: medical air (including 20% O,, 2% CO,), car-
bogen (95% O,, 5% CO,), medical air, medical air + 5% CO,. The
same sequence parameters were used as in the first BOLD scan, but
with fewer acquisitions. Changes in signal intensity (SI) and AR,
relative to air-breathing phases were measured.

The final acquisition was a Look-Locker segmented Inversion
Recovery sequence, from which two R (=1/T,) maps were calcu-
lated, one during air breathing and another during carbogen breath-
ing. Look-Locker sequence parameters included: TR, 10 s; 50
inversion times (TI); TI spacing, 110 ms; TR, 2.3 ms; TE, 1.18
ms; in-plane field of view 20x20 mm?; matrix size, 128x128; slice
thickness, 1.5 mm; 5 slices; flip angle, 8°.

The complete MRI protocol was repeated at days 3 and 5 of the
study.

MRI data analysis

Four different spatial maps were calculated: 1) standard deviation
maps of spontaneous R, fluctuations (R, SD maps); 2) R, maps of
the difference between carbogen and air breathing (AR,); 3) R,
maps of the difference between carbogen and air breathing (AR,); 4)
signal intensity (SI) maps of the difference between hypercapnia
and air breathing (ASI).

Maps of R, SD were acquired in order to estimate the percentage
of voxels spontaneously fluctuating above the background noise
uncertainty, and their respective amplitude. A Bayesian maximum a
posteriori (MAP) approach was used to identify fluctuations above
the background noise*.

Gas challenge time courses were used to create voxel-wise maps
of vessel functionality carbogen (VF) and vessel maturation
(VD)"'. VF maps were created from the difference between
the mean R, values during carbogen breathing and air
breathing; VD maps were created from the difference between
the mean signal intensity (SI) values during hypercapnia and air
breathing:

VF = AR,,,, = R,(carbogen) — R, (air)

VD = ASlgy, = SI(air +5% €O, =SlGain) .|

Maps of the change in R (AR)) between carbogen and air breath-
ing phases were calculated to estimate tissue oxygenation changes.
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Paramagnetic dissolved molecular oxygen accelerates T relaxation
through dipole-dipole interactions between the water protons and
the molecular oxygen”. Voxel-wise AR, maps were calculated as:

' o T @
An increase in tissue oxygenation upon carbogen breathing was
expected to produce a positive AR,. The percentage of positive or
negative carbogen-responsive voxels and its mean AR, value were
computed for all treated tumours (n = 8) and 3 control tumours.
AR, maps were resampled to a matrix size of 64x64 in order to
perform a correlation analysis with AR, maps to allow comparison
of tissue oxygenation and blood oxygenation estimates in treated
tumours. The magnitude values of individual voxels in both maps
were plotted against each other (only supra-threshold voxels in
AR; maps were considered). One plot was created for each day of
MRI scanning. In each plot, voxels of all respective tumours were
grouped (n = 8). The percentage of voxels exhibiting positive or
negative ASI responses and their respective mean magnitude values
were computed.

Histological assessment

Multifluorescence histochemical labelling was undertaken on
10um—thick frozen sections of tumour tissue. Staining for vascu-
lar perfusion was achieved via intravenous injection of Hoechst
33342 (Cambridge Bioscience, UK) at 12.5 mg/kg, one minute
before sacrificing the animal by cervical dislocation. Endothe-
lial cells were stained with a rat monoclonal antibody against
CD31 (Abcam, UK, ab56299), revealed with Alexa Fluor-488
(Life Technologies, UK).

Pericytes express a number of markers of differentiation and,
consequently, no single marker has the ability to identify all
pericytes™’. In this study, two markers were therefore used:
a-smooth muscle actin (0-SMA) and NG2 chondroitin sulfate pro-
teoglycan. The expression of a-SMA occurs in most perivascular
cells (composed of pericytes and vascular smooth muscle cells),
whereas NG2 is expressed on arteriolar perivascular cells and cap-
illary pericytes but not on venular pericytes***!. Since the vascula-
ture of LS174T tumours is predominantly composed of capillar-
ies, both antibodies exclusively stain pericytes in this tumour type.
Moreover, the expression of a-SMA is possibly dependent on
endothelial release of transforming growth factor-f (TGB-),
whereas differentiation into NG2-positive pericytes is independ-
ent of TGF-B*. Pericyte staining was therefore undertaken with
both mouse monoclonal anti-o.-SMA (Sigma-Aldrich, UK, A5228)
labelled with Alexa Fluor 546 (Life Technologies, UK, A20183)
and rabbit polyclonal anti-NG2 antibody (Millipore, UK, 05-710)
labelled with Alexa Fluor-488 (Life Technologies, UK, A20181).

Hypoxic regions were detected via intraperitoneal injection
(60 mg/kg) of the hypoxia marker pimonidazole (Hypoxyprobe,
US) 30 minutes before sacrificing the animal by cervical disloca-
tion, followed by ex vivo staining using a rabbit polyclonal anti-
pimonidazole (Hypoxyprobe, US), labelled with Alexa Fluor-488
(Life Technologies, UK). Additionally, haematoxylin and eosin
(H&E) staining was performed in immediately adjacent frozen
sections to assess tumour morphology.

Page 4 of 22



Fluorescence images were acquired using an Axio Imager
microscope (Carl Zeiss, UK), equipped with an AxioCam dig-
ital colour camera. H&E images were collected on a bright-field
Zeiss Axioskop2 microscope (Carl Zeiss, UK). Both microscopes
were fitted with a motorized stage and used AxioVision software
(Carl Zeiss, UK); acquisition magnification was 10x objective.

Quantification of immunofluorescence was performed in Matlab
(MathWorks, MA, US). Regions of interest (ROIs) were drawn
around the total area of the tumour and images were thresholded
to exclude background fluorescence signal. Tumour coverage of
Hoechst 33342 and each of the four fluorescent markers was cal-
culated as the ratio between fluorescent pixels and the total number
of pixels within the ROI. Additionally, the percentage of capillaries
(CD31) covered with pericytes (0--SMA or NG2) was calculated to
assess vascular maturation.

Statistical analysis

Differences in the growth rate between treated and control tumours
(calculated by MRI or calliper measurements) were assessed with
a Mann-Whitney U-test on each individual day. The same test was
used for assessing differences between treated and control tumours
regarding quantitative distributions of histological fluorescence
markers.

In order to assess the effect of imatinib administration on tumour
MRI parameter estimates, a longitudinal assessment of individual
tumours (i.e., throughout the study days) was undertaken. A one-
way ANOVA followed by Holm-Siddk’s multiple comparisons
test was used to assess significant differences between days 0, 3
and 5 in treated tumours. The same test was used separately in the
control group. This was performed for R; spontaneous fluctuations,
R; response to carbogen, R, response to carbogen and SI response

MREI measurements

A treated (p=%: days 0, 3, =58 day 3)
control (=)

Relative volume change
L
=

I:I T T T
3 5
Days of study

first
administration
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to hypercapnia. Voxel-wise correlation between AR, and AR
responses to carbogen breathing was assessed with Pearson’s
linear correlation.

Results

Assessment of tumour growth rate

Administration of imatinib did not significantly affect the growth
rate of LS174T tumours, as assessed by both MRI and calliper
measurements (see Figure 1). This is consistent with previous stud-
ies in the same tumour type'®, although changes were observed on
histology. In the imatininb-treated group, one mouse was eutha-
nized prior to therapy due to tumour ulceration.

Effect of imatinib on BOLD MRI measurements of cycling
hypoxia

Maps showing cyclical fluctuations in an LS174T tumour, and
associated BOLD MRI R, * time courses, are shown in Figure 2.
As found in our previous study in this tumour type, fluctuations
exhibited a period of approximately 3 cycles/hour®. Imatinib
therapy did not cause a significant change (P>0.05) in the number
of voxels exhibiting cyclical R, fluctuations, nor their magnitude,
at any point throughout the duration of the study. The data from
one control tumour were unevaluable due to extensive susceptibility
artefacts, and were excluded from further analysis.

BOLD MRI measurements during hyperoxia gas challenge
Figure 3 shows the R, response to a hyperoxia challenge
(carbogen), assessed with BOLD MRI, in an example tumour.
The percentage of voxels exhibiting positive (+AR,, implying an
increase in deoxyhaemoglobin) or negative (-AR,, implying a
decrease in deoxyhaemoglobin) responses did not change sig-
nificantly throughout the study, either in treated or control groups
(Figure 3B), nor did the magnitude of R, responses (Figure 3C).

Calliper measurements

A treated (p=10: days 0-3, n=% days 4,5)
44 @ control (=3}

g
= 31
=
[-t)
E
ERY
5 }
-
=
= 11 &
@
&

I:I T T T L T T

1 2 3 4 5
Days of study
first
administration

Figure 1.Tumour growth in treated (imatinib) and control (saline) tumours, assessed with MRI (left) and calliper (right) measurements.
The first dose of Imatinib or saline was administered to the mice immediately after the baseline scan, and a further four doses were given,
once a day. No significant differences in growth rate between the groups were identified (Mann-Whitney U-test). Data are mean + SD.
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Figure 2. Spontaneous fluctuations in tumour blood oxygenation, measured with BOLD-MRI. A) R,* time course in an example voxel
exhibiting spontaneous fluctuations. B) An example R,* standard deviation (SD) map, showing the location of spontaneous fluctuations within

a slice through an LS174T tumour. C) Graphs showing the change in R,

* in example voxels, during air breathing followed by carbogen (carb,

95% 0O, /5% CO,) breathing, and the change in signal intensity during air breathing followed by to air+5% CO, breathing. D) The percentage
of tumour voxels, across the whole group of mice, that exhibited statistically significant spontaneous R,” fluctuations and the corresponding
standard deviation of such variations. No significant differences in these measures were found in the treated (imatinib, n = 8) or control (saline,
n = 8) groups throughout the study days (one-way ANOVA followed by Holm-Sidak’s multiple comparisons test).

However, an interesting effect was observed in the BOLD
response to hyperoxia by the treated group at day 5, where either
positive or negative responses were of larger magnitude than at
days 0 and 3 (Figure 3C). This observation led to the investigation
of the heterogeneity in the tumour response via measurements of
standard deviation (SD) of AR, values in each tumour. SD values
of AR, were found to significantly increase in the treated group
at day 5, but not in the control group, confirming an increase in

the response heterogeneity throughout the tumour due to imatinib
(Figure 3D).

BOLD MRI measurements during hypercapnia gas challenge
Figure 4 shows the tumour response to hypercapnia challenge. The
percentage of responsive voxels (both positive and negative) and
their corresponding magnitudes were not significantly different
between study days in treated or control groups.
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Figure 3. Tumour R,* response to hyperoxia (carbogen) challenge at baseline (day 0) and day 5 of Imatinib therapy. Statistical
significance throughout the study in treated (imatinib, n = 8) or control (saline, n = 8) groups was tested with a one-way ANOVA followed by
Holm-Sidak’s multiple comparisons test. A) A representative dataset showing an increase in the heterogeneity of carbogen response caused
by imatinib therapy, between days 0 and 5. B) A ladder plot showing the percentage of tumour voxels showing a significantly positive or
negative R,” response to carbogen. C) Ladder plot showing the corresponding mean AR,* values for each treated or control tumour. D) The
standard deviation of the magnitude values represented in C, depicting a significant increase in the heterogeneity of the carbogen response
between days 0 and 5 in the treated group, but not in the control group. *P < 0.05.

OE-MRI measurements

Figure 5 shows OE-MRI measurements in an example tumour,
measured using the change in R, following a hyperoxia (carbogen)
challenge. AR, was not significantly different between study days,
in either treated or control groups (Figure 5B).

Immunohistochemistry

Histological data from two treated tumours were unevaluable due
to sectioning artefacts, leaving seven treated tumours available
for histological assessment. The histological sample size of the

control group was: perfusion (n=5), hypoxia (n=5), endothelial cells
(n=10), pericytes (0-SMA, n=10), pericytes (NG2, n=0), pericyte
(0-SMA) coverage of blood vessels (n=10), and pericyte (NG2)
coverage of blood vessels (n=6) (Figure 6A-C). Imatinib-treated
tumours exhibited a significantly reduced number of capillaries
covered with NG2-stained pericytes, relative to control tumours
(P<0.01). However, no difference was found in the percentage of
capillaries covered with a-SMA-stained pericytes between treated
and control groups. No significant differences were observed
in markers of perfusion, hypoxia, vascular endothelial cells or
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Figure 4. Tumour signal intensity (Sl) response to air + 5% CO, breathing challenge (hypercapnia) at days 0 (baseline), 3 and 5.
A) Ladder plot showing the percentage of tumour voxels showing a positive (+ASl) or negative (-ASl) response to hypercapnia. B)
Corresponding mean AS| values for each treated or control tumour. C) Standard deviation of the magnitude values represented in B. No
significant differences were observed throughout the study in the treated or control groups (one-way ANOVA followed by Holm-Sidak’s

multiple comparisons test).

pericytes (neither o-SMA nor NG2). Imatinib-treated tumours also
exhibited hyperdilated blood vessels, potentially due to a loss of
structural support from the decreased pericyte coverage (NG2).
This was not found in untreated tumours. Of note was that the
method used to quantify tumour coverage of histological measures
did not take into account the morphological changes exhibited by
the vasculature. The fact that some capillaries were larger in treated
tumours could also mean there were fewer of them in the corre-
sponding area, although we found no evidence for overall differing
microvascular density between treated and control groups.

Discussion

The effect of treatment with imatinib mesylate, a tyrosine-kinase
inhibitor of PDGF receptor, on spontaneous fluctuations in
tumour blood oxygenation and responsiveness to vasoactive gas
challenges, was investigated here, using blood oxygen level-
dependent (BOLD) and oxygen-enhanced (OE) MRI. Our starting

hypothesis was that vascular normalisation induced by imat-
inib would reduce vascular fluctuations (via a reduction in inter-
stitial fluid pressure) and enhance the response to hyperoxic gas
challenges'”*.

Effect of imatinib therapy on histological measures
Quantification of histological data revealed that the regime of drug
administration used (100 mg kg™, once per day for 5 consecutive
days) did not appear to induce functional normalisation of the
tumour microvasculature. Perfusion and hypoxia were not signifi-
cantly different from control tumours. This result could possibly
be due to the relatively short therapy window (5 days, compared
with 7 days in previous studies®*?) and/or that therapy was not
fractioned (the half-life of imatinib is approximately 4 hours in
mice”, meaning a fractioned dose can be more effective®).
However, fractionated dosing would have been challenging to
implement due to the timing of MRI scans.
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Figure 5. Tumour R, response to the carbogen challenge, assessed using OE-MRI, at days 0, 3 and 5 in treated (imatinib, n = 8) and
control (saline, n = 3) groups. A) Ladder plot showing the percentage of tumour voxels that displayed a positive or negative R, response.
B) Corresponding mean AR, values for each treated or control tumour. No significant differences were observed throughout the study in the
treated or control groups (one-way ANOVA followed by Holm-Sidak’s multiple comparisons test).

In contrast, vascular coverage of pericytes (expressing NG2) was
found to decrease with therapy, which is consistent with inhi-
bition of the PDGF pathway by imatinib". Disruption of the
pericyte-capillary contact resulted in blood vessel hyperdilation
(Figure 6). This effect was previously observed following treat-
ment with a PDGF-R inhibitor, where Song ef al.** concluded that
tumour pericytes, albeit less abundant or more loosely attached
relative to normal vasculature, still played an important role in
maintaining vascular integrity and function.

Decreased pericyte coverage has been proposed to increase leak-
age into the extravascular space* and, consequently, are associ-
ated with an increase interstitial fluid pressure (IFP). However,
PDGEF is a critical regulator of IFP*-**% and imatinib-mediated
inhibition of its receptor has previously been shown to decrease
IFP and hypoxia in LS174T tumours®. No differences in hypoxia
caused by imatinib were observed in this study, and the reasons
for this disparity are unclear, but might be the result of these
two antagonistic effects cancelling each other.

Effect of imatinib therapy on spontaneous R, fluctuations
measured with BOLD MRI

Imatinib therapy did not affect the percentage of oscillating vox-
els or the amplitude of R, fluctuations, which might be expected
given the limited evidence of vascular normalisation found in his-
tological measurements. However, even with confirmed pericyte
detachment observed following therapy, spontaneous R, fluc-
tuations were still present. This suggests that pericytes have a
minor role in the production of spontaneous fluctuations. Indeed,
other studies have suggested that raised interstitial fluid pressure
is responsible for the phenomenon, which can be caused by the
periodic occlusion of vessels*® or systemic fluctuations in blood

flow". Imatinib therapy did not affect the percentage of oscillating
voxels or the amplitude of R, fluctuations, which might be expected
given the limited evidence of vascular normalisation found in
histological measurements. However, even with confirmed
pericyte detachment observed following therapy, spontaneous R,
fluctuations were still present. This suggests that pericytes have a
minor role in the production of spontaneous fluctuations. Indeed,
other studies have suggested that raised interstitial fluid pressure
is responsible for the phenomenon, which can be caused by the
periodic occlusion of vessels’® or systemic fluctuations in blood
flow"".

BOLD and OE-MRI measurements in response to hyperoxia
and hypercapnia

Imatinib-treated tumours displayed interesting effects on
BOLD measurements during gas challenges, and which are not
straightforward to interpret. An increase in the magnitude of AR,
values (both positive and negative), measured during carbogen
breathing, was observed at day 5 of the study. Vessel hyperdila-
tion was evident in histological measures, and this increased blood
volume could increase the tumour’s capacity for oxygen transport,
resulting in a more negative AR,. In turn, a greater response to the
challenge could increase the potential for vascular steal effects from
the nearby vasculature, causing a more positive AR,. A combina-
tion of these effects could therefore explain the increased BOLD
response to carbogen.

Imatinib did not cause a significant change in the OE-MRI response
to carbogen challenge throughout the study. Additionally, correla-
tion between carbogen AR, and AR, revealed a weak correspond-
ence. This contrasts with the study by O’Connor ef al.*, in which
R; and R, responses to carbogen and oxygen inhalation in patients

Page 9 of 22



A Treated

Wellcome Open Research 2017, 2:38 Last updated: 11 OCT 2017

Control

500 pm
—

(9]

% tumour coverage

% 500 um_
. S e |

500 pm
|

500 pm
| c— |

@ Control (saline)
A Treated (imatinib)

T 4

80+

604

% vessel coverage

Perfusion Hypoxia Endothelial Pericytes Pericytes
cells (a-SMA) (NG2)
ok

'

I I 1 1

Pericytes
(a-SMA)

Pericytes
(NG2)

Figure 6. Representative fluorescence microscopy images from imatinib-treated and control LS174T tumours. A) Fluorescence
microscopy images showing enlarged capillaries in treated but not in control tumours. B) H&E images showing regions of necrosis (black
arrows), small and sparse round nuclei (red arrows, possibly revealing apoptosis) and viable tissue (green arrow) around capillaries (yellow
arrow) or the tumour edge (orange arrow). C) Quantitative fluorescence microscopy results from control and treated LS174T tumours
(day 5), showing the percentage tumour staining for perfusion, hypoxia, endothelial cells and pericytes (stained with either anti-o-SMA or
anti-NG2 antibodies), and the percentage of blood vessels covered with pericytes. Error bars represent mean + SD. Imatinib treatment
caused a significant decrease in the capillary coverage of pericytes stained with anti-NG2 but not with anti a-SMA. Significance between
distributions of treated and control tumours was assessed with a Mann-Whitney U-test. ** P < 0.01.

were significantly correlated. The cause of this disparity is unclear,
but could be due in part to differences between preclinical and
clinical MRI field strengths (9.4T vs 3T, respectively), or between
tumour types.

Conclusion

This study used BOLD and OE-MRI to assess the effect of the
vascular-targeting therapeutic imatinib mesylate on cycling fluc-
tuations in tumour oxygenation, vascular responsiveness to inhaled
gas challenges, and chronic hypoxia. No evidence of vascular

normalisation was observed following 5 consecutive days of treat-
ment in colorectal tumour xenograft models and, consequently,
it could not be determined whether normalisation impacts on the
amplitude or prevalence of cyclical fluctuations (which remained
unchanged throughout). No change in OE-MRI measures were
found, although the BOLD response to carbogen became signifi-
cantly more positive in some tumour regions and more negative
in other regions, thereby increasing overall heterogeneity.
Whether this effect is linked to pericyte detachment requires further
investigation.
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Current knowledge on tumor cycling hypoxia. Positioning of the work.

The paper of MR Goncalves et al is an interesting piece of work dealing with the phenomenon of cycling
or acute hypoxia in tumors. This phenomenon remains an enigma in cancer research. After its discovery
(1) and studies on the factors responsible for this phenomenon (essentially, the fluctuation in red blood
cells) (2), it has been postulated that fluctuating hypoxia may be responsible for tumor aggressiveness
and resistance to treatments including radiation therapy or chemotherapy (3-4). However, the impact on
human tumors still remains speculative.

To increase our knowledge on the impact of cycling tumor hypoxia in cancer therapy, there is a crucial
need for developing non-invasive methods that can be translated into human patients. The first
description of such a method using non-invasive imaging using was described by Baudelet et al in 2004
using Blood Oxygen Level Dependent (BOLD) Magnetic Resonance Imaging (MRI) (5). The main
advantages were the non-invasiveness of the technology, the use of an endogenous contrast, and the
high spatial (0.5 mmx0.5mm pixel size) and temporal resolution (10 s per scan). She also described that a
treatment combining carbogen and nicotinamide induced a significant decrease in the number of
fluctuating voxels (5). Using BOLD-MRI, she studied the influence of vessel maturity on the occurrence of
the phenomenon. For the purpose, she correlated maps of spontaneous fluctuations in flow/oxygen and
maps vessel maturity using BOLD-MRI during sequential hypercapnia and hypercapnic hyperoxia
challenges in fibrosarcomas (6). Goncalves et al also studied the relationship between cycling hypoxia
and pathophysiological patterns, including vessel maturity (7).

It is worthwhile to state that other methods such as Dynamic Contrast Enhanced (DCE)-MRI (8) or 18
F-FMISO-PET (9) were also described to tackle this phenomenon, but with a lower spatial and time
resolution, 15 min and 24 hours, for DCE-MRI and PET, respectively. Unfortunately, all these methods do
not provide real pO, measurements, but rather reflect variations in local hemodynamic changes. Two MR
methods were more recently described in order to map real pO, fluctuations occurring inside tumors: 19
F-MR relaxometry (10) and EPR oximetry (11). While these methods are powerful tools of investigation in
pre-clinical models, it is unlikely that they will be used rapidly into the clinical arena on a broad scale.
Overall, while the BOLD contrast depends on many factors (12), BOLD-MRI is currently one of the most
promising method for translation into the clinic. Interestingly, a first report has just been published very
recently with the demonstration of the occurrence of cycling hypoxia in patients with head and neck
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squamous cell carcinoma (HNSCC) (13).

In addition to the availability of methods able to tackle the phenomenon over entire tumors, there is also a
need for treatments that can modulate the occurrence of the spontaneous fluctuations in oxygenation. By
correlating their effect on cycling hypoxia and treatment outcome, it could pave the way to designing
rational innovative combined therapies. In this context, the strategy of authors to use a PDGFR antagonist
was sound as it could potentially induce a change in proportion of vessel maturity and a transient
normalization window of the vasculature. It is worth to cite the recent work of Matsumoto who used
sunitinib for the same purpose and observed a decrease in the occurrence of cycling hypoxia as
demonstrated by in vivo EPR (14).

Overall, the results presented in the publication can be considered as negative results as imatinib did not
induce the expected change neither in flow/oxygen fluctuations nor vessel maturity as measured by MRI.
Interestingly, only a change in pericytes (NG2 marker) was observed. Because the results were not
conclusive, it is difficult to extrapolate if the strategy of normalization of the vasculature could have an
impact on cycling hypoxia. However, the strategy, the methods used were sound and appropriate, and
this report definitely deserves publication. Closing a door is as important than opening a door.

Minor specific points

1. The broad context and challenges of mapping tumor acute hypoxia and linking could be expanded
in the introduction (see previous description)

2. The methods are adequately described and well performed. The rational for using hypercapnia and
hypercapnic hyperoxia could be a little bit more expanded for facilitate the reading (see ref 6 and
15)

3. Are there any result for tumor R2* response on day 37
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General Remarks:

Cycling (acute) hypoxia in tumors was first described in classic work of Martin Brown (1) and later by
David Chaplin and Ralph Durand (2). The prevailing paradigm from that early work was that this feature of
oxygen transport was the result of temporary vascular stasis. Later, it was established that vascular stasis
is not required for this effect. The predominant cause was the result of fluctuations in red cell flux in tumor
microvessels (3). Many other published papers have characterized some of the features of this
phenomenon, as reviewed (4-6). For example, Fourier transform analyses have revealed a complex
cyclical behavior, with the most predominant frequency in the range of 2-3 cycles per hour (7). Although
cycling hypoxia has not been reported in human tumors, to date, it has been observed in companion
canine solid tumors (8). The magnitude of these fluctuations varies considerably between tumor types (7,
9). Despite the extensive work to characterize cycling hypoxia in pre-clinical models, the clinical
significance of cycling hypoxia is unknown. Imaging methods that can capture this dynamic hold promise
for being able test the clinical significance of cycling hypoxia. The two MRI-based methods studied in this
paper are clinically translatable.

Blood Oxygen Level Detection (BOLD) was the first technique used to study cycling hypoxia, in vivo (10).
More recently, Oxygen Enhanced (OE-MRI) has been reported to reflect tumor hypoxia, but to date
studies using it to measure cycling hypoxia have not been reported (11). The BOLD signal is sensitive to
the concentration of deoxyhemoglobin present in the blood (10), whereas the OE-MRI method is
dependent upon the amount of oxygen that is dissolved in interstitial fluid (11). BOLD signal can be
influenced by mitigating factors that are somewhat independent of the concentration of deoxyhemoglobin
content of blood. These mitigating factors include changes in microvessel hematocrit and flow velocity
(12). In contrast, OE-MRI is not subject to these potential errors. To date, however, a head-to-head
comparison of these two methods in the same tumor type has not been reported. This particular paper
uses both methods and the opportunity for a direct comparison exists. Unfortunately, however, this
comparison was not made.

The majority of the studies of cycling hypoxia were done using point measurements of pO,, (polarography
or implantable fluorescence lifetime spectroscopy probes), which afford no insights into the potential
underlying causes of these fluctuations. The fluctuations in red cell flux and hypoxia may the product of
instabilities in microvascular network flow dynamics, but to study this, one would have to be able to
visualize the oxygen field throughout the entire tumor at multiple points in time. If one observes spatial
relatedness in the fluctuations within the tumor, it is quite likely that network hemodynamics are
contributing to cycling hypoxia. Relevant work to the issue of spatial coordination in oxygen instability has
been done in window chambers, using phosphorescence lifetime imaging and with oxygen sensitive
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nanoparticles (13, 14). However these tumors are very small and nearly two-dimensional. Whether spatial
relatedness in cycling hypoxia extends to larger 3-dimensional tumors is unknown. One group has
performed a semblance of this type of analysis using BOLD MRI (10), in orthotopically transplanted
sarcomas of mice, but more work is required. There is a clear need for carefully performed studies using
methods that can visualize an entire 3-dimensional tumor. The methods used in this paper are highly
relevant to this issue, but analysis of spatial relatedness was not performed.

Another critical point that has not been resolved is whether cycling hypoxia occurs in deep-seated tumors.
All of the measurements that have been done have been in peripheral tumors, either in mice or
companion canine tumors. Laser Doppler measurements of variations in perfusion were conducted in
human subjects, but these were also in superficial tumors (15). It is possible that cycling hypoxia occurs
mainly in peripherally located tumors because fluctuation in muscle perfusion is part of the
thermoregulatory process in mammals (16). The methods used in this paper could be used to examine
this question, by focusing on deep-seated orthotopic tumors in pre-clinical models. If successful, such
studies could be extended to human subjects.

The goals of this paper were to use BOLD and OE-MRI to study the dynamics of cycling and chronic
hypoxia under baseline conditions, after treatment with imatinib and during carbogen breathing or
breathing room air with 5% CO,. Using a nude mouse model with colorectal adenocarcinoma, the authors
hypothesized that imatinib therapy, an inhibitor of platelet-derived growth factor, would decrease tumor
hypoxia and cycling hypoxia by normalizing vasculature. Given the complexity of the manipulations made,
it is difficult to come to an overall conclusion of whether this work adds to what is already known about
cycling hypoxia. First, only one tumor model was studied and it was not studied in the orthotopic site.
Given the variation in vascular maturity between different tumor types (17, 18), it is difficult to generalize
the results to understand how the effects seen represent “typical” tumors.

The rationale for the choice of imatinib, a PDGFR antagonist, is not clearly defined. It has been shown
previously that similar drugs reduce vascular density and pericyte coverage (19). Indeed this is what was
seen here. So, the treatment of choice made the vasculature less mature. This is not consistent with the
concept of vascular normalization. Furthermore, the relative timing of tumor growth, imatinib
administration, imaging time relative to drug administration need to be detailed in the methods section.

From an analysis perspective, the authors examined the aggregate changes in individual voxels within the
MRI tumor images, taking the cumulative fluctuations of all the voxels to be significant for changes in
hypoxia. Given that hypoxia changes along both a spatial and temporal spectrum, to simply look at
individual voxels yields only limited information. In comparable studies of cycling hypoxia using a mouse
window chamber, watershed segmentation studies were performed examining not only individual pixels
but also of neighboring pixels. This nearest-neighbor approach would allow structural information and
patterns to be visualized across a given tumor (13). Furthermore, a Fourier analysis would be useful in
studying the power fluctuations across k-space and how they relate to cycling hypoxia (7).

The work performed in this paper is technically sound. However, as written, the paper does not shed new
light on cycling hypoxia, nor does it undertake further mechanistic explorations. As recommended above,
additional analyses of the existing data could prove fruitful, however. It is strongly recommended that the
authors consider a head to head comparison of BOLD vs. OE-MRI, under baseline conditions and in
conditions following imatinib treatment. It is also strongly recommended that analysis of data sets for
spatial relatedness could be quite fruitful. It is possible that the characteristics of spatial relatedness are
affected by imatinib treatment, for example. It is recommended that the studies with the hyperoxic and
hypercarbic gases be removed. These do not add anything meaningful to this work and carbogen is no
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longer used clinically.

Specific Comments:

1. Abstract

The background explains the role of BOLD and OE-MRI well in the context of clinically-relevant tumor
hypoxia studies; however, it requires an explanation of why hypoxia is clinically significant.

2. Introduction

The introduction lays out clearly the aims of this study, and justifies well the usage of BOLD and OE-MRI
to detect hypoxia cycling in solid tumors. In addition, the hypothesis, that imatinib as a vascular
normalizing agent would reduce tumor hypoxia as well as the fluctuations of cycling hypoxia, is clearly
written and easily understandable. However, in the selection of imatinib as the drug of choice, the authors
lack a fuller explanation for why imatinib is chosen over other targeted agents, which more directly alter
angiogenesis and tumor vasculature. Furthermore, justification of the gas challenge studies is necessary
as itis unclear how they are significant to this study and how they are clinically relevant.

3. Animal Models

The usage of nude mice for studying the human colorectal adenocarcinoma is appropriately selected.
However, the sacrificing parameters, such as tumor threshold or a pre-selected time frame, need to be
elucidated.

4. Imatinib therapy protocol
The authors need to elaborate on the target/actual tumor volumes that marked the beginning of imatinib
therapy.

5. In Vivo MRI

The authors need to describe when the MRI imaging was performed in relation to the imatinib treatment
that day. They indicate later in the paper that there are short half-life considerations, so the timescale is
important to include.

In the third paragraph, it is unclear as to what this method will achieve. An intuitive understanding of the
comparisons the authors will make is lacking based on the generic description. It needs to be made clear
that the study is focusing on the comparison between carbogen and medical air, and medical air +5% CO
» and medical air. Furthermore, the carbogen gas challenge induces vasoactive effects, and contributes
to altered hematocrit independently of oxygen levels. As such, having a convoluted series of gas
challenges, medical air vs carbogen, and medical air vs + medical air +5% CO,, simply adds greater
noise to the study of cycling hypoxia changes induced by imatinib, and does not add new or useful
information.

6. MRI Data Analysis

The data analysis is well-explained and consistent between studies with an exception: if R1 is being
defined in terms of 1/T1 (Equation 2), consistently define R2* in that same manner. As for the methods of
analysis, the authors chose a simplistic approach that does not take advantage of the subtleties of their
data. A more robust approach of comparing groups of voxels and a Fourier analysis (as described earlier)
would provide much needed originality and could yield more significant results. As it is, the figures that the
authors' current analysis produces are confusing and nearly indecipherable.

7. Histological Assessment
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Immunohistochemical assessment and parameters, while not a perfect correlate to cycling hypoxia, are
well delineated and explained. The authors explain the rationale behind staining for endothelial cells,
pericytes (and explains the selection of dual markers), hypoxia, and perfusion. How do these results
relate to the imaging results?

8. Assessment of Tumor Growth Rate
The description and duel-measurements (using MRI and calipers) is well-described and succinct.
However, a figure of the tumor volumes without normalization is needed.

9. Effect of imatinib on BOLD MRI measurements of cycling hypoxia

The authors provided a thorough description of the results as well as the p-value to show a lack of
significance.

Figures 2A and 2C show only one example voxel. It is unclear if this was representative of all the
spontaneous voxel fluctuations.

In Figure 2C, the ordinate axes of the subfigures are reported differently making comparison impossible.
Figures 2D and E need to be visualized differently as they are difficult to read with the majority of points
overlapping. Although, as was suggested earlier, an analysis over multiple voxels would be more
meaningful.

10. BOLD MRI measurements during hyperoxia gas challenge

The results were well explained with a note on the implications of positive and negative AR2* values. As
the authors go on to describe an interesting result, they fail to report the significance. Furthermore, the
referenced Figures 3B, 3C and 3D are missing the data point for day 3. These data points either need to
be included or replaced with an explanation describing a valid reason for excluding them.

11. OE-MRI measurements

The method of comparing medical air and carbogen for evaluating tumor oxygenation is outdated and is
not used in the clinic. Carbogen, as mentioned earlier, is also known to be vasoactive, which could affect
the data significantly. This could also cause the discrepancy reported between this data and those
previously published by O'Connor et al.

12. Immunohistochemistry

The immunohisotochemistry is not an adequate correlate of cycling hypoxia, given that cycling hypoxia is
dynamic, time sensitive, and heterogeneous within the tumor. The immunohistochemistry only examines
limited sections of tumors, and at one point in time.

13. Effect of imatinib therapy on histological measures

Given the known therapeutic range of drug dosage as well as standardized regimen, the authors do well
to address the discrepancy between the selected once daily regimen vs the conventional regimens (BID
in other papers using Imatinib). The authors need to explain why the treatment window was shortened to
5 days. Furthermore, the challenge of the timing of the MRI scans with imatinib administration could be
discussed further as to the reason why a BID or even more frequent regimen was not performed. Using
sub-therapeutic doses could significantly impact data and limit the specific imatinib effect the authors
attempt to study.

14. Effect of imatinib therapy on spontaneous R2* fluctuations measured with BOLD MRI

This paragraph was repeated.

"However, even with confirmed pericyte detachment observed following therapy, spontaneous R2*
fluctuations were still present. This suggests that pericytes have a minor role in the production of
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spontaneous fluctuations. Indeed, other studies have suggested that raised interstitial fluid pressure is
responsible for the phenomenon, which can be caused by the periodic occlusion of vessels or systemic
fluctuations in blood flow."

The point stated here does not add new information. Pericytes aid the contractile function of blood
vessels. Furthermore, cycling hypoxia cannot be attributed to interstitial fluid pressure, which describes
the fluid pressure gradient between the extravascular and intravascular space. Because of the presence
of microvascular pores, interstitial fluid pressure cannot collapse tumor vessels. Vascular collapse occurs
as a result of tissue pressure. This comes from continued cell proliferation within a confined space or from
dense matrix, which can push on tumor vessels and collapse them. The authors should look at the
extensive works by Rakesh Jain and colleagues, who have studied this issue for many years.

15. BOLD and OE-MRI measurements in response to hyperoxia and hyperapnia

"Vessel hyperdilation was evident in histological measures, and this increased blood volume could
increase the tumor’s capacity for oxygen transport, resulting in a more negative AR2*. In turn, a greater
response to the challenge could increase the potential for vascular steal effects from the nearby
vasculature, causing a more positive AR2*."

There is a misunderstanding of vascular steal effects. A dilated blood vessel will steal the supply from
smaller vessels, leading to a more negative AR2* effect. Furthermore, tumor perfusion is regulated by
arteriolar function upstream of the capillary bed found within tumors. A dilated capillary does not nessarily
result in greater perfusion, as the authors claim.

The OE discussion does not seem adequate for this paper, as barely any comparisons between OE and
BOLD MRI were addressed.
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