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Most important decisions in our society are made by groups, from cabinets and commissions to 
boards and juries. When disagreement arises, opinions expressed with higher confidence tend to 
carry more weight1,2. Although an individual’s degree of confidence often reflects the probability 
that their opinion is correct3,4, it can also vary with task-irrelevant psychological, social, cultural 
and demographic factors5–9. Therefore, to combine their opinions optimally, group members must 
adapt to each other’s individual biases and express their confidence according to a common 
metric10–12. However, solving this communication problem is computationally difficult. Here we 
show that pairs of individuals making group decisions meet this challenge by using a heuristic 
strategy that we call confidence matching: they match their communicated confidence so that 
certainty and uncertainty is stated in approximately equal measure by each party. Combining the 
behavioural data with computational modelling, we show that this strategy is effective when 
group members have similar levels of expertise, and that it is robust when group members have 
no insight into their relative levels of expertise. Confidence matching is, however, sub-optimal 
and can cause miscommunication about who is more likely to be correct. This herding behaviour 
is one reason why groups can fail to make good decisions10–12. 

To illustrate the communication problem inherent to group decision-making, consider two handball 
referees who disagree about whether the ball crossed the goal line. Each referee states their opinion 
with a certain degree of confidence (Figure 1A, y-axis). This degree of confidence depends on the 
probability that their individual opinion is correct (Figure 1A, x-axis). The referees have, however, 
different subjective mappings (i.e., different functions mapping probability correct to confidence as 
indicated by the solid lines), with the blue referee biased towards higher confidence. Consequently, 
the group decision is, in this interaction, dominated by the blue referee, who is in fact less likely to 
be correct (dotted lines; their probability correct may vary because of differences in expertise or 
proximity to the incident). To avoid such miscommunication, the referees must align their subjective 
mappings so that their confidence is stated in a mutually consistent manner (Figure 1B).  

It is, however, computationally difficult to reach the optimal solution. Without any prior interaction, 
the referees can only make guesses about their colleague’s subjective mapping. But even with prior 
experience working together, estimating and adjusting to their colleague’s subjective mapping is 
challenging, especially because the function mapping probability correct to confidence is not static 
but being adjusted in return13,14. Here we tested the hypothesis that people instead solve the 
communication problem using a heuristic strategy: they seek to align their unobservable subjective 
mappings by matching their observable confidence (Figure 1C). Indeed, individuals tend to mimic 
each other’s communicative behaviours, such as vocabulary15, and it has been proposed that 
mimicry can reduce miscommunication, by aligning agents’ input-output functions16,17. 

We ran six behavioural experiments to test our hypothesis. In Experiment 1 (see Methods), pairs of 
participants (30 groups, tested in Iran) performed a psychophysical task (Figure 1D). On each trial, 
they privately indicated which of two visual displays they thought contained a faint target, and how 
confident they felt about this decision on a scale from 1 to 6. In the social condition (Figure 1E; EXP1-
S: 160 trials, social task), participants performed the task together. Once both private responses had 
been registered, they were made public, and the private decision made with higher confidence was 
selected as the joint decision. Under this decision rule, the optimal strategy is to report confidence 
in a way that maximises the probability that the group makes the correct decision. In the isolated 
condition (Figure 1F; EXP1-I: 160 trials, isolated task), participants performed the task alone, without 
seeing each other’s responses. 
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Under our hypothesis, we would expect group members’ confidence to be more similar when they 
performed the task together than when alone. Here we focus on convergence in mean confidence, 
but we found similar results for confidence variability and confidence distributions (Supplementary 
Figure 1). In line with our hypothesis, group members’ mean confidence was correlated in the social 
condition only (Figure 2A, EXP1-I and EXP1-S) and the difference in their mean confidence was 
smaller in the social than in the isolated condition (Figure 2B, EXP1-I and EXP1-S; t(29) = 4.195, p < 
.001, paired) – regardless of the condition order (Supplementary Figure 2). We could rule out that 
group members simply converged onto a single value; for example, they may systematically have 
gravitated towards medium confidence to minimise conflict18, or towards maximum confidence to 
dominate the joint decision19. As can be seen from the variability of data points along the diagonal 
in Figure 2A (EXP1-S), the convergence point varied considerably across groups.  

We could also rule out that the convergence in mean confidence was driven by an underlying 
convergence in accuracy (fraction of correct individual decisions): in contrast to the results observed 
for mean confidence, the differences in accuracy were larger in the social than in the isolated 
condition (t(29) = 2.083, p = .046, paired). Overall, group members’ difference in mean confidence 
did not scale with their difference in accuracy (Figure 2C). We found similarly-sized social effects 
(Figure 2) in two additional experiments (see Methods) where participants had more task 
experience (EXP2: 15 groups, 384 trials, social task, tested in the UK) and used a continuous scale 
(EXP3: 15 groups, 384 social trials, social task, tested in the UK). Overall, the results were in line with 
our hypothesis that people actively match their confidence during group decision-making – here 
regardless of cultural context (Iran or UK), task experience (160 or 384 trials) and low-level factors 
such as the nature of the scale (discrete versus continuous). 

Confidence matching should also have testable consequences for group performance. Intuitively, 
the strategy seems sensible when group members have similar levels of expertise (Figure 3A, left 
panel), but we would expect it to be costly compared to the optimal solution when group members 
have different levels of expertise (Figure 3A, right panel). If one group member is better than the 
other, then pooling their opinions with equal weight should lead to sub-optimal group decisions. To 
quantify this intuition in the context of our task, we used a signal detection model4 to simulate how 
joint accuracy (fraction of correct joint decisions) varies with differences in expertise and mean 
confidence (see Methods). Figure 3B shows landscapes of expected joint accuracy as a function of 
the mean confidence of simulated group members with equal expertise (left panel) and unequal 
expertise (right panel, here member 2 has higher expertise). 

In each landscape, confidence matching corresponds to the diagonal. For group members of equal 
expertise, confidence matching improves joint accuracy (black dot is on diagonal in Figure 3B, left 
panel). However, when one group member is more of an expert than the other, confidence 
matching reduces joint accuracy compared to the optimal solution (black dot is off diagonal in Figure 
3B, right panel). Consistent with this predicted pattern of results, we observed empirically that 
dissimilar group members were the furthest from reaching an optimal level of group performance 
(Figure 3D; here including data from EXP5-S and EXP6-S). The results show that confidence matching 
may be one cause of the common finding that group performance depends on the similarity of group 
members’ expertise10–12. 

Is confidence matching ever helpful for group members with different levels of expertise? Groups 
are usually made up of individuals with different levels of expertise and varying mean confidence. A 
group can be said to be well-calibrated when its better member is the more confident and poorly 
calibrated when its worse member is the more confident. Both types of group are likely to arise as 
people move between tasks and contexts. How do they fare under confidence matching? As can be 
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seen in the right panel of Figure 3B, points above the diagonal are associated with higher values 
than those along the diagonal, whereas points below the diagonal are associated with lower values 
than those along the diagonal. In other words, confidence matching – that is, moving towards the 
diagonal – should be costly for well-calibrated groups but beneficial for poorly calibrated groups. To 
test this prediction, we conducted Experiment 4 (see Methods) in which we manipulated group 
calibration, by pairing naïve participants with computer-generated partners. 

Participants (N = 38, tested in the UK) performed the isolated task (EXP4-I: 240 trials), providing an 
estimate of their baseline confidence, and then performed the social task (EXP4-S: 4 x 240 trials) 
over four blocks. For each block, they were paired with a simulated partner, but told that they were 
paired anonymously with another participant. We varied the accuracy (low or high) and the mean 
confidence (low or high) of the four partners – creating two poorly calibrated and two well-
calibrated groups per participant (see Methods). The results were in line with our prediction. First, 
consistent with confidence matching, the difference in mean confidence was smaller in the social 

blocks than prior to interaction (Supplementary Figure 8; |𝑐participant
social − 𝑐partner| < |𝑐participant

isolated −

𝑐partner|: t(151) = -5.066, p < .001, paired). Second, the extent to which joint accuracy was higher 

than expected prior to interaction depended on initial group calibration: it was higher than expected 
for poorly calibrated groups but lower than expected for well-calibrated groups (Figure 3D). 

The reason confidence matching is sub-optimal is that group members may end up using the same 
confidence to indicate different values of probability correct (Figure 3A, right panel). A pressing 
question is whether confidence matching is robust to financial incentives for reporting confidence 
in an objectively accurate manner. In Experiment 5 (see Methods), participants (N = 20) responded 
on a probability scale and were rewarded according to a proper scoring rule20 – in the isolated task 
(EXP5-I: 160 trials) and in the social task (EXP5-S: 160 trials). Under this scoring rule, participants 
would maximise their earnings by indicating “70%” when they believed that they had a 70% 
probability of being correct and so forth. Participants still matched their confidence: their mean 
confidence was correlated in the social condition only (Figure 2A) and the difference in their mean 
confidence was smaller in the social than in the isolated condition (Figure 2B; t(9) = 2.158, p = .045, 
paired). The presence of confidence matching – and hereby the absence of a relationship between 
relative confidence and relative expertise (Figure 2C) – was very surprising as participants interacted 
anonymously and thus were not under any social pressure to conform. 

We have presented confidence matching as an active strategy for negotiating individual influence 
on group decisions. An obvious test of this hypothesis is to see whether confidence matching can 
be found in the absence of group decisions. In Experiment 6 (see Methods), we compared the social 
task with a task where participants observed their partner’s response after having made their own 
response but where no joint decision was selected. Participants (N = 24) performed the isolated task 
(EXP6-I: 160 trials), and then the social task (EXP6-S: 160 trials) and the observe task (EXP6-O: 160 
trials), each time paired anew with another anonymous partner. While group members’ mean 
confidence was correlated in both the observe and the social condition (Figure 2A), the strength of 
this relationship was stronger in the social condition and the difference in their mean confidence 
was smaller in the social than in the observe condition (Figure 2B; t(22) = 2.100, p = .047, two-
sample, using the data from the isolated task to normalise the data from the social and the observe 
tasks). The results indicate that confidence matching reflects a mixture of ‘context-general’ 
behavioural imitation and ‘context-specific’ strategic thinking. 

We have in six independent experiments provided aggregate evidence for confidence matching: we 
have shown, at the individual level, that group members’ mean confidence is more similar during 
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group decision-making than in control conditions, and, at the group level, that group performance 
follows the pattern expected under confidence matching rather than the optimal solution. Finally, 
we considered whether confidence matching also can be observed at short time scales. An obvious 
way to match your partner’s confidence is to keep a running estimate of their confidence and then 
adapt your own accordingly: if you think their confidence is higher than yours, you increase yours; 
if you think it is lower, you decrease yours. To formalise this intuition, we built a temporal difference 
learning model21 which sought to minimise the distance between its own mean confidence and its 
estimate of the partner’s mean confidence on the basis of recent trials (see Methods). The model, 
which can account for convergence in mean confidence (Figure 4A), makes predictions about the 
trial-by-trial data. In particular, a participant’s current confidence should depend on their partner’s 
recent confidence (Figure 4B) – a pattern which we observed empircally, extending three trials back 
into time (Figure 4C). The results show that confidence matching happens at short time scales and 
suggest that short-range temporal dependencies may underlie the observed aggregate results. 

In conclusion, confidence matching may be a sensible strategy for group decision-making. First, the 
strategy is computationally inexpensive. People do not need to infer latent states or functions but 
only need to track observable behaviours. Second, the strategy fares best when people have similar 
levels of expertise. Fortunately, that is often the case, as we tend to associate with friends, partners 
or colleagues with whom we are likely to share traits22. Lastly, even when people differ in expertise, 
the strategy helps when the less competent is the more confident. In such cases, confidence 
matching prompts people to report their confidence in a way that better reflects their relative levels 
of expertise. The resulting “equilibrium” may not be perfect but it does not require that people have 
insight into their own or others’ expertise; an insight that cannot be taken for granted23,24.  

Our study has implications for theories of confidence. At the single-trial level, variation in confidence 
for a constant stimulus is usually assumed to reflect noise – either in the encoding of the sensory 
evidence or in the read-out of some internal estimate of probability correct for report3,25,26. Our 
results show that this variation can also be systematic, here driven by the recent history of social 
interaction (in Supplementary Figure 9C we show how history effects can be confused with noisy 
read-out as inferred from standard measures of metacognition25,27). At the aggregate level, under- 
and overconfidence is often been attributed to limitations on the way in which the human mind 
represents and processes uncertainty28. Our results raise the intriguing possibility that these biases 
are at least in part of a social nature – reflecting social norms or social strategies29. We have argued 
that the observed social effects operate at the level of report – the function mapping probability 
correct to confidence – but it remains to be seen whether social interaction also can change the 
internal estimate of probability correct. 

We suggested that it was too difficult for group members to find the optimal strategy in our task 
and that they therefore used a heuristic one. An alternative explanation is that group members had 
a different objective in mind: for example, they may have tried to maintain equal influence on the 
group decision24, perhaps to avoid conflict30 or to diffuse responsibility 31. These social hypotheses 
can be tested by changing the decision weights assigned to group members (e.g., such that one must 
report higher confidence to maintain equal influence) and/or by introducing asymmetric payoffs 
(e.g., such that taking responsibility for difficult decisions is highly rewarded).  

We usually assume that “speaking the same language” facilitates effective communication. We have 
shown, in the case of confidence, that this perceived wisdom is typically true when individuals with 
similar levels of expertise compare their opinions. However, we have also shown that, without the 
right precautions, “speaking the same language” can be detrimental when comparing the opinions 
of individuals with different levels of expertise. This finding is relevant to contemporary debates 
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concerning topics from climate change32,33 to economic and geopolitical forecasting34,35 and the 
value of expert opinions in public debates.  
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METHODS 

Participants 

Sample-sizes were chosen based on earlier studies36. Participants (aged 18-40) were recruited from 
participant pools at the University of Tehran (EXP1: N = 60, all male) and the University of Oxford 
(EXP2: N = 30, all male; EXP3: N = 30, all male; EXP4: N = 38, 19 females; EXP5: N = 20, 13 females; 
EXP6: N = 24, 14 females). In Experiments 1 to 3, participants were recruited and took part in pairs; 
they knew each other beforehand. In Experiments 4 to 6, participants were recruited individually 
and took part as part of a large group. Experiment 4 involved deception; participants were debriefed 
afterwards, with no one having noticed the deception or deciding to leave the study. All participants 
reported normal or corrected-to-normal vision. All participants provided informed consent and 
were reimbursed; in Experiment 5, participants could earn an additional performance-based bonus. 
The experiments were approved by the Ethics Committee at the Faculty of Electric Engineering, 
University of Tehran, and the Central University Research Ethics Committee, University of Oxford. 

Task 

All experiments were based on the same task (two-interval forced-choice contrast discrimination; 
Figure 1D). On each trial, participants were presented with two consecutive viewing displays, each 
containing six vertically oriented Gabor patches. In one of the two displays, the contrast level of one 
of the six Gabor patches (the target) was increased by adding one of four values (.015, .035, .07, .15) 
to the baseline contrast (.10). After the two displays, participants were presented with a horizontal 
line bisected at its midpoint. A vertical marker was placed on top of the midpoint. The marker could 
be moved along the line by up to six steps on either side of the midpoint; the left-side steps were 
negative values (-6 to -1), whereas the right-side steps were positive values (1 to 6). The sign of the 
response indicated the decision (negative: 1st; positive: 2nd), and its absolute value indicated the 
confidence (1: “unsure”; 6: “certain”). We use response and confidence to refer to signed and 
unsigned values, respectively. We used three versions of this task in our experiments. In an isolated 
version of the task (isolated task), participants performed the task on their own. After having made 
their response, participants received feedback about the accuracy of their decision and continued 
to the next trial. In a social version of the task (social task), participants performed the visual task as 
part of a pair. Once both individual responses had been registered, they were made public and the 
individual decision made with higher confidence was automatically selected as the joint decision. In 
the case of a confidence tie (i.e., different decisions but same confidence), one of the two individual 
decisions were randomly selected. Participants received feedback about the accuracy of both the 
individual decisions and the joint decision before continuing to the next trial. Participants were 
instructed to make as many correct joint decisions as possible. In an intermediate version of the task 
(observe task), the individual responses were made public but no joint decision was selected. 
Participants received feedback about the accuracy of the individual decisions before continuing to 
the next trial. Each participant had their own display monitor and response device. The stimulus has 
been described in detail elsewhere36. Experiments were implemented using the Cogent 2000 
toolbox (http://www.vislab.ucl.ac.uk/cogent.php/) for MATLAB. 

Procedure 

In Experiment 1, pairs of participants performed the social and the isolated task. The order of the 
two tasks was counterbalanced. There were 320 trials, divided into two blocks (social: 160 trials; 
isolated: 160 trials). In Experiment 2, pairs of participants performed the social task only. There were 

http://www.vislab.ucl.ac.uk/cogent.php/
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384 trials, divided into three blocks. In Experiment 3, pairs of participants performed the social task 
only. In contrast to the other experiments, confidence was indicated on a continuous scale. There 
were 384 trials, divided into three blocks. In Experiment 4, participants sat at private work stations 
in a computer lab. The experiment consisted of two sessions. In the first session, participants 
performed the isolated task. In the second session, participants performed the social task over four 
blocks. For each block, they were told that they were paired anew with one of the other participants 
present in the room. In reality, they were, for each block, paired with a computer-generated agent; 
each agent was tuned to the participant to reflect a 2-by-2 within-subject design. The order of the 
four conditions (agents) was counterbalanced across participants. There were 1160 trials, divided 
into five blocks (isolated: 200 trials; social: 4 x 240 trials). In Experiment 5, participants sat at private 
work stations in a computer lab. They performed first the isolated task and then the social task. In 
contrast to the other experiments, responses were made on a probability scale and submitted to a 
strictly proper scoring rule. We used a variant of the Brier score20 where participants on each trial 
accrued rewards as a function of their decision accuracy and their confidence: £5 ∗ (1 −
(𝑐𝑜𝑟𝑟𝑒𝑐𝑡 − 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒)2) where 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 indicates the decision accuracy (0: incorrect; 1: correct) 
and 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 indicates the chosen probability. Participants were paid the sum of their average 
trial-by-trial earnings in the isolated and in the social task. There were 320 trials, divided into two 
blocks (isolated: 160 trials; joint: 160 trials). In Experiment 6, participants sat at private work stations 
in a computer lab. They first performed the isolated task and then the social and the observe task, 
each time paired anew with another participant. The order of the social and the observe tasks was 
counterbalanced across participants. There were 480 trials, divided into three blocks (isolated: 160 
trials; observe: 160 trials; joint: 160 trials).  

Statistical tests 

For the robust regression analyses shown in Figure 2A and Supplementary Figure 1A, the labelling 
of group members as 1 and 2 was arbitrary. We therefore repeated the analysis 105 times, each time 
randomly re-labelling the group members as 1 and 2. The displayed p-value shows the average p-
value for the slope of the best-fitting line across these regressions. We complemented the standard 
parametric tests in the main text with a permutation-based approach. Our general approach was to 
create for each measure of interest, 𝜗, a distribution under the null hypothesis, 𝑝(𝜗), by randomly 
re-pairing group members and re-computing the measure of interest for each set of re-paired group 
members (106 sets). Here the null hypothesis is that the observed value (e.g., average difference in 
mean confidence in an experiment) is not specific to the true pairing of group members. In contrast, 
under our hypothesis, we would expect the observed value to be specific to the true pairing of group 
members: it is the result of dynamic interaction between group members and shuffling the data 
breaks this relationship. To test whether we could rule out the null hypothesis, we asked whether 
the observed value was smaller than 95% of the values from its corresponding null distribution (i.e., 
p < .05, one-tailed). All permutation tests were consistent with the results reported in the main text: 
the observed values were only specific to the true pairing of group members in the social task. We 
show all null distributions in Supplementary Figure 3. 

Computational model 

We developed a simple model (i) to unpack how joint accuracy (fraction of correct joint decisions) 
varies with differences in expertise and mean confidence (Figure 3) and (ii) to establish an optimal 
benchmark against which empirical group performance could be compared (Supplementary Figure 
7). On each trial, an agent receives noisy sensory evidence, 𝑥, sampled from a Gaussian distribution, 
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𝑥 ∈  𝑁(𝑠, 𝜎2), whose mean, 𝑠, is given by the stimulus, and whose standard deviation, 𝜎, specifies 
the level of sensory noise. As in our task, 𝑠 is drawn uniformly from the set, 𝑠 ∈
 {−.15, −.07, −.035, −.015, .015, .035, .07, .15}. The sign of 𝑠 indicates the target display (negative: 
1st; positive: 2nd) and its absolute value indicates the contrast added to the target. The agent uses 
the raw sensory evidence as its internal estimate of the evidence strength, 𝑧 = 𝑥. The internal 
estimate thus ran from large negative values, indicating a high probability that the target was in the 
first display, through values near 0, indicating high uncertainty, to large positive values, indicating a 
high probability that the target was in the second display. We chose this formulation for simplicity 
but note that our analyses would show the same results for any model in which the internal estimate 
is a monotonic function of the sensory evidence, including probabilistic estimates such 𝑧 = 𝑃(𝑠 >
0|𝑥)4. The agent maps the internal estimate onto a response, 𝑟, by applying a set of thresholds, 𝑟 =
𝑓(𝑧). The position of the thresholds in z-space determines the proportion of times that each 
response is made. As in our task, the sign of the response indicates the decision (negative: 1st; 
positive: 2nd), and its absolute value indicates the confidence. Our general approach was to set the 
thresholds in z-space so as to generate a specified distribution over responses (e.g., 5% of the time 
respond “-6”, 2% of the time respond “-5” and so forth)4 – using maximum entropy distributions 
with a fixed mean or a participant’s observed response distribution (see below). Note that, for 
different levels of sensory noise, different thresholds must be used to generate the same response 
distribution. The level of sensory noise determines the agent’s expertise and the set of thresholds 
determines the agent’s mean confidence. See Supplementary Methods for model details. 

Confidence landscapes 

We used our model to quantify how joint accuracy (fraction of correct joint decisions) varies as a 
function of the mean confidence of a given pair of agents (Figure 3). For each pair of agents, we first 
specified their respective levels of sensory noise, 𝜎1 and 𝜎2. We then derived their joint accuracy 
under different pairs of confidence distributions, each associated with a specific mean. We limited 
our analyses to maximum entropy distributions (see Supplementary Figure 4); while there are many 
distributions that can generate a given mean, this is not the case when considering one family of 
distributions. Before deriving joint accuracy, we transformed each confidence distribution (1 to 6) 
to a response distribution (-6 to -1 and 1 to 6) by assuming symmetry around 0 – this transformation 
was needed to place the thresholds in z-space and generate both decisions and confidence. See 
Supplementary Methods for details about this procedure. 

Comparing observed and optimal joint accuracy 

We used our model to quantify how far each group in our experiments was from reaching optimal 
performance (Supplementary Figure 7). We first fitted our model to the data of each participant by 
searching for the sensory noise that minimised the squared error between the observed accuracy 
(fraction of correct individual decisions) and that derived from the model. For each step of the 
search, we set the thresholds in z-space so as to generate the participant’s response distribution 
observed across stimuli and then derived their accuracy. Our model thus has only one free 
parameter (sensory noise) as the thresholds are determined by a participant’s observed response 
distribution. Despite having only one free parameter, our model provided good fits to the individual 
data: we show empirical and model psychometric functions and response distributions for each 
stimulus in Supplementary Figures 5-6 – especially the latter fits are reassuring as the thresholds 
were fitted using a participant’s response distributions observed across stimuli. We next computed 
a confidence landscape for each pair of participants using their fitted levels of sensory noise (using 
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the same procedure as in Figure 3B) and used it to identify the joint accuracy expected under the 
optimal solution (maximum value in a landscape; a landscape for each group is shown in 
Supplementary Figure 7). See Supplementary Notes for control analyses.  

Computer-generated partners 

We used our model to make the simulated partners in Experiment 4. We varied their mean accuracy 
(low or high) and their mean confidence (low or high) in a 2-by-2 within-subject design. We first 
fitted our model to each participant’s data from the isolated task; this was done while they were 
waiting to start the social task. We used the fitted sensory noise (𝜎) to specify the mean accuracy of 
the partners: sensory noise was 50% higher than the fitted noise for the low-accuracy partners and 
50% lower than the fitted noise for the high-accuracy partners. We used two custom confidence 
distributions to specify the confidence of the partners: the mean confidence was about 2.2 for the 
low-confidence partners and about 4.2 for the high-confidence partners – the choice of confidence 
distributions was informed by data from earlier experiments. We transformed the confidence 
distributions (1 to 6) to response distributions (-6 to -1 and 1 to 6) by assuming symmetry around 0. 
To generate the trial-by-trial responses of a given partner, we first created the trial-by-trial sequence 
of stimuli to be shown to the participant. We then created a trial-by-trial sequence of random values 
(sensory evidence), each drawn from a Gaussian distribution whose mean was given by the stimulus 
on the corresponding trial and whose standard deviation was given by the level of sensory noise. 
Next, we transformed the sequence of random values into trial-by-trial responses by applying – 
post-hoc – a set of thresholds that generated the required response distribution as specified above. 
To mimic lapses of attention and response errors, we randomly selected a response (from a uniform 
distribution over 1 to 6) on 5% of the trials (12 out 240 trials). We also varied the agents’ reaction 
time (randomly sampled from a uniform distribution over 2 to 5 seconds), so that participants on 
some of the trials had to wait for the public display after having made their own response. Statistical 
tests showed that we obtained the 2-by-2 differences between participants and partners in terms 
of accuracy and mean confidence (see Supplementary Table 1 for test statistics). 

Joint accuracy expected prior to interaction 

In Experiment 4, to compute the joint accuracy expected prior to interaction, 𝑎joint
isolated, we played 

out responses of a given simulated partner against those of the participant from the isolated task – 

with joint decisions selected as in the social task. We estimated 𝑎joint
isolated across 104 iterations as the 

partner’s responses were subject to sensory noise and the 5% lapse rate. This procedure allowed us 

to test whether the observed joint accuracy, 𝑎joint
social, was higher or lower than expected prior to 

interaction, 𝑎joint
isolated. 

Questionnaires 

In Experiment 4, participants completed a questionnaire about their partner in each social block. 
They were asked to indicate: (1) whether they thought the partner was male or female; (2) how 
much they liked the partner; (3) how well they performed as a group; (4) whether the partner was 
more accurate than they were; and (5) whether the partner was more confident than they were. 
Interestingly, participants displayed the stereotype that females (males) are less (more) confident 
and they liked the high-accuracy but low-confidence partners the most (see Supplementary Table 
2 for average responses).  
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Learning model 

We furnished our signal-detection model with a simple learning rule to provide a process account 
of how confidence matching arises (Figure 4). The agent updates on each trial 𝑡 its mean confidence, 
𝑐𝑜, as a mixture of its own mean confidence and its estimate of the partner’s mean confidence, 𝑐𝑝, 

as follows: 𝑐𝑡+1
𝑜 ∶= 𝑐𝑡

𝑜 + 𝛾(𝑐𝑡
𝑝 − 𝑐𝑡

𝑜) where 𝛾 describes the rate of adaptation and (𝑐𝑡
𝑝 − 𝑐𝑡

𝑜) 
describes the mismatch between the agent’s mean confidence and its estimate of the partner’s 
mean confidence. The agent updates on each trial 𝑡 its estimate of the partner’s mean confidence 

as follows: 𝑐𝑡+1
𝑝 ≔  𝑐𝑡

𝑝 + 𝛼(�̂�𝑡
𝑝 − 𝑐𝑡

𝑝), where 𝛼 describes the rate of learning, �̂�𝑡
𝑝 is the partner’s 

confidence on trial 𝑡 and (�̂�𝑡
𝑝 − 𝑐𝑡

𝑝) is a prediction error. The initial values of 𝑐𝑜 and 𝑐𝑝 reflect the 
agent’s baseline mean confidence and its expectation for the partner’s baseline mean confidence. 
The agent uses 𝑐𝑜 to update the function, 𝑟 =  𝑓(𝑧), which governs the mapping from the agent’s 
internal estimate of the evidence strength onto a response, 𝑟𝑡. In our simulations, we assumed that 
that a pair of agents had the same levels of sensory noise (𝜎 = .10); that their mapping functions 
were updated so as to maintain maximum entropy over confidence (i.e., we set the thresholds in z-
space using a set of maximum entropy distributions running from mean 1 to 6 in steps of .001); that 
the learning rate was fixed (𝛼 = .12) for both agents; and that they used the same degree of 
adaptation (𝛾1 = 𝛾2 = .20; this value was chosen as it generated a degree of serial-dependence in 
trial confidence similar to that observed in our data). In each simulated experiment, the agents 
performed 160 trials, with stimuli drawn as in our task. The agents’ baseline mean confidence and 
its expectation for the partner’s baseline mean confidence were for each simulated experiment 
sampled uniformly from the range 2 to 5. 

Data availability 

The behavioural data is available here: https://github.com/danbang/article-confidence-matching. 

Code availability 

Analyses and simulations were conducted in MATLAB (2015b). All code is available upon request 
from the corresponding author (D.B.: danbang.db@gmail.com).   

https://github.com/danbang/article-confidence-matching
mailto:danbang.db@gmail.com
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Figure 1 | Theoretical and experimental framework. a, Communication problem. Two handball referees disagree about 
whether the ball crossed the goal line. They have different functions (solid lines) mapping some internal estimate of the 
probability that their individual opinion is correct (x-axis) to confidence (y-axis). Here the blue referee expresses higher 
confidence but is less likely to be correct (dotted lines). b, Optimal solution. To maximise the probability that the group 
makes the correct decision, the referees must align their subjective mappings (green line). c, Confidence matching. The 
intercept (left) and the slope (right) of the referees’ subjective mappings would change under confidence matching. d, 
Psychophysical task. Participants viewed two displays, each containing six contrast gratings (here dots). In one of the 
displays, there was a higher contrast target (darker dot). Participants responded by moving a marker along a scale with 
a fixed midpoint. The response sign indicated the decision (1st or 2nd display), and the absolute response value indicated 
the confidence (1 to 6 in steps of 1). e, The social task. Participants’ private responses (colour-coded) were shared, and 
the response made with higher confidence was automatically selected as the joint decision (white box). Confidence ties 
were resolved by randomly selecting one of the private responses. Participants received feedback about the accuracy 
of each decision before continuing to the next trial. f, The isolated task. Participants performed the task on their own, 
without any social interaction.  

private response

[decision + confidence]

+

c
o

n
fi

d
e
n

c
e

[a
rb

it
ra

ry
 u

n
it

s
]

sub-optimal

probability correct

a c

.50 .60 .70 .80 .90 1

+

1st display 2nd display

next trial

joint decision

[maximum confidence]

correct

correct

wrong

feedback

next trial

correct

feedback

c
o

n
fi

d
e
n

c
e

[a
rb

it
ra

ry
 u

n
it

s
]

optimal

probability correct

.50 .60 .70 .80 .90 1

e

f

matching mean 

confidence
matching range of 

confidence

b d

1st 2nd

+6-6

two-interval forced-choice contrast discrimination

social task

isolated task

same subjective 

mapping

different subjective 

mappings



16 
 

Figure 2 | Behavioural evidence for confidence matching. a, Correlation in mean confidence. The axes show group 
members’ mean confidence, 𝑐1 and 𝑐2. b, Convergence in mean confidence. The y-axis shows the absolute difference 
between group members’ mean confidence, |𝑐1-𝑐2|. c, Relative confidence does not scale with relative expertise. The 
axes show the difference in accuracy (x-axis, 𝑎max − 𝑎min) and in mean confidence (y-axis; 𝑐max − 𝑐min) between the 
more accurate (max) and the less accurate (min) group member. In all panels, each dot is a group. In panel B, the black 
dots are the group average. Error bars are 1 SEM. The lines connect group data when the same pairing of group members 
was used in two conditions. In panels A and C, the solid line is the best-fitting line of a robust regression. The p-value 
indicates the significance of its slope. In panel A, the p-value was calculated using a permutation procedure described 
in the Methods. In panel C, all p-values > .25 when analysis was done separately for each experiment. Triangle: isolated 
task. Circle: social task. Square: observe task.  
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Figure 3 | Confidence matching is sub-optimal. a, Relative expertise and group performance. If the referees sampled 
from similar distributions of probability correct (left), then their subjective mappings should converge under confidence 
matching. If they sampled from different distributions of probability correct (right), then their subjective mappings 
should not converge and the less competent one should exert too much influence. b, Confidence landscapes. Under our 
model, group members with similar levels of accuracy (left) maximise joint accuracy (black dot: optimal) when their 
mean confidence is matched. For group members with different levels of accuracy (right), joint accuracy reaches its 
maximum when the more competent is the more confident. c, Optimality scales with similarity. The x-axis shows the 
ratio of the accuracy of the less accurate group member to that of the more accurate group member, 𝑎min/𝑎max. The 
y-axis shows the ratio of the observed joint accuracy to that expected under the optimal solution, 𝑎emp/𝑎opt. d, 

Confidence matching helps poorly calibrated groups but hurts well-calibrated groups. The x-axis shows a measure of 

group calibration prior to interaction: 𝑐𝑎𝑙 = (𝑎participant
isolated − 𝑎agent) ∗ [(𝑐participant

isolated − 𝑐agent)/(𝑐participant
isolated + 𝑐agent)]), 

where 𝑎 is accuracy and 𝑐 is mean confidence. This measure is positive when the difference in accuracy and in mean 
confidence have the same sign. The y-axis shows the difference between the observed joint accuracy and that expected 

prior to interaction: 𝛥𝑎joint = 𝑎joint
social − 𝑎joint

isolated, where 𝑎joint
isolated was estimated by playing out the responses of a virtual 

partner against those recorded from a participant in the isolated task. In panels C and D, each dot is a group. The line is 
the best-fitting line of a robust regression. The p-value indicates the significance of its slope.  
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Figure 4 | Confidence matching at short time scales. a, Temporal difference learning model. Each agent keeps a running 
estimate of its partner’s mean confidence and adapts its mapping from probability correct to confidence accordingly. 
Each plot show how the trial confidence of a pair of agents evolves over time and confirm that the learning mechanism 
can cause a convergence in mean confidence. The data was smoothed using a sliding average. b, Model predicts short-
range serial dependence. The x-axis shows the degree to which each agent adapts its subjective mapping to its partner. 
The y-axis shows coefficients from a linear regression measuring the degree to which the agent’s confidence on trial 𝑡 
depended on its partner’s confidence on trial 𝑡 − 1. The higher the degree of adaptation, the higher the social influence. 
We included the stimulus (𝑡 − 1 and 𝑡) and the agent’s own confidence (𝑡 − 1) as nuisance predictors. We simulated 
105 simulated experiments for each degree of adaptation. c, Short-range serial dependence in the empirical data. Same 
analysis as in panel B, but now going 5 trials back into time. We tested significance by comparing the coefficients pooled 
across participants to zero (trial 𝑡 − 3 to 𝑡 − 1: all t(163) > 3.900, all p < .001, one-sample t-test, null: 0). We note that 
the degree to which participants influenced each other was correlated and that there was no short-range serial 
dependence in the isolated task (Supplementary Figure 9). In panels B and C, the black dots are the simulation/group 
average. Error bars are 1 SEM. In panel C, the coloured dots show the group average in each experiment. 


