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SUMMARY 

Microglia seed the embryonic neuro-epithelium, expand and actively sculpt neuronal 

circuits in the developing CNS, but eventually adopt relative quiescence and ramified 

morphology in the adult. Here we probed the impact of post-transcriptional control by 

microRNAs (miRNAs) on microglial performance during development and adulthood 

by generating mice lacking microglial dicer expression at these distinct stages. 

Conditional Dicer ablation in adult microglia revealed that miRNAs were required to 

limit microglial responses to challenge. Specifically, following peripheral endotoxin 

exposure, Dicer-deficient microglia overexpressed pro-inflammatory cytokines and as 

a result, impaired hippocampal neuronal functions. In contrast, prenatal ablation 

resulted in spontaneous microglia activation and revealed Dicer involvement in DNA 

repair and preservation of genome integrity. Accordingly, Dicer-deficiency rendered 

otherwise radio-resistant microglia sensitive to gamma-irradiation. Collectively, the 

differential impact of the Dicer ablation on microglia of the developing and adult brain 

highlights the changes these cells undergo with time. 

 

 

 

        

 

Highlights  

 miRNAs curb activation of adult microglia following challenge  

 Microglia hyper-activation results in acute impairment of hippocampal neuronal 

functions 

 Proliferative Dicer-deficient microglia in the developing brain accumulate DNA 

damage 

 Microglia of developing and adult brain are highly distinct 
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INTRODUCTION 

Tissue macrophage compartments evolve locally and independent from each other 

alongside their organ microenvironment (Amit et al., 2016). They are hence intimately 

associated with their immediate surroundings and acquire, beyond their established 

generic function as immune sentinels, activities tailored to assist local tissue needs 

(Varol et al., 2015). Microglia are yolk sac-derived macrophages residing in brain and 

spinal cord, where they interact with neurons and other glial cells by constantly 

probing the parenchyma with dynamic extensions (Davalos et al., 2005; Nimmerjahn 

et al., 2005). Microglia actively contribute to synaptic pruning and microglial 

interactions with synaptic elements are affected by neuronal activity. This notion is 

supported by sustained neuronal phenotypes and functional deficits in neuronal 

connectivity in mice harboring microglia mutant for complement or CX3CR1 

chemokine receptors (Paolicelli et al., 2012; Schafer et al., 2012). Contributions of 

microglia to physiological brain function are further underlined by neuropsychiatric or 

neurologic disorders for which microglial dysfunctions seem to be disease-causing 

(Prinz and Priller, 2014), such as the csf1r mutation-associated hereditary diffuse 

leuko-encephalopathy with spheroids (HDLS) (Rademakers et al., 2012), as well as 

fronto-temporal dementia and Alzheimer’s disease linked to genetic variations of 

Trem2 (Guerreiro and Hardy, 2013; Poliani et al., 2015; Wang et al., 2015). 

 Differentiation and tissue specific activation of macrophages require precise 

regulation of gene expression that is governed by epigenetic mechanisms, such as 

DNA methylation, histone modifications and chromatin structure (Amit et al., 2016). 

Expression signatures are further subject to post-transcriptional and post-

translational regulation. A major established post-transcriptional filter comprises 

regulation by microRNAs (miRNAs), a family of endogenous small non-coding RNAs 

(ncRNAs), that shape gene expression under physiological and pathological 

conditions (Bartel, 2009). miRNAs are generated from hairpin structured pre-miRNA 

transcripts that are processed in the cytoplasm by the ribonuclease type III Dicer1 

(Dicer) (Bernstein et al., 2003). Once mature, Dicer loads the ~22 nucleotide-long 

single-stranded miRNAs onto the RNA-induced silencing complex (RISC) that targets 

mRNAs, based on sequence complementarity between their 3’ untranslated region 

(UTR) and the respective miRNAs (Guo et al., 2010) (Kim et al., 2009).  

 Here we investigated the role of miRNA-based post-transcriptional regulation 

in the maintenance of microglia identity and function. Specifically, we used 
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constitutive or inducible CX3CR1 promoter-driven Cre recombinase combined with 

conditional dicer alleles to generate animals whose microglia lack Dicer and as a 

result, miRNAs and other Dicer-dependent small non-coding RNAs, either in 

adulthood, or starting with development.   

 We show that the absence of Dicer and its products, when introduced 

postnatally, led to a reduction of microglia abundance, but was largely compatible 

with microglial steady state performance. However, miRNAs were required to curb 

microglia activation following peripheral endotoxin encounter, when Dicer-deficient 

microglia of challenged mice overexpressed pro-inflammatory cytokines resulting in 

impairment of hippocampal synaptic transmission. In contrast, prenatal Dicer ablation 

caused spontaneous microglia activation and accumulation of DNA damage 

suggesting miRNA-independent Dicer functions. Highlighting Dicer requirement for 

DNA repair, Dicer-deficient microglia of both developing and adult brain became 

radio-sensitive. Collectively, the observed differential impact of the Dicer deficiency 

on microglia highlights the profound changes this cellular compartment undergoes 

with time. 

 

RESULTS 

Microglia display a distinct microRNA profile.  

To investigate how miRNAs contribute to the establishment and maintenance of 

microglial identity, we profiled the miRNA repertoire of adult microglia and compared 

it to intestinal macrophages and liver Kupffer cells (KC), as representatives of 

peripheral tissue-resident macrophages (Figure S1A). Among 160 miRNAs 

expressed by microglia, 76 were shared with either or both reference populations 

(Figure 1A, cluster II, III; Figure S1C), while 84 miRNAs were specific for microglia 

(cluster I, Figure 1A, Figure S1B). The latter included miR-99a, miR-125b-5p and 

miR-342- (Butovsky et al., 

2014), which was proposed to be part of the tissue imprint establishing microglia 

identity (Gosselin et al., 2014). The microglial miRNome further comprised miRNAs 

reported to control microglial activation following inflammation or injury, such as let-

7c, let-7i and miR-181c (Banerjee et al., 2013; Zhang et al., 2012). Microglia 

moreover shared expression of other inflammation-associated miRNAs, such as miR-

146a-5p (Saba et al., 2012; Taganov et al., 2006) with colonic macrophages (Cluster 

III, Figure 1A) and let-7a-5p and let-7d-5p (Iliopoulos et al., 2009) with both KC and 



Varol et al.  

 5 

intestinal macrophages (Figure S1C). Overall, this establishes that adult steady-state 

microglia display a specific miRNA signature (Figure 1B), including miRNAs 

associated with tissue imprint and control of cell activation.  

 To determine whether posttranscriptional control by miRNAs contributes to 

adult microglia maintenance and function, we generated mice lacking Dicer in these 

cells. Specifically, we crossed dicerfl mice (Harfe et al., 2005) with cx3cr1CreER 

animals, in which Cre recombinase activity can be induced in microglia and selected 

other tissue macrophages by tamoxifen (TAM) administration (Goldmann et al., 2016; 

2013; Yona et al., 2013). Dicer-deficient mice die in utero, whereas heterozygote 

mutants are viable without an overt phenotype (Bernstein et al., 2003). To increase 

mutagenesis efficiency, we hence performed this study on a cx3cr1CreER:dicerfl/- 

background. 

 Cx3cr1CreER:dicerfl/- mice were treated with five consecutive TAM injections at 

the age of 4 weeks (Figure 1C). PCR analysis of genomic DNA isolated from sorted 

microglia of animals six weeks post TAM treatment confirmed efficient rearrangement 

of the 'floxed' alleles (Figure 1D). More importantly, qRT-PCR analysis at the same 

time point revealed the essential absence of miRNAs from mutant microglia (Figure 

1E). Maturation of miR451a-5p, which is Dicer-independent, but relies on the 

endonuclease Argonaute 2 (Ago2) (Cheloufi et al., 2010) was unaffected, indicating 

that the observed miRNA reduction is specific to the dicer loss. 

 

Dicer is largely dispensable for steady state maintenance of adult microglia. 

Cx3cr1CreER:dicerfl/- mice harboring miRNA-depleted microglia did not develop any 

overt phenotype, up to 3 months following TAM-treatment. To examine the effect of 

the miRNA deficiency on microglia homeostasis, including cell numbers and 

morphology, we performed a histological analysis on brains of the animals. 

Cx3cr1CreER:dicerfl/- mice displayed, as compared to littermate controls, a significant 

reduction in microglial numbers in cortex and hippocampus (Figure 2A, B). Ramified 

morphology can be taken as proxy for a resting state of microglia (Harry, 2013; 

Lawson et al., 1992). Three-dimensional morphometric measurements of 

cx3cr1CreER:dicerfl/- microglia revealed no significant changes in length of processes, 

numbers of segments and branch points, though filament dendrite volumes were 

slightly increased (Figure 2C, D). To test motility and tissue surveillance activity of 

Dicer-deficient microglia in vivo, we introduced a conditional reporter allele into the 
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animals and monitored fine microglial processes in the intact brain of living mice 

(Fuhrmann et al., 2010). Analysis of microglial process dynamics revealed only a 

very subtle, though consistent, reduction of the process turnover rate in the 

cx3cr1CreER:dicerfl/- mice (Figure S2). Taken together, miRNA absence from adult 

microglia did not result in overt spontaneous in situ activation of the cells, although it 

affected microglia numbers.  

 The specific miRNome of adult microglia suggests that miRNAs modulate the 

steady state microglia transcriptome. Accordingly, comparative RNA-seq analysis of 

microglia isolated from TAM-treated cx3cr1CreER:dicerfl/- mice and littermate controls 

revealed 183 up-regulated and 128 down-regulated genes (with >1.5 fold change 

(0.6 log2 ratio) and P<0.05; Figure 3A). Functional categorization by ingenuity 

pathway analysis (IPA) for top canonical pathways (P<0.05, Abs (Z score)<0.05) and 

the DAVID bioinformatics database (Dennis et al., 2003) for Gene Ontology 

annotation of enriched biological processes (P<0.05) showed altered genes to be 

associated with cell adhesion and motility, among others (Figure S3A, B). The “cell 

adhesion” category included cd47, cd34, nid2 and scarb1 and the “integrin signaling” 

category comprised itga6, itgaV and itgb3 (Cd61) (Figure 3B). Increased expression 

of CD34 and CD61 was confirmed by flow cytometry (Figure 3C). In line with the 

notion that miRNAs fine-tune transcriptomes (O'Connell et al., 2012), overall changes 

were subtle (only 143 genes with at least 2 fold change, P<0.05).  Collectively, these 

data indicate that miRNA absence from adult microglia does not result in their 

activation. 

 

Dicer deficient microglia are hyper-responsive to systemic LPS challenge.  

To explore whether miRNA absence affects microglial responses to inflammatory 

stimuli, we challenged cx3cr1CreER:dicerfl/- mice and controls with the bacterial 

endotoxin lipopolysaccharide (LPS). Specifically, animals were treated with a single 

intra-peritoneal (i.p.) LPS injection, brain microglia were isolated six hours later and 

subjected to RNA-seq analysis. Both control and miRNA-deficient microglia 

responded robustly (Figure 4A, Figure S4A). 351 genes were found similarly 

induced in both control and mutant microglia (cluster I, II), including myd88, tlr2, 

cd14, trem1 and tnf, while 172 genes showed less induction in mutant cells (cluster 

III). Finally, miRNA-deficient microglia displayed prominent hyper-induction of 195 

genes (cluster IV), which comprised IL1-associated genes (il1b, il18rap), the ECM-
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related pro-inflammatory gene fibronectin 1 gene (fn1), chemokines (ccl17, ccl21), as 

well as co-stimulatory molecules (cd40, cd74) (Figure 4A, B). Overexpression of the 

pro-inflammatory cytokines Il1b and Il6, as well as il18rap and fn1 by mutant 

microglia post systemic LPS challenge was validated by qRT-PCR analysis (Figure 

4C, S4D). Increased surface expression of CD40 and CD11b (itgam) by mutant cells 

was confirmed by flow cytometric analysis and was evident both in steady state and 

following LPS exposure (Figure 4D). Confirming the general role of miRNAs in 

curbing microglia activation, microglia was also found hyper-responsive to a systemic 

poly I:C challenge (Figure S4D).    

 To identify miRNAs, whose absence might be responsible for the 

transcriptome dysregulation in Dicer-deficient microglia following the LPS challenge, 

we aligned the upregulated genes with a list of conserved miRNA targets (Figure 

S4B, C). 10 miRNAs passed the significance threshold of the two tests we used 

(Figure S4B, C). Interestingly, six of these miRNAs were expressed in steady state 

microglia (Figure 1A, Figure S1B, C, Figure 4E). miR-126a-3p, on the other hand, a 

miRNA absent from the steady state microglia, was found induced following the LPS 

challenge (Figure 4F). 

 Taken together, these data establish that Dicer-deficient microglia hyper-

respond to a peripheral LPS challenge, corroborating the critical role of miRNAs in 

controlling inflammation. 

  

Hyper-active dicer deficient microglia acutely impair hippocampal neuronal 

functions.  

Systemic endotoxin challenge was shown to transiently impair the response of 

hippocampal neurons to repeated synapse stimulation (Maggio et al., 2013; Strehl et 

al., 2014; Vereker et al., 2000) (Chen et al., 2008; Kohman and Rhodes, 2013). Pro-

inflammatory cytokines, such as TNF and IL1, affect glutamate receptor activity on 

neurons in the CA1 area of the hippocampus (Riazi et al., 2015). However specific 

microglia contributions to this phenomenon of impaired hippocampal long-term 

potentiation (LTP) are not yet established.  

 Dicer-deficient hippocampal microglia displayed a hyper-activation response 

that largely overlapped with the response of whole brain mutant microglia, including 

increased expression of il1b and co-stimulatory molecules (Figure 5A, B; Figure 4A, 
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Figure S5A, B, Table S1). As previously shown (Vereker et al., 2000), LPS 

challenge led to induction of IL1 protein in the hippocampus (Figure 5C). Moreover, 

hyperactivation of Dicer-deficient microglia was reflected in increased pro-IL1 

protein expression six hours following the LPS treatment (Figure 5D). To test a 

potential impact of the hyperactive Dicer-deficient microglia on neuronal fitness, we 

performed extracellular recordings on acute slices prepared from dorsal hippocampi 

of the animals (Strehl et al., 2014) and examined LTP 12 and 24 hr post LPS 

stimulus (Figure 5E). Cx3cr1CreER:dicerfl/- mice presented unaltered baseline synaptic 

transmission and excitatory synaptic strength, as compared to controls (Figure S5C). 

LTP of all mice was reduced by 12 hr post LPS challenge, however the neuronal 

response of the TAM-treated mutant cx3cr1CreER:dicerfl/- animals was significantly 

more affected (Figure 5F, Figure S5D). In line with the reported transient nature of 

the effect, control mice displayed partial LTP recovery by 24 hr; cx3cr1CreER:dicerfl/- 

animals however showed persistent LTP reduction (Figure 5F, Figure S5D). Overall, 

these results suggest that hyper-activation of Dicer-deficient microglia after 

peripheral LPS challenge results in a prolonged hippocampal LTP impairment and 

acutely affect neuronal circuits. 

 

Prenatal Dicer mutagenesis induces DNA damage in newborn microglia and 

renders microglia radio-sensitive.  

Unlike in the adult, microglia in the developing CNS are highly proliferative, migratory 

and display profound phagocytic activity (Harry, 2013; Orłowski et al., 2003). This is 

in line with the critical contributions of embryonic microglia to the establishment and 

maturation of neuronal circuits (Paolicelli et al., 2012; Schafer et al., 2012; Squarzoni 

et al., 2014). Embryonic (E14) and newborn (P0) microglia display transcriptomes 

that are distinct from adult microglia, with one fifth of the expression signature 

specific for the respective stage (Figure 6A, B), see also (Kierdorf et al., 2013; Mass 

et al., 2016; Matcovitch-Natan et al., 2016). Establishment of 'relative quiescence' in 

adult microglia was proposed to be related to their expression of the zinc finger 

transcriptional repressor Sall1 (Buttgereit et al., 2016). In line with their reported 

activity, E14 and P0 microglia expressed cell cycle-associated genes, including 

ccnb1, cdc25a and cdk1. Moreover E14 and P0 microglia displayed signs of an 

oxidative stress response (cdc34, ftl1, hmox1, prdx1) (cluster II) suggesting ROS 

https://en.wikipedia.org/wiki/Zinc_finger
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production, as also supported by high NADPH oxidase (Nox2) expression (cybb) of 

E14 microglia (cluster I, Fig. 6A).  

 Given the functional differences between neonatal and adult microglia, we 

decided to probe the effect of the Dicer deficiency on pre- and neonatal microglia by 

generating cx3cr1Cre:dicerfl/fl mice (Harfe et al., 2005; Yona et al., 2013). In these 

animals, Cre recombinase is expressed at day E7.5 in primitive CX3CR1+ yolk sac 

macrophages that give rise to microglia (Bertrand et al., 2005; Ginhoux et al., 2010) 

Figure 6C). Dicer and miRNA absence in microglia of adult six week old 

cx3cr1Cre:dicerfl/fl mice was validated by qRT-PCR analysis (Figure 6D). Gene 

expression profiling at P0 revealed that Dicer-deficient cells displayed 159 up- and 

256 down-regulated genes (out of a total of 8545 genes), as compared to controls 

(Figure 6E). Dicer-deficient P0 microglia showed prominent induction of the “DNA 

damage response” pathway (Figure S6A), as manifested by up-regulation of cdkn1a, 

cdkn2d, ddit4 and dst (Figure 6F, G). Moreover, concomitant reduction of the 

“cyclins and cell cycle” pathway, including ccnb1, cdk4 and mcm2 (Figure 6F, Figure 

S6A), suggested that mutant microglia respond to accumulated DNA damage by cell 

cycle arrest (Zhou and Elledge, 2000). Indeed, EDU labeling and Ki67 staining 

revealed that the frequency of proliferating newborn microglia was significantly 

reduced in cx3cr1Cre:dicerfl/fl mice, as compared to littermate controls (Figure 6H, 

Figure S6B, C). 

 To directly examine DNA integrity of Dicer-deficient microglia, we performed a 

gel electrophoresis-based 'comet assay' that allows visualization of single and double 

strand DNA breaks on single cell level (Olive and Banáth, 2006). As shown in Figure 

7A, microglia sorted from brains of newborn cx3cr1Cre:dicerfl/fl mice, but not littermate 

controls, displayed significant DNA damage. This suggested that newborn Dicer-

deficient microglia are unable to repair endogenous DNA damage potentially 

resulting from their prominent replication or ROS production (McKinnon, 2013; Zhou 

and Elledge, 2000), a phenotype that might relate to miRNA-independent Dicer 

activity in DNA repair (Francia et al., 2012; Wei et al., 2012). 

 Microglia are characterized by profound resistance to ionizing radiation 

(Mildner et al., 2007). To test if lack of Dicer and the associated impaired DNA repair 

renders these cells radio-sensitive, we irradiated cx3cr1Cre:dicerfl/fl and control mice 

(950 rad) and analyzed the frequency of apoptotic microglial cells. Irradiated Dicer-

deficient microglia comprised significantly more late apoptotic events than controls, 

https://en.wikipedia.org/wiki/NADPH
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indicating increased radio-sensitivity (Figure 7B, Figure S7A). Next, we lethally 

irradiated cx3cr1Cre:dicerfl/fl mice and controls at P0 or at four weeks of age and 

reconstituted them with bone marrow (BM) isolated from cx3cr1gfp reporter animals. 

In line with microglial radio-resistance, brain macrophage compartments of control 

chimeras showed only minor engraftment, even when irradiated newborns were used 

as recipients (Figure 7C, D). In stark contrast, Dicer-deficient microglia were 

quantitatively replaced by cx3cr1gfp BM-derived cells in the chimeric mice. 

Importantly, radiosensitivity was a general feature of Dicer-deficient microglia. Thus, 

also adult TAM-treated cx3cr1CreER:dicerfl/- animals, when irradiated and engrafted 

with WT BM, showed significant replacement of their microglia by graft-derived 

macrophages (Figure S7B). Notably though, WT BM engraftment efficiency declined 

with time in these mice (Figure S7B). This indicates a progressive loss of mutant 

microglia in these animals as also highlighted by the declining frequency of dicer null 

allele in sorted cx3cr1CreER:dicerfl/- microglia over time (Figure S7C). Dicer-deficient 

microglia probably have a disadvantage over residual dicer-proficient cells, which 

were shown to harbor profound expansion potential (Bruttger et al., 2015). 

Collectively, these data establish a critical role of Dicer in microglial repair of 

endogenously or exogenously induced DNA damage. 

 Finally, we found adult cx3cr1Cre:dicerfl/fl  - but not TAM-treated 

cx3cr1CreER:dicerfl/- mice - to display sporadic pathologies, including impaired dental 

growth (data not shown), likely due to the impairment of other tissue macrophage 

populations in these animals. Indeed, the dicer deficiency resulted in depletion of 

selected additional cells, such as Langerhans' cells (LC), as earlier reported (Turner 

et al., 2011) and dendritic epidermal T cells (DETC) (Figure S8). Microglia of adult 

cx3cr1Cre:dicerfl/fl mice exhibited an activated morphology characterized by an 

amoeboid shape and increased cell body size, as compared to littermate controls 

(Figure S9A, B, C). Microglia densities measured in the cerebellum, cortex and 

spinal cord were, however, largely unaltered (Figure S9D). By the age of six to eight 

weeks, all cx3cr1Cre:dicerfl/fl animals developed a motoric hind leg deficiency (Figure 

S9E-G). Prenatal dicer ablation and absence of regulatory miRNAs or other Dicer-

dependent ncRNAs in developing microglia could thus have a long-term effect 

associated with CNS dysfunction, although the mechanism underlying this 

phenomenon, and its direct link to the microglia impairment remain to be elucidated.  
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DISCUSSION 

Recent studies have highlighted the impact of the local tissue environment on 

macrophage identities; however, mechanisms that establish and maintain specific 

expression signatures remain incompletely understood (Amit et al., 2016). Here, we 

investigated the role of Dicer and Dicer-dependent ncRNAs, such as miRNAs, in 

microglia biology. Specifically, we used two complementary experimental systems to 

ablate Dicer either during microglia development or in adulthood. We show that the 

same genetic perturbation, i.e. ablation of dicer, has a differential impact on microglia 

in the adult and developing brain, since microglia are in different functional states in 

these time windows.  

Despite the characteristic miRNome of adult microglia and the notion that lack of 

miRNAs results in increased protein expression noise (Schmiedel et al., 2015), we 

found Dicer and its products largely dispensable for the maintenance of adult 

microglial function under physiological conditions, including their characteristic 

morphology and extension dynamics. Specifically, Dicer deficient adult microglia did 

not show signs of spontaneous activation according to morphology and expression 

profile, however they did display a reduced tissue density and were in steady state 

progressively, albeit slowly, out-competed by rare Dicer-proficient cells.  

MiRNAs have an established role in controlling cellular activation (O'Connell et 

al., 2012). Accordingly, miRNA absence from microglia resulted in profound hyper-

activation of these cells following peripheral challenges, including LPS and poly I:C. 

The microglial steady state miRNome comprises miRNAs predicted to target 3'UTRs 

of pro-inflammatory genes, such as il1b, including miRNA-331-3p and miRNA-125b-

5p. Moreover, microglia challenge results in induction of additional miRNAs that 

shape pro-inflammatory responses, including miR-155 miR-223, miR-218 and miR-

194 (Butovsky et al., 2012), as well as miRNA-126a-3p, shown in this study. The 

latter targets the inflammatory response genes nfkb2 and slc11a2 (Cellier et al., 

2007; Mancino et al., 2013), which we found increased in the Dicer mutant microglia 

following LPS challenge. The observed challenge-induced hyper activation in Dicer-

deficient microglia likely results from the combined absence of steady state and 

induced anti-inflammatory miRNAs, as also indicated by our bio-informatic analyses. 

Moreover, in addition to miRNA maturation, Dicer has been implied in the processing 

of other ncRNAs involved in regulating the immune response. The latter include toxic 

Alu/B1/B2 ncRNAs (Kaneko et al., 2011), which accumulate in Dicer absence, and 
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activate the NLRP3 inflammasome (Gelfand et al., 2015). Such miRNA-independent 

mechanisms might contribute to the fact that microglia of cx3cr1Cre:dicerfl/fl and 

cx3cr1CreER:dicerfl/- mice show hyper-activation, either spontaneous, or following 

challenge. 

 Peripheral endotoxin challenge results in a neuro-inflammatory response and 

transient impairment of hippocampal LTP (Chen et al., 2008; Kohman and Rhodes, 

2013). More specifically, pro-inflammatory cytokines, such as TNF and IL1, were 

shown to affect glutamate receptors activity in the CA1 area of the hippocampus 

(Riazi et al., 2015); however the specific effect of microglia activation on the 

stimulation of CA1 pyramidal neurons and the resulting LTP response in vivo was not 

examined so far. Here we show that TAM-treated cx3cr1CreER:dicerfl/- mice displayed, 

as compared to littermate controls, a significantly weakened hippocampal neuron 

response to repeated synapse stimulation, as well as delayed recovery. 

Cx3cr1CreER:dicerfl/- mice might thus provide a valuable model to study the interplay of 

hyper-activated microglia with hippocampal astrocytes and neurons in the context of 

the LTP response, and define molecular parameters of their cellular crosstalk, 

including the role of TNF (Habbas et al., 2015). Of note, in cx3cr1CreER:dicerfl/- mice 

also non-parenchymal CNS macrophages are targeted (Goldmann et al., 2016). 

Although we show an effect of the dicer mutation in isolated microglia, we hence 

cannot rule out that mutagenesis of these populations contributes to the LTP 

impairment. Future studies should also address the impact of microglia 

hyperactivation on cognitive and associative memory characteristics and behavioral 

comorbidities seen in patients.  

 Dicer promotes cell survival and its absence can result in cell death, as shown 

for neurons, glia and immune cells (Kim et al., 2009; Koralov et al., 2008; Kuipers et 

al., 2010; Schaefer et al., 2007; Tao et al., 2011). Accordingly, also cx3cr1Cre: dicerfl/fl 

mice lacked selective cell populations, for instance in the epidermis, that express 

CX3CR1 either during development (LC) or upon maturation (DTEC). Microglia tissue 

density and motility were reduced in both hippocampus and cortex of Cx3cr1CreER: 

dicerfl/fl mice, as compared with WT mice, indicating an effect on microglia network 

connectivity and survival. Moreover, in the TAM-treated cx3cr1CreER: dicerfl/- mice, 

mutant cells were over time slowly outcompeted by Dicer-proficient microglia. Dicer-

dependent cell survival is likely related to a critical role of Dicer in DNA repair and 
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preservation of genome integrity (Swahari et al., 2016), including in response to  

irradiation induced DNA damage (Francia et al., 2012; Wei et al., 2012). In support of 

this notion, the Dicer deficiency rendered the otherwise radio-resistant microglia 

radio-sensitive, both at the perinatal and adult stages, as demonstrated in both the 

cx3cr1Cre:dicerfl/fl and TAM-induced cx3cr1CreER:dicerfl/- mice. Dicer deficiency in 

development, a stage where the microglia are highly proliferative and active and thus 

exposed to endogenous genotoxic stress, resulted in a prominent accumulation of 

DNA damage. In contrast, the need for Dicer in DNA repair in the more quiescent 

adult microglia was revealed when the cells were damaged by external manipulation, 

-term impact of the 

DNA repair defect on microglial genome integrity and the establishment of microglial 

senescence. 

 Adult cx3cr1Cre: dicerflfl mice develop a significant, though non-progressive 

Amyotrophic Lateral Sclerosis (ALS)-like motoric hind leg deficiency. The exact 

cause of this phenomenon remains unclear. Notably, when combined with certain 

'floxed' reporter alleles, adult cx3cr1Cre mice display rearrangements in neurons 

(Varol et al., in preparation). As adult neurons do not express CX3CR1, this is likely 

due to a yet undefined narrow and transient window of CX3CR1 promoter activity 

during their development. We can therefore not formally exclude that the delayed 

motor neuron defect in these mice results from Dicer impairment in neurons. 

Alternatively, the profound cell-intrinsic impairment of the Dicer-ablated microglia in 

the critical time window of CNS development might have a permanent impact on the 

integrity of neuronal circuits, which precipitates in the delayed pathology.  

 Collectively, we show the requirement of Dicer and miRNAs for microglia 

function and maintenance during development and adulthood. Perinatal absence of 

dicer impaired proliferative expansion and DNA integrity of microglia, and caused 

spontaneous hyper-activation. Microglial Dicer ablation in adulthood did not cause 

spontaneous activation  of microglia in steady state, but resulted in hyper-microglial 

responsiveness to challenge and as a consequence, acute impairment of neuronal 

circuitries. This differential impact of the Dicer deficiency highlights the prominent 

changes microglia undergo with time from the developing to the adult brain. 
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EXPERIMENTAL PROCEDURES 

Mice  

The following newborn (P0) - to 24-week-old mice were used: C57BL/6 (CD45.2); 

B6.SJL-Ptprca Pep3b/Boyj (Jackson Laboratories) (CD45.1); cx3cr1gfp/+ mice (JAX 

stock 005582 B6.129P-Cx3cr1tm1Litt/J (Jung et al., 2000);  cx3cr1Cre (JAX stock 

025524 B6J.B6N(Cg)-Cx3cr1tm1.1(cre)Jung/J) and cx3cr1CreER mice (JAX stock 

020940 B6.129P2(C)-Cx3cr1tm2.1(cre/ERT2)Jung/J) (Yona et al., 2013); dicerfl/fl 

mice (B6.Cg-Dicer1tm1Bdh/J, Jackson laboratories) (Harfe et al., 2005); and Rosa-

26-YFP mice (B6.129X1-Gt(ROSA)26Sortm1(EYFP)Cos/J) (Srinivas et al., 2001). All 

animals were on C57BL/6 background and maintained in specific pathogen-free 

(SPF) conditions and handled according to protocols approved by the Weizmann 

Institute Animal Care Committee as per international guidelines. 

 

Generation of bone marrow (BM) chimeras  

BM chimera animals were lethally irradiated (950 rad) and reconstituted the following 

day via i.v. injection of 5X106 donor whole BM cells per mouse. Chimeras analysis 

was performed six weeks following the BM transfer. 

 

Animal treatments 

To induce gene recombination in CreER transgenic mice, tamoxifen (TAM) was 

dissolved in warm corn oil (Sigma) and administered orally via gavage (Kiermayer et 

al., 2007) for five consecutive times. All animals were TAM-treated first at 4 weeks of 

age. Each oral application was of 10 mg at a concentration of 10 mg/100 

were examined at least 6 weeks following treatment, unless indicated differently. 

For LPS treatment mice were either injected intraperitoneally (i.p.) with a single dose 

of LPS [1 mg/kg; ≥500,000 (endotoxin units)/mg; E. coli 0111:B4; L4130 Sigma], the 

same volume of vehicle solution (PBS), or non-treated. For poly I:C treatment mice 

were either injected i.p with a single dose of poly I:C [20 mg/Kg; P1530 sigma], the 

same volume of vehicle solution (PBS), or non-treated. 

 

Histology  

Following paraformaldehyde (PFA) fixation (48hr in 4 degrees), brain and spinal 

chord (SC) were taken for frozen and paraffin sections, respectively. For frozen 

http://jaxmice.jax.org/strain/006366.html
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sections, following incubation in PFA, tissues were equilibrated with 30% (wt/ vol) 

sucrose solution for 48 hr. Subsequently, samples were snap frozen in O.C.T 

(Tissue-Tek) by isopentane (Sigma) previously cooled with liquid nitrogen, and 

sectioned with a cryostat into 12 m thick sections. Sections were stained with Iba1 

(Wako, 019-19741, 1:150), CD68 (Biolegend, FA-11, 1:100) and Hoechst (vector).  

For paraffin sections, following incubation in PFA, tissues were embedded in paraffin, 

serially sectioned and stained after antigen retrieval with Iba1 (Wako, 019-19741, 

1:150). 

 

3D reconstruction of microglia 

30-m parasagittal cryo sections from adult brain tissue were stained with anti-Iba-1 

(cat. no. 019-19741, Wako) for 48 hr (dilution 1:500 at 4 °C), followed by Alexa Fluor 

568–conjugated secondary antibody (cat. no. A11011, Life technologies), which was 

added at a dilution of 1:500 overnight at 4 °C. Nuclei were counterstained with DAPI. 

Imaging was performed on an Olympus Fluoview 1000 confocal laser scanning 

microscope (Olympus) using a 20Å~ 0.95 NA objective. Z stacks performed with 

1.14-mm steps in z direction, 1,024 Å~ 1,024 pixel resolution were recorded and 

analyzed using IMARIS software (Bitplane). Three cortical cells were reconstructed 

per analyzed mouse. 

 

Surgery and Two photon in vivo imaging 

A cranial window over the right cortical hemisphere was installed as previously 

described (Fuhrmann et al., 2010). Mice were anaesthetized with an intraperitoneal 

(i.p.) injection of ketamine/xylazin (0.13/0.01 mg/g body weight). Additionally, 

dexamethasone (0.02 ml at 4 mg/ml) was i.p. injected immediately before surgery to 

prevent swelling of the brain. A small incision was made to the skin over the right part 

of the skull. The skull was exposed and a circular piece of the skull (4 mm diameter) 

was removed using a dental drill (Schick-Technikmaster C1; Pluradent, Offenbach, 

Germany). A sterilized circular glass cover-slip (4 mm diameter) was inserted into the 

hole and fixed using dental acrylic (Cyano-Veneer fast; Heinrich Schein Dental 

Depot, Munich, Germany). Next to the cranial window a small metal bar was glued 

containing a winding for fixation of the mouse in a stereotactic frame under the 

microscope. After surgery, mice were placed in the custom made stereotactic frame 
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under the microscope (TrimScope II, LaVision Biotech, Germany) and supported by a 

heating plate to maintain the body temperature at 37°C. A 16X NA0.8 water 

immersion objective with a working distance of 3 mm (Nikon, Germany) was used to 

acquire images in vivo. YFP-fluorescent microglia were excited with a two-photon 

laser (Cameleon Ultra II, Coherent) at a wavelength of 920 nm with a maximum 

output power of 50mW to prevent photo damage. YFP emission was filtered with a 

bandpass filter (535-580 nm) and detected with highly sensitive gallium arsenide 

phosphide (GaAsP)-detector. Image stacks (400 x 400 x 300 µm) with a pixel size of 

0.39 µm/pixel and a z-spacing of 3 µm were acquired every 5 minutes for a period of 

40 minutes. At the end of the experiment, mice were sacrificed and the brains were 

removed for further processing.  

 

Live imaging Analysis 

The acquired z-stacks were median filtered and average intensity projections were 

performed of 30 µm spanning stacks in z-dimension. The average intensity projected 

time-series were registered using the TurboReg plugin in FIJI (ImageJ). Two images 

of subsequent time-points were overlaid and the precursor images were pseudo-

colored in green and the successor images in magenta. In these pseudo-colored 

images we measured the area of gained (green) and lost (magenta) microglial 

processes. The turnover rate (TOR) of microglial processes was calculated as the 

sum area of gained and lost processes, divided by the whole area occupied by the 

microglia cell in percent. 

   

Microglia isolation procedures  

For isolation of adult microglia, prior to tissue collection, mice were perfused with 

phosphate buffered saline (PBS) via the heart left ventricle. Brain and spinal cord 

were dissected, crudely homogenized by pipetting and incubated for 15 min at 37 °C 

in a 1 ml HBSS solution containing 2% BSA, 1 mg/ml Collagenase D (Sigma) and 1 

mg/ml DNase1 (Sigma). Next the homogenate was filtered through a 100 m mesh, 

washed with cold PBS-/- and centrifuged at 1400 RPM, at 4°C, for 5 min. For the 

enrichment of microglia, the cell pellet was re-suspended with a 40% percoll solution 

and centrifuged at 2200 RPM, no acceleration and breaks, at 22 °C for 20 min. Next, 

the cell pellet was taken for antibody (Ab) labeling and flow-cytometry analysis. For 
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isolation of embryonic and newborn microglia, brain was gently pulled out and 

separated from the meninges, next the brain was grossly dissected and put for 

homogenization using gentleMACS tubes (Miltenyi, Bergisch Gladbach). For the 

enrichment of microglia, cell pellet was resuspended in a 40%/80% percoll solution 

and centrifuged at 2200 RPM, no acceleration and breaks, 22 °C for 20 min. The 

gradient interphase was collected, washed with cold PBS (1:10 ratio) and centrifuged 

at 1400 RPM, at 4 °C, for 5 min. Next, the cell pellet was taken for Ab labeling and 

flow-cytometry analysis. 

 

Flow cytometry 

Cells were stained with primary antibodies directed against CD11b (M1/70), CD45 

(30-F11), CD45.1 (A20), CD45.2 (104), Ly6C (AL-21), LY6G (1A8), MHC class II 

(2G9), CD86 (GL-1), CD64 (X54-5/7.1) F4/80 (Cl:A3-1) CD11c (N418), CD40 (HM40-

3), CD34 (MEC-14.7), CD61 (2C9.G2 (HM3-1)), AnnexinV - all Biolegend, San 

Diego, CA, USA, KI67 (SolA15; eBioscience, San-Diego, CA, USA) and 7AAD (BD, 

Erembodegem, Belgium). Following incubation with the surface Abs at 4 °C for 15 

min, Cells were washed and analyzed using a FACSFortessa or for sorting with a 

FACSAriaIII (BD, Erembodegem, Belgium) flow cytometer. In the case of KI67, 

following surface staining, cells were fixed and permeabilized (FixPerm kit, BD) for 

the intracellular labeling of Ki67. Viable cells were gated by forward and side scatter 

pattern. Data were acquired with FACSdiva software (Becton Dickinson). Post-

acquisition analysis was performed using FlowJo software (Tree Star, Inc.). 

 

EDU labeling 

To measure P0 microglia proliferation, 1.5 mg/300l (50mg/Kg) of thymidine 

analogue, 5 ethynyl-29-deoxyuridine (EdU) (Invitrogen) diluted in PBS supplemented 

with 1:500 DMSO was i.p injected twice with a three hours difference between 

injections to the pregnant mother at E19. At E20 (P0) the brains were dissected and 

homogenized using the gentle MACS dispomix tubes (Miltenyi, Bergisch Gladbach). 

Next, brain cell suspension was enriched with a percoll gradient and stained with 

surface markers as described above. Following surface labeling, cells were fixed and 

permeabilized, followed by a chemical labeling of the incorporated EdU using the 

EdU staining kit according to manufacturer’s instructions (Invitrogen). 
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Western blot 

Tissues were extracted in RIPA buffer (20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1mM 

Na2EDTA, 1mM EGTA, 1% NP-40, 1% sodium deoxycholate, 2.5 mM sodium 

pyrophosphate, 1mM beta-glycerophosphate, 10mM NaF). Samples were separated 

by SDS-PAGE and immunoblotted using antibodies to IL1 (1:1000, R&D) and 

vincullin (1:250, hybridoma). 

 

Agilent microRNA microarray 

Total RNA from freshly sorted microglia, colonic macrophages, and liver 

macrophages was extracted using the miRNeasy Mini Kit (QIAGEN). RNA purity was 

assessed with a BioAnalyzer 2100 (Agilent Technologies). Expression levels of 

miRNAs were assayed by Agilent miRNA microarrays (Release 12.0 and 15.0), 

according to the manufacturer's protocols. Then, 100 ng of total RNA per sample 

(duplicates for each cell population from independent sorts) was labeled and 

hybridized according to the manufacturer's instructions. For K-Means clustering with 

Pearson correlation, only miRNAs with a ≥ 2-fold differential expression in at least 1 

population were used. As a target prediction algorithm, TargetScanMouse 7.1 was 

applied.  

 

RNA-seq  

For RNA-seq 30,000 microglia cells per brain were sorted by FACS directly into a 1.7 

ml micro-tube containing 50 l lysis buffer (RNase-free H2O, 0.2% Triton-X (Roth) 

and 0.4 U/l RNasin (Promega). Next, the tube was centrifuged, snap frozen on dry 

ice and stored at –80 °C. RNA-seq library production, following sample preparation 

and analysis were carried out as described previously (Jaitin et al., 2014). 

 

RNA-seq Processing and Analysis 

RNA-seq reads were aligned the to the mouse reference genome (NCBI 37, mm9) 

using TopHat v2.0.13 with default parameters (Trapnell et al., 2009). Duplicate reads 

were filtered if they aligned to the same base and had identical UMIs. Expression 

levels were calculated and normalized for each sample to the total number of reads 

using HOMER software (http://homer.salk.edu) with the command 

https://xmail.weizmann.ac.il/owa/redir.aspx?SURL=IcHFilA7M97YaoNHZYN-WtwbH2A4ikSTMXXc8HkP8olPqMH8yuPSCGgAdAB0AHAAOgAvAC8AaABvAG0AZQByAC4AcwBhAGwAawAuAGUAZAB1AA..&URL=http%3a%2f%2fhomer.salk.edu
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“analyzeRepeats.pl rna mm9 -d [sample files] -count 3utr -condenseGenes” (Heinz et 

al., 2010). For the RNA-seq analysis in Fig. 3, 4, 5 we focused on highly expressed 

genes with 2-fold differential over the noise (set as median of all expressing genes 

values). K-means clustering (matlab function kmeans) was used for k=8 in Figure 4, 

k=5 in Figure 6, and k=8 in Figure S5.  

 

qRT-PCR 

mRNA and miRNA expression quantification was performed on sorted brain 

microglia. In the case of sorted cells, 50-250 ng of total RNA isolated with miRNeasy 

micro-kit (Qiagen) were reverse transcribed with the miScript reverse transcription kit 

(QIAGEN) according to the manufacturer's instructions, resulting in reverse 

transcription of both mRNA and miRNAs. The miScript SYBR Green kit (QIAGEN) 

was used to detect amplification in an Applied Biosystems 7300 Real-Time PCR 

machine, for specific genes and miRNAs.  

 

Electrophysiology in brain slices (LTP) 

Extracellular recordings in acute slices prepared from dorsal hippocampus were 

performed as previously described (Maggio and Segal, 2007). Following anesthesia 

with ketamine/xylazine (0.13/0.01 mg/g body weight), animals were rapidly 

decapitated, the brain removed, and 400 μm slices prepared using a vibroslicer. 

Slices were incubated for 1.5 h in a humidified, carbonated (5% CO2 and 95% O2) 

gas atmosphere at 33 ± 1°C and perfused with artificial cerebrospinal fluid (ACSF) 

containing: 124mM NaCl, 2mM KCl, 26mM NaHCO3, 1.24mM KH2PO4, 2.5mM 

CaCl2, 2mM MgSO4, and 10mM glucose (pH 7.4) in a standard interface chamber. 

Recordings were made with a glass pipette containing 0.75M NaCl (4 MΩ) placed in 

stratum radiatum of CA1. Stimulation of Schaffer's collaterals was evoked using a 

pulse stimulator and delivered through a bipolar nichrome electrode. Input-output 

curves were run on each slice prior to beginning of each experiment. Before applying 

the tetanic stimulation, baseline values were recorded at a frequency of 0.033 Hz. 

LTP was induced by high-frequency stimulation (HFS) consisting of 100 pulses at 

twice the test intensity, delivered at a frequency of 100 Hz (1 s). Responses were 

digitized at 5 kHz and stored on a computer. Spike 2 software (Cambridge Electronic 

Design) was used for data acquisition.  

 



Varol et al.  

 20 

 

Comet assay 

The comet assay (Trevigen Inc., Gaithersburg, MD) was performed according to the 

manufacturer’s protocol using neutral conditions. After lysis overnight at 4 °C, the 

slides were washed twice with 1X Tris-borate EDTA buffer solution, pH 8.3 (TBE) for 

10 min each. The slides were placed in a horizontal electrophoresis chamber and 

covered with TBE buffer. Electrophoresis was carried out at the rate of 1.0 V/cm for 

20 min. The slides were removed from the electrophoresis chamber, washed in 

deionized water for 5 min and immersed in ice cold 100% ethanol for 5 min. 

Subsequently, the slides were air dried, DNA was stained with 50 l of SYBR Green I 

dye 1:10,000 in Tris–EDTA buffer, pH 7.5 for 20 min in the refrigerator and analyzed 

using an Olympus digital camera attached to an Olympus BX51 epifluorescence 

microscope. 

 

Motoric activity assay 

Home-cage locomotion. Mice were single-housed, and locomotive activity was 

examined automatically over a 48-h period using the InfraMot system (TSE Systems, 

GmbH).  

Rotarod test. Mice were placed on an accelerating spinning wheel and their latency 

to fall was measured by an inframot beam. Mice were placed on a spinning wheel for 

five consecutive times, first two repetitions were considered training and last three 

repetitions were scored and averaged.  

Hangwire test. Mice were attached to a wire by their forelimbs and their latency to 

grip wire with hind limbs was measured. Scoring equals the latency time, no grip or 

alternatively a fall was considered as “60 sec”. Test was repeated 3 times with a 30 

min gap between repetitions, scoring represented the average score of the three 

repetitions. 

 

Statistics 

Statistical analysis for differences between two or more groups was performed using 

GraphPad Prism (GraphPad Software, Version 6.0, La Jolla, USA). All data were 

tested for normality applying the Kolmogorov-Smirnov test. If normality was given, an 

unpaired t test was applied in the case of two groups comparison. In the case of 
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more then two groups comparison, a one-way Anova was performed followed by an 

unpaired t test for multiple comparisons.  

For testing specific miRNAs targets enrichment within a data-set of upregulated 

genes, two tests were performed in parallel - a hypergeometric test counting the 

mutual genes between two data-sets followed by a measure for the randomality of 

the counts, and a gene-set–enrichment-analysis (using the GSEA software, broad 

institute, as described (Subramanian et al., 2005). Differences were considered 

significant when P<0.05.  

For measuring similarity between whole brain microglia and hippocampal microglia, a 

Pearson correlation test was applied, using the Partek software. 

To obtain unbiased data, experimental mice were all processed together by 

technicians and cell quantifications were performed blind by two scientists 

independently and separately. 

 

SUPPLEMENTAL INFORMATION 

Supplemental Information includes nine figures and one table, and can be found with 

this article online at ..............  
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FIGURE LEGENDS  

 

Figure 1. Microglia display a distinct microRNA profile as compared to other 

tissue macrophages 

(A) Heat map of miRNA expression of sorted microglia, liver and colon macrophages 

from 6 weeks old mice. Shown are miRNAs exhibiting an at least two fold change 

between any two distinct populations (235 miRNAs). Intensity values were log-

transformed, normalized and centered, and genes were clustered by a Pearson 

correlation test, number of partition clusters was set to six. (2 replicates per cell type). 

(B) Correlation matrix with Pearson correlation coefficient performed for all miRs 

expressed above background and displaying > 2-fold change between any two 

populations displayed in A. 

(C) Scheme illustrating conditional TAM-induced mutagenesis using 

cx3cr1CreER:dicerfl/- mice.  

(D) Representative genomic PCR analysis of sorted brain microglia of 

cx3cr1CreER:dicerfl/- mice and controls, six weeks after TAM treatment given at 4 

weeks of age; data are a representative of 3 repeats . 

(E) Diagram summarizing qRT-PCR analysis for expression of selected miRNAs in 

microglia sorted from brains of cx3cr1CreER:dicerfl/- and cx3cr1CreER:dicer+/- mice, six 

weeks after TAM treatment. Data are expressed as mean +/- SEM, statistically 

analyzed with student T test (*P<0.05, **P<0.01, NS P>0.05). n=3 per group. 

 

Figure 2. Dicer-deficient adult microglia in steady state are affected in 

numbers, but not morphology 

(A) Histological analysis of cortex and hippocampus of cx3cr1CreER:dicerfl/- mice and 

controls; Iba1 (red), Dapi (blue).  

(B) Diagram summarizing microglia densities. Data are expressed as mean +/- SEM, 

statistically analyzed with student’s T-test (*P<0.05, **P<0.01). cx3cr1CreER:dicer +/- 

(n=4), cx3cr1CreER:dicerfl/- (n=3). 

(C) Representative three-dimensional reconstruction of cortical microglia morphology 

of cx3cr1CreER:dicerfl/- mice and controls. 

(D) Imaris based automatic quantification of cell morphology. Each symbol 

represents an average of at least three cells measured in a specific tissue sample. 

Data are expressed as mean +/- SEM, statistically analyzed with student's T-test 
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(*P<0.05); n=3 per group. 

 

Figure 3. Gene expression analysis of microglia of TAM-treated adult 

cx3cr1CreER:dicerfl/- mice 

(A) Volcano plot of statistical significance (-log 10 p value) against log 2 ratio 

between cx3cr1CreER:dicerfl/- and cx3cr1CreER:dicer+/- control mice, based on the RNA-

seq data.  Significantly changed genes (at least 1.5 fold change (0.6 log2 ratio, P 

value <0.05) are represented by red symbols.  

cx3cr1CreER:dicerfl/- (n=3), cx3cr1CreER:dicer+/- (n=4). 

(B) Heat map analysis showing log 2 transformed and standardized normalized read 

numbers of up-regulated genes associated with selected functional categorization 

presented in Figure S3A & B, based on ingenuity canonical pathway analysis and Go 

annotation analysis for biological process. cx3cr1CreER:dicer +/- mice (n=4); 

cx3cr1CreER:dicerfl/- mice (n=3). 

(C) FACS analysis of microglial CD61 and CD34 surface expression levels (mean 

fluorescence intensity (MFI)), isolated from TAM-treated cx3cr1CreER:dicerfl/- mice 

(red) and controls (black). Data are expressed as mean +/- SEM, statistically 

analyzed with student's T-test (*P<0.05). n=3 per group. 

 

Figure 4. Hyper-response of Dicer-deficient microglia to systemic LPS 

challenge  

(A) Heat map analysis of mRNA profiles of microglia isolated from PBS or LPS 

treated cx3cr1CreER:dicerfl/- and control mice. Genes displayed represent a fold 

change of at least 2 between any two of the groups (1551 genes). Normalized read 

numbers were log-transformed and standardized. Genes were clustered by a 

Pearson correlation test and number of partition clusters was set to eight.  

cx3cr1CreER:dicer +/- PBS mice (n=3), cx3cr1CreER:dicer +/- LPS mice (n=4), 

cx3cr1CreER:dicerfl/- PBS mice (n=3) and cx3cr1CreER:dicerfl/- LPS mice (n=4). 

(B) Examples of gene expression as identified in cluster IV (A). Shown are the mean 

sequence reads ± SEM.   

(C) Graphical summary of qRT-PCR analysis showing relative quantities of mRNA for 

il6 and il1b in microglia sorted 6hr following an i.p injection of either PBS or LPS of 

TAM-treated cx3cr1CreER:dicerfl/- and control mice. Data are expressed as mean ± 

SEM and statistically analyzed with one-way ANOVA for multiple comparisons 
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(*P<0.05, ***P<0.001). cx3cr1CreER:dicer +/- PBS (n=3), cx3cr1CreER:dicerfl/- PBS (n=3), 

cx3cr1CreER:dicer +/- LPS (n=8), cx3cr1CreER:dicerfl/- LPS (n=6).  

(D) Graphical summary of surface expression of CD40 and CD11b on microglia 

isolated from cx3cr1CreER:dicerfl/- and control mice after i.p injection of either PBS or 

LPS. Data are expressed as mean fluorescence intensity ± SEM and statistically 

analyzed with one-way ANOVA for multiple comparisons (***P<0.001, ****P<0.0001). 

cx3cr1CreER:dicer +/- PBS (n=6), cx3cr1CreER:dicerfl/- PBS (n=2), cx3cr1CreER:dicer +/- 6hr 

LPS (n=5), cx3cr1CreER:dicerfl/- 6hr LPS (n=3), cx3cr1CreER:dicer+/- 24hr LPS (n=4), 

cx3cr1CreER:dicerfl/- 24hr LPS (n=3).  

(E) Graphical summary of expression level of miRNAs predicted to target genes up-

regulated in cx3cr1CreER:dicerfl/- microglia in response to LPS (see Table in Figure 

S4B, summarizing results obtained from two statistical tests used for miRNA 

prediction). Shown are mean intensity values for steady state expression of each 

miRNA in WT microglia, as measured in Agilent microarray (Figure 1A and Figure 

S1B, C); either expressed (filled bars); or absent in steady state (open bars).  

(F) Expression level measured by qRT-PCR of miR142-3p and miR126-3p in WT 

microglia non-treated, 1hr, 2hr and 4hr after LPS i.p injection; miRNAs, expressed in 

steady state (filled bars); miRNAs, absent in steady state (open bars); data are 

expressed as mean ± SEM and statistically analyzed with Student’s T test (*P<0.05). 

n=3 per group.  

 

Figure 5. Hyper-active dicer deficient microglia impair hippocampal neuronal 

functions after LPS exposure 

(A) Comparison of hippocampal and whole brain microglia log2 ratios between 

cx3cr1CreER:dicerfl/- and control mice gene expression 6hr post LPS i.p injection. 

Similarity of mutant microglia is indicated by Pearson correlation test (r=0.856); whole 

brain cx3cr1CreER:dicer +/- 6hr LPS (n=4), whole brain cx3cr1CreER:dicerfl/- 6hr LPS 

(n=4), hippocampal cx3cr1CreER:dicer +/- 6hr LPS (n=2), hippocampal 

cx3cr1CreER:dicerfl/- 24hr LPS (n=2). (see Table S1 for detailed gene lists). 

(B) Examples of gene expression for genes mutually up-regulated 6hr following LPS 

in both whole brain and hippocampus microglia from cx3cr1CreER:dicerfl/- mice 

compared to cx3cr1CreER:dicer +/- mice (shown in A). Shown are the mean sequence 

reads of hippocampal microglia ± SEM.  
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(C) Western blot analysis of hippocampal extracts of unchallenged and LPS-

challenged cx3cr1CreER:dicerfl/- mice and littermate controls for expression of  pro-

IL1protein, non-treated and 6 hr after LPS i.p injection. n=2 per group. Data are a 

representative of 2 repeats. 

(D) Flow cytometric analysis of microglia isolated from unchallenged and LPS-

challenged cx3cr1CreER:dicerfl/- mice and littermate controls for expression of pro-

IL1protein, 6 hrs after LPS i.p injection. Data are expressed as mean ± SEM and 

statistically analyzed with Student’s T test (*P<0.05). cx3cr1CreER:dicerfl/-(n=4), 

cx3cr1CreER:dicer +/- (n=5). 

(E) Graphical description of LTP measurement protocol. Stimulation of Schaffer's 

collaterals was evoked using a pulse stimulator and delivered through a bipolar 

nichrome electrode.  

(F) LTP analysis on Schaffer collateral cornu ammonis 1 (CA1) region synapses 

probed in acute hippocampal slices isolated from either 12hr post PBS, 12hr post 

LPS or 24hr post LPS treated cx3cr1CreER:dicerfl/- mice and controls. Averaged EPSP 

are plotted versus time. Data are expressed as mean +/- SEM and statistically 

analyzed with two way ANOVA on time point 60 considering the type of treatment, 

genotype and the interaction between the two factors. (*P<0.05, **P<0.01 represent 

the significance of interaction). Representative traces at indicated times (a,b) are 

shown on top of each section. Upward arrows indicate the time of high-frequency 

stimulation (HFS). cx3cr1CreER:dicer +/- PBS, 12 hr, 24hr LPS (n=4 each); 

cx3cr1CreER:dicerfl/- PBS (n=3), 12 hr (n=4), 24hr LPS (n=4).  

Of note, a repeat of this experiment, including an additional WT group is shown in 

Figure S5D. 

 

Figure 6. DNA damage response and cell cycle arrest in newborn microglia 

after prenatal Dicer mutagenesis  

(A) Heat map analysis of mRNA profiles of microglia sorted from embryonic day 14 

(E14), newborns (P0) and adult (six weeks old) mice. Genes were filtered for at least 

2 fold change between any couple of samples (2148 genes).  

Normalized read numbers were log-transformed and standardized. Genes were 

clustered by Pearson correlation test, number of partition clusters was set to five. 

Prominent canonical pathways assigned by ingenuity pathway analysis are indicated 
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for each cluster. E14 (n=4), P0 (n=5), six weeks old (n=2). 

(B) Venn diagram illustrating level of transcriptome overlap between prenatal (E14, 

red), newborn (P0, yellow) and adult microglia (six week, blue). 

(C) Scheme illustrating E7.5 onset of constitutive microglial mutagenesis in 

cx3cr1Cre:dicerfl/fl mice.  

(D) Summary of qRT-PCR analysis for expression of selected miRNAs in microglia 

sorted from brains of 6 weeks old cx3cr1Cre:dicerfl/fl and dicerfl/fl mice. Data are 

represented as mean +/- SEM and statistically analyzed with student T test. 

(**P<0.01, NS P>0.05). cx3cr1Cre:dicerfl/fl (n=2), dicerfl/fl mice (n=3). 

(E) Volcano plot displaying statistical significance (-log 10 p value) against the log 2 

ratio between sorted microglia isolated from cx3cr1Cre:dicerfl/fl and dicerfl/fl mice based 

on RNA-seq data. Significantly changed genes (at least 2 fold change, P<0.05) are 

represented by the red symbols. cx3cr1Cre:dicerfl/fl (n=2), dicerfl/fl mice (n=3). 

(F) Heat map graphical display of genes of the DNA damage response checkpoint 

and cell cycle regulation categories, as defined by ingenuity pathway analysis (see 

also Figure S6A) in microglia isolated from cx3cr1Cre:dicerfl/fl and dicerfl/fl mice. 

Shown are the standardized log2 transformed read numbers of significantly changed 

genes (at least 2 fold change, P<0.05). cx3cr1Cre:dicerfl/fl (n=2), dicerfl/fl mice (n=3). 

(G) Graphical summary of qRT-PCR analysis for cdkn1a expression (encoding p21). 

Data are expressed as mean ± SEM and statistically analyzed with Student’s T test 

(*P<0.05); n=3 per group. 

(H) EDU flow cytometric analysis of microglia isolated from P0 dicerfl/fl and newborn 

cx3cr1Cre:dicerfl/fl mice revealed decreased proliferation rate in mutant microglia. Data 

are expressed as mean ± SEM and statistically analyzed with Student’s T test 

(**P<0.01); dicerfl/fl (n=6), cx3cr1Cre:dicerfl/fl (n=4). 

 

Figure 7. Prenatal Dicer ablation causes accumulation of DNA damage and 

renders microglia radio-sensitive 

(A) Representative image of comet analysis (left) and a graphical summary (right) of 

DNA distribution between head and tail of sorted newborn microglia isolated from 

cx3cr1Cre:dicerfl/fl and dicerfl/fl mice. Data are expressed as mean ± SEM and 

statistically analyzed with Student’s T test (*P<0.05, ****P<0.0001). n=3 per group. 

(B) Representative picture of FACS analysis (left) and a graphical summary (right) of 

the frequencies for early and late apoptotic microglia of cx3cr1Cre:dicerfl/fl and dicerfl/fl 
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adult mice, which were analyzed untreated or 24hr after irradiation. Data are 

expressed as mean ± SEM and statistically analyzed with Student’s T test (*P<0.05, 

***P<0.001); n=3 per group. 

(C) Representative FACS analysis of brains of [cx3cr1gfp/+ (CD45.1) > dicerfl/fl ] and 

[cx3cr1gfp/+ (CD45.1) > cx3cr1Cre:dicerfl/fl ] BM chimeras, 6 weeks after transplantation.  

(D) Graphical summary of FACS analysis of chimeric mice, including [cx3cr1gfp/+ 

(CD45.1) > dicerfl/fl ] and [cx3cr1gfp/+ (CD45.1) > cx3cr1Cre:dicerfl/fl ] BM chimeras, 

performed on either adult or newborn (P0) recipients, 6 weeks after transplantation. 

Replicate number: [cx3cr1gfp/+ (CD45.1) > dicerfl/fl ] (n=6), [cx3cr1gfp/+ (CD45.1) > 

cx3cr1Cre:dicerfl/fl ] (n=5). 
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Figure 5
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B miRNAs enriched in microglia – cluster 1 (sorted by normalized intensity)

Varol et al., Figure S1

miR i.d
Average

normalized 
intensity miR i.d

Average
normalized 
intensity miR i.d

Average
normalized 
intensity miR i.d

Average
normalized 
intensity

mmu-miR-3963 15.52 mmu-miR-20b-5p 9.155 mmu-miR-455-5p 6.6 mmu-miR-744-5p 5.085
mmu-miR-5100 14.1 mmu-miR-1839-3p 9.075 mmu-miR-301a-3p 6.695 mmu-miR-664-3p 4.995

mmu-miR-15a-5p 13.72 mmu-miR-140-3p 8.74 mmu-miR-342-5p 6.54 mmu-miR-466b-3p 4.86
mmu-miR-29a-3p 13.25 mmu-miR-25-3p 8.81 mmu-miR-148b-3p 6.245 mmu-miR-503-5p 4.75
mmu-miR-16-5p 12.7 mmu-miR-93-5p 8.71 mmu-miR-30e-3p 6.09 mmu-miR-3070a-3p 5.495
mmu-miR-342-3p 12.71 mmu-miR-140-5p 8.365 mmu-miR-219-5p 6.105 mmu-miR-7a-1-3p 4.58

mmu-let-7i-5p 11.915 mmu-miR-425-5p 8.255 mmu-miR-186-5p 5.9 mmu-miR-467b-5p 4.72
mmu-let-7c-5p 11.475 mmu-miR-181b-5p 8.24 mmu-miR-3068-3p 5.855 mmu-miR-150-3p 5.655

mmu-miR-125b-5p 11.245 mmu-miR-100-5p 8 mmu-miR-328-3p 5.815 mmu-miR-124-3p 4.545
mmu-miR-99a-5p 10.845 mmu-miR-338-3p 7.675 mmu-miR-669f-3p 5.71 mmu-miR-29a-5p 4.345
mmu-miR-103-3p 10.62 mmu-miR-1839-5p 7.65 mmu-miR-5110 6.1 mmu-miR-181d-5p 4.395

mmu-miR-690 10.665 mmu-miR-101b-3p 7.45 mmu-miR-3069-3p 5.76 mmu-miR-9-5p 4.28
mmu-miR-92a-3p 10.35 mmu-miR-361-5p 7.335 mmu-miR-21a-3p 5.55 mmu-miR-191-3p 4.205
mmu-miR-107-3p 10.36 mmu-miR-6412 7.19 mmu-miR-181a-1-3p 5.55 mmu-miR-1843a-5p 4.145
mmu-miR-5097 10.26 mmu-miR-5117-3p 7.1 mmu-miR-450a-5p 5.345 mmu-miR-9-3p 4.14

mmu-miR-30c-5p 10.19 mmu-miR-423-5p 7.09 mmu-miR-17-5p 5.435 mmu-miR-29b-1-5p 4.25
mmu-miR-181a-5p 10.065 mmu-miR-17-3p 6.965 mmu-miR-190a-5p 5.23 mmu-miR-32-5p 4.205
mmu-miR-322-5p 9.98 mmu-miR-98-5p 7.16 mmu-miR-128-3p 5.165 mmu-miR-542-3p 4.31
mmu-miR-455-3p 9.315 mmu-miR-152-3p 6.955 mmu-miR-3106-5p 6.275 mmu-miR-505-3p 3.905
mmu-miR-5119 9.42 mmu-miR-181c-5p 6.62 mmu-miR-467e-5p 5.055 mmu-let-7d-3p 4.005
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Varol et al., Figure S3
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Varol et al., Figure S4 

Cluster Go annotation Benjamini (Pvalue)

I GO:0002376~immune system process 9.62E-08

I GO:0009615~response to virus 1.33E-07

I GO:0051607~defense response to virus 1.11E-06

I GO:0045071~negative regulation of viral genome 
replication

4.64E-05

I GO:0042254~ribosome biogenesis 4.04E-05

I GO:0045087~innate immune response 3.66E-04

I GO:0030593~neutrophil chemotaxis 0.00393763

I GO:0006955~immune response 0.005192394

I GO:0006364~rRNA processing 0.00502318

IV GO:0006954~inflammatory response 1.82E-06

IV GO:0045766~positive regulation of angiogenesis 0.002897105

IV GO:0071346~cellular response to interferon-gamma 0.012608669

IV GO:0006955~immune response 0.009768911

IV GO:0010628~positive regulation of gene expression 0.012597554

IV GO:0034097~response to cytokine 0.011965022

IV GO:0030593~neutrophil chemotaxis 0.01094689

IV GO:0048146~positive regulation of fibroblast proliferation 0.011550116

IV GO:0002376~immune system process 0.010665648

VII GO:0030335~positive	regulation	of	cell	migration 0.02401279

VIII GO:0043547~positive	regulation	of	GTPase activity 0.019322938

A



Dicer LPS Vs WT LPS 
upregulated genes miR

signature

Gsea permutation
Analysis
(Pvalue)

Hyper –
geometric 
(Pvalue)

Expressed in steady 
state  MG (Agilent miR

array)

miR-326-3p 0.033 0.000427 yes

miR-423-5p 0.016 0.00071 yes

miR-142-3p 0 0.00436 yes

miR-219-5p 0.04347 0.0438 yes

miR-331-3p 0.021 0.0486 yes

Let-7d-5p 0 0.05 yes

miR-126-3p 0.006 0.0267 no

miR-212-5p 0.015 0.0356 no

miR-760-3p 0 0.0372 no

miR-491-5p 0 0.0443 no

B

GSEA - histogramsC

Dataset newRNA_preranked_noNA__70.rnk

Phenotype NoPhenotypeAvailable

Upregulated in class na_pos

GeneSet MIR-126-3P.2

Enrichment Score (ES) 0.32948893

Normalized Enrichment Score (NES) 1.5021756

Nominal p-value 0.0028985508

FDR q-value 0.10033289

FWER p-Value 0.022

Table: GSEA Results Summary

Fig 1: Enrichment plot: MIR-126-3P.2    
Profile of the Running ES Score & Positions of GeneSet Members on the Rank

Ordered List

The same image in compressed SVG format

Dataset newRNA_preranked_noNA__70.rnk

Phenotype NoPhenotypeAvailable

Upregulated in class na_pos

GeneSet MIR-423-5P

Enrichment Score (ES) 0.21669552

Normalized Enrichment Score (NES) 1.1449763

Nominal p-value 0.016

FDR q-value 0.43534178

FWER p-Value 0.726

Table: GSEA Results Summary

Fig 1: Enrichment plot: MIR-423-5P    
Profile of the Running ES Score & Positions of GeneSet Members on the Rank

Ordered List

The same image in compressed SVG format

Dataset newRNA_preranked_noNA__70.rnk

Phenotype NoPhenotypeAvailable

Upregulated in class na_pos

GeneSet MIR-142-3P.2

Enrichment Score (ES) 0.25162914

Normalized Enrichment Score (NES) 1.3201855

Nominal p-value 0.0

FDR q-value 0.20930614

FWER p-Value 0.136

Table: GSEA Results Summary

Fig 1: Enrichment plot: MIR-142-3P.2    
Profile of the Running ES Score & Positions of GeneSet Members on the Rank

Ordered List

The same image in compressed SVG format

Dataset newRNA_preranked_noNA__70.rnk

Phenotype NoPhenotypeAvailable

Upregulated in class na_pos

GeneSet MIR-219-5P

Enrichment Score (ES) 0.22351098

Normalized Enrichment Score (NES) 1.1508592

Nominal p-value 0.030042918

FDR q-value 0.43393385

FWER p-Value 0.701

Table: GSEA Results Summary

Fig 1: Enrichment plot: MIR-219-5P    
Profile of the Running ES Score & Positions of GeneSet Members on the Rank

Ordered List

The same image in compressed SVG format

Dataset newRNA_preranked_noNA__70.rnk

Phenotype NoPhenotypeAvailable

Upregulated in class na_pos

GeneSet MIR-331-3P

Enrichment Score (ES) 0.20562159

Normalized Enrichment Score (NES) 1.0971352

Nominal p-value 0.021428572

FDR q-value 0.45337796

FWER p-Value 0.943

Table: GSEA Results Summary

Fig 1: Enrichment plot: MIR-331-3P    
Profile of the Running ES Score & Positions of GeneSet Members on the Rank

Ordered List

The same image in compressed SVG format

Dataset RNA_preranked_1.rnk

Phenotype NoPhenotypeAvailable

Upregulated in class na_pos

GeneSet MMU-LET-7D-5P

Enrichment Score (ES) 0.2494779

Normalized Enrichment Score (NES) 1.2863584

Nominal p-value 0.0

FDR q-value 0.25359744

FWER p-Value 0.358

Table: GSEA Results Summary

Fig 1: Enrichment plot: MMU-LET-7D-5P    
Profile of the Running ES Score & Positions of GeneSet Members on the Rank

Ordered List

The same image in compressed SVG format

Dataset newRNA_preranked_noNA__70.rnk

Phenotype NoPhenotypeAvailable

Upregulated in class na_pos

GeneSet MIR-326-3PAND330-5P

Enrichment Score (ES) 0.20301281

Normalized Enrichment Score (NES) 1.099934

Nominal p-value 0.032786883

FDR q-value 0.4462559

FWER p-Value 0.934

Table: GSEA Results Summary

Fig 1: Enrichment plot: MIR-326-3PAND330-5P    
Profile of the Running ES Score & Positions of GeneSet Members on the Rank

Ordered List

The same image in compressed SVG format

Dataset newRNA_preranked_noNA__70.rnk

Phenotype NoPhenotypeAvailable

Upregulated in class na_pos

GeneSet MIR-491-5P

Enrichment Score (ES) 0.21537538

Normalized Enrichment Score (NES) 1.1535276

Nominal p-value 0.0

FDR q-value 0.45427084

FWER p-Value 0.682

Table: GSEA Results Summary

Fig 1: Enrichment plot: MIR-491-5P    
Profile of the Running ES Score & Positions of GeneSet Members on the Rank

Ordered List

The same image in compressed SVG format

Dataset newRNA_preranked_noNA__70.rnk

Phenotype NoPhenotypeAvailable

Upregulated in class na_pos

GeneSet MIR-760-3P

Enrichment Score (ES) 0.20872849

Normalized Enrichment Score (NES) 1.1172119

Nominal p-value 0.0

FDR q-value 0.43308067

FWER p-Value 0.871

Table: GSEA Results Summary

Fig 1: Enrichment plot: MIR-760-3P    
Profile of the Running ES Score & Positions of GeneSet Members on the Rank

Ordered List

The same image in compressed SVG format

Dataset newRNA_preranked_noNA__70.rnk

Phenotype NoPhenotypeAvailable

Upregulated in class na_pos

GeneSet MIR-212-5P

Enrichment Score (ES) 0.20825084

Normalized Enrichment Score (NES) 1.1253672

Nominal p-value 0.007352941

FDR q-value 0.41997427

FWER p-Value 0.828

Table: GSEA Results Summary

Fig 1: Enrichment plot: MIR-212-5P    
Profile of the Running ES Score & Positions of GeneSet Members on the Rank

Ordered List

The same image in compressed SVG format

Varol et al., Figure S4 
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Supplementary Figure 1 

(A) Flow cytometry gating strategy for isolation of microglia, Kupffer cells (KC) and 

colonic macrophages.  

(B) List of normalized, log2 transformed mean intensity values, representing the 

expression of miRNAs enriched in microglia compared with KC and colonic 

macrophages (displayed in Figure 1A, cluster I). 

(C) List of normalized, log2 transformed, mean intensity values representing the 

expression of miRNAs mutually and highly expressed in microglia, KC and colonic 

macrophages.  (intensity level >7, Agilent microarray). n=2 for each of the three 

macrophage subtypes (all differentially expressed miRNAs are displayed as a heat 

map in Figure 1A). 

 

Supplementary Figure 2 

(A) Representative two-photon in vivo images of microglia over a time-period of five 

minutes. The images of time-point 0 and 5 min were overlaid (t 5 min) to visualize 

stable (white), gained (green) and lost microglia processes (magenta).  

(B) Turnover rate (TOR) of microglia processes as measured in cx3cr1CreER:dicerfl/- 

:r26-YFP and Cx3cr1CreER:dicer +/- :r26-YFP mice. TOR was calculated as percent 

lost and gained (changed) area of the whole microglia occupying area within a time-

period of 5 min. Data are expressed as mean +/- SEM statistically analyzed with a 

Student's T-test (**P<0.01). cx3cr1CreER:dicerfl/-:r26-YFP (n=4),  cx3cr1CreER:dicer +/- 

:r26-YFP mice (n=6).   

 

Supplementary Figure 3 

(A) Graphical summary of significantly changed canonical pathways in microglia 

isolated from TAM-treated cx3cr1CreER:dicerfll- mice compared to controls, analyzed 

by ingenuity pathway analysis (P value (pathway enrichment score)<0.05, Zscore 

(pathway activation score) >1.5).  

(B) Graphical summary of significantly enriched Go annotations for biological process 

in microglia isolated from TAM-treated cx3cr1CreER:dicerfll- mice compared to controls  

(P value (pathway enrichment score)<0.05).  
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cx3cr1CreER:dicer+l- (n=4), cx3cr1CreER:dicerfll- (n=3).  

 

Supplementary Figure 4  

(A) Table summarizing the significantly enriched Go annotations for biological 

processes associated with heat map clusters of differentially expressed genes of 

microglia isolated either 6hr post PBS or LPS i.p injection of cx3cr1CreER:dicerfl/- and 

control mice (see Figure 4A). Enriched Go annotations were found for clusters I, IV, 

VII and VIII. 

(B) Table listing 10 miRNAs predicted by GSEA enrichment score test and a hyper 

geometric test to target the genes increased in microglia isolated from TAM-treated 

cx3cr1CreER:dicerfl/- mice compared with control mice following LPS challenge (see 

Figure 4A, clusters IV and V). 

(C) Graphical display of GSEA enrichment score histograms for miRNAs listed in 

Figure S4B. Replicate number (A-C): cx3cr1CreER:dicer+/- PBS mice (n=3), 

cx3cr1CreER:dicer +/- LPS mice (n=4), cx3cr1CreER:dicerfl/- PBS mice (n=3), and 

cx3cr1CreER:dicerfl/- LPS mice (n=4). 

(D) Graphical summary of qRT-PCR analysis showing relative quantities of mRNA for 

il1b, il18rap and fn1 in microglia sorted from non-treated (NT), 6hr and 12hr post LPS 

i.p injection (top), or 6hr post poly I:C i.p injection (bottom) of TAM-treated 

cx3cr1CreER:dicerfl/- and control mice. Data are expressed as mean ± SEM and 

statistically analyzed with one-way ANOVA for multiple comparisons (*P<0.05, 

**P<0.01). cx3cr1CreER:dicer+/- NT (n=3), cx3cr1CreER:dicerfl/- NT (n=3), 

cx3cr1CreER:dicer+/- 6hr LPS (n=4), cx3cr1CreER:dicerfl/- 6hr LPS (n=3), 

cx3cr1CreER:dicer+/- 12hr LPS (n=3), cx3cr1CreER:dicerfl/- 12hr LPS (n=3), 

cx3cr1CreER:dicer+/- 6hr poly I:C (n=3), cx3cr1CreER:dicerfl/- 6hr poly I:C (n=3). 

 

Supplementary Figure 5 

(A) Graphical heat map display of mRNA profiles of hippocampal microglia isolated 

6hr post PBS- or LPS-injection of TAM-treated cx3cr1CreER:dicerfl/- and control mice. 

Genes displayed represent a fold change of at least 2 between any two of the groups 

(1339 genes). Normalized read numbers were log-transformed and standardized. 

Genes were clustered by a Pearson correlation test, number of partition clusters was 

set to eight. cx3cr1CreER:dicer+/- PBS mice (n=2), cx3cr1CreER:dicer+/- LPS mice (n=2), 

cx3cr1CreER:dicerfl/- PBS mice (n=3) and cx3cr1CreER:dicerfl/- LPS mice (n=2). 



(B) Examples of gene expression as identified in cluster III (A). Shown are mean 

sequence reads ± SEM.   

(C) Graphical summary of fiber volley and excitatory post synaptic potential (EPSP) 

as a function of stimulation intensity in hippocampal slices isolated from TAM-treated 

cx3cr1CreER:dicerfl/- and cx3cr1CreER:dicer+/- mice 12hr post PBS, 12hr post LPS and 

24hr post LPS (1mg/Kg) i.p injection (related to Figure 5F). cx3cr1CreER:dicer +/- PBS, 

12 hr, 24hr LPS (n=4 each); cx3cr1CreER:dicerfl/- PBS (n=3), 12 hr (n=4), 24hr LPS 

(n=4). 

(D) LTP analysis on Schaffer collateral cornu ammonis 1 (CA1) region synapses 

probed in acute hippocampal slices isolated from either 12hr post PBS, 12hr post 

LPS or 24hr post LPS treated cx3cr1CreER:dicerfl/-(red), littermate controls (blue) and 

C57BL/6 WT (black) mice. Averaged EPSP are plotted versus time. Data are 

expressed as mean +/- SEM and statistically analyzed with two way ANOVA on time 

point 60 considering the type of treatment, genotype and the interaction between the 

two factors. (*P<0.05, **P<0.01 represent the significance of interaction). 

Representative traces at indicated times (a,b) are shown on top of each section. 

Upward arrows indicate the time of high-frequency stimulation (HFS). 

cx3cr1CreER:dicer+/- PBS, 12 hr LPS, 24hr LPS (n=4 each); cx3cr1CreER:dicerfl/- PBS, 

12 hr LPS, 24hr LPS (n=3 each); WT PBS, 12 hr LPS, 24hr LPS (n=3 each).  

 

Supplementary Figure 6 

(A) Graphical summary of significantly changed canonical pathways in microglia 

isolated from P0 cx3cr1Cre:dicerfllfl mice compared with controls (related to Figure 

6E), analyzed by ingenuity pathway analysis (P value (pathway enrichment 

score)<0.05 and Abs[Zscore] (pathway activation score) >1.5), including increased 

(orange) and decreased (blue) pathways. cx3cr1Cre:dicerfl/fl (n=2), dicerfl/fl mice (n=3). 

(B) Gating strategy for the expression of nuclear proliferation marker Ki67 based on 

flow cytometric analysis of newborn and adult microglia of C57BL/6 WT mice.  

(C) Flow cytometric analysis of microglia isolated from adult dicerfl/fl, P0 dicerfl/fl and 

P0 cx3cr1Cre:dicerfl/fl mice for the expression of the nuclear proliferation marker Ki67, 

including graphical summary (right). Data are expressed as mean +/- SEM and 

statistically analyzed with student’s T test (***P<0.001); adult dicerfl/fl (n=4), P0 

dicerfl/fl (n=6) and P0 cx3cr1Cre:dicerfl/fl (n=5) 

 



Supplementary Figure 7 

(A) Representative plots of FACS analysis (left) and a graphical summary (right) of 

the frequencies for early and late apoptotic microglia of adult cx3cr1Cre:dicerfl/fl and 

dicerfl/fl mice, untreated or 24hr, 48hr, and 72hr following irradiation. Data are 

represented as mean +/- SEM and statistically analyzed with one-way Anova for 

multiple comparisons (****P<0.0001); n=3 per group. 

(B) Representative plots of FACS analysis (left) and graphical summary (right) of 

brain macrophage distribution between donor and recipient cells isolated from 

[cx3cr1gfp/+ (CD45.1) > cx3cr1CreER:dicer+/-] and [cx3cr1gfp/+ (CD45.1) > 

cx3cr1CreER:dicerfl/-] BM chimeras. Recipient mice were irradiated and BM transferred 

6 (shown in representative FACS plot), 12, 16, and 24 weeks post TAM treatment 

(see Figure 1A for the preparation and analysis of TAM treated cx3cr1CreER:dicerfl/- 

mice). Brain macrophage contributions of donor (CD45.1) and recipient (CD45.2) 

were measured 6 weeks after transplantation. Note that the longer the gap between 

TAM treatment and irradiation, the lower the percentage of microglia replacement by 

BM graft derived cells. Data are represented as mean +/- SEM; n=3 per group. 

(C) Genomic PCR image (left) and a graphical summary (right) measuring the ratio of 

floxed and recombined dicer alleles in sorted brain microglia from cx3cr1CreER:dicerfl/- 

mice and controls, 6 12 and 24 weeks post TAM treatment given at 4 weeks of age. 

Data are represented as mean +/- SEM; n=3 per group. 

 

Supplementary Figure 8 

(A) Representative plots of FACS analysis of epidermis from 6-8 week old dicerfl/fl 

and cx3cr1Cre:dicerfl/fl  mice indicating absence of Langerhans cells (LC) and dermal 

epithelial T cells (DETC).    

(B) Graphical summary of data presented in (A). Data are expressed as mean +/- 

SEM; dicerfl/fl (n=3) and cx3cr1Cre:dicerfl/fl  mice (n=6). 

 

Supplementary Figure 9 

(A) Representative fluorescent microscopic images of frozen sections of SC tissues 

of 6 weeks old cx3cr1Cre:dicerfl/fl and control mice; Iba1 (red), CD68 (green) and Dapi 

(blue).  

(B) Representative flow cytometry analysis for MHC II and CD86 expression of 

microglia of cx3cr1Cre:dicerfl/fl and control mice (left) and graphical summary of MFI of 



staining (right). Data are expressed as mean +/- SEM. Statistical analysis was 

performed with Student's T test (*P<0.05, **P<0.01). dicerfl/fl (n=6), cx3cr1Cre:dicerfl/fl 

(n=5). 

(C) Representative three-dimensional Imaris-based reconstruction of spinal cord 

microglia morphology (top) and a graphical summary for morphological changes 

(bottom) of cx3cr1Cre:dicerfl/fl mice and dicerfl/fl controls. Each symbol represents an 

average of at least three cells measured in a specific tissue sample. Data are 

expressed as mean +/- SEM. Statistical analysis was performed with Student's T test 

(*P<0.05); dicerfl/fl (n=5), cx3cr1Cre:dicerfl/fl (n=4). 

(D) Representative fluorescent microscopic images of paraffin sections from motor 

cortex, cerebellum and SC tissues of 8 week old cx3cr1Cre:dicerfl/fl and dicerfl/fl mice, 

Iba1 (red), Dapi (blue) (left); and a graphical summary (right) of microglia densities in 

the respective CNS areas, including SC grey and white matter regions. Data are 

represented as mean +/- SEM and statistically analyzed with Student's T test (NS 

P>0.05); n=5 per group. 

(E) Graphical summary of home-cage locomotion assay performed on 8 week old 

cx3cr1Cre:dicerfl//fl and dicerfl//fl mice. Data are represented as average activity per 

group for each time point, statistically measured with repeated measure Student's T 

test (**P<0.01); n=6 per group. 

(F) Graphical summary of hang-wire test performed on 8 week old cx3cr1Cre:dicerfl//fl 

and dicerfl//fl mice. Data are represented as mean +/- SEM and statistically analyzed 

with Student's T test (*** P<0.001); dicerfl//fl (n=8) and cx3cr1Cre:dicerfl//fl (n=7). 

(G) Graphical summary of rotarod spinning wheel test (left) and of training (trial 1 and 

2) together with measurement (trial 3, 4 and 5) (right) of rotarod spinning wheel test 

performed on 8 week old cx3cr1Cre:dicerfl//fl and dicerfl//fl mice. 

Data are represented as mean +/- SEM, statistically measured with Student's T test 

(*P<0.05); dicerfl//fl (n=8) and cx3cr1Cre:dicerfl//fl (n=7). 

 


