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Abstract. The Dixon method is a popular and widely used technique
for fat-water separation in magnetic resonance imaging, and today, nearly
all scanner manufacturers are offering a Dixon-type pulse sequence that
produces scans with four types of images: in-phase, out-of-phase, fat-
only, and water-only. A natural ambiguity due to phase wrapping and
local minima in the optimization problem cause a frequent artifact of
fat-water inversion where fat- and water-only voxel values are swapped.
This artifact affects up to 10% of routinely acquired Dixon images, and
thus, has severe impact on subsequent analysis. We propose a simple yet
very effective method, Dixon-Fix, for correcting fat-water swaps. Our
method is based on regressing fat- and water-only images from in- and
out-of-phase images by learning the conditional distribution of image
appearance. The predicted images define the unary potentials in a glob-
ally optimal maximum-a-posteriori estimation of the swap labeling with
spatial consistency. We demonstrate the effectiveness of our approach on
whole-body MRI with various types of fat-water swaps.

1 Introduction

Reliable fat-water separation in magnetic resonance imaging (MRI) has a wide
range of clinical applications [1]. As the fat signal has a relatively short T1 relax-
ation time, its bright appearance, without separation or suppression, can obscure
pathological structures and patterns of edema, inflammation, or enhancing tu-
mors [1]. Additionally, if separated, the fat signal can highlight pathologies such
as fatty tumors. The quantification of the amount of visceral adipose tissue is
another example requiring reliable separation of water from fat. There are sev-
eral techniques for fat suppression and fat-water imaging in MRI, and among
these chemical shift based fat-water separation is one of the most popular and
widely used ones [2]. This is also referred to as the Dixon method [3], originally
developed as a simple spectroscopic imaging technique using two images I and
O with a modified spin echo pulse sequence from which fat- and water-only im-
ages F and W are derived. The images I and O are acquired at time points
where the fat and water signal are in-phase, i.e. I = W + F , and out-of-phase,
i.e. O = W − F . Theoretically, fat- and water-only signals can be recovered by
F = 1

2 (I − O) and W = 1
2 (I + O). The original approach is sensitive to B0
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inhomogeneities, and hence, many improvements had been suggested, including
three- and multi-point Dixon methods [4] which overcome the limitation of an in-
herent ambiguity in the fat and water signal. A breakthrough has been achieved
by employing mathematical optimization for iterative decomposition, known as
IDEAL [5]. Nowadays, all major scanner manufacturers offer one or multiple
variants of a Dixon-based sequence for routine, clinical fat-water imaging.

Still, inherent to all Dixon methods is an artifact that causes fat-water swaps
due to a natural ambiguity in the phase encoding and convergence of the em-
ployed optimization method to local minima. Even with sophisticated unwrap-
ping algorithms this artifact cannot be completely avoided [1]. If undetected,
those swaps can severely impact subsequent processing and analysis steps, for
example, yielding wrong estimates of body fat. In a recent study, the impact
of fat-water inversion has been investigated in the context of PET/MR, where
Dixon images are used for attenuation correction [6]. The study found that 8%
(23 of 283) of the images were affected by fat-water swaps. The average fraction
of fat in the brain calculated from images with no fat-water swap was 13%, and
56% in the scans with inversions demonstrating the severe impact that this ar-
tifact can have on analysis. In our own database consisting of 46 subjects with
whole-body Dixon MRI we found 10 cases exhibiting various types of fat-water
swaps. Visual examples are shown in Fig. 1. While in smaller studies, visual qual-
ity control can be established to detect (and possibly discard) affected scans, this
is not possible in large-scale studies with many hundreds or even thousands of
subjects. Automated methods for detecting whether fat-water swaps are present
are required. Furthermore, due to the high costs for imaging it is desirable to
be able to include as many subjects as possible for further analysis, and thus, a
method that can not only detect but correct fat-water swaps is needed.

1.1 Related work

Robust estimation of the inherent fat-water separation is an active field of re-
search, and an overview is provided in [7]. There are several extensions [8] and
alternatives to the original IDEAL method, including graph-cut formulations [7]
and other discrete optimization approaches [9,10]. All require access to the origi-
nal echo sequences or a B0 field map [11] as part of their optimization procedure.
However, these data are not available after the scanning has been completed. In
fact, most Dixon protocols yield exactly four types of images, irrespective of the
underlying sequence, optimization procedure and number of echo times. The in-
phase, out-of-phase, fat- and water-only images are what is accessible once the
data have been reconstructed and stored in the imaging archive. To the best of
our knowledge, there exist no technique that allows correction of fat-water swaps
retrospectively based on just those derived images. Such a technique, however,
would be very valuable as it can be applied to already acquired datasets, in
particular in clinical studies, where the presence of fat-water swaps is often only
detected during subsequent analysis. Being able to correct such corrupted data
is important in clinical research as data are expensive to acquire and samples
sizes are calculated tightly to reduce scanning time and costs.
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Fig. 1: Examples of different types of fat-water swaps in Dixon MRI. Swaps can
affect local regions as seen in on the axial slices on the left for kidneys and legs.
In whole-body MRI, entire stations can be affected as seen in the middle image,
or partially affected, as seen for the lower extremities on the right.

1.2 Contribution

We propose a simple yet very effective approach for correcting fat-water swaps
that can be applied retrospectively on already acquired data taking only the
four derived images, in-phase, out-of-phase, fat- and water-only, as input. Our
method makes use of image synthesis, i.e., a regression problem dealing with
the prediction of images of a certain modalities, given input image(s) of other
modalities. In our case, we learn the conditional distribution of image appearance
of the fat- and water-only images given the in- and out-of-phase images. We
utilize a training database of fat-water swap-free Dixon images. The predicted
fat- and water-only images yield a noisy, but swap-free estimate that is employed
in a voxel-wise energy term within a swap-labeling problem that is solved via
graph-cuts. The details of our method are given in the following.

2 Dixon-Fix: Correction of Fat-Water Swaps

The core of our method for detecting and correcting fat-water swaps in Dixon
MRI is based on an image synthesis component for predicting fat- and water-only
images, F and W , from the in-phase and out-of-phase images, I and O. Given
a training database T = {Di}mi=1 of m Dixon MRIs Di = {Ii, Oi, Fi,Wi} where
(Fi,Wi) are known to be swap-free, we can learn the conditional distribution
p(F,W |I,O). For a set of test images (Itest, Otest), we can then predict a poten-
tially noisy, but swap-free estimation (F ?test,W

?
test) by inferring the most likely
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Fig. 2: Overview of the Dixon-Fix pipeline with the two main components of
image synthesis to predict swap-free fat- and water-only images, and the swap
labeling solved with graph-cuts that yields the corrected images.

images according to (F ?test,W
?
test) = arg max(F,W ) p(F,W |Itest, Otest). For learn-

ing this conditional distribution, we employ Regression Forests which have been
shown to yield good synthesis results in the context of diffusion MRI [12,13].
Using the predicted fat- and water-only images, we then formulate a binary la-
beling task in terms of an energy minimization problem of a pairwise Markov
random field (MRF). Both, the image synthesis based on Regression Forests and
the MRF labeling formulation are detailed in the following. Figure 2 provides
an overview of the whole processing pipeline for correcting fat-water swaps.

2.1 Prediction of Swap-Free Fat- and Water-only Images

Regression Forests are an attractive choice for image synthesis as they can effi-
ciently handle the multivariate, high-dimensional input data and yield a proba-
bilistic, joint estimate of the fat- and water-only voxel values. Additionally, it is
straightforward to incorporate both local and contextual information based on
the popular, randomized, offset box-features which are efficiently implemented
using integral images. We follow the basic Regression Forest methodology as
described in [14]. We employ a leaf node predictor model based on multivariate
Gaussians which summarize the statistics over the incoming training data. This
model then yields predictions for every voxel v of the fat- and water-only values
corresponding to the means F ?µ(v) and W ?

µ(v), together with an estimate of the
uncertainty corresponding to the standard deviations F ?σ (v) and W ?

σ (v). The
greedy learning procedure during which the randomized decision trees are con-
structed is driven by an objective function that aims to minimize the variance
in each internal split node. Those split nodes are associated with binary tests
applied on the most discriminate feature responses. At test time, the predictions
from individual trees are aggregated by averaging.

2.2 Estimation of Swap-Labeling using Graph-Cuts

The image synthesis yields a swap-free estimate for the fat- and water-only im-
ages, denoted as (F ?test,W

?
test). To determine which voxels in the original images

(Ftest,Wtest) need to be swapped, we formulate a binary labeling problem as a
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Markov random field where each voxel v is associated with a binary random vari-
able xv that takes values {0, 1}, with zero meaning ‘no-swap’, and one meaning
‘swap’. The probability of a voxel being swapped p(xv|F (v),W (v), F ?(v),W ?(v))
given the original and predicted fat- and water-only voxel values F (v), W (v),
F ?(v), W ?(v) is defined with respect to similarities between those values. We are
omitting the test subscript to avoid clutter. Mathematically, this can be defined
as an MRF unary potential function as

ψv(xv) =


|F (v)−F?µ (v)|

F?σ (v)
+
|W (v)−W?

µ (v)|
W?
σ (v)

if xv = 0

|F (v)−W?
µ (v)|

W?
σ (v)

+
|W (v)−F?µ (v)|

F?σ (v)
if xv = 1

. (1)

The potential function is a robust version of an intensity difference term that
takes the voxel-wise uncertainty, F ?σ (v) and W ?

σ (v), from the image synthesis
into account. The potential function determines the cost of assigning ‘non-swap’
(xv = 0) and ‘swap’ (xv = 1) labels depending on whether the original voxel
values are closer to the predicted fat- or water-only voxel values. To encourage
spatial consistency, we add a simple pairwise potential function based on the
Potts model which is defined for neighboring voxels (v, w) in a 6-neighborhood
as ψvw(xv, xw) = λ · 1xv 6=xw . The pairwise function returns a penalty λ if the
label assignments to voxels v and w are different, i.e. xv 6= xw, and it returns
a zero-penalty otherwise. The total MRF energy for a swap-labeling x is then
defined as the sum of the unary and pairwise potentials, E(x) =

∑
v ψv(xv) +∑

(v,w) ψvw(xv, xw). The globally optimal solution in terms of the maximum-a-

posteriori estimate x̂ = arg maxxE(x) is efficiently computed using graph-cuts.

3 Experiments

To evaluate the effectiveness of our correction method, we utilize a database of
whole-body Dixon MRIs from 46 subjects. The data have been visually inspected
and 10 cases have been identified with fat-water swaps. We normalize for inten-
sity variation by matching intensity means to a fixed value. From the 36 swap-free
cases, we randomly select 23 for training the Regression Forest with 50 trees,
maximum depth 30, and a minimum of 4 samples per leaf as stopping criterion.
A large pool of box-feature parameters (n = 10, 000) is randomly generated.
Parameters include the image channels, allowing cross-channel box difference
features, and the side lengths and offsets of the 3D cuboids. We evaluate 200
randomly selected features on-the-fly for all incoming training samples at each
split node. Ten equidistant thresholds in the interval defined by the minimum
and maximum feature response are tested, and the overall best feature/threshold
pair yielding largest decrease of the trace of the covariance matrix over the two-
dimensional target variable is selected. This greedy, randomized optimization
has shown to yield decision trees with good generalization ability.

Given a multi-channel input with in- and out-of-phase images, the forest
predicts jointly the appearance of swap-free fat- and water-only images. The
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swap labeling is determined efficiently through multi-resolution graph-cuts. A
dense 3D MRF is defined first on low resolution images with 6mm voxel spacing.
The resulting labeling defines the region for a full resolution non-regular, sparse
MRF with nodes corresponding to voxels labeled as ‘swap’ in the first stage. The
result of the second stage is an accurate swap labeling map used to generate the
corrected fat- and water-only images. In all experiments, we fix the regularization
parameter λ=5, empirically chosen, and its optimal value depends on the range
of MR intensities. The average running time of the synthesis is about 10 minutes
for a whole-body scan, and the multi-resolution graph-cut takes less than 5
seconds. The fat-water swaps in all 10 cases are successfully corrected. Visual
examples with original, corrupted images, swap labeling maps, and corrected
images are shown in Fig. 3. The examples illustrate the variety of swaps that
can be handled, including one case with multiple swaps across the whole-body
image. When tested on the 13 swap-free images, we find that in all cases some
voxels are incorrectly predicted as ‘swap’. Thus, with the current approach it is
not possible to confirm whether an image is swap-free. The incorrectly labeled
voxels, however, either correspond to background regions or form small patches
in noisy, unstructured and less important areas which both appear dark in the
fat- and water-only images and therefore cause confusion in the MRF unaries.

4 Conclusion

The Dixon-Fix method provides an effective way for correcting fat-water swaps
which is demonstrated qualitatively on whole-body MRI. Quantitative evalua-
tion is difficult due to unknown ground truth. In future work synthesized swaps
will be considered for this purpose, however, it should be noted that generating
realistic swaps is difficult as the underlying process that causes these artifacts
is quite complex. As our test cases exhibit a large variety of swaps in differ-
ent areas, such as head/neck, upper and lower extremities, and internal organs,
it is expected that the method works well in other applications, such as spine
and brain. The two main components of our pipeline are based on established
techniques, Regression Forests and graph-cuts. Others could be considered, in
particular, for the synthesis, which is an active area of research with many re-
cently proposed methods (see [15] for an overview). Probabilistic approaches
might be considered in particular, as the predictions should come with con-
fidence estimates for integration into the MRF energy. A direction for future
work concerns the regularization term. The location-agnostic Potts model with
a global weighting factor might not be optimal for all cases of fat-water swaps. A
learned prior that takes contextual information and expected size and shape of
the swap area into account could be explored. This might also provide effective
means of removing the false positive swap predictions in swap-free images. To
facilitate further development, the source code of our Dixon-Fix implementation
is made publicly available on http://biomedia.doc.ic.ac.uk/software/.

http://biomedia.doc.ic.ac.uk/software/
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Fig. 3: Visual results of successful fat-water swap correction for five different
cases. First row illustrates a case with a fat-water swap in the head/neck area.
Second row shows a case of a whole station swap that is common in whole-
body Dixon MRI. Third row shows a case with a mix of whole station swap and
local swaps in the lower arm region. Fourth row shows successful correction of
a left/right image swap, while the last row shows a challenging case of local,
complex swaps of internal anatomical structures. Note that horizontal stripy
artifacts are results of the stitching method used for generating whole-body
images from individual stations, and not a result of the fat-water swap correction.
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