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Under certain conditions, gas-solid fluidized beds are known to develop a structured flow of bubbles
when exposed to periodically pulsating air flows. In quasi-two-dimensional beds, periodically rising bub-
bles form a triangular tessellation in the vertical plane. Bubble nucleation sites at the distributor plate
alternate during each cycle. This pattern sets an excellent benchmark for fundamental studies of fluidiza-
tion. Notably, most common Eulerian descriptions of granular flow do not yet capture this interplay
between solid mechanics and fluid-solid momentum exchange, which we show to be instrumental to
the dynamic rearrangement of bubbles in a pulsed bed. We report the first successful CFD simulations
of structured bubble flows in a deep, quasi-2D geometry using a Eulerian-Lagrangian CFD-DEM frame-
work. Numerical results are in quantitative agreement with experiments. The simulated dynamics reveal
that the patterns emerge from the transition of the granular collective behavior between solid-like and
fluid-like, which is an outcome of dynamical coupling between gas and particles. The simulated results
point out the essential role of solid frictional stresses on inducing and maintaining the formation of bub-
ble patterns. This underscores the value of investigating pulsation-induced patterns as a prime manifes-
tation of the mesoscopic physics underpinning fluidization, and highlights the direction for improving
current practices.

� 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Bubbling gas-solid fluidized bed reactors are widely used in
various industrial applications, due to their excellent mixing
properties and interfacial heat and mass transfer [1,2]. Their over-
all performance largely relies on the bubble dynamics: rising bub-
bles drive the solids circulation and significantly enhance gas-
solids contact, improving mixing and transport properties. How-
ever, highly nonlinear collective behavior arises from the dissipa-
tive collisions between particles, and the seemingly chaotic
coalescence and breakup of bubbles. Together, these give rise to
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Nomenclature

A average of oscillating flow, (–)
B amplitude of oscillating flow, (–)
Cd particle drag coefficient, (–)
deq equivalent bubble diameter, (m)
ds particle diameter, (m)
dc CFD grid size, (mm)
e restitution coefficient, (–)
E Young’s modulus, (Pa)
Ek granular kinetic energy, (J)
f frequency of oscillating flow, (Hz)
Fc inter-particle contact force, (N)
Ff inter-phase contact force, (N)
g gravitational acceleration, (9.81 m/s2)
G shear modulus, (Pa)
I moment of inertia, (kg�m2)
kn normal spring coefficient, (N/m)
kt tangential spring coefficient, (N/m)
m particle mass, (kg)
Mg interphase momentum exchange, (kg/(m2�s2))
n number of particle, (–)
N natural number (–)
P gas pressure, (Pa)
r?Ps solid pressure gradient vertical component, (Pa/m)
Re particle Reynolds number, (–)
t flow time, (s)
T pulse flow period (s)
T torque, (N�m)
to initial flow time (s)
tc characteristic collision time, (s)
�Ts solid stress tensor, (Pa)
U0 superficial gas velocity, (m/s)
Ug centroid velocity of gas phase, (m/s)
Umf minimum fluidization velocity, (m/s)
Un normal particle relative velocity, (m/s)
Us centroid velocity of particle, (m/s)
Us,i velocity of particle, (m/s)
Ut tangential particle relative velocity, (m/s)

Vc cell volume, (m3)
Vi particle volume, (m3)
x lateral distance from origin (cm)
y vertical distance from the distributor (cm)

Greek symbols
bd drag force coefficient, (kg/(m3 �s))
cn normal damping coefficient, (N/m)
ct tangential damping coefficient, (N/m)
dn normal particle overlapping, (m)
dt tangential particle overlapping, (m)
e volume fraction of gas phase, (–)
fi interpolation coefficient, (–)
h angle of repose (–)
k pattern wavelength (cm)
lg viscosity of gas phase, (Pa�s)
lFr inter-particle frictional coefficient, (–)
lw wall-particle frictional coefficient, (–)
m Poisson’s ratio, (–)
qg gas density, (kg/m3)
qs solids density, (kg/m3)
sg deviator stress tensor of gas phase, (Pa)
/int initial volume fraction of solid phase, (–)
u phase angle, (–)
xs rotational velocity of particle, (rad/s)
m⁄ effective mass between two contacting particles:

1
m� ¼ 1

m1
þ 1

m2

R⁄ effective radius between two contacting particles:
1
R� ¼ 1

R1
þ 1

R2

E⁄ effective Young’s modulus between two contacting

particles: 1
E� ¼

ð1�v2
1Þ

E1
þ ð1�v2

2Þ
E2

G⁄ effective shear modulus between two contacting
particles: 1

G ¼ 2ð2�m1Þð1þm1Þ
E1

þ 2ð2�m2Þð1þm2Þ
E2
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very complex multiphase flow dynamics [3,4], challenging every
aspect of the engineering, design and scale-up of fluidized bed
reactors.

Any means to structure the bed hydrodynamics can facilitate
engineering fluidized bed reactors. Some intrusive methods, such
as distributed gas injectors, internal baffles and electrodes, are
used to impose order on a chaotic process by manipulating the dis-
tribution of the gas supply and the particle dynamics [5]. However,
one of the most effective and non-intrusive ways to structure bub-
ble dynamics is the application of a periodically pulsed gas flow.
Pulsating the air supply in gas-solid fluidized beds can impose an
ordered pattern to the bubble flow [6]. In a quasi-two-
dimensional (2D) geometry, gas bubbles are observed to rise,
spaced with a characteristic transversal wavelength (k), indepen-
dent of the system dimensions [7]. They are stacked according to
a triangular tessellation, in which bubbles shift positions by k/2
at each cycle and remain staggered in rows that are vertically
aligned to form a structured array (Fig. 1). The resulting configura-
tion is subharmonic, as it constantly recurs at half of the pulsating
frequency (f/2). This striking phenomenon not only provides the
potential to improve the operation and design of gas-solid fluidized
beds, but also excels as a rigorous way to validate computational
methods, since the bubble arrangement, as is demonstrated further
on, relies on the complex interplay of fluid-solid forces and
changes of granular rheology in time and space.
Over the past 20 years, computational fluid dynamics (CFD)
have been increasingly used to provide insights into fluidization,
while avoiding some of the difficulties of direct experimentation
[8–10]. Depending on the required level of detail, two state-of-
the-art approaches of modeling gas-solid fluidized systems are
prevalent: the discrete element method (denoted as DEM) or
Lagrangian–Eulerian approach, and the two-fluid model (denoted
as TFM) or Eulerian-Eulerian approach.

Discrete element methods explicitly track and solve every sin-
gle particle trajectory following Newton’s laws of motion [11,12].
Inter-particle contacts are depicted mathematically in either
hard-sphere [13] or soft-sphere fashion [14]. In a dense granular
flow, particles encounter many sustained contacts, and multiple
collisions occur simultaneously. Since a soft-sphere treatment han-
dles multiple contacts in a more robust way, it is favored for the
analysis of granular mechanics [15–17] and local velocity fluctua-
tions [18,19]. Coupling the CFD and DEM methods is computation-
ally expensive. Flow fields are computed on discrete grids with a
mesh size at least one order of magnitude above the particle diam-
eter [20]. Unfortunately, implementation is still uneconomical for
typical industrial units or even pilots, where the characteristic spa-
tial scales of the flow and the particles differ by several orders of
magnitude. In this case, the number of particles to be considered
in a simulation becomes impractical and the computational
load increases dramatically. To this date, a direct CFD-DEM



Fig. 1. Quasi-2D bed of glass beads fluidized with air at U0/Umf = 2.38 + 2.03sin(2p5t). The snapshots are taken at two consecutive periods of the pulsed flow. The ordered
bubble configuration generated by the oscillating flow is clear.
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implementation for granular flows is limited to the scope of funda-
mental studies [12,21,22]. However, discrete elementmethods have
become increasing popular in recent years, even for applied studies.
Other Lagrangian approaches, such as hybrid codes [23,24] and
coarse-grainedmethods [25] serve to tackle large-scale simulations
by representing the dispersion of the particulate phasewith a lower
number of discrete entities or parcels, each accounting for a ratio of
the mass flow equivalent to many real particles.

Eulerian descriptions are suited to tackle large-scale multiphase
systems [4,26]. In granular flows, a two-fluid model (TFM)
describes gas and solid phases as interpenetrating continua, which
substantially reduces the computational demand and allows one to
model the macroscale dynamics of particulate phases more inex-
pensively. Nevertheless, omitting the description of local interac-
tions gives rise to new transport equations and the need for
constitutive closures, defining a solids viscosity and pressure. In
analogy to the study of molecular gases, the well-established
kinetic theory of granular flow (KTGF) is often implemented within
the TFM framework to describe non-linear solid stresses under the
assumption that particle interactions occur through binary, instan-
taneous collisions in the so-called viscous regime [27]. Naturally,
KTGF is not applicable when particles are closely packed, causing
multiple, simultaneous contacts. For that reason, a Eulerian
description based on the KTGF greatly underestimates the effective
solid stresses in dense granular flows. In order to mitigate these
errors and bridge the solid-like and liquid-like behavior of granular
matter, the frictional solid stresses are computed by coupling the
KTGF with soil mechanics based frictional stress models that com-
pensate for the deviations at low void fractions, the so-called plas-
tic regime. As a result, the simulation of solids circulation and
bubbly flows in dense systems becomes greatly reliant on frictional
stress correlations [28–30].

Modeling a periodically pulsed bed constitutes a particular
challenge, as the rheology changes in time, and dense regions
develop locally. Only a few computational works have been
reported in this direction. The first reported modeling attempt
used a simple one-dimensional Particle Array Model (PAM) [31],
in which particles form a vertical string [32]. The authors observed
highly ordered particle movement by applying oscillatory gas
flows, and the most regular movement was captured at a pulsation
frequency of 10 Hz. However, the lateral periodic particle motion
could not be taken into account with this one-dimensional model.
A more comprehensive study was conducted by Kawaguchi et al.
[33] using the DEM approach. They reported that the use of pulsa-
tion frequencies of 4–5 Hz could facilitate ordering the bubble
dynamics for Geldart B particles. The computed periodic pattern
consisted of two larger bubbles aligned horizontally, and always
nucleating at the same fixed positions; this, however, contradicts
the experimental observation that bubble nucleation sites alter-
nate in subsequent cycles. Wang and Rhodes [34] also carried
out a DEM study of pulsed beds with Geldart B powder. They found
that the hydrodynamics become less chaotic when applying a pul-
sating flow. The increased amplitude and applied medium pulsa-
tion frequency of 5-10 Hz assisted in stabilizing the bubble flow,
but the experimentally witnessed pattern was still missing. Our
previous work [35] demonstrated that the broadly used implemen-
tations of the TFM available in commercial packages are unable to
reproduce the structured bubble flows in a quasi-2D pulsed bed. It
follows that standard practices must, to some extent, incorrectly
describe solid circulation and residence time. It especially demon-
strates that the details of the model matter in reproducing the
experimental bubble patterns.

In this work, we progress to simulate the pulsed fluidization of
granular matter, and evaluate the performance of CFD-DEM
approaches in reproducing a dynamic bubble pattern. We demon-
strate for the first time that in a deep, quasi-2D geometry, the
emergence of structured patterns can be reproduced quantitatively
using several conventional CFD-DEM implementations. This pro-
vides a powerful tool to study the role of granular rheology in
the stabilization of coherent bubble flows and may serve as a
benchmark for the future development of advanced continuum
models for fluidized granular flow.

2. Model settings

Simulations of a quasi-2D bed are conducted with the open-
source code CFDEM, version 3.1.0, which employs a four-way cou-
pled solver [36]. The following sections summarize the governing
transport equations and sub-models used in this work.

2.1. Governing equations

The gas phase dynamics are governed by the conservation of
mass (Eq. (1)) and linear momentum (Eq. (2)), assuming the gas
phase to be incompressible and isothermal, at ambient conditions,
thus exhibiting constant viscosity lg:

@ðeqgÞ
@t

þr � ðeqgUgÞ ¼ 0 ð1Þ

@ðeqgUgÞ
@t

þr � ðeqgUgUgÞ ¼ �er � PI þr � sg þ eqggþMg ð2Þ

The gas stress tensor is modeled with the Newtonian strain-
stress relation:

sg ¼ elgðrUg þrUT
g Þ ð3Þ

The motion of all particles individually is resolved using DEM.
For each single particle of mass m, its translational velocity Us

and rotational velocity xs follow Newton’s laws of motion:

m
dUs

dt
¼ Fc þ Ff þmg ð4Þ

I
dxs

dt
¼ T ð5Þ

where Fc and Ff are the forces representing inter-particle collisions
and gas-solid interaction, respectively; g is the gravitational accel-
eration; T is the torque induced by the tangential contribution of



Fig. 2. Schematic of the experimental setup. The solenoid valve is linked to a
computer to control the flow rate. PVC pipes with a diameter of 1.5 cm were used to
connect the system.
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the contact, and I is the moment of inertia. The normal and tangen-
tial inter-particle contacts are modeled using Hertzian spring-
dashpot contact theory [11], expressed as a linear combination of
a spring contribution and a damping contribution:

Fn ¼ kndn � 2

ffiffiffi
5
6

r
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2
knm�

r
Un ð6Þ

Ft ¼ ktdt � 2

ffiffiffi
5
6

r
b

ffiffiffiffiffiffiffiffiffiffi
ktm�

p
Ut ð7Þ

kn ¼ 4
3
E� ffiffiffiffiffiffiffiffiffiffi

R�dn
p

ð8Þ

kt ¼ 8G� ffiffiffiffiffiffiffiffiffiffi
R�dn

p
ð9Þ

Here, E⁄ and G⁄ stand for the effective Young’s modulus and
shear modulus, respectively; R⁄ is the effective radius; dn and dt
are the normal and tangential geometric overlap between the
paired particles; kn and kt are the normal and tangential spring
stiffness.

In addition, the tangential force is finite, and it is common prac-
tice to impose Coulomb’s criterion when the tangential force
exceeds the maximum static friction [37,38]; therefore, the tan-
gential force is limited to be smaller or equal than the maximum
static friction:

Ft 6 lFrFn ð10Þ
where lFr is the friction coefficient. Furthermore, in Eqs. (6) and (7):

b ¼ lnðeÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln2ðeÞ þ p2

q ð11Þ

where b is defined as a function of the coefficient of restitution, e.
The particle-wall collisions are modeled assuming an extremely
large value for the mass of the wall when computing the effective
material properties.

2.2. Interphase force

In the context of these simulations, the interphase momentum
exchange is considered to be dominated by the drag and buoyancy
forces, whereas other contributors, such as lift forces and virtual
mass forces can be considered negligible [39]. Drag is modeled as
a function of the relative velocity of the gas to the solids. It is
obtained empirically and calculated individually for each particle.
The fluid-particle interaction Ff exerted on the particle i is
expressed by:

Fi
f ¼ �VirP � Vibd

1� e
ðUg � Us;iÞ ð12Þ

where Vi is the volume of the particle, P is the gas pressure, bd is the
drag force coefficient per unit volume of suspension, e is the voi-
dage, and Ug and Us,i are, respectively, the centroid gas and individ-
ual particle velocities. A shape correction factor would have to be
introduced when using non-spherical particles.

Four-way coupling of the gas-solid momentum exchange fol-
lows the same assumptions. For a monodisperse solid phase, the
gas-solid momentum transfer term Mg reads:

Mg ¼ 1
Vc

XN
i¼1

fiV ibd

1� e
ðUg � Us;iÞ ð13Þ

where Vc is the cell volume and N is the number of particles in the
present cell. fi is an interpolation factor correcting the contribution
of each particle based on its position relative to the center of the
cell. The drag coefficient bd is modeled according to Gidaspow’s
empirical correlation [40], which combines the correlations of
Wen and Yu [41] and Ergun [42] for dilute and dense flows,
respectively.

In the very dilute regions of the bed, where e > 0.8:

bd ¼
3
4
Cd

qgkUg � Uskeð1� eÞ
ds

e�2:65 ð14Þ

where

Cd ¼ 24
eRe

½1þ 0:15ðeReÞ0:687� ð15Þ

in which the relative Reynolds number is defined as:

Re � qg

lg
kUg � Uskds ð16Þ

On the other hand, when e < 0.8, the drag coefficient takes the
following form:

bd ¼ 150
ð1� eÞ2lg

ed2
s

þ 1:75
qgð1� eÞkUg � Usk

ds
ð17Þ
2.3. Experimental setup

The setup is schematically shown in Fig. 2. Experiments were
conducted in a rectangular (45 cm wide � 1 cm thick) quasi-2D
cell made of Plexiglas equipped with a 3 mm thick sintered metal
distributor plate Grade 07 (BK 10.30.07, Sintertech). Spherical
soda-lime glass beads, with an average diameter of 238 mm, were
fluidized using dry air at ambient conditions. The initial bed height
was 4.5 cm. The air was pulsated periodically with a superficial
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velocity U0 given below in terms of the dimensionless mean flow A
and amplitude B:

U0=Umf ¼ Aþ B sinð2pftÞ ð18Þ
The minimum fluidization velocity, Umf , was measured experi-

mentally to be 0.041 m/s.
The wavelength of the patterns is determined by the character-

istics of the oscillating flow and is independent of the bed dimen-
sions [7]. Therefore, in order to minimize the computational load,
the simulations were conducted in a 10 � 0.2 � 10 cm quasi-2D
rectangular domain. To validate this, an additional simulation con-
ducted in a 15 � 0.2 � 10 cm domain was carried out as well, and,
indeed, reproduced a similar pattern wavelength. This domain size
is sufficient to encompass the generation of a row of two bubbles,
and it can be used to demonstrate the nucleation process and sta-
bilization of a pattern.
2.4. Computational setup and numerical implementation

Table 1 summarizes the computational parameters. Zero-flux
boundary conditions were assigned to the front and rear walls to
eliminate any effects on the gas phase. Poisson’s ratio, m, was set
to 0.22, and the coefficient of restitution, e, of the glass beads in
inter-particle and wall-particle collisions was set to 0.97 [43].
According to the verified practices of slowly bubbling fluidized
beds [43,44], an artificially small Young’s modulus (10 MPa) was
used for the glass beads to avoid a prohibitively small DEM time
step. When non-cohesive Geldart B particles with a spring stiffness
above 800 N/s are used [34,44,45], the precise value of the spring
stiffness has no significant influence on the bubbling behavior
[46]. By piling the glass beads on a horizontal surface, the angle
of repose, h, was measured experimentally and the friction coeffi-
cient between particles, mFr, was set to 0.35 according to the
approximation tanðhÞ 	 lFr obtained from the Mohr–Coulomb cri-
terion; it was reduced to 0.1 for particle-wall collisions, mw.

For the gas phase, the ‘‘pressure implicit with splitting of oper-
ator” (PISO) algorithm [47] was selected to solve the pressure-
velocity fields of the low-speed incompressible gas. A first-order
Table 1
Settings of the CFD-DEM simulations.

Parameter Value

Solid phase
Particle density, qs 2500 kg/m3

Mean particle diameter, ds 238 lm
Young’s modulus, E 10 MPa
Restitution coefficient, e 0.97
Poisson’s ratio, m 0.22
Inter-particle friction

coefficient, mFr
0.35

Particle-wall friction
coefficient, mw

0.1

Gas phase
Gas density, qg 1.225 kg/m3

Gas viscosity, mg 1.8 � 10�5 Pa s

Common
Bed width 10 cm
Initial bed height 4.5 cm
Simulation domain

(W � T � H)
50dc � 1dc � 50dc

CFD grid size, dc 2 mm
Side wall boundary condition No-slip for the gas phase
Inlet boundary condition Superficial velocity: U0/Umf = 2.64 + 2.14sin

(2pf t)
Outlet boundary condition Constant pressure (101325 Pa)
Time step Solid phase: 1 � 10�6 s, Gas phase:

1 � 10�4 s
Euler implicit scheme was used for temporal discretization and
second-order discretization for gradients and divergences.

Various simulations were performed to ensure an appropriate
grid size and time step implementation. Under the physical prop-
erties quoted in Table 1, the DEM time step was set to 1 � 10�6 s,
approximately 
 1/30tc (tc denotes the characteristic collision
time), which is considered sufficient to describe an entire collision
process [48,49]. Conversely, the CFD time step for solving the gas
phase was set according to the Courant–Friedrichs–Lewy condition
(CFL) [50]. The analysis of the evolution of time-averaged voidage
indicated that a time step of 1 � 10�4s is sufficient to achieve con-
vergence and accurately simulate the dynamics of the gas phase.
The grid sensitivity was analysed for the computed static solid
packing for an increased cell size. Fig. 3 shows that cubes with
an edge of 2 mm were required to ensure a sharp resolution of
the gas flow field. The number of cells in the third dimension for
a constant bed thickness was found to have no effect on the simu-
lation results in accord with the quasi-2D nature of this phe-
nomenon, as was also discussed by Kuipers and colleagues [36,51].
2.5. Analysis of the bubble properties

During the patterned state, the properties of bubbles are com-
puted when the distance from the center of the bubble to the dis-
tributor is between 2.5 and 3.5 cm. In simulations, the cells of
bubbles are recognized by imposing a sharp threshold (e > 0.8).
Considering a quasi-2D geometry, the area of a single bubble is
assumed to be equal to the sum of the areas of connected cells con-
taining void space. All the bubbles are assumed to have a rounded
shape to estimate their equivalent bubble size. The pattern wave-
length is measured as the distance between each pair of bubbles,
which nucleate during the same pulse. Nevertheless, the above
analysis loses its meaning when the flow of bubbles becomes
chaotic.
3. Results and discussion

3.1. Experimental and simulated pattern formation

Experiments were conducted under sets of conditions corre-
sponding to the computational domain to ensure the opportunity
for direct validation. In both cases, a sinusoidal flow oscillating
between 0.5Umf and 4.78Umf and with a frequency of 5 Hz or
7 Hz was introduced. In both frequency sets, the instability
emerges spontaneously in the experiments after only a few peri-
ods. The bubbles are nucleated in a structured array (Fig. 4a),
which is then sustained, flowing upwards during an entire cycle
(see Supplementary Material for videos of experimental patterns).
The bubble nucleation sites in the subsequent cycle emerge in
between the bubble locations of the previous array, thus leading
to stacked rows in which the bubbles alternate positions. In deeper
beds, this type of arrangement develops into a recognizable trian-
gular tessellation pattern in the vertical plane, as earlier work from
our group has shown [5,7]. As expected, both the wavelength of the
pattern, corresponding to the horizontal separation of the bubble
nucleation sites, and the bubble size decrease with increased pul-
sation frequency, Table 2.

After a few periods, CFD-DEM simulations under the same
pulsed flows conditions, Table 1, lead to a dynamic, subharmonic
bubble pattern, in excellent agreement with the experiments
(Fig. 4b). The bubble nucleation sites near the distributor rearrange
dynamically after each cycle in the same way as in the experimen-
tal case, forming two stacked rows where bubble positions are
shifted every cycle by half a wavelength in the horizontal direction.
The computational pattern is stable and recurs at half of the



Fig. 3. (a) Sensitivity analysis on CFD grid size for CFD-DEM simulations. The static solid packing becomes size independent when the grid size is above 2 mm; (b) Snapshot of
the 2 mm cubic CFD grid used for simulations. The thin black lines represent the mesh grid.

Fig. 4. Snapshots for (a) experimental, (b) CFD-DEM patterns in a quasi-2D bed with an oscillating airflow with velocity U0/Umf = 2.64 + 2.14sin(2p5t). The snapshots were
taken from consecutive cycles. The bubble nucleation sites alternate every cycle, shifting half of the wavelength k in the transversal direction.

Table 2
Comparison between experimental and computational results. The conditions are listed in Table 1.

Pulsed frequency (Hz) Bubble size, deq (cm) Wavelength k (cm) Minimum fluidization velocity, Umf (m/s)

5 Hz Experiment 2.5 ± 0.2 6.5 ± 0.6 0.041
CFD-DEM 2.2 ± 0.5 6.4 ± 0.2 0.044

7 Hz Experiment 1.6 ± 0.2 5.6 + 0.4 0.041
CFD-DEM 1.3 ± 0.6 5.1 ± 0.8 0.044
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pulsation frequency. To our knowledge, the data shown provide
the first unambiguous reproduction of dynamic bubble patterns
in quantitative agreement with experiments in terms of the
arrangement, average bubble size and wavelength, Table 2 (see
Supplementary Information for videos of simulated patterns).

3.2. Description of the bed dynamics during a patterned state

CFD-DEM simulations can provide greater insight into the
mechanism of pattern formation as well. In this section, we look
into the gas and solid phase dynamics of this newly defined
structured bubble flow, and the key contributors to its stabiliza-
tion. To avoid redundancy, the following analysis features only a
few periods of the recurrent bubble structure and a different time
during a pulse period (T) once it has reached a stable state
after 
 3 s. As a periodic phenomenon, it is convenient to use the
phase angle, u, to describe the pattern evolution during any single
period of the oscillating gas flow. The phase angle is defined as
u ¼ 2pðt � t0Þ=T with an initial flow time t0 = NT, where N is a
natural number.

3.3. Dynamics of the gas phase

Fig. 5 shows the recurrent field of the gas pressure, coupled
with the rising bubbles. The pressure drop over the bed fluctuates
according to the oscillatory gas flow, peaking at u = p/2.



Fig. 5. Snapshots for simulated bubble pattern profiles within a single period of gas pulsation. Gas pressure fields alternate in conjunction with the bubbles. The snapshots
were taken from two consecutive periods of the periodically pulsed inlet flow, between 4.2 and 4.4 s flowtime. The blue lines represent isobars for the absolute gas pressure P
at 101500 Pa, 101600 Pa, 101800 Pa and 101900 Pa, respectively, from the top to the bottom. The insets schematically show the velocity of the pulsed gas flow at the
corresponding phase angle, during one period.
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When traveling more slowly than the airflow in the emulsion
phase, gas bubbles represent preferable paths for the air to channel
through granular media [3]. In the CFD-DEM simulations, the air
streamlines converge into the rising bubbles (Fig. 6), which
originates from an uneven pressure distribution over the lower
domain (Fig. 5). Two regions are clearly differentiated. Due to the
lower pressure drop within the bubbles, the area in the wake
behind them exhibits a higher air velocity and pressure drop, while
the area of high pressure extends further up in between the
bubbles.

3.4. Dynamics of the particulate phase

During every oscillation cycle, the superficial velocity of the air
falls below Umf, causing the particulate phase to be temporarily de-
fluidized in the valley of the sinusoidal signal. At this moment, the
existing bubbles continue to rise slowly, maintaining their shape
from collapsing. The bubble motion drives the displacement of
the solids on either side; solids travel downward, then converge
and come into contact vigorously within the wake of each bubble
(Region 1 in Fig. 7) to eventually reach a quasi-static state. In con-
trast, the solids in the region between the bubbles (Region 2 in
Fig. 7) tend to rise, but exhibit much less movement and undergo
a smaller number of collisions.

At u = 0, the bulk of the granular matter, including both Region
1 and 2, is still de-fluidized, densely packed with a velocity for the
solids approaching zero (Fig. 8a). As the air velocity increases in a
new cycle, the system becomes partially fluidized, up to the point
of bubble nucleation (u 
 p/4). During the process, the solids
within Region 1 remain static and densely packed, due to a large
number of collective contacts and the effect of frictional stress,
which suppresses the rise of the particles. The solids within Region
2 respond more rapidly to the change in air velocity and expand to
create a new bubble nucleation site (Fig. 8b).

In a pair of rising bubbles, sustained local multi-particle con-
tacts are generated by the circulation of solids into the bubble
wake, leading to long-range, large solid stresses at the interface
between the bubble and the emulsion. Fig. 9 displays the com-
puted solid pressure, showing significant compressive yields in
the wake of a rising bubble. Such a high load explains the restricted
mobility of the particles beneath the bubbles; the resulting adverse
force to the lifting drag explains a slower response to expansion in
the next cycle of increasing air velocity, compared to the central
Region 2 in Fig. 7. The solid pressure gradients in both regions



Fig. 7. Snapshots of solids circulation at u = 0 (t = 4.2 s). Arrows stand for the
direction of the locally averaged particle velocity. Compressive and expansive flow
patterns appear in two distinct regions. In Region 1, solids converge towards the
area behind the bubbles, driven by the rising bubbles and gas flow. In Region 2, solid
move away from the lower domain between the bubbles (Region 2). For clarity, the
length of the arrows is not indicative of the magnitude of the velocity. Region 1:
2 < x < 4.5 cm, 0 < y < 1 cm; Region 2: 5.5 < x < 8 cm, 0 < y < 1 cm.

Fig. 6. Snapshot of gas streamlines and isobars at u = 0 (t = 4.2 s), corresponding to
Fig. 5a. Gas streams tend to channel through the bubbles. Black lines represent the
gas streamlines, whereas the blue lines are isobars, that is, lines of constant gas
pressure. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 8. (a) Contours of the vertical velocity of the solids atu = 0 (t = 4.2 s). These show thatm
particles in both Region 1 and Region 2 are virtually immobile. (b) Contours of the vertical v
show that the solids in Region 2 are starting to rise, whereas the motion of the solids is sti
figure. The scale bar on the bottom refers to the zoomed in regions in both Fig. 9(a) and (

Fig. 9. Contours of computed solids pressure at (a) u = 0 (t = 4.2 s) and (b) u = p/4 (t =
CFD-DEM simulations. Inserts are the snapshots of the corresponding patterns. Note the
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differ approximately by a factor of 3 when the maximum load con-
ditions are reached (Fig. 10). Identifying not only the rheological
behavior of the plastic regime, but also the point of transition is
of critical importance for TFM (Eulerian-Eulerian) simulation
frameworks [15]. In this case, DEM can explicitly solve the stress
transmission and demonstrate that the formation of a void is
ost particles remain static, except for the solids circulating around the bubbles.Most
elocity of the solids at u = 3p/10 (t = 4.23 s), themoment of bubble nucleation. These
ll suppressed in Region 1. Note the different scale bars on the bottom and right of the
b), while the scale bar on the right applies to the main contours.

4.25 s). The solids pressure is reconstructed using the virial theorem [15] for the
different scale bars in (a) and (b).



Fig. 10. Time series of the vertical component of the average solid pressure
gradient, r?Ps , in the two out-of-phase regions (shown in Fig. 7) for CFD-DEM. The
data are sampled from five consecutive pulse periods. The solid pressure is
reconstructed using the virial theorem [15] for the CFD-DEM simulations.
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hindered beneath the wake of the bubbles where an opposing net
force follows a larger solid pressure gradient, while the formation
of a void is facilitated in between both rising bubbles, where solid
pressure gradients are minimal (Fig. 9).

The stresses imposed on the bottom region of the bed near the
distributor are gradually reduced as the granules become fluidized
(Fig. 10). In response to the spatial distribution of the solid pres-
sure gradients, a longitudinal wave-shaped void initially spans
the entire distributor and then splits into two alternating bubble
nucleation sites when the air velocity starts to decrease (see Sup-
plementary Material for videos of the simulated pattern). The
newly formed nucleation sites appear along two vertical axes
equidistant to the horizontal position of the previous set of rising
bubbles. The process recurs, and hereby gives rise to a complete
subharmonic pattern. In wider and deeper beds, the same
sequence expands into any number of bubbles stacked in line at
a given wavelength and several stacked rows in a triangular
tessellation.
4. Discussion

Common CFD-DEM implementations were shown to success-
fully reproduce, in a quantitative manner, the dynamic bubble pat-
terns observed in a small, quasi-2D fluidized bed. Based on the
above observations, the emergence of patterns is associated with
the oscillation of granular matter over the frictional packing limit
during part of each cycle, thus alternating the granular collective
behavior between fluid-like and solid-like. This transition is known
to create a dramatic change in non-linear solid stress. Particles
become fluidized during the formation of the bubbles, showing a
sharp decrease in the solid stress within the bubble wake
(Fig. 10). However, due to the circulation of the solids in the wake
of the bubbles and the following half-cycle of decreasing air veloc-
Fig. 11. Snapshots of simulated profiles of the flow pattern within a period of gas puls
periods of the periodically pulsed inlet flow.
ity, solids concentrate and remain in a dense, quasi-static form
when approaching jamming or transition to the plastic regime.
This phenomenon gives rise to a set of non-linearly growing stres-
ses that, collectively, arrange bubbles into a regular pattern. A
change in frequency of the perturbation affects the size of the bub-
bles and, correspondingly, adjusts the characteristic wavelength,
since it alters the temporal and spatial scales of the local solids
circulation.

The data presented here show that the granular solid mechanics
play an essential role in the emergence of structured bubble pat-
terns and their stability. The effects of friction are non-local: they
span over long distances, which is fundamental to reach a balance
in the upwards propagation of bubble patterns. However, when
friction is eliminated and the solids become mobile in the wake
of the bubbles, a deep pulsed bed fails to reach a structured state,
as shown in Fig. 11. Instead, solids circulate widely, driven by the
motion of the bubbles over time. By omitting frictional stresses
in the dense region, the model fails to identify the correct jamming
point; as a result, fluid dynamics largely dominate over the role of
solid mechanics.

In a continuum approach, the description of the granular rheol-
ogy requires a complex numerical treatment and constitutive
equations to reconcile the stress-strain relations over a full range
of void fractions, spanning from viscous to transitional and plastic
regimes. Advanced models with a dynamic threshold for the jam-
ming point are not yet widely explored in the fluidization commu-
nity. Using a discrete treatment for the particulate phase allows us
to compute stresses and strains by resolving force balances in all
individual contacts and, thus, explicitly solve the evolution of rhe-
ological properties across the bed. The data shown here indicate
that the stabilization of the patterns, that is, the alternation of
nucleation sites, is related to the compressive stress generated in
the wake of bubbles in the plastic regime. Our previous work has
shown that the commonly used continuum models, including the
most used correlations of frictional stresses, fail to capture this
phenomenon [35]. Therefore, an accurate description of the jam-
ming transition and of the rheology of the transition and dense
regimes must be critical to depict when and where bubbles form
under different conditions. Classic KTGF assumes collisions to be
instantaneous, binary and frictionless below the frictional packing
limit, and, thus, it cannot be expected to hold around the bubble
wakes characterized by enduring contacts and long-range force
chains [16]. Similar challenges occur when modeling sandy piles,
an hourglass and U-tubes, where static inter-particle friction is
the dominant element [52]. It is also well known that the use of
frictional stress models is essential to describe the bubbling behav-
ior in fluidized beds [29,53], particularly when using a low super-
ficial velocity. However, the commonly employed expressions are
still highly empirical and provide predictions of frictional stresses
that can vary by orders of magnitude [28,54]. Nevertheless, many
classical implementations have been validated simply by the cor-
rect description of bubble properties, without ensuring the proper
ation when eliminating particle friction. The snapshots are taken from consecutive
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description of the solids circulation around the bubbles, which
impact the entire bed hydrodynamics and, thus, may affect pro-
cesses like reactions, drying and coating [30,35]. Over the last
few years, increasing efforts have been devoted to improving the
account of friction in modeling dense granular flows [55,56]. As
mentioned before, advanced frictional stress models, based on rhe-
ological principles, are currently being developed to bridge the
transition between the viscous and the plastic regime in dense
granular flows [16,57]. Fluidized beds are further complicated by
fluid-solid interactions, leading to very complex dynamics. One
cannot even assume that granular matter necessarily behaves as
an isotropic system, while these fundamental approaches are still
in an early stage. They will, undoubtedly, pave the way towards
more accurate kinetic descriptions of fluidization. This work con-
tributes to this exciting new area by linking the effects of friction
in the mesoscopic granular dynamics to a macroscopic phe-
nomenon in fluidization, using microscale models to account for
the granular rheology.

5. Conclusions

In this work, we have demonstrated that a Eulerian-Lagrangian
approach (CFD-DEM) is able to successfully represent the physics
underlying pattern formation in quasi-2D, pulsed, bubbling, gas-
solid fluidized beds. Computational studies reveal the importance
of the coupling between gas and solid phase when reaching a pat-
terned state. The large and sustained solid stress, arising from a
dynamic transition of the solid phase between solid-like and
fluid-like behavior, leads to a transverse shift in bubble nucleation
site at each cycle. Therefore, accounting for the solid mechanics is
necessary to capture the sustained, structured bubble patterns wit-
nessed experimentally. The deficiencies of the continuous,
Eulerian-Eulerian approach in describing dense frictional flow con-
front us with particular challenges when simulating pattern forma-
tion in a quasi-2D geometry.

The different results from these two modeling approaches also
highlight the ability of pulsation-driven pattern formation to be
used as an excellent benchmark for validating implementations
of multiphase flow models that are used in computer simulations
of fluidization. A robust model for the solid phase is required, not
only to represent the granular flow properly in the viscous and plas-
tic regimes, respectively, but also, more importantly, to bridge both
kinetic and frictional contributions over the transition regime.
Combined with the CFD-DEM approach, these results can serve
as a reliable, quantitative reference for future developments of fric-
tional stress models for applications on a macroscopic scale.

Acknowledgements

The authors thank Prof. N.G. Deen and Prof. J.A.M. Kuipers from
Eindhoven University of Technology (TU/e) for providing access to
computational resources used in this work. Discussions with Dr. V.
F. García are gratefully acknowledged. The research leading to
these results has received funding from an EPSRC ‘‘Frontier Engi-
neering” Award (EP/K038656/1) and an EPSRC Doctoral Training
Award (1528604).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.cej.2017.05.152.

References

[1] J.G. Yates, Fundamentals of Fluidized-Bed Chemical Processes: Butterworths
Monographs in Chemical Engineering, Butterworth-Heinemann, Boston, 2013.
[2] L.-S. Fan, C. Zhu, Principles of Gas-Solid Flows, Cambridge University Press,
Cambridge, 2005.

[3] D. Kunii, O. Levenspiel, Fluidization Engineering, Butterworth-Heinemann,
Boston, 2013.

[4] S. Pannala, M. Syamlal, T.J. O’Brien, Computational Gas-Solids Flows and
Reacting Systems: Theory, Methods and Practice, IGI Global, Hershey, 2011.

[5] J. Ruud van Ommen, J. Nijenhuis, M.-O. Coppens, Reshaping the structure of
fluidized beds, CEP (2009) 49–57.

[6] M.-O. Coppens, J. Ruud van Ommen, Structuring chaotic fluidized beds, Chem.
Eng. J. 96 (2003) 117–124.

[7] M.-O. Coppens, M.A. Regelink, C.M. van den Bleek, Pulsation induced transition
from chaos to periodically ordered patterns in fluidised beds, in: Proceedings
of the 4th World Congress on Particle Technology, Sydney, 2002.

[8] I. Julián, J. Herguido, M. Menéndez, CFD model prediction of the two-section
two-zone fluidized bed reactor (TS-TZFBR) hydrodynamics, Chem. Eng. J. 248
(2014) 352–362.

[9] M.R. Rahimi, N. Azizi, S.H. Hosseini, G. Ahmadi, CFD study of hydrodynamics
behavior of a vibrating fluidized bed using kinetic-frictional stress model of
granular flow, Korean J. Chem. Eng. 30 (2013) 761–770.

[10] C. Thornton, F. Yang, J. Seville, A DEM investigation of transitional behaviour in
gas-fluidised beds, Powder Technol. 270 (2015) 128–134.

[11] Y. Tsuji, T. Tanaka, T. Ishida, Lagrangian numerical simulation of plug flow of
cohesionless particles in a horizontal pipe, Powder Technol. 71 (1992) 239–
250.

[12] M. van der Hoef, M. van Sint Annaland, N.G. Deen, J.A.M. Kuipers, Numerical
simulation of dense gas-solid fluidized beds: A multiscale modeling strategy,
Annu. Rev. Fluid Mech. 40 (2008) 47–70.

[13] M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Oxford University
Press, Oxford, 1989.

[14] P.A. Cundall, O.D. Strack, A discrete numerical model for granular assemblies,
Geotechnique 29 (1979) 47–65.

[15] S. Chialvo, J. Sun, S. Sundaresan, Bridging the rheology of granular flows in
three regimes, Phys. Rev. E 85 (2012) 021305.

[16] S. Chialvo, S. Sundaresan, A modified kinetic theory for frictional granular
flows in dense and dilute regimes, Phys. Fluids 25 (2013) 070603.

[17] J. Sun, S. Sundaresan, A constitutive model with microstructure evolution for
flow of rate-independent granular materials, J. Fluid Mech. 682 (2011) 590–
616.

[18] W. Peng, Y. He, T. Wang, Granular temperature with discrete element method
simulation in a bubbling fluidized bed, Adv. Powder Technol. 25 (2014) 896–
903.

[19] G.G. Zhou, Q. Sun, Three-dimensional numerical study on flow regimes of dry
granular flows by DEM, Powder Technol. 239 (2013) 115–127.

[20] N.G. Deen, M. van Sint Annaland, M.A. van der Hoef, J.A.M. Kuipers, Review of
discrete particle modeling of fluidized beds, Chem. Eng. Sci. 62 (2007) 28–44.

[21] G. Bokkers, M. van Sint Annaland, J.A.M. Kuipers, Mixing and segregation in a
bidisperse gas–solid fluidised bed: a numerical and experimental study,
Powder Technol. 140 (2004) 176–186.

[22] M. Goldschmidt, R. Beetstra, J.A.M. Kuipers, Hydrodynamic modelling of dense
gas-fluidised beds: comparison of the kinetic theory of granular flow with 3D
hard-sphere discrete particle simulations, Chem. Eng. Sci. 57 (2002) 2059–
2075.

[23] D.M. Snider, An incompressible three-dimensional multiphase particle-in-cell
model for dense particle flows, J. Comput. Phys. 170 (2001) 523–549.

[24] L. Lu, J. Xu, W. Ge, Y. Yue, X. Liu, J. Li, EMMS-based discrete particle method
(EMMS–DPM) for simulation of gas–solid flows, Chem. Eng. Sci. 120 (2014)
67–87.

[25] M. Sakai, M. Abe, Y. Shigeto, S. Mizutani, H. Takahashi, A. Viré, J.R. Percival, J.
Xiang, C.C. Pain, Verification and validation of a coarse grain model of the DEM
in a bubbling fluidized bed, Chem. Eng. J. 244 (2014) 33–43.

[26] Y. Che, Z. Tian, Z. Liu, R. Zhang, Y. Gao, E. Zou, S. Wang, B. Liu, CFD prediction of
scale-up effect on the hydrodynamic behaviors of a pilot-plant fluidized bed
reactor and preliminary exploration of its application for non-pelletizing
polyethylene process, Powder Technol. 278 (2015) 94–110.

[27] D. Gidaspow, Multiphase Flow and Fluidization: Continuum and Kinetic
Theory Descriptions, Academic, New York, 1994.

[28] A. Passalacqua, L. Marmo, A critical comparison of frictional stress models
applied to the simulation of bubbling fluidized beds, Chem. Eng. Sci. 64 (2009)
2795–2806.

[29] M. Farzaneh, A.-E. Almstedt, F. Johnsson, D. Pallarès, S. Sasic, The crucial role of
frictional stress models for simulation of bubbling fluidized beds, Powder
Technol. 270 (2015) 68–82.

[30] F. Hernández-Jiménez, S. Sánchez-Delgado, A. Gómez-García, A. Acosta-Iborra,
Comparison between two-fluid model simulations and particle image analysis
& velocimetry (PIV) results for a two-dimensional gas–solid fluidized bed,
Chem. Eng. Sci. 66 (2011) 3753–3772.

[31] J.C. Schouten, C.M. van den Bleek, Chaotic hydrodynamics of fluidization:
consequences for scaling and modeling of fluid bed reactors, in: AlChE Symp.
Ser., American Institute of Chemcial Engineers, 1992, p. 70.

[32] R. van de Klundert, Pattern formation in pulsated fludized beds and vertically
vibrated granular layers (MSc Thesis), Chemical Engineering, TU Delft, 2001.

[33] T. Kawaguchi, A. Miyoshi, T. Tanaka, Y. Tsuji, Discrete particle analysis of 2D
pulsating fluidized bed, in: Proceedings of 4th International Conference on
Multiphase FlowNew Orleans, 2001.

[34] X. Wang, M. Rhodes, Pulsed fluidization—a DEM study of a fascinating
phenomenon, Powder Technol. 159 (2005) 142–149.

http://dx.doi.org/10.1016/j.cej.2017.05.152
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0005
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0005
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0005
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0010
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0010
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0010
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0015
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0015
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0015
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0020
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0020
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0020
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0025
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0025
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0030
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0030
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0040
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0040
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0040
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0045
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0045
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0045
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0050
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0050
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0055
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0055
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0055
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0060
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0060
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0060
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0065
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0065
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0065
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0070
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0070
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0075
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0075
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0080
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0080
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0085
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0085
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0085
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0090
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0090
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0090
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0095
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0095
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0100
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0100
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0105
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0105
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0105
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0110
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0110
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0110
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0110
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0115
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0115
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0120
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0120
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0120
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0125
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0125
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0125
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0130
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0130
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0130
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0130
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0135
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0135
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0135
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0140
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0140
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0140
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0145
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0145
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0145
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0150
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0150
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0150
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0150
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0155
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0155
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0155
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0155
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0160
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0160
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0160
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0170
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0170


14 K. Wu et al. / Chemical Engineering Journal 329 (2017) 4–14
[35] K. Wu, L. de Martín, L. Mazzei, M.-O. Coppens, Pattern formation in fluidized
beds as a tool for model validation: A two-fluid model based study, Powder
Technol. 295 (2016) 35–42.

[36] C. Goniva, C. Kloss, N.G. Deen, J.A.M. Kuipers, S. Pirker, Influence of rolling
friction on single spout fluidized bed simulation, Particuol. 10 (2012) 582–591.

[37] O.O. Olaofe, A.V. Patil, N.G. Deen, M.A. van der Hoef, J.A.M. Kuipers, Simulation
of particle mixing and segregation in bidisperse gas fluidized beds, Chem. Eng.
Sci. 108 (2014) 258–269.

[38] T. Li, Y. Zhang, F. Hernández-Jiménez, Investigation of particle–wall interaction
in a pseudo-2D fluidized bed using CFD-DEM simulations, Particuol. 25 (2016)
10–22.

[39] R. Jackson, The dynamics of fluidized particles, Cambridge University Press,
Cambridge, 2000.

[40] D. Gidaspow, R. Bezburuah, J. Ding, in: Proceedings of the 7th Engineering
Foundation Conference on Fluidization, Brisbane, 1991, pp. 75-82.

[41] C. Wen, Y. Yu, Mechanics of fluidization, Chem. Eng. Prog. Symp. Ser. 62 (2013)
100.

[42] S. Ergun, Fluid flow through packed columns, Chem. Eng. Prog. 48 (1952) 89–
94.

[43] S.F. Foerster, M.Y. Louge, H. Chang, K. Allia, Measurements of the collision
properties of small spheres, Phys. Fluids 6 (1994) 1108–1115.

[44] C. Müller, D. Holland, A. Sederman, S. Scott, J. Dennis, L. Gladden, Granular
temperature: comparison of magnetic resonance measurements with discrete
element model simulations, Powder Technol. 184 (2008) 241–253.

[45] T. Mikami, H. Kamiya, M. Horio, Numerical simulation of cohesive powder
behavior in a fluidized bed, Chem. Eng. Sci. 53 (1998) 1927–1940.

[46] Y. Tsuji, T. Kawaguchi, T. Tanaka, Discrete particle simulation of two-
dimensional fluidized bed, Powder Technol. 77 (1993) 79–87.
[47] J.H. Ferziger, M. Peric, Computational Methods for Fluid Dynamics, Springer,
Berlin, 2012.

[48] M. van der Hoef, M. Ye, M. van Sint Annaland, A. Andrews, S. Sundaresan, J.A.M.
Kuipers, Multiscale modeling of gas-fluidized beds, Adv. Chem. Eng. 31 (2006)
65–149.

[49] L.E. Silbert, D. Ertas, G.S. Grest, T.C. Halsey, D. Levine, S.J. Plimpton, Granular
flow down an inclined plane: Bagnold scaling and rheology, Phys. Rev. E 64
(2001) 051302.

[50] R. Courant, K. Friedrichs, H. Lewy, On the partial difference equations of
mathematical physics, IBM J. 11 (1967) 215–234.

[51] L. Yang, J.T. Padding, J.A.M. Kuipers, Modification of kinetic theory of granular
flow for frictional spheres, part II: Model validation, Chem. Eng. Sci. 152 (2016)
783–794.

[52] S. Pannala, Computational Gas-Solids Flows and Reacting Systems: Theory,
Methods and Practice, IGI Global, Pennsylvania, 2010.

[53] S. Sundaresan, Instabilities in fluidized beds, Ann. Rev. Fluid Mech. 35 (2003)
63–88.

[54] B. van Wachem, J.C. Schouten, C.M. van den Bleek, R. Krishna, J. Sinclair,
Comparative analysis of CFD models of dense gas–solid systems, AlChE J. 47
(2001) 1035–1051.

[55] L. Yang, J.T. Padding, J.A.M. Kuipers, Modification of kinetic theory of granular
flow for frictional spheres, Part I: Two-fluid model derivation and numerical
implementation, Chem. Eng. Sci. 152 (2016) 767–782.

[56] J.T. Jenkins, C. Zhang, Kinetic theory for identical, frictional, nearly elastic
spheres, Phys. Fluids 14 (2002) 1228–1235.

[57] P. Jop, Y. Forterre, O. Pouliquen, A constitutive law for dense granular flows,
Nature 441 (2006) 727–730.

http://refhub.elsevier.com/S1385-8947(17)30913-0/h0175
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0175
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0175
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0180
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0180
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0185
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0185
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0185
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0190
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0190
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0190
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0195
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0195
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0195
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0205
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0205
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0210
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0210
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0215
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0215
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0220
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0220
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0220
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0225
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0225
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0230
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0230
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0235
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0235
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0235
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0240
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0240
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0240
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0245
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0245
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0245
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0250
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0250
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0255
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0255
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0255
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0260
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0260
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0260
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0265
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0265
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0270
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0270
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0270
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0275
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0275
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0275
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0280
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0280
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0285
http://refhub.elsevier.com/S1385-8947(17)30913-0/h0285

	Pattern formation in pulsed gas-solid fluidized beds – The role of granular solid mechanics
	1 Introduction
	2 Model settings
	2.1 Governing equations
	2.2 Interphase force
	2.3 Experimental setup
	2.4 Computational setup and numerical implementation
	2.5 Analysis of the bubble properties

	3 Results and discussion
	3.1 Experimental and simulated pattern formation
	3.2 Description of the bed dynamics during a patterned state
	3.3 Dynamics of the gas phase
	3.4 Dynamics of the particulate phase

	4 Discussion
	5 Conclusions
	Acknowledgements
	Appendix A Supplementary data
	References


