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Abstract: 

Juvenile dermatomyositis (JDM) is the most common form of the juvenile 
idiopathic inflammatory myopathies (IIM) characterised by muscle and skin 
inflammation, leading to symmetric proximal muscle weakness and 
cutaneous symptoms. It has a fluctuating course and varying prognosis. In 
a Bayesian framework, we develop a joint model for four longitudinal 

outcomes, which accounts for within individual variability as well as inter-
individual variability. Correlations among the outcome variables are 
introduced through a subject-specific random effect. Moreover, we exploit 
an approach similar to a hurdle model to account for excess of a specific 
outcome in the response. Clinical markers and symptoms are used as 
covariates in a regression set-up. Data from an ongoing observational 
cohort study are available, providing information on 340 subjects, who 
contributed 2725 clinical visits. The model shows good performance and 
yields efficient estimations of model parameters, as well as accurate 
predictions of the disease activity parameters, corresponding well to 
observed clinical patterns over time. The posterior distribution of the by-
subject random intercepts shows a substantial correlation between two of 

the outcome variables. A subset of clinical markers and symptoms are 
identified as associated with disease activity. These findings have the 
potential to influence clinical practice as they can be used to stratify 
patients according to their prognosis and guide treatment decisions, as well 
as contribute to on-going research about the most relevant outcome 
markers for patients affected by JDM. 
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Abstract
Juvenile dermatomyositis (JDM) is the most common form of the juvenile idiopathic inflammatory myopathies (IIM)
characterised by muscle and skin inflammation, leading to symmetric proximal muscle weakness and cutaneous
symptoms. It has a fluctuating course and varying prognosis. In a Bayesian framework, we develop a joint model
for four longitudinal outcomes, which accounts for within individual variability as well as inter-individual variability.
Correlations among the outcome variables are introduced through a subject-specific random effect. Moreover, we
exploit an approach similar to a hurdle model to account for excess of a specific outcome in the response. Clinical
markers and symptoms are used as covariates in a regression set-up. Data from an ongoing observational cohort
study are available, providing information on 340 subjects, who contributed 2725 clinical visits. The model shows good
performance and yields efficient estimations of model parameters, as well as accurate predictions of the disease activity
parameters, corresponding well to observed clinical patterns over time. The posterior distribution of the by-subject
random intercepts shows a substantial correlation between two of the outcome variables. A subset of clinical markers
and symptoms are identified as associated with disease activity. These findings have the potential to influence clinical
practice as they can be used to stratify patients according to their prognosis and guide treatment decisions, as well as
contribute to on-going research about the most relevant outcome markers for patients affected by JDM.

Keywords
Longitudinal Data, Markov chain Monte Carlo, Stochastic Search Variable Selection, mixed model, juvenile
dermatomyositis

Introduction

The juvenile idiopathic inflammatory myopathies (IIM) are
a group of heterogeneous chronic diseases whose prime
manifestation is skeletal muscle inflammation. Juvenile
dermatomyositis (JDM) is the most common of the
juvenile IIM, with an incidence of about 1.9-4.1 per
million children per year1. Besides the skeletal muscle
inflammation, JDM is characterised by skin inflammation
and manifests itself clinically as symmetric proximal
muscle weakness and cutaneous symptoms such as papules
over the knuckles (Gottron’s papules), skin rashes, nail
fold erythema, ulceration and calcinosis, (deposition of
subcutaneous or intramuscular calcium). JDM is a systemic
disease, potentially involving other organ systems as well. If
not adequately treated, the inflammation may cause muscular
damage, leading to permanent muscle weakness and life-
long disabilities, and skin atrophy2;3. The prognosis of JDM
is variable with about 24-40% of patients experiencing a
monocyclic course, and the majority of patients (50-60%)
showing a chronic disease pattern. The mortality rate of JDM
is about 2-3%3.

This clinical picture highlights that JDM is a disease with
a significant medical, social and economic burden1;4. Some
studies suggest that early aggressive treatment improves
the outcome for children with JDM, thereby alleviating
this burden5. On the other hand, the treatment itself is
associated with serious side effects, such as growth failure,
pubertal delay and osteoporosis. As a consequence, it is good

practice to administer as few drugs as possible, especially
in paediatrics, in order to limit the negative effects on the
normal physiology of the developing child. As such, the
clinical challenge is to stratify patients according to their
prognosis and adapt their treatment plans in concordance
with their expected prognosis.

To answer the clinical question of interest, we need to
identify clinical markers associated with disease activity
and capable of predicting its evolution. Insight has been
gained by the study of the various antibody patterns
in the juvenile IIM2;3;6 mainly to distinguish between
JDM and the other subtypes of the juvenile IIM. Two
previous studies have evaluated the potential of clinical
variables to predict disease activity1;7 but these studies
have the limitation of measuring disease activity as
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a binary outcome (active vs. non-active). Moreover,
whereas Stringer et al.7 analyse the time to remission,
Ravelli et al.1 evaluate disease activity cross-sectionally
at approximately 7.7 years after disease onset.

In contrast, the aim of the current study is to
identify variables associated with disease activity of JDM
by modelling clinically relevant, continuous response
variables over time using clinical markers and symptoms
of the disease as covariates. Such a model could be used to
inform physicians about features associated with disease
activity, as well as guide clinicians in the management of
the disease.

Data

Data collection
Data are available from a national longitudinal cohort study,
in which children with definite or probable JDM according to
Bohan and Peter criteria8;9 are enrolled across the UK. The
study has been described previously4. Enrolment started in
2000 and is ongoing. Patients are enrolled at diagnosis, or as
soon as they come to the attention of one of the participating
centres, and are followed up every 3 months for 2 years
and subsequently at least annually. Data collected concern
disease manifestations, such as muscular involvement, skin
disease and other organ involvement. Routine laboratory
blood tests are also performed.

At each visit four outcome parameters10 are measured as
proxy of disease activity:

• Serum creatine kinase level (CK), a muscle enzyme
which is released into the blood stream in increased
amounts in case of muscular inflammation. The serum
level of this enzyme is usually elevated in active JDM,
but tends to be relatively low3. Its theoretical range is
in (0,∞) and values exceeding 150 U/L are considered
pathological10. Many laboratories report a censored
value of <20 U/L if the level is below the laboratory’s
detection limit.

• Childhood myositis assessment scale (CMAS) which
assesses muscular strength and endurance11. The
CMAS consists of a series of little tasks, which the
child is asked to perform, such as raising his/her head
for at least 2 minutes while laying supine, raising to
his/her feet from a sitting position and performing sit
ups, with and without counterbalance. A predefined
number of points is assigned based on the performance
of the child and the total CMAS score is the sum over
all tasks, ranging from 0 to 53, with a lower score
indicating more active disease. Scores of at least 48
points are considered normal10.

• Manual muscle testing of 8 muscle groups (MMT8),
which consists in the assessment of muscle strength
of 8 predefined muscle groups. Each muscle group is
then assigned by the examiner a score ranging from 0
(equal to a complete loss of muscle contraction) to 10
(equal to full muscle strength). The total MMT8 is the
sum over all muscle groups, thus ranging from 0 to 80,
with a lower score indicating higher disease activity. A
value of at least 78 points is considered normal10.

• Physician’s global assessment of disease activity
(PGA), which is the physician’s rating of disease
activity, taking into account muscular disease, skin
involvement and all other organ involvement. The
PGA ranges from 0.0, indicating no disease activity,
to 10.0, indicating maximal disease activity. The
PGA should be at most 0.2 points to be considered
normal10.

Ethical approval of the study was obtained and all
participants and their parents (as appropriate) provided
informed consent. The study was conducted according to
good clinical practice guidelines and the declaration of
Helsinki.

Data cleaning
At the time of analysis, 4122 visits of 469 patients are
available. Patients not fulfilling the inclusion criteria of
having probable or definite JDM according to Bohan
and Peter criteria are excluded, leaving 413 patients
contributing 3881 visits. Missing data are imputed in
the Bayesian model, except for missing data on history
variables, because these are based on patient’s recollection.
This leads to the exclusion of 73 patients. Therefore, the
final model includes 340 patients, contributing 2725 visits.
Baseline characteristics of included and excluded patients
are compared in Table 1. As expected, due to the exclusion
of visits with missing data, patients having contributed
fewer visits are more likely to be excluded altogether
from the study. This, in turn, is more likely to occur
in patients enrolled later in the course of their disease,
therefore presenting less disease activity at enrolment
(Table 1).

Table 1. Baseline variables. Values are the median, [first
quartile, third quartile], except where indicated otherwise.
Abbreviations: CK, creatine kinase; cm, centimeter; CMAS,
childhood myositis assessment scale; MMT8, manual muscle
testing of 8 muscle groups; PGA, physician’s global assessment
of disease activity; U/L, units per litre; y, year.

Parameter Included Excluded

N = 340 N = 73

Female, n (%) 236 (69.4) 54 (74.0)
Age at diagnosis, y 7.4 [4.5, 10.5] 7.3 [4.1, 11.1]
Disease duration at diagnosis, y 0.3 [0.2, 0.6] 0.3 [0.2, 1.0]
Time after diagnosis at enrolment, y 0.2 [0.1, 1.1] 2.3 [0.4, 5.4]
Duration follow up, y 4.1 [1.6, 7.1] 1.2 [0.1, 2.6]

Disease activity at enrolment:
CK, U/L 103 [64, 440] 98 [45, 256]
CMAS, points 41 [21, 50] 46 [37, 52]
MMT8, points 65 [45, 80] 80 [64, 80]
PGA, cm 3 [1.3, 6.0] 2.3 [0.5, 4.0]

Of the 340 included subjects, five fully observed
participants (i.e. no missing values in the dependent and
independent variables for all visits) are randomly selected
for the out of sample predictions and are therefore excluded
from the training set.

The original dataset contains 83 covariates that can be
used as predictor variables, including the time elapsed since
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diagnosis at the visit, disease signs and symptoms and
treatment variables. The number of covariates is reduced
by excluding those hardly containing any information.
To this end, a pre-selection is made by fitting linear
mixed effects models, using the package lme412 available
in the R software13. More in details, for each covariate
we fit four independent linear mixed models, one for
each outcome, including also time from diagnosis and a
random intercept for the time from diagnosis. We obtain
a p-value for the covariate by employing a Wald t test and
retain the smallest one among the four models. We then
rank the covariates according to their most significant
p-value and in such a way we select the 50% most
significant predictors. This procedure leaves 47 covariates
in the model. All treatment variables and the time elapsed
since diagnosis are included in the model, regardless of their
performance in the linear mixed effects model, because of
clinical interest.

Model

Model specification
As discussed previously, the data consist of N = 340
patients, each of them contributing multiple visits. For each
patient i at visit j, a vector of four outcome variables
is measured, Yij = (Y (CK)

ij , Y (CMAS)
ij , Y (MMT8)

ij , Y (PGA)
ij ),

i = 1, 2, . . . , N, j = 1, 2, . . . ,mi, where mi is the number
of observations for the i-th patient. Additionally, for each
subject i at visit j, a vector of covariates Xij is available
and tij denotes the time elapsed since diagnosis. To account
for the longitudinal nature of the study and for dependency
between visits for the same patients, we introduce a subject-
specific random effect for each of the response variables. We
then link the response variables by assuming a joint model
for the random effects.

The continuous outcome variables are transformed to
ensure normality: we take a log-transformation for the CK
levels, whereas we choose a square-root transformation for
CMAS, MMT8 and PGA, as it is a well-known variance
stabilising transformation that can deal with the presence
of zeros in the data. For ease of notation, in what follows
log(CK),

√
CMAS,

√
MMT8 and

√
PGA are referred to as

CK, CMAS, MMT8 and PGA respectively. The empirical
distribution of the transformed outcome measures is shown
in Figure 1. These variables are modelled using a Bayesian
approach.

Let us first consider the outcome variable CK, which we
assume normally distributed:

Y
(CK)
ij | µ(CK)

ij , σ2
(CK) ∼ N(µ

(CK)
ij , σ2

(CK)) ,

where

µ
(CK)
ij = α(CK) + η

(CK)
i +

(γ(CK) + θ
(CK)
i )× tij +Xijβ

(CK)

Here, α(CK) is a mean effect common to all subjects, β(CK)

is the vector of coefficients for the covariates Xij , γ(CK) is
the common effect for the time elapsed since diagnosis tij ,
η
(CK)
i is a subject-specific random intercept, while θ(CK)

i is a

log(CK) sqrt(CMAS)

sqrt(MMT8) sqrt(PGA)
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Figure 1. Empirical distribution of the four transformed
outcomes.

patient-specific random coefficient for the time elapsed since
diagnosis.

As mentioned above, some of the CK values (n =
14, 0.5% of the observations) are below the laboratory’s
detection level and reported as <20 or <21 (depending on
the laboratory). These instances are modelled as truncated
values, by specifying this observation as right-truncated at
20 or 21.

Most patients reach disease remission after a certain
period of time and a large number of non-pathological values
for CMAS, MMT8 and PGA are observed. From Figure 1
it is clear that these variables are not normally distributed,
but they show an excess of non-pathological values. For
these clinical outcomes we assume a mixture of a point
mass at the most frequent value (

√
53 for CMAS,

√
80 for

MMT8 and 0 for PGA) and a truncated Normal distribution
for the other observations. This strategy is similar to
the hurdle model14 as we recognise the possibility that
the mechanism determining non-pathological values may
differ from those that influence the distribution of
pathological observations. We specify a probit regression
to link the probability of observing a non-pathological value
for subject i at visit j to the time elapsed since diagnosis.
Moreover, we assume a linear regression model for the
continuous part of the mixture.

More in details, let k ∈ {CMAS, MMT8, PGA} denote
one of the clinical outcomes of interest. Then,

Y
(k)
ij | w(k)

ij , µ
(k)
ij , σ

2
(k) ∼ w

(k)
ij δY (k)

⋆
+ (1− w

(k)
ij )× TN(µ

(k)
ij , σ

2
(k)) ,

(1)
where δ is the Kronecker delta and the non-pathological

values are:

Y
(k)
⋆ =


√
53 if k = CMAS,√
80 if k = MMT8,
0 if k = PGA.

Here TN(µ, σ2) denotes a truncated Normal distribu-
tion with mean µ and variance σ2. The truncation limit
changes depending on the outcome variable, but the idea
is to truncate the normal distribution according to the
range of possible values the response can assume (since
they represent clinical scores) and the non-pathological
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value. As such, on the transformed scale, the distribution
of CMAS is truncated on the interval (0,

√
53), the distri-

bution of MMT8 on (0,
√
80) and the distribution of PGA

on the interval (0,
√
10).

We assume a probit regression for the weights of the
mixture:

w
(k)
ij = Φ(z

(k)
ij ) ,

where Φ is the cumulative distribution function of the
standard Normal distribution and

z
(k)
ij = α(k) + η

(k)
i + γ(k) × tij (2)

As in the case of creatine kinase, α(k) and γ(k) are the
common intercept and regression coefficient, respectively,
common to all subjects, while ηi is the patient specific
random effect. We complete the model by specifying a
linear regression model for the continuous component of the
mixture (see equation 1):

µ
(k)
ij = ψ(k) + λ(k) × tij +Xijβ

(k),

Note that we do not include an individual random effect
for µ(k)

ij .
The four disease outcomes are measured in the same

patient at the same time and capture different aspects of
the same biological entity, i.e. disease activity. As such,
they are correlated, especially CMAS and MMT8. Therefore
it is important to account for these correlations in the
model. Following Li et al.15, we specify a multivariate
Normal distribution on subject-specific random effects to
take the inherent correlation of the longitudinal outcomes
into account. This approach leads to a more efficient
estimation of the model parameters. Hence, the four by-
subject random intercepts for the outcome variables are
modelled as follows:

ηi =


η
(CK)
i

η
(CMAS)
i

η
(MMT8)
i

η
(PGA)
i

 ∼ N(0,Ω) (3)

where 0 is a four-dimensional vector of zeros and Ω
denotes the precision matrix.

Prior Specification
The model is completed by specifying uninformative prior
distributions on the remaining parameters. We use indepen-
dent Normal(0, 1000) priors for the intercepts α(k) and ψ(k),
as well as for the regression coefficients γ(k) and λ(k), with
k ∈ {CK, CMAS, MMT8, PGA}. We place a Normal(0, σ2

θ)
prior on the patient-specific random slope θCK

i for the CK
model, as well as a Normal(0, σ2

β) prior on the regres-
sion coefficients β(k), with common variance σ2

β shared by
all β(k). We elicit independent Gamma distributions with
hyper-parameters (0.001, 0.001) for the observation preci-
sion τ (k) = 1

σ2
(k)

, k ∈ {CK, CMAS, MMT8, PGA}, τθ = 1
σ2
θ

and τβ = 1
σ2
β

.
We assume a Multivariate Normal prior as random

effects distribution. We choose for computational reasons

a conjugate Wishart prior for the precision matrix Ω in
equation (3) with degrees of freedom ν = 6 and centering
matrix S = I × ν × 10, where I is the identity matrix of
appropriate dimension. As such the prior mean is given by
E(Ω) = 0.1I 15.

Bayesian variable selection
To identify the most influential variables on disease
progression and to obtain a sparser and more interpretable
model, we perform Bayesian variable selection of the
47 covariates entered into the model (except for time
from diagnosis), following the approach proposed by Kuo
& Mallick16. See O’Hara et al.17 for a review of Bayesian
variable selection methods.

In short, for each covariate we introduce an indicator
variable δp, p = 1, 2, . . . , P taking values in {0, 1}. Here
P denotes the total number of available covariates. When
δp = 1, we include the p-th predictor in the regression model.
When δp = 0, we omit the p-th predictor. We then add the
indicator functions to the regression term by defining new
coefficients

β̃p = δpβp ,

We complete the model by eliciting independent prior
distributions on the δp:

δp ∼ Bernoulli(πp) , p = 1, 2, . . . , P

πp ∼ Beta(0.1, 0.1)

The Beta hyperprior induces sparsity as it places most
of its mass on 0 or 1. The same indicator variable is used
for all instances of each covariate in the model, so that the
covariate would be included or not simultaneously in the
models describing the four longitudinal outcomes, i.e. the
mean of the CK model, and the linear parts of the CMAS,
MMT8 and PGA models. The prior on the coefficients βp
is still a Normal distribution with mean 0 and common
precision τβ , to which we assign a Gamma distribution with
parameters (0.001, 0.001), as described previously.

Results
Posterior inference is performed in the R software version
3.2.213 and JAGS, using the package rjags18 as interface.
We run the chain for 30000 iterations with a burn-in of 5000
and 2000 adaptation iterations. We thin the chain every 10
iterations.

The goodness of fit of the model is assessed visually in
six randomly selected patients, each having contributed at
least 10 visits. Their observed values of CK, CMAS, MMT8
and PGA are plotted over time, together with the model
fit and 95% credible intervals (CI). The plot for PGA is
shown in Figure 2, plots for CK, CMAS and MMT8 were
similar. The plots show a good fit of the model to the data.
In particular, fluctuating patterns over time are predicted
well by the model. Some observed values in Figure 2 are
outside the posterior 95% CI, however, this happens only
for 1.8% of the observations.

Moreover, to better understand the predictive ability of
the model, we consider the posterior predictive probability
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Figure 2. Model fit for PGA. Observed values of sqrt(PGA)
over time of six randomly selected subjects are represented by
dark grey dots, the fitted trajectory by the dashed line and the
95% credible interval around the fit is given by the shaded area.

of an observation falling beyond the cut off point for
pathological values for each of the four longitudinal
outcomes, as defined in literature (i.e. >150 for
CK, <48 for CMAS, <78 for MMT8 and >0.2 for
PGA; note that these cut off points are defined on
the original measurement scale10). These predictions
concern pathological values and are, therefore, relevant
from a clinical point of view.

In order to assess the predictive performance of the
proposed model we employ the Brier statistic19. This
statistic assesses the quality of predictions when the
response variable is binary:

Brier =
1

N

N∑
i=1

(fi − oi)
2,

where oi is a binary observation, fi is its predicted
probability and N is the number of observations in the
sample.

In our case the response variable is continuous, so in
order to apply this statistic we discretize the response
variable. We are interested in predicting whether each
clinical outcome is above or below the above-mentioned
thresholds. Then, the predicted fij is the predictive
probability of obtaining values larger or smaller than the
specified threshold for each patient i in the sample and
visit j. Hence, the Brier statistic becomes:

Brier =
1∑N

i=1mi

N∑
i=1

mi∑
j=1

(
fij − Y d

ij

)2
where Y d

ij is the i-th response discretized with respect
to the critical threshold (equal to 1 if Yij assumes
pathological values and 0 otherwise), N is the number
of patients and mi is the number of observations for
individual i. The sum is taken over all the patients in
the sample and the observation times. The Brier score
assumes values between 0 and 1, with lower scores
indicating a better performance20. We obtain Brier
scores equal to 0.12, 0.12, 0.08 and 0.05 for CK, CMAS,
MMT8 and PGA respectively. Following Steyerberg et

sqrt(MMT8) sqrt(PGA)

log(CK) sqrt(CMAS)

7.0 7.5 8.0 8.5 9.0 0 1 2

2 4 6 5 6 7

Value

Legend
Observed

Predicted

Figure 3. Out-of-sample predictions. Observed values are
represented by black dots, while predicted values with
corresponding 95% credible intervals are represented by grey
dots with error bars for all four outcomes in 7 visits of 5
randomly selected patients. The vertical line indicates the
pathological value as defined in literature.

al.20, we calculate rescaled Brier scores, which are
normalised with respect to the maximum obtainable
Brier score for a non-informative model based on the
observed frequency of the outcomes. The scaled Brier
score is very similar to Pearson’s R2 statistic (high values
indicate a good predictive performance). In our analysis
we obtain 49%, 42%, 63% and 80% for CK, CMAS,
MMT8 and PGA, respectively, indicating moderate to
good performance of the model.

We also perform out of sample predictions on
the four outcomes for five randomly selected, fully
observed patients collectively contributing 7 observations
(Figure 3). Once again, the results show good accuracy,
with the model’s predictions being close to the observed
values and almost always on the same side of the cut-
off point discriminating pathological values from non-
pathological values, as established in the literature (150
U/L for CK, 48 points for CMAS, 78 points for MMT8
and 0.2 points for PGA)10. In only 2 cases involving
CMAS the observed value is below the cut-off point,
indicating a pathological value, whereas the predicted
value is above. However, on a closer inspection we notice
that in both these cases the observed values are close to
the cut-off point (46 and 47 respectively). The relatively
wide credible intervals reflect the uncertainty in the
predictions, the estimation of the parameters, as well as
in the imputation of missing values.

The posterior estimates of the regression coefficients of
the time elapsed since diagnosis and the 46 covariates are
reported in Figure 4. The variability associated with the
estimates is reasonable as shown by the credible intervals.
As expected, CMAS, MMT8 and PGA tend to normalise
over time, whereas the CK level does not significantly
change from the time from diagnosis.

Various clinical signs and symptoms are associated with
the four outcomes, most notably a range of manifestations
of skin disease, such as periorbital rash, rash on the trunk,
rash over large joints, nail fold changes and facial swelling.
These parameters are not only associated with PGA, but
also with the strictly muscular outcomes CK and CMAS,
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Figure 4. Medians (dots) and 95% credible intervals (horizontal
lines) for the fixed effects for the time elapsed since diagnosis
and all the covariates. We plot the results for each of the four
outcomes.

indicating that patients who are doing worse with respect
to muscular disease activity, tend to have higher cutaneous
disease activity as well. As expected, patients having myalgia
(muscle pain) or dysphonia (altered voice pitch due to
inflammation of the muscles of the vocal cords) have much
worse disease activity. Of signs and symptoms present at
diagnosis, only arthritis is associated with improved disease
activity with regard to the CMAS and MMT8 at the follow up
visits, probably reflecting a subset of patients with an overlap
syndrome between JDM and juvenile idiopathic arthritis
(JIA).

The methodology developed by Li et al.15 for modelling
multiple correlated outcomes is adopted, because of the
prior belief that the four outcomes for JDM are correlated.
The posterior distribution of the correlation between the by-
subject random intercepts for the four outcomes supports this
prior belief. The estimates are shown in Table 2, evidencing
a substantial correlation between η(CMAS)

i and η(MMT8)
i (0.54,

95% CI 0.42-0.65), highlighting the appropriateness of the
adopted methodology.

Table 2. Estimated correlations with 95% credible intervals of
subject random intercepts for the four outcomes CK, CMAS,
MMT8 and PGA. Abbreviations: CI, credible interval; CK,
creatine kinase; CMAS, childhood myositis assesment scale;
MMT8, manual muscle testing of 8 muscle groups; PGA,
physician’s global assessment.

Comparison ρ̂ 95% CI
CK vs. CMAS 0.07 (-0.07, 0.23)
CK vs. MMT8 -0.001 (-0.16, 0.15)
CK vs. PGA 0.0007 (-0.15, 0.16)
CMAS vs. MMT8 0.54 (0.42, 0.65)
CMAS vs. PGA 0.17 (0.01, 0.32)
MMT8 vs. PGA 0.23 (0.08, 0.38)

In Appendix A we present four extensions of
the proposed modelling strategy and compare their
performance to the one of the model presented in the
previous Section. Appendix B contains the JAGS code
used to fit the original model.

Discussion
The aim of this work is to jointly model four correlated
longitudinal outcomes that measure disease activity
in JDM, including clinical markers and symptoms as
covariates. To the best of our knowledge, this is the
first study to model disease activity in JDM, taking
account of (i) longitudinal disease activity; (ii) continuous
outcome measures; (ii) four different response variables,
measured simultaneously, accounting for correlations
among them; and (iv) the particular characteristics of the
distribution of the outcome variables due to the fact that
many patients attain disease remission at a certain time
point.

To achieve this, we propose a statistical approach based
on the work of Li et al.15 and specify a joint random
effects distribution for the four outcomes (see equation (3)).
Moreover, since most enrolled patients present disease
remission at a certain point in time, normal (i.e. non-
pathological) values are observed for CMAS, MMT8 and
PGA for a large number of follow up visits. Therefore we
observe an excess of non-pathological values in the empirical
distribution of these variables. To account for this peak in
the empirical distribution, we adopt an approach similar to a
hurdle model for CMAS, MMT8 and PGA14.

Our results show that the proposed model leads to accurate
prediction of the outcome variables, corresponding well
to observed patterns in the data over time. Moreover,
even though the credible intervals of the predictions are
often large, the variability associated with the estimates
for the regression coefficients is reasonable, as shown
by relatively narrow credible intervals. Indeed, Li et
al.15 demonstrated that their methodology leads to a more
efficient estimation of the model parameters compared
to a strategy that considers each outcome individually.
Moreover the posterior distribution of Ω shows evidence
of correlation between the by-subject random intercepts,
especially between those for CMAS and MMT8 (ρ̂ = 0.54,
95% CI 0.42-0.65, Table 2), indicating that those subjects
with a higher CMAS tend to have a higher MMT8 as well.
This corresponds to existing clinical knowledge.

Our analysis shows that disease activity tends to decrease
over time, especially with respect to CMAS, MMT8
and PGA, whereas CK levels in general do not change
significantly over time (the change in CK level is estimated
to be e0.031 = 1.03 U/L per year follow up; Figure 4). This
is consistent with the clinically observed fact that CK levels
tend to be relatively low in patients with JDM3. In the
described cohort, the median CK level at baseline, shortly
after diagnosis, is 103 U/L (Table 1), which is considered
a normal value10. Nonetheless, patients with myalgia,
dysphonia or haematuria, all signs of more severe (systemic)
disease, present more elevated CK levels (Figure 4).

Furthermore, we find that different cutaneous manifesta-
tions of the disease, most notably periorbital rash, rash on
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the trunk, rash over large joints, nail fold changes and facial
swelling, are associated with disease activity, especially with
PGA, which is the only clinical response taking cutaneous
disease activity into account directly. However, some of these
skin manifestations, such as periorbital rash and nail fold
changes, are associated with the strictly muscular disease
activity responses as well. These findings are in line with
previous studies, even though based on a different methodol-
ogy1;7.

While Ravelli et al.1 found associations between disease
activity and sex, age at onset and dysphonia/dysphagy at
onset, this study does not replicate their results (although
we find an association between dysphonia at the visit
and all four outcome variables). These differences may
be explained by differences in ethnic composition of the
samples (a mix of European and Latin-American patients for
Ravelli et al.1 while this study recruits only UK patients)
and methodology. Specifically, Ravelli et al.1 analysed
each outcome individually using logistic regression at a
median of 7.7 years after disease onset, therefore discretizing
the response and not accounting for the development
over time, while we propose joint modelling of the
longitudinal outcome on their original scale. Furthermore,
this analysis includes time-varying clinical markers and
symptoms determined at each study visit, whereas Ravelli
et al.1 mainly considered baseline variables. It can be
hypothesised that the association between current signs
and symptoms and disease activity parameters overwhelms
the associations between baseline parameters and disease
activity at the study visits. Indeed, most baseline variables
are not shown to be influential when we perform Bayesian
variable selection (Figure 4). This is probably due to the fact
that we integrate in the model information from different
sources and across time, allowing us to better explain
variability in the responses.

Since we did not impute history variables, we have
excluded visits with missing values for these variables.
Owing to this procedure, 73 patients are excluded
altogether from the study. From a probabilistic point
of view, patients contributing less visits are less likely
to have any visit with completely observed history
variables. This, in turn, is more likely to happen in
patients who are enrolled in the study not immediately
at the time of diagnosis, but later during their course of
disease. Consequently, they have lower disease activity
at enrolment. These observations explain the differences
between included and excluded patients (Table 1). These
patients represent a biased subset of the study, often
contributing just a few visits, and we believe their
exclusion is not problematic. Missing values in non-
history variables are imputed in the Bayesian model, by
assuming missingness at random and as a result we are
able to retain a large number of patients and visits in the
model.

In conclusion, the proposed methodology based on
joint modelling of four correlated longitudinal measures
of disease activity in JDM and exploiting a hurdle
model approach, leads to a well-fitting model able
to explain observed patterns over time, resulting in
clinically meaningful inferences. Various clinical markers
and symptoms of JDM are shown to be associated with

disease activity. The clinical implications of these findings
will be discussed in a clinical paper.

Appendix A: Additional models

We fit four additional models to the data and their
performance is assessed and compared to that of the original
model using the deviance information criterion (DIC)21.
Results are reported in Table 3. Note that the original model
makes use of the JAGS dinterval() distribution to deal
with censored CK values, which has to be removed in order
to calculate the DIC. Posterior inference is performed in the
R software13 and JAGS, using the package rjags18. In
order to calculate DICs, two chains are required. Each chain
is run for 15000 iterations with a burn-in of 5000 and 2000
adaptation iterations. As before, we thin the chain every 10
iterations.

The DIC of the model presented in the paper is 4.1× 106

(Table 3).

Table 3. Deviance information criterion (DIC) for four
extensions of the model. TVE : model with time dependent error
terms. CI: model with imputation based on time from diagnosis
and sex. OM: original model. CW : model that specifies a
regression term for the weights of hurdle models for CMAS,
MMT8 and PGA. RIS: model that includes a random intercept
and slope for the coefficient of time from diagnosis for the mean
and the weights of all four response variables.

Model Mean deviance Penalty DIC
TVE 2.1× 104 4.0× 106 4.0× 106

CI 2.0× 104 4.0× 106 4.0× 106

OM 2.2× 104 4.0× 106 4.1× 106

CW 2.2× 104 7.2× 106 7.2× 106

RIS 2.2× 104 13.5× 106 13.5× 106

The first additional model we consider contains a time-
dependent error term for all four outcomes in the model.
Thus, instead of eliciting independent Gamma distributions
with hyper-parameters (0.001, 0.001) for the observation
precision τ (k) = 1

σ2
(k)

, k ∈ {CK, CMAS, MMT8, PGA},

σ2
(k) is assumed to follow:

log(σ2
(k),ij) = α(k)

σ + β(k)
σ × tij

where tij is the time elapsed from diagnosis for individual
i at visit j. Independent Normal(0, 1000) priors are
specified for the coefficients α(k)

σ and β(k)
σ . The DIC of this

model is 4.0× 106 (Table 3). Even though this is slightly
lower than the DIC of the original model, we judge this
improvement too little to justify the increased complexity of
the model with time-dependent error terms. Moreover, visual
inspection of the out-of-sample predictions reveal that they
do not improve in comparison with the original model (same
accuracy and precision).

We also consider a model in which missing values are
imputed conditionally on the sex of the patient and the time
elapsed since diagnosis. This model, too, yields a slightly
improvement in DIC (4.0× 106, Table 3), but once again the
reduction in DIC is judged too small to justify the increased
complexity.
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Furthermore, we investigate the effect of including
covariate information in the model for the weights w(k)

ij , k ∈
{CMAS, MMT8, PGA}. In this case, equation 2 becomes:

z
(k)
ij = α(k) + η

(k)
i + γ(k) × tij +Xijβ

(k)
w ,

where we added the term Xijβ
(k)
w . The β(k)

w are subject to
the same Bayesian variable selection procedure as described
for the original model. Thus, we define new coefficients
β̃p = δpβp and specify independent Normal(0, 1

τβ
) priors for

βp. Here, δp and τβ are defined as previously. The same δp
is used for all instances of the covariate in the model, i.e. the
linear part of CK and the linear parts and weights of CMAS,
MMT8 and PGA. The DIC of this model is 7.2× 106, which
is higher than the original model (Table 3).

Finally, we extend the original model by introducing
random intercepts and random slopes for the effect of time
since diagnosis in all components of the model, i.e. the linear
term of the CK response as well as the linear terms and
weights of CMAS, MMT8 and PGA models. Due to the
significantly larger number of parameters, the DIC is much
higher, 13.5× 106 (Table 3).

Appendix B: JAGS code
This appendix includes the JAGS code of the model
presented in this paper. For the sake of brevity, imputations
are removed from the code presented here.

data {

mu.ranint[1] <- 0
mu.ranint[2] <- 0
mu.ranint[3] <- 0
mu.ranint[4] <- 0

}

model {

# Imputations omitted

# Random intercepts and random slope
# for time from diagnosis
for (j in 1:J) {

ranint[j, 1:4] ˜ dmnorm(mu.ranint,
Omega)

ranslope.ck[j] ˜ dnorm(0,
tau.ranslope.ck)

}

# Model for each observational unit
for (i in 1:N) {

# X[, 1] contains time from diagnosis
# X[, 2:nvar] all other predictors

# CK
mu.ck[i] <- alpha.ck +

ranint[subj[i], 1] +
(gamma.ck +

ranslope.ck[subj[i]]) *
X[i, 1] +
inprod(X[i, 2:nvar],
beta.ck)

y.ck[i] ˜ dnorm(mu.ck[i], tau.e.ck)
censored[i] ˜ dinterval(y.ck[i],
cut[i])

# CMAS
probit(p.cmas[i]) <- zeta.cmas +

ranint[subj[i], 2] +
theta.cmas * X[i, 1]

ind.cmas[i] ˜ dbern(p.cmas[i])

mu.cmas.temp[i] <- alpha.cmas +
gamma.cmas * X[i, 1] +
inprod(X[i, 2:nvar],
beta.cmas)

mu.cmas[i] <- ifelse(ind.cmas[i] == 0,
sqrt(53),
mu.cmas.temp[i])

y.cmas[i] ˜ dnorm(mu.cmas[i],
tau.e.cmas[ind.cmas[i] + 1])
T(0, sqrt(53))

# MMT8
probit(p.mmt[i]) <- zeta.mmt +

ranint[subj[i], 3] +
theta.mmt * X[i, 1]

ind.mmt[i] ˜ dbern(p.mmt[i])

mu.mmt.temp[i] <- alpha.mmt +
gamma.mmt * X[i, 1] +
inprod(X[i, 2:nvar],
beta.mmt)

mu.mmt[i] <- ifelse(ind.mmt[i] == 0,
sqrt(80),
mu.mmt.temp[i])

y.mmt[i] ˜ dnorm(mu.mmt[i],
tau.e.mmt[ind.mmt[i] + 1])
T(0, sqrt(80))

# PGA
probit(p.pga[i]) <- zeta.pga +

ranint[subj[i], 4] +
theta.pga * X[i, 1]

ind.pga[i] ˜ dbern(p.pga[i])

mu.pga.temp[i] <- alpha.pga +
gamma.pga * X[i, 1] +
inprod(X[i, 2:nvar],
beta.pga)

mu.pga[i] <- ifelse(ind.pga[i] == 0,
0,
mu.pga.temp[i])

y.pga[i] ˜ dnorm(mu.pga[i],
tau.e.pga[ind.pga[i] + 1])
T(0, sqrt(10))
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}

# Prior for Omega
# I is 4 x 4 identity matrix
Omega ˜ dwish(R, 6)
R <- I * 60

# Priors for fixed intercepts
# and slopes
alpha.ck ˜ dnorm(0, 0.001)
gamma.ck ˜ dnorm(0, 0.001)
alpha.cmas ˜ dnorm(0, 0.001)
gamma.cmas ˜ dnorm(0, 0.001)
zeta.cmas ˜ dnorm(0, 0.001)
theta.cmas ˜ dnorm(0, 0.001)
alpha.mmt ˜ dnorm(0, 0.001)
gamma.mmt ˜ dnorm(0, 0.001)
zeta.mmt ˜ dnorm(0, 0.001)
theta.mmt ˜ dnorm(0, 0.001)
alpha.pga ˜ dnorm(0, 0.001)
gamma.pga ˜ dnorm(0, 0.001)
zeta.pga ˜ dnorm(0, 0.001)
theta.pga ˜ dnorm(0, 0.001)

for (i in 1:(nvar - 1)) {

# Variable selection. Use same
# indicator for all four outcomes
# (i.e. same variables are "in"
# and "out")

ind[i] ˜ dbern(pind[i])
pind[i] ˜ dbeta(0.1, 0.1)

betaT.ck[i] ˜ dnorm(0, taub)
betaT.cmas[i] ˜ dnorm(0, taub)
betaT.mmt[i] ˜ dnorm(0, taub)
betaT.pga[i] ˜ dnorm(0, taub)

beta.ck[i] <- ind[i] * betaT.ck[i]
beta.cmas[i] <- ind[i] * betaT.cmas[i]
beta.mmt[i] <- ind[i] * betaT.mmt[i]
beta.pga[i] <- ind[i] * betaT.pga[i]

}

taub ˜ dgamma(0.001, 0.001)

# Prior for tau of random slope
tau.ranslope.ck ˜ dgamma(0.001, 0.001)

# Prior for error terms
# High precision in case the observation
# is estimated to be in the point mass.
# Non-informative prior otherwise.
tau.e.ck ˜ dgamma(0.001, 0.001)
tau.e.cmas[1] <- 10000000
tau.e.cmas[2] ˜ dgamma(0.001, 0.001)
tau.e.mmt[1] <- 10000000
tau.e.mmt[2] ˜ dgamma(0.001, 0.001)

tau.e.pga[1] <- 10000000
tau.e.pga[2] ˜ dgamma(0.001, 0.001)

}
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17. O’Hara RB and Sillanpää MJ. A review of Bayesian variable
selection methods: what, how and which. Bayesian Anal 2009;
4: 85–117.

18. Plummer M. rjags: Bayesian graphical models using MCMC.
https://CRAN.R-project.org/package=rjags (2016, accessed 2
November 2016).

19. Brier GW. Verification of forecasts expressed in terms of
probability. Monthly weather review 1950; 1: 1–3.

20. Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the
performance of prediction models: A framework for some
traditional and novel measures. Epidemiology 2010; 21: 128–
138.

21. Spiegelhalter DJ, Best N, Carlin B, et al. Bayesian measures of
model complexity and fit. J R Stat Soc Series B Stat Methodol
2002; 64: 583–639.

Prepared using sagej.cls

Page 11 of 10

https://mc.manuscriptcentral.com/smmr

Statistical Methods in Medical Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


