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Abstract: Kenya’s water abstraction must meet the projected growth in municipal and irrigation demand
by the end of 2030 in order to achieve the country’s industrial and economic development plan.
The Masinga dam, on the Tana River, is the key to meeting this goal to satisfy the growing demands
whilst also continuing to provide hydroelectric power generation. This study quantitatively assesses
the reliability and robustness of the Masinga dam system under uncertain future supply and demand
using probabilistic climate and population projections, and examines how long-term planning may
improve the longevity of the dam. River flow and demand projections are used alongside each other
as inputs to the dam system simulation model linked to an optimisation engine to maximise water
availability. Water availability after demand satisfaction is assessed for future years, and the projected
reliability of the system is calculated for selected years. The analysis shows that maximising power
generation on a short-term year-by-year basis achieves 80%, 50% and 1% reliability by 2020, 2025 and
2030 onwards, respectively. Longer term optimal planning, however, has increased system reliability
to up to 95% in 2020, 80% in 2025, and more than 40% in 2030 onwards. In addition, increasing the
capacity of the reservoir by around 25% can significantly improve the robustness of the system for
all future time periods. This study provides a platform for analysing the implication of different
planning and management of Masinga dam and suggests that careful consideration should be given
to account for growing municipal needs and irrigation schemes in both the immediate and the
associated Tana River basin.

Keywords: Tana river basin; planning under uncertainty; climate change; reliability; robustness;
water resource; Masinga reservoir; integrated modelling

1. Introduction and Background

Due to an increase in population, urbanisation and resource demand, developing countries in
arid regions of Sub-Saharan Africa face the highest risk from both physical and economic water
scarcity [1,2]. Future water security, principally projected in rainfall patters, in this region remains
undetermined, and this uncertainty, combined with the inherent uncertainty in population and resource
demand projections and interactions, leads to a large overall uncertainty in future water scarcity.
The importance of the relationship between water, energy, and food is better understood through
interrelated modelling [3]. Through this, strategies can be formulated that aim to best and fairly satisfy
the demands of all affected parties, whether that be domestic users, industrial users or the ecosystem,
amongst others [4–7]. With uncertain resource supplies and demand, it is important to assess the
reliability and robustness of a system through modelling—this can be especially crucial to understand
the risk faced by developing countries in managing their resources. The combination of uncertainty
from climate change and socio-economic and demographic factors, such as population growth,
creates significant levels of uncertainty that must be accounted for when planning for future system
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operation [8]. There is much literature on water resource models incorporating different uncertainty
such as climate change and future demand [9–11]. In addition, much of the literature surrounds the
modelling of resource systems that consider the uncertainty and risk; an interested reader is referred
to the work of [12–15] on risk-based modelling of water resource system planning, its definition, and
implementation as well as the work of [16–18] on defining and quantifying the metrics for robustness
and reliability for assessment of supply systems under climate change. Most of these works, although
different in application, share the same principle that reliability is the probability that the system under
consideration is in a non-failure state [19] and that the robustness incorporates the concept of reliability,
and represents the capability of a system to be able to absorb and withstand disturbances and crises
whilst still operating in a non-failure state [12,20]. In this study, a simulation-based optimisation model
was formulated to assess the reliability and robustness of the Masinga reservoir planning system in
Kenya under both climate and demand uncertainties.

Case Study: Kenya’s Masinga Dam

Kenya’s Tana river basin accounts for 21% of the total land area of Kenya, and is essential
for meeting Kenya’s agriculture and municipal water demands; it provides 80% of the water for
Nairobi, and generates a great deal of Kenya’s power [21]. The river also provides for much of
Kenya’s population, including eight million people who live along it, with water for food. Due to
poor management, however, the river’s health is under threat [21]. Kenya suffers from both physical
water scarcity and economic water scarcity; its renewable surface water volume is only 650 m3 per
capita, well below the recommended minimum of 1000 m3 [22]. As with many developing countries,
Kenya utilises hydroelectric power to account for a large share of its installed capacity: 52.1% is
generated by hydroelectric sources, and the major power generators are part of the Seven Forks
Scheme on the Tana River [23]. The Masinga dam is the first dam on the stretch (Figure 1) and, despite
only having a maximum output of 40 MW, has by far the largest reservoir—holding 1560 MCM [24,25].
This reservoir is essential for supplying the local area with water, as it hosts large areas of agriculture.
The Tana river basin experiences relatively even temperatures across the year, but there is a large
variability in rainfall in the Tana basin over a year, which the makes the Masinga reservoir and
dam critical in regulating water quantities in the area. Additionally, the Masinga reservoir plays
an important ecological role, and is home to fish, hippopotamus, and crocodiles; the fish here are
supplied to the local area, and so also provide residents with income [26].
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With Kenya’s projected increase in fossil fuel and nuclear power generation, the reliance on
the electrical output from the Seven Forks dams is to lessen (hydropower’s share will fall from
50% to 5% by 2031) [27]. Kenya is currently in the early stages of implementing its “Vision 2030”
plan, a long-term development policy aiming to enable the country to become a middle-income,
industrialising country [28]. As part of this plan, the Tana River Basin is expected to have irrigation
schemes being implemented along its entirety which will dramatically increase water demand in the
entire basin [25,29,30]. This is part of the government’s plan to utilise agriculture as a key sector to help
reach the desired 10% annual economic growth rate in 2030 [28]. Additionally, the plan includes ten
proposed reservoirs and dams, as well as both new intra-basin water transfer systems, and expansions
to existing ones—as with the Masinga-Kitui reservoir link.

2. Masinga Dam Model Building

To model the Masinga dam system, the system’s parameters should be identified. In addition,
projected data for reservoir inflow, population growth, municipal and irrigation demand, as well as
flow required to meet the power demand should be collected. Although likely to be an important
factor for the future of the Masinga reservoir and dam, the impact and occurrence of extreme
climate events, such as heavy rainfall or drought, were not assessed in this study given the lack
of relevant data, uncertainties of precipitation predications and the link to hydrological models,
as well as the uncertainties surrounding the potential impacts on agricultural and municipal dynamics.
Instead, this study assesses the robustness and resilience of the system against multiple, broad-ranging
different future scenarios, which, over the longer time-periods assessed, was considered appropriate.

2.1. Data Collection

The key system parameter data values are given in Table 1. Data for monthly river flow from
the Tana River were obtained for the period 1934–1975 from ORNL DACC [31], and scaled to match
reservoir inflow data from Oludhe et al. [32]. Note that sedimentation was not considered in this study,
although it has been noted that it is a potentially significant issue for the reservoir system [23,33].
The uncertainty surrounding sedimentation in the Masinga reservoir is notably large [33], and to model
comprehensively would require large assumptions regarding the effects of precipitation, and any
dredging or catchment management efforts; consequently, it fell outside the scope of this project.

Table 1. Key model parameters and inputs (1: [32]; 2: [25]; 3: [34]; 4: [35]).

Variable Value

Reservoir maximum storage 1560 MCM
Reservoir minimum storage 1 1000 MCM
Initial storage volume 1300 MCM
Evaporation 2 20 MCM·month−1

Max turbine flow 227.0 MCM·month−1

Min turbine flow 134.3 MCM·month−1

Max Power output 40 MW
Min operating power output 3 14 MW
Dam head 29–49 m
Dam efficiency 4 95%
Municipal demand per unit population 122.0 m3·month−1

Irrigation demand per unit population 238.42–1208.7 m3 (month-dependent)
Project demand for 1000 ha in 2030 (inter-year variability) 271 MCM·year−1

From this data, projected inflow data for the reservoir were created, through regression analysis,
based on historic relationships between the river’s flow and climatic data [36] (Figure 2).
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Figure 2. (a) Correlation between rainfall and inflow per month; (b) Average simulated river flow and
historic river flow averages for historic data based on rainfall.

The projected rainfall data are from four different climate models: CGCM2 (Coupled Global
Climate Model version 2), CSIRO2 (Commonwealth Scientific and Industrial Research Organisation
model version 2), HadCM3 (Hadley Centre Coupled Model, version 3), and PCM (Parallel Climate
Model). These four models are those used in the Third Assessment Working Group 1 Report by
IPCC [37], and each approaches climate projections with different sensitivities and climate responses.
Each model projected for four key IPCC scenarios: A1FI, A2, B1, and B2. The A1FI scenario is
fossil-intensive, and represents rapid economic growth, and a peak in population by mid-century,
followed by strong technological advancement. The A2 scenario describes continuous population
growth, but slow economic and technological change. The B1 has a similar population growth pattern
to A1FI, but with rapid economic change, and the introduction of clean technologies. The B2 scenario
describes a slower-paced population growth rate than A2 with slower and more diverse technological
change, with an orientation toward environmental protection and social equity [37]. Of the four
scenarios, A1FI is the scenario expected to produce the largest amount of CO2, followed by A2, B2, and
then B1. In this way, A1FI is the worst-case scenario, and B1 is the best-case scenario. Each of the four
models creates different projections for rainfall to 2050 in Kenya. The variation between the 16 scenarios
is considered to be the complete range of possible future rainfall, and thus the basis for the entire range
of future possible river flows for each given year. For each month, a probability distribution is created,
and the ranges of 5%, 20%, 50%, 80% and 95% are specified, whereby, for example, the inflow rate
associated with the 20% probability is the value for which there is a 20% chance that the flow rate will
be lower than this value.

Probabilistic population projections are obtained for Kenya from the United Nations [38]. The rate
of population growth for Kenya is consistent with the expected rate of growth for the Tana basin
as described by Nippon Koei [39], and so are considered suitable for our study of Masinga dam.
Current values of municipal and irrigation demand for different crops in the area (sugar cane, cotton,
and rice) are taken from Kiptala [40] and Hurford and Harou [25], and are divided by a representative
population to create a fixed per-capita value for the irrigation and municipal demand projections;
irrigation demand varies depending on month (see Table 2), and is lessened by increased rainfall,
whereas municipal demand is assumed constant throughout the year, as it often does not vary
considerably [41,42]. These values are tied to the population projections to project total increase in
municipal and irrigation demand over time, as well as their respective uncertainty ranges. Irrigation
demand is assumed to grow proportionately to population on the basis that food demand grows
proportionately to population [43]. It should be noted that the uncertainty in population projections is
much smaller than that for climate projections.

Economic advancement, resulting in better irrigation efficiency or a change in diet, is not assumed
in this study. Similarly, growth in demand for municipal water due to economic advancement is not
considered as a factor. The proposed 1000 ha irrigation project for Masinga has similar variation in
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monthly demand to this base irrigation, and is forecast to grow linearly from 2015 to 2030, when it is
expected to be completed. From 2030 onward, it is expected to continue to grow at a rate consistent
with population, with the assumption that additional related demands would continue to grow [39].
As all of Kenya’s rice is grown just north of the Masinga dam [44], the 1000 ha irrigation project is
assumed to be rice. Figure 3 shows the proportions of demand for the median scenario.

Table 2. Proportionate monthly demands for crops in Tana Basin (adapted from [40]).

Month Rice Cotton Sugar Cane

January 20.2 3.3 112.0
February 21.8 0.0 83.5

March 22.7 0.0 29.9
April 0.0 0.0 44.8
May 0.0 0.0 121.7
June 0.0 0.0 159.7
July 16.0 3.6 156.8

August 15.5 6.3 160.5
September 22.5 10.5 167.4

October 21.5 8.9 143.4
November 0.0 8.4 116.5
December 19.3 8.3 99.3
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2.2. Model Construction

The study aims to create a model to optimise the quantity of extra water available for selected
timeframes. This enables both the simulation of the incoming and outgoing water quantities based
upon projected reservoir flow and demands, and to assess how well the system can cope with large
seasonal differences. The model is designed to be run for each year between 2015 and 2050, as well as
any given range of years within this period. Figure 4 shows the Masinga dam system conceptual model.
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The objective of the model is to maximise extra available water for power generation after
satisfying demand for municipal and irrigation water. Therefore, the following mathematical
model applies:

Maximise
n

∑
t=1

xt, (1)

where n is the number of total selected months, and xt is the extra water available for month t.
The objective is subject to the following constraints:

xt ≤ Amax, (2)

St + Qt − Et − It − Mt − Pt − Dt − xt = St+1, (3)

Smin ≤ St ≤ Smax, (4)

Sn = S0 (5)

where Smin is 1000 MCM, Smax is 1560 MCM, Sn is the storage at the end of the time-period, and S0 is the
initial storage, in this case 1300 MCM. St is the storage at time t, Qt is the inflow, Et is the evaporation,
It is the irrigation demand, Mt is the municipal demand, Pt is the irrigation project demand, Dt is
the downstream/power demand for time-step (month) t, and St+1 is the storage at the start of the
next month. The upper bound, Amax (92.8 MCM), is the volume of water required to create maximum
power minus the volume of water to meet the required minimum power. The model produces the
difference between supply and demand over time while working within the system constraints.

2.3. Model Setting and Scenario Building

The model is run for both single- and multi-year optimisation. For single-years, the model is run
on a yearly basis for the years 2020, 2025, 2030, 2040 and 2050; the results generated show the future
supply-demand balance for the reservoir if no water was stored for the next year, and all excess water
goes through the dam for power generation. Note that power output itself has not been maximised as,
to do appropriately, prices for power would have to be considered and matched with generation
times [45–47], and this fell beyond the scope of this study. The model allows the user to decide the
distribution of excess water throughout the year. Subsequently, for multi-years, the model is run for the
periods 2016–2020, 2016–2025, 2016–2030, 2016–2040 and 2016–2050 to analyse how long the reservoir
could operate before experiencing a net deficit, doing so by storing water instead of immediately using
it to generate power, thus increasing the system’s robustness to growing disparity between supply and
demand, and increasing future reliability.

As a proposed alternative, the model is also run a third time, for the same periods as above,
but with the system constraints having been altered to reflect the reservoir’s walls heightened by
1.5 m to increase capacity to 2000 MCM, up from 1560 MCM. For this scenario, the starting volume is
increased to 1500 MCM. This scenario aims to show how an increased capacity will further affect the
robustness of the reservoir, and allows for a prolonged operation period without requiring external
initiatives to relieve or reduce its demands.

Five probability intervals are applied to each of the above three optimisation modelling exercises,
producing a total of 25 scenarios for each model run. As a result, the worst-case scenario is the lowest
flow rate and the highest population—the 5 and 95 percentiles, respectively. The best-case scenario was
the opposite, with maximum supply and minimum demand. The system is considered most reliable
if it can meet the maximum possible demands with the minimum available supply. The 25 possible
future scenarios are displayed within the probability matrix shown in Table 3.



Climate 2017, 5, 12 7 of 16

Table 3. Scenarios to be assessed for each time period, with their percentage likelihoods.

Projected Flow
Probability Interval

Projected Population Probability Interval

5% 20% 50% 80% 95%

5% 0.25% 1.0% 2.5% 1.0% 0.25% (w)
20% 1.0% 4.0% 10.% 4.0% 1.0%
50% 2.5% 10% 25% (m) 10% 2.5%
80% 1.0% 4.0% 10% 4.0% 1.0%
95% 0.25% (b) 1.0% 2.5% 1.0% 0.25%

Note: b, m, w cells are the best-, median-, and worst-case scenario, respectively. Percentages do not represent
likelihoods, but the percentage chance that the given value is lower/higher than its associated probabilities.
For example, there is a 4% chance that population will be lower than its 20% value (or higher than its 80% value),
whilst flow rate is either lower than its 20% value or higher than its 80% value.

3. Results

The baseline year (2015) showed that all demands are met, and when all excess water is maximised,
there is enough water to produce the 14 MW minimum requirement for each month, with the average
quantity of water leaving the dam being 68% of that required to produce 40 MW.

3.1. Single Year Models—Short-Term Planning

The analysis for individual years (Figure 5) shows no water being stored for the following year.
Green cells show extra water available for power generation above the minimum whilst suffering
no temporary deficits, red cells indicate a scenario with an overall deficit for the year, and yellow
cells are the net extra water for available the year, but indicate the system suffered at least one month
with a deficit. The shade of colour given is based on the percentage of demand value. For each colour,
less than 5% is a light shade, between 5% and 10% is a middle shade, and above 10% is a dark shade.
The figure shows how, as time progresses, deficits become more likely. From 2030 onwards, not even
the best-case scenario can be operated without suffering a deficit in at least one month. For all years
and scenarios, the deficits are less than the minimum power demand.
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20% −5.94% −10.3% −6.55% −11.4% −13.5% −23.8% −9.07% −16.2% −9.51% −17.0% 
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Figure 5. Total annual extra water available as percentage of total demand (D) and storage capacity (S):
2020, 2025, 2030, 2040, 2050.

In 2020, the spread of uncertainty between the best- and worst-case scenarios is over 26% of the
storage capacity, with a mid-point of 6.5% difference, and the system will be no more than 80% reliable.
By 2025, the range of uncertainty is over 32%, and the mid-point now represents a deficit of over 3%
of the capacity volume. In 2025, there is only at least a more than 16% chance that the system will
operate without a deficit, and with a 20%–50% likelihood of a temporary deficit, the reliability is only
60%. From 2030 onward, as shown in Figure 5, the probability of the system operating without an
overall deficit for each year is very low—only around 1%. The median scenario for 2030 is closer to the
worst-case scenario than it is to the median scenario for 2025, and by 2050 the deficit for the median
scenario is over double that of 2030 relative to total demand. The range of uncertainty also increases
for each time-period, from over 40% in 2030 to over 85% of the total reservoir capacity.

3.2. Multiple Years Models—Long Term Planning

Figure 6 shows the model run when optimised for a multi-year basis. By extending the time
period, and allowing for water to be stored to reduce future deficits, the length of time that extra
water can be available for can be significantly extended. Due to the enlarged uncertainty associated
with having more time-steps, the best- and worst-case scenarios now have a difference of 125% of the
storage capacity by 2020. Increasing the time-frame to 2025 shows that the reliability of the system is
at least 50%, up from at least 20% when operating 2025 as a standalone year. By 2030, the reliability
falls to 42.5%. Only the best-case scenario is projected to be able to operate without a deficit. It is
noticeable that the differences between each adjacent cell grow larger with each time-period due to the
growing uncertainty as time progresses. By 2050, the median scenario shows a total deficit of 455%
of the storage capacity. To avoid the reservoir running dry, these values could be deducted from the
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demands, and spread out between 2016 and 2060, equating to an average demand reduction of 13% of
storage capacity each year.
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20% −7.00% −601% −7.89% −347% −9.53% −426% −11.3% −515% −12.0% −554% 
50% −0.87% −186% −1.82% −80.0% −3.57% −160% −5.44% −248% −6.25% −288% 
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80% 2.38% 148% 0.89% 56.2% −1.84% −120% −4.68% −314% −6.06% −413% 
95% 5.16% 322% 3.63% 230% 0.83% 53.8% −2.09% −140% −3.51% −239% 

Figure 6. Total extra water available as a percentage of total demand (D) and storage capacity (S) for 
periods: 2016–2020, 2016–2025, 2016–2030, 2016–2040, and 2016–2050. 

 

Figure 6. Total extra water available as a percentage of total demand (D) and storage capacity (S) for
periods: 2016–2020, 2016–2025, 2016–2030, 2016–2040, and 2016–2050.

3.3. Increased Capacity Model—Long Term Planning

Figure 7 shows the increased capacity scenario, whereby more water could be stored. The total
extra water values do not change as a proportion of demand, but there is a lowering of all values
as proportions of storage capacity. Additionally, there is a shift from cells that are yellow to green,
representing the growing probability that the system could operate without deficits in the model.
For 2030, there is a projected 15% chance that operation could continue without any temporary deficits,
and there is a 42.5% reliability for the system when accepting temporary deficits. The difference
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between the best- and worst-case scenarios as percentages of the total storage capacity is also 356%,
down from 456% under the current reservoir capacity.Climate 2017, 5, 12  10 of 16 
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80% 2.38% 116% 0.89% 43.8% −1.84% −93.5% −4.68% −245% −6.06% −322% 
95% 5.16% 251% 3.63% 179% 0.83% 42.0% −2.09% −110% −3.51% −186% 

Figure 7. Total extra water available as a percentage of total demand (D) and storage capacity (S) for 
period 2016–2020, 2016–2025, 2016–2030, 2016–2040, and 2016–2050, with enlarged storage capacity. 

3.4. Reliability 

Based on the results displayed in Figures 5–7, Figure 8 shows a comparison of the reliabilities of 
the reservoir in each year given different planning options. 

With extended time periods, the reliability of the system is much higher than it is if optimising 
year-by-year. For 2030, the chance of the system functioning without an overall deficit is just over 1%, 
whereas if optimised for the period 2016–2030, the reliability increases to 42.5%. If desiring to run the 
system deficit-free, enlarging the capacity of the reservoir creates noticeable benefits, including 
16.25% reliability in 2030, compared to 0.25% without expansion. Note that, in this figure, the 
reliabilities represented are lower than the actual system reliability, as the boundary between deficit 
and non-deficit will be between the probability intervals, rather than on the deficit values, as this 

Figure 7. Total extra water available as a percentage of total demand (D) and storage capacity (S) for
period 2016–2020, 2016–2025, 2016–2030, 2016–2040, and 2016–2050, with enlarged storage capacity.

3.4. Reliability

Based on the results displayed in Figures 5–7, Figure 8 shows a comparison of the reliabilities of
the reservoir in each year given different planning options.
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the reservoir in each year given different planning options. 

With extended time periods, the reliability of the system is much higher than it is if optimising 
year-by-year. For 2030, the chance of the system functioning without an overall deficit is just over 1%, 
whereas if optimised for the period 2016–2030, the reliability increases to 42.5%. If desiring to run the 
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and non-deficit will be between the probability intervals, rather than on the deficit values, as this 
figure illustrates; however, it is likely that the proportions will be the same, and the use of reliability 
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Figure 8. Single-year planning reliability and extended planning reliability, both with temporary 
deficits (a) and deficit-free (b). 

4. Discussion 

The results for the baseline scenario—2015—show that the system operates within its limits, and 
that supply can comfortably meet demand, with enough extra water passing through the turbines to 
generate a good proportion of the maximum potential power output from the dam. However, the 
volume of water to be demanded for irrigation and municipal use is expected to increase significantly 
(see Figure 3). This rise draws into question the ability of the reservoir to operate sustainably into the 
future whilst also meeting all water demand requirements—minimum power and, hence, 
downstream demands. 

Single-year planning does not offer much reliability or robustness, especially past year 2020. A 
short term year-by-year planning is not a suitable approach; indicating that long-term planning is 
preferable as reported in [46,48]. Recent operation has seen the Masinga dam losing volume at the 
expense of fully meeting demands [34]. Allowing the storage level to fall when there is a deficit, as 
the reservoir currently practices, allows demand to be fully satisfied, but does make it increasingly 
hard to recover the stored water volumes that have been lost from the reservoir [49]. Where the 
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Figure 8. Single-year planning reliability and extended planning reliability, both with temporary
deficits (a) and deficit-free (b).

With extended time periods, the reliability of the system is much higher than it is if optimising
year-by-year. For 2030, the chance of the system functioning without an overall deficit is just over 1%,
whereas if optimised for the period 2016–2030, the reliability increases to 42.5%. If desiring to run the
system deficit-free, enlarging the capacity of the reservoir creates noticeable benefits, including 16.25%
reliability in 2030, compared to 0.25% without expansion. Note that, in this figure, the reliabilities
represented are lower than the actual system reliability, as the boundary between deficit and non-deficit
will be between the probability intervals, rather than on the deficit values, as this figure illustrates;
however, it is likely that the proportions will be the same, and the use of reliability values that are
lower than projected will only serve to improve robustness when planning.

4. Discussion

The results for the baseline scenario—2015—show that the system operates within its limits, and
that supply can comfortably meet demand, with enough extra water passing through the turbines
to generate a good proportion of the maximum potential power output from the dam. However,
the volume of water to be demanded for irrigation and municipal use is expected to increase
significantly (see Figure 3). This rise draws into question the ability of the reservoir to operate
sustainably into the future whilst also meeting all water demand requirements—minimum power and,
hence, downstream demands.

Single-year planning does not offer much reliability or robustness, especially past year 2020.
A short term year-by-year planning is not a suitable approach; indicating that long-term planning is
preferable as reported in [46,48]. Recent operation has seen the Masinga dam losing volume at the
expense of fully meeting demands [34]. Allowing the storage level to fall when there is a deficit, as the
reservoir currently practices, allows demand to be fully satisfied, but does make it increasingly hard
to recover the stored water volumes that have been lost from the reservoir [49]. Where the system’s
operation has been considered over longer periods of time, the longevity is increased, owing to
storing water during early years. Nevertheless, by 2040 and 2050, the demand starts to become far
greater than the supply, and, even with long-term planning the reservoir is likely to experience large
deficits. By increasing the size of the reservoir, the impact that these deficits will have is reduced,
and the likelihood of system failure for any given period is lessened, thus improving reliability.
Through longer-term planning, the water availability values as a percentage of available reservoir
capacity fall significantly, indicating that the system is better equipped to cope with sudden unexpected
changes in climate, thus improving the system robustness [19].

The expansion of the reservoir size has been proposed twice already, in 1997 and 2009, with
the key selling point being to increase power generation through the creation of a larger head [50].
This study suggests, however, that a better justification for the expansion plan may be to increase the
robustness of the system, given the projected increases in demands on the reservoir. The operational
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optimisation over longer periods in this model works on the basis that hydroelectric generation can
be sacrificed down to the minimum acceptable level. To further improve robustness, hydroelectric
power generation can be sacrificed below the minimum, if downstream demands continue to be met.
As Kenya is planning a large increase in its overall power output, with more nuclear and fossil fuel,
as well as the new High Falls Dam downstream of Masinga [39], the maximum contribution of up to
40 MW should be able to be sourced elsewhere. However, the construction of nuclear power plants
can suffer delays, and the burning of coal will add to the causes of global climate change uncertainty.
Additionally, increased climate change, through the burning of fossil fuels, will contribute to a further
strain on the reservoir system through extreme weather, increased evaporation from the reservoir,
and affecting the irrigation demands of local crops. As such, increasing the size of the reservoir is
a low-risk action that will do more to maintain both the electricity generation and the important
irrigation and municipal water source.

Additional to outsourcing power generation, large irrigation projects are planned around the
High Falls Dam. The creation of large irrigation systems downstream may be able to take some stress
from the Masinga dam, feasibly by allowing it to operate primarily as a municipal water supplier
and flood/drought regulation reservoir. However, due to the downstream location of many of the
proposed schemes, the relief on the Masinga dam may not be as high as necessary, as it will still need
to allow large flows of water downstream, which is also important for a passing stream flow to serve
as a water source for environmental reasons such as maintaining fauna and flora, in turn providing
an additional food source to crops. Knoop et al. [51] suggest several ecosystem-friendly approaches to
securing water in the Tana Basin, including the creation of bunds, pits, and several water-harvesting
techniques. Wide implementation of such small-scale water-securing measures may go a long way to
alleviate stresses on larger infrastructure such as the Masinga dam [51,52], and would likely go some
way as an inexpensive measure to reduce the need to build other large reservoir systems. As well as
increasing the capacity of the dam, it could be considered that, at the cost of even the minimum power
generation, the lessening of minimum storage bounds in the reservoir would allow for more flexibility.
However, it must be noted that, as well as reducing power output, allowing the reservoir to become
shallow will allow the water to heat more, and therefore increase evaporation, as well as creating
negative ecosystem impacts [53–55]. This is especially the case for the Masinga dam, since it is shallow
compared to its large capacity [55,56]. The allowance of a smaller minimum storage volume would
also put the reservoir at greater risk of sudden extreme events [19]. For example, if the reservoir is
permitted to fall to a very low volume and the region is struck by an unexpected drought, the reservoir
has less ability to absorb the impact.

The results from this study coincide with the broader literature that water systems, and those
operating with trade-offs, are likely to suffer in the face of an uncertain climate future. Other studies
using simulation models for African water systems also find that long-term water management
needs to be seriously addressed to avoid water shortages, which also affect food and energy
sources [11,57–59]. For example, De Wit and Stankiewicz [57] predicted the water supply across Africa
by 2100, and concluded that surface water access would be seriously affected if not for adaptation.
Challinor et al. [58] found that a critical mass of expertise in water management in relation to the
climate and changing environment should be maintained to address the impact of climate change on
livelihoods through hydrological forcings, and Ragab and Prudhomme [59] stated that the uncertainty
found in climate projection models should not paralyse policy makers, and that future planning should
account for as many possible impacts as possible. Similar findings have been made for other at-risk
regions such as the Middle East and Southeast Asia [60,61].

The model presented in this study does not consider extreme events. This vulnerability to droughts
and floods is a further reason to support to the expansion of the reservoir, on top of the noted increased
operational robustness when supplying demand [19]. Many climate reports point to projected increases
in more frequent extreme weather, and so increasing the robustness of the reservoir system should
be considered a priority. When considering potential changes to demand not considered by this
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study, an important aspect is downstream demand from the dam. Although the minimum outflow
required to create energy is currently suitably large to supply the downstream reservoirs (due in
part to downstream river tributaries), there are likely to be increases in downstream demand due
to growing irrigation demand [30]. There are many plans for large irrigation projects in the Tana
basin, and irrigation along the riverside all the way from Masinga to the river delta at the Indian
Ocean is expected [62]. This offers further support for enlarging the Masinga reservoir, as the larger
capacity would allow for greater variation in outflow patterns, and may be able to work to provide
the downstream dams, as well as irrigation users, with water at times when natural river flows are
low [63]. This would take away from the availability of water in the reservoir in the future as predicted
by the simulation modelling carried out here, and so may require a re-allocation of demand supply.

5. Conclusions and Future Work

Kenya has ambitious plans to greatly expand irrigation and municipal supply by 2030, and these
plans should consider how best to operate and prioritise the demands met by its reservoirs.
This study has considered the reliability and robustness of one of the main reservoirs, Masinga,
that plays a crucial role to Kenya’s future development plan. The dam system has been formulated
as an optimisation-based simulation model to maximise the water availability. The reservoir inflow
rates and demand growth are projected into the future, accounting for climate supply and demand
uncertainties, respectively, and they are used in the model. Based on the different projection scenarios,
three alternative planning strategies are considered: short-term, long-term, and long-term with
reservoir expansion. The results indicate that, by 2020, there is a 50%–80% chance that the reservoir will
have a larger supply than demand, and, by 2025, this percentage falls to at least 20%, before dropping
to just over 1.25% in 2030. The offset of water deficits is possible at the expense of above-minimum
power generation, increasing reliability and robustness significantly; however, if the power generation
is to be considered of high importance, or if downstream demands increase, then either demand
must be reduced elsewhere, or water availability in the area must be increased. The study provides
a platform to study the implication of different planning and management practices as well as the
reservoir expansion projects in order to relieve the predicted stress on the Masinga reservoir and dam.
The study asserts that the expansion plans for the reservoir to increase the capacity by around 25%
should be considered to increase the likelihood of surplus supply over long timespans. This may be
especially important as more unpredictable extreme floods and droughts are expected to be a part of
the future climate of East Africa, and the larger reservoir capacity would allow for more water to be
stored and released as necessary. This will also extend the period that the reservoir can operate without
suffering significant deficits, in spite of climate change uncertainty. Municipal and irrigation demand
are considered proportionally correlated with population growth in this study. This may not necessarily
be accurate, especially for a developing country such as Kenya, where economic growth may skew the
trajectory. Future work should use more sophisticated modelling to account for more realistic demand
projection as well as river flows to consider extreme events and the effects of sedimentation. In order
to enable this work, there is a need for better water monitoring, not only in the reservoir, but also of
rainfall in the basin and river flow rates.
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