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Abstract—As wireless local area network, WLAN, access point 

(AP) are becoming very common wireless communication 

infrastructures in indoor environments, Wi-Fi signal based Indoor 

Positioning Systems (IPS) have been widely developed in recent 

years and one of the most popular technologies is the received 

signal strength (RSS) fingerprinting technology. However, due to 

large amount of time-consuming work required for offline 

calibration in large indoor environments, researchers have 

investigated generating the calibration database while walking 

about instead of carrying out measurements over a time period at 

fixed reference points [1]. This paper combines both Wi-Fi 

fingerprinting and Pedestrian Dead-reckoning (PDR) technologies 

to introduce a real-time indoor navigation system for large 

complex three-dimensional indoor environments including a novel 

calibration method with associated novel matching algorithms. 

Detailed experiments were conducted in two subway stations with 

complicated structure under normal operating conditions in which 

trains regularly arrived and departed and groups of people walked 

to and from the trains. The results for real cell phone tracking on 

phones carried by passengers, give a satisfactory error of 2.9 

metres during peak congestion times and 1.7 metres when few 

people were in the station. 

Keywords—Wi-Fi fingerprinting; Pedestrian Dead-reckoning 

(PDR), indoor positioning system (IPS); Kalman Filter; Power 

strength histogram, subway station, signal processing. 

I.  INTRODUCTION  

More than half of the world’s population is now living in 
large urban centres, and the number of cities with over 10 
million inhabitants is also increasing [2], imposing a major 
challenge for urban transportation systems. In this context, 
electric subway trains beneath the ground surface are viewed as 
an effective way to deal with congestion and environmental 
pollution that these megacities generate.  For the safety and 
comfort of subway passengers, it is important to understand the 
patterns of passenger behaviour, including their movements 
through mostly overcrowded and complex subway stations.  

 The recent proliferation of Wi-Fi-equipped smartphones 
and the rapid expansion of Wi-Fi zones in most subway stations 
provides an unprecedented opportunity to understand passenger 
behaviour and movements that can help subway operators and 
planners to offer a better service.  

In this study, in order to achieve the aim of public service 
improvement, we introduce a real-time Wi-Fi fingerprinting and 
pedestrian dead reckoning (PDR) hybrid technology based IPS 

for subway stations with a novel method for offline calibration 

method designed for use in large-scale (larger than 20,000 
3m ) 

indoor environments. Previous work [1], [3] in similar scale 
environments achieved a positioning error distance of around 6 
metres; however, our system is capable of providing a more 
accurate positioning service. 

II. BACKGROUND REVIEW  

Wi-Fi Fingerprinting and Pedestrian Dead-reckoning are two 

commonly used techniques for indoor positioning due to their 

low demand in extra infrastructure for deployment. 

A. Wi-Fi fingerprinting technology  

Within the scope of indoor positioning for smartphones, 
radio frequency fingerprinting is currently considered the most 
accurate technique [4]. A radio fingerprint is the pattern of radio 
signal strength measurements that is observed at a given location. 
It comprises a vector of signal identity information (e.g. Wi-Fi 
MAC addresses, or cellular Cell-IDs) and a corresponding 
vector of values of Received Signal Strength (RSS). 

Wi-Fi measurements offer advantages compared to cellular 
phone signals and magnetic field measurements on smartphones, 
which are two other common Fingerprinting positioning 
techniques. As opposed to cellular signals, Wi-Fi signals offer 
greater dynamic ranges as they use short-range transmitters and 
Wi-Fi infrastructure has a better presence inside buildings in 
general [5]. Hence, Wi-Fi signals show more anisotropy than the 
external cellular signal sources, which are generally distant from 
each other. Magnetic field measurements produced by 
magnetometers provide a high dynamic range on a very fine 
scale [5] but can only provide a single contribution to the 
fingerprint vectors, which are outperformed by the many Wi-Fi 
measurements available in typical metropolitan indoor 
environments. 

The Wi-Fi fingerprinting technique conventionally consists 
of two phases: an off-line calibration phase and an on-line 
testing phase. The calibration phase describes the process of 
collecting on smartphones over a certain time period, the RSS at 
different locations in a given space. The RSS data collected is 
then used to establish a radio map in a database indicating the 
average RSS measurements at each of the surveying locations. 
These average measurements, which are normally described in 
a vector manner, are the fingerprints. During the on-line testing 
phase, real-time RSS measurements collected on a smartphone 
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are matched with the fingerprints in the established database. 
Localisation of the smartphone can then be achieved when a 
fingerprint location with the closest value of RSS vector is found. 

B.  Pedestrian Dead-reckoning (PDR) 

PDR refers to the technique that tracks smartphones’ 
positions using the phone’s built-in inertial sensors [6]. Unlike 
most of the other localisation techniques, PDR only provides 
relative estimates of position and rotation, instead of absolute 
positions (i.e. the change in position since the last update). In 
addition, drift errors [7] can accrue quickly without the support 
of an external reference. As a result, many most recent solutions 
combine PDR with other localisation techniques [8] such as Wi-
Fi fingerprinting which can serve as a source of absolute initial 
positions and position updates whenever the PDR errors reach a 
threshold value. 

To date, mainly two types [7] of PDR techniques have been 
deployed in localisation systems: Inertial Navigation System 
(INS) and Step-and-Heading System (SHS). An INS is a system 
that tracks positions of smartphones via estimating full 3-D 
trajectories based on the sensor data. An SHS is applied 
specifically to the tracking of smartphones held by pedestrians. 
It estimates positions by accumulating vectors representing steps 
of the users. 

III. SYSTEM IMPLEMENTATION   

This section introduces our whole system based on 
combining Wi-Fi fingerprinting with PDR. 

A. Calibration and Mapping  

 In the traditional fingerprinting offline calibration phase, the 
RSS measurement and establishment of a fingerprint database is 
conducted over a certain time period at fixed reference points. 
However, for large and complex environments, this method can 
be extremely labour-intensive and time-consuming and can 
seriously impede and can block passenger movement during the 
measurement. Manual measurements and recordings at 
reference point coordinates can be error prone. Furthermore, it 
is difficult to ensure that there is a similar situation when 
collecting data at different reference points, which can lead to 
large errors at the online matching phase. 

In order to overcome these issues, we designed a novel 
method to carry out calibration while walking around. First, the 
station is divided into several areas with simple structures e.g. 
platform, escalator and corridor without corner, into “sub-areas”, 
and the calibration work is conducting by walking back and forth 
within the same sub-area several times taking automatic 
readings of signal strength every fraction of a second. Then, each 
sub-area is simplified into a series of uniformly distributed 
reference points and saved as a sub-area database. Also, while 
the calibration work is being carried out, simultaneous mapping 
work is carried out using the PDR technology by also taking 
recordings from those sensors every fraction of a second.  

1) Body block effect 
Since a person’s body who is holding the phone, is close to 

the phone antenna it may possibly have a large effect on signals 
receiving from all the APs behind the person. The RSS can be 

very different when the phone holder is walking in different 
directions. Fig. 1 is an example of the RSS distribution on a 
straight platform received from one AP when the device holder 
walks back and forth for ten times. The red line is for when the 
person is walking in one direction and the blue line is for when 
the person has turned around and is walking back in the opposite 
direction with the phone held in front of them.    

 
Fig. 1. Two opposite directions walking RSS distribution comparison 

It can be observed that the RSS peak detected positions 
(relatively close to the AP) corresponding to walking in two 
opposite directions are of similar magnitude but are some 
distance away from each other. Hence, in our system, walking 
in different directions in the same area is recorded into a separate 
database with recorded direction information from the PDR.  

2) Environmental variation effect 
Since our experimental environment is a subway station, the 

Wi-Fi signal strength can be significantly influenced by 
periodically arriving and departing metallic trains as well as 
groups of people getting on and off the trains and walking 
around the station itself. We carried out field experiments in 
subway stations under normal operating conditions to observe 
that for a few people situation with the train and groups of people 
situations, the average RSS variation at a certain position can 
increase from 5 dB to 15 dB. 

In order to cover all environmental situations, we carried out 
calibration while walking during different time periods to 
experience as much variation as possible in the environmental 
conditions to give a robust database which could deal with all 
these service conditions.  

3) Database establishment 
 After data collection work, the walking trajectory of each 
sub-area is uniformly simplified into a series of reference points 

by resolution grid, d , and the centre of each d represents the 

position of a reference point. Then the RSS dataset of one sub-
area is divided into different data groups, which means that all 
data collected within the same d by multiple walking are put 

into the same group. Then, each data group is classified by MAC 
address (classified by transmitter AP). Afterwards, all data 
belonging to one AP at one reference point is processed by RSS 
histogram distribution, and each distribution is considered as 
one feature histogram distribution of a fingerprint. Fig. 2 are four 
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examples of RSS distributions probability density function (PDF) 
from one AP at different positions.   

   

 

Fig. 2. RSS histogram distributions from one AP at different reference 

points. 

 We found that due to this database establishment method and 
body block and environmental variation effects we mentioned 
before, the RSS (from one AP) histogram distribution at one 
simplified reference point is no longer fitted with any standard 
distribution model [9] and are quite different from each other. 
Hence, we record all unique normalised RSS histogram 
distributions, which we call feature distributions, corresponding 
with the coordinate of reference point and AP information as a 
radio fingerprint. 

In our experimental environment, the number of detectable 
AP in two subway stations was 1104 in total and at certain 
positions, the number of detectable AP was around 40, which 
means that each reference point has about 40 unique features for 
matching.  

When the resolution d  and the number of bins k are 

changed, the system performance can be very different. Here we 
recommend to set these two parameters to ensure each 
distribution width is close to 10 dB and each bin width is about, 
BW= 2 dB. In our case, we set =1d metre. 

Other than unique distribution and direction information, we 
record an extra information of each fingerprint feature called the 
probability of occurrence, R , where 

      

       

Number of collected datapoint from current AP
R

Maximum number of collected datapoint in all APs
  

In our work, we have simplified 2382 reference points in two 
stations. In the traditional calibration method, if we measured 
the RSS data at each fixed position for three minutes, then it 
would take nearly 120 hours (two weeks’ work) to finish the 
calibration work, and the database of reference points can only 

include the environmental situation during the recording three 
minutes. In our method, in two weeks, even though we cannot 
collect as many data points for each reference point as in the 
traditional method, our database is capable of recording almost 
all situations occurring in the station. Another advantage is that 
our database is extendable, which means that every dataset 
collected by a passenger (or experimenter) walking through the 
same area can be added into the database as an update. This is 
important as the position of large metallic objects may change 
over time. We have enabled passengers using the location app 
on their phones to also record and send us the refreshed 
calibration data as well. Of course, these measurements from 
thousands of passengers will give much more accurate results 
than our original calibration run which will soon be superseded 
by the new data. 

4)  Pedestrian Dead-reckoning mapping support 
Steps are usually counted by detecting the specific 

combination of peaks and valleys from the waveform output of 
the accelerometer [10], [11]. The Fig. 3 shows the data of 
acceleration from the accelerometer in the cell phone’s natural 
coordinate.  

 

Fig. 3. Waveform from accelerometer when doing 35 steps walking 

The red points indicate the maximum peaks of the 
acceleration. The system detects valid peaks and recognises the 
special pattern which could be deemed as a step. This pattern is 
a pair of peaks and valleys.  

The magnitude difference between an effective pair of 
maximum and minimum should be larger than a pre-defined 
threshold to eliminate miscounting due to shaking. The 
threshold value can be obtained in the offline training stage. The 
time difference for an effective pair of peaks and valleys should 
be larger than a threshold which is set to be 250 ms. This setting 
refers to the Olympic record [12] about the peak stride 
frequency human can reach, which is to prevent a situation 
when a peak is followed by more than one consecutive valley, 
since otherwise extra steps would be counted. Moreover, the 
system adopts a fixed stride length which can be set by 
experimenters before each calibration. The sample rate of the 
accelerometer is 50 ms and 64 samples are proceeded as a time 
window to avoid transient errors. 

 Three sets of tests were carried out to evaluate the 
performance of the step counting algorithm in three different 
areas of the subway station. Experimenters held the cell phone 
and then moved at constant speed for 100 m and recorded the 
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number of actual steps, measured steps and null steps 
respectively. Five tests were performed in each testing set to 
obtain the average result. The average stride length of the 
experimenter was 63 cm which could be used to roughly 
calculate the average error. Table I shows that the accumulated 
error is below 2 metres in a 100 steps test. To reach this 
accuracy, having a fixed stride length is a limitation of this 
method. However, for the mapping work, all parameters can be 
optimised by the experimenter to guarantee the accuracy. 

TABLE I.  THE RESULT OF 3 SETS OF TESTS FOR STEP COUNTING 

ALGORITHM 

Testing set number 1 2 3 

Actual steps 100 100 100 

Average measured steps 97 98 103 

Null steps 3 2 4 

Average accumulated 

error 
1.89 metres 1.26 metres 1.89 metres 

Overall accuracy 97.3% 

B. Matching Algorithms  

During the online matching phase, based on the idea of the 
K-Nearest Neighbours (KNN) matching algorithm [13], we 
designed a three-step matching method to select the k nearest 
neighbours (reference points) of the matching point, which is 
shown in Fig. 4.  

 
Fig. 4. Matching process 

 According to our experimental data, even when we set the 
data recording frequency to 0.25 seconds, the real tracking data 
packet was collected every 0.5 seconds on average. So, if we try 
to realise a real-time system with an updating frequency less 
than one second, we can only use every signal tracking data 
packet, which means that there is only one RSS value from each 
AP that can be utilised to matching with the database. 

1) MAC address matching 
The first step of the matching process is a method purely 

based on MAC address. The MAC address list dL of tracking 

data packets is utilised to quickly select sub-databases for future 
precise matching. We design our database following the 
topology in Fig. 5. 

 
Fig. 5. Database topology 

For each Sub-database of each Sub-area, we generate a MAC 
address list called impossible appearance list

 1= = , ,...,i f s m n m n mL L L MAC MAC MAC   , where 

 1 2= , ,...,f mL MAC MAC MAC  is the MAC list of the upper area 

to which the sub-area belongs to;  1 2= , ,...,s nL MAC MAC MAC

is the MAC list of the sub-database. So, if the dL  fulfils the 

condition d iL L  , then the current position should be in the 

area covered by this sub-database.  
In programming logic, if any single MAC address dMAC in 

the tracking data packet matches with iL : d iMAC L  we can 

determine that its current position is impossible within sub-
database of corresponding area and start to scan the next sub-
database. In other words, we do not have to traverse the whole 
database and quickly select a few sub-databases to do precise 
matching. Moreover, in a real environment experiment, data 
detected from all APs including those from personal cell phones, 
laptops, etc. will have no effect by this method. 

2)  Feature Matching  

As we mentioned before, the RSS feature distribution is 

unique. So, it is unreasonable to use statistical characteristics e.g. 

mean value and standard deviation as well as traditional 

Euclidean distance based algorithms to match the tracking data 

with the database.  

Assuming that a single tracking data RSS detected from one 

AP is 
xs  and the feature distribution of the AP at one reference 

point is
0 1( , ,..., )kA a a a , where

0a to
ka are the RSS values of 

the distribution bins, we calculate
0 1' | | ( ', ',..., ')x kA s A a a a   . 

For all RSS distributions at one reference point, we record all 

feature matched probabilities, Pr of matched APs, where

| ' / 2,  (0, ) i iPr ip a BW k   ; ip is 
ia corresponded 

probability in feature histogram distribution. After counting the 

number of feature matched APs, if we have  

    
70%

     

Number of feature matched AP

Number of detectable AP
  

, then the reference point has been successfully matched. In the 

following stage, all feature matched reference points will be 

evaluated by the Probability Mark Selection.   

3)  Probability Mark Selection  

Assuming that the number of reference points has been 

selected in the previous stage is, n, we calculate a Mark for 

each of them to evaluate the precisely matching probability. 

Here we define: 

0

Pr
n

i i

i

R D

Mark
n



 




 

where Pr i is the feature matched probability; iR is the 

probability of occurrence; D is the direction information 

coefficient. Here 1.2D   gives 120% confidence of the Mark 

when the direction information has been matched, which gives 

our system the best performance. If the direction information 

does not match, then 1D  . For all calculated Marks, based on 

a k-nearest neighbours selection function  

0 0

5% ,
k n

i i

i i

Mark Mark k n
 

     

the k-nearest neighbour reference points will be selected. 
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Finally, the weighted average coordinate of the selected k 

nearest neighbours will be calculated according to Mark of each 

selected result. 

C. Discrete Kalman Filter Implementation 

After online matching process, a discrete Kalman filter has 
been implemented to improve the tracking result accuracy and 
as a trajectory smoother. In the areas of position tracking and 
data prediction, the Kalman filter [14] is a widely used signal 
processing technique for trajectory optimisation. It is a two-step 
algorithm for linear systems to help improve the estimation of 
their next states. Based on a given system’s current state and a 
dynamic model of the target trajectory, it initially predicts the 
next state of the system. The next step combines the predicted 
value with the actual value, giving rise to a more accurate 
estimate of the next state. More importantly, it takes into account 
observation noise and process noise when predicting the 
trajectories. 

The Kalman filter model assumes that the true state 
ts  

evolves from the previous state 
1ts 

according to the linear 

stochastic difference equation:
1t t t ts As Bu w  , where A is 

the state transition matrix, which relates the previous state at 
time (t-1) to the current state at time t. B is the control input 

matrix, which relates the optional control input vector 
tu to the 

state
ts . 

tw is the process noise which we assumed as 

(0, )
t

w N Q , 2

wQ  . 

1)  Prediction stage 

During the prediction phase, the Kalman filter uses the 

previous optimal state estimate to produce a new estimate of the 

current state. That is known as discrete Kalman filter time 

update equations.  

1
ˆ ˆ ˆ| |t tx Ax Bu   

1| | 't tP AP A Q   

P is error covariance; t represents state time; t-1 is previous state. 

2) Correction stage 

During the correction phase, the Kalman filter corrects the 

estimate which is obtained during the prediction phase by 

comparing it with the observing result.  

1
ˆ ˆ ˆ| | | ( | )t t t tx x G z x     

1| | (1 | )t t tP P G    

where ( )G t is the Kalman gain with
|

|
|

t

t

t

P
G

P R



 and R is 

observation noise. Observation result, z, includes two input 

[ , ]'z p v , where p is the matching result coordinate and v is 

the velocity provided by the PDR.  

One point to declare is that we did not apply the filter on 

altitude change in our system because in most case the 

passengers are walking on flat ground and when the passenger 

is taking the escalator, there is no steps can be detected. 

Moreover, according to the experimental result, the filter leads 

to a larger error distance if the filter is applied to the altitude 

change. So, the filter is only applied to flat movement.  

IV. EXPERIMENTAL RESULT  

This section presents our experimental results in two subway 
stations. All experiments concentrated on the parts of the station 
where people transit regularly. We video recorded the 
experimental process so that the experimental results can be 
compared with ground truth along time point. 

Experiment environment and equipment: 

 Most of the subway station environments were narrow 
tunnels and corridors.  

 Experiments were basically conducted in two scenarios 
of environment: 1) off-peak time with less than 10 
people per minute coming and going on one platform. 2) 
peak time with approximately 140 people per minute 
coming and going on one platform. Both scenarios have 
situations of trains arriving and departing. 

 Module of experimental standard cell phone: Samsung 
Galaxy s4.   

We carried out experiments in different areas of the subway 
station. Fig.6, 7 and 8 are three examples of error distance 
distribution (by time) comparisons between peak time and off-
peak time on the platform, tunnel and escalator, respectively. 
The average error distance of these three experiments is shown 
in Table II.  

TABLE II.  AVERAGE ERROR DISTANCE IN DIFFERENT AREAS 

 

Experiment 

area 

Off- peak time Peak time  

Matching 

result 

Filtered 

result 

Matching 

result 

Filtered 

result 

Platform 1.97 m 1.50 m 4.91 m 2.62 m 

Tunnel  1.92 m 1.72 m 2.15 m 1.79 m 

Escalator up 1.23 m 1.23 m 4.23 m 3.55 m 

Escalator down 0.91 m 1.18 m 2.73 m 2.66 m 

 
Fig. 6. Error distance distribution on the platform  



2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 18-21 September 2017, Sapporo, Japan 

 
Fig. 7. Error distribution in tunnel  

 
(a) 

 
(b) 

Fig. 8. Error distribution on (a) escalator up (b) escalator down 

On the platform during peak time, the average error distance 

of matching result is 4.99 m. However, the filter is capable to 

correct the error, especially for those larger than 5 m, which 

reduce the average error to 2.5 m. The average error in narrow 

tunnel in both peak (1.79 m) and off-peak (1.72 m) situations 

achieved satisfied accuracy within 2 metres. As for the escalator, 

the filter has not provided significant improvement since the 

filter is not applied to the altitude change. However, both 

matching and filtered results are around 1 metre which is good 

enough during off-peak time; the matching results during peak 

time are close to the performance on the platform.  

Fig. 9 and Table III presents the overall average error 

distance of experimental results from multiple experiments in 

all areas. Also, the 80% error Cumulative Distribution Function 

(CDF) indicates that even during peak-time in the station, the 

system still can provide a reliable position. Moreover, the 

Kalman filter gives a 0.5 metre improvement in accuracy. 

Compared with reported fingerprinting IPS accuracy in 

different scenarios [4], the performance of our system has 

reached accuracy within 2 metres in corridors and within 6 

metres in indoor open spaces and corridors. 

 
Fig. 9. Error distance CDF of  off-peak time tracking and peak time tracking 

TABLE III.  SYSTEM PERFORMANCE COMPARISON DURING PEAK AND OFF-
PEAK TIME IN THE STATION 

 

System 

performance 

Off- peak time Peak time  

Matching 

result 

Filtered 

result 

Matching 

result 

Filtered 

result 

Overall 

average error 
distance 

2.37 m 1.71 m 3.42 m 2.90 m 

80% CDF 

error distance 
< 2.91 m < 2.54 m <4.77 m <4.2 m 

V. CONCLUSION AND FUTURE WORK 

A real-time indoor positioning system for cell phones in two 
subway stations has been successfully implemented and 
demonstrated, which uses novel simple calibration and matching 
methods. The tracking accuracy, 1.7 metres during off-peak 
times and 2.9 metres during peak passenger traffic times, fully 
meets the initial aim of this research - to record the walking 
tracks of the passengers. For future work, once such a system 
has been initialised, all collected real passenger walking data can 
be added to the initial database by a similar method of calibration, 
which will keep the database continuously up-to-date. 
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