Table 1: Functional components of neuropathic and chronic pain pathways, key anatomical substrates and their importance

Process and underlying mechanism	Major neurotransmitter/s (target /tissue)	Time of release/ activation	Consequences	Importance/Remarks
	Pain signalling/peri	pheral sensitisation	at primary afferent neur	ons
Peripheral nociceptor sensitisation (hyperexcitability)	Substance P (receptors on peripheral terminals and NK1 receptors, plasma membrane of cell bodies, dendrites of non-stimulated neurons [19, 22, 98-100] Purinergic pathways[19,22]	Early in the development of neuropathic pain	Sensitisation of peripheral terminals, increased firing rate.	This mechanism explains hyperalgesia as consequence of hypersensitisation
Activation of purinoceptors on microglia			Induction of neuropathic pain state	
Release of excitatory amino acids (EAA)			Release of TNF-α	

Process and underlying mechanism	Major neurotransmitter/s (target /tissue)	Time of release/ activation	Consequences	Importance/Remarks
Cytokine release following tissue injury is released by macrophages and nerve cell	Cytokines (Receptors on blood monocytes)	Early, within 24 h of the onset of inflammatory response	Mediates the inflammatory state	Ectopic hyper-excitability due to increase in nerve cell interaction, resulting in a vicious cycle of inflammation
Inflammation (active macrophage infiltrate)	ΤΝF-α		Activation and release of platelet derived growth factor (PGDF)	TNF- α is the primary inflammatory mediator involved in certain nerve injuries (e.g. lumbar disc herniation)
Activation of phospholipase A ₂ (PlA ₂) enzyme on cell membranes	Release of arachidonic acid from the cell membrane phospholipid		Increase in prostaglandin concentrations, which in turn increase the production of glutamate	
PlA ₂ activation triggers two	Prostaglandins (Peripheral nociceptors, PGE ₂		Sensitisation of peripheral nociceptors,	While IL-6 is the primary chemical mediator in pain, IL-10 is a natural

Process and underlying mechanism	Major neurotransmitter/s (target /tissue)	Time of release/ activation	Consequences	Importance/Remarks
competing pathways, i.e., cyclo-oxygenase (COX) and lipo- oxygenase (LOX)	receptors in smooth muscle) Thromboxane (TXA ₂ receptors on platelets)		localised pain, hypersensitivity in uninjured tissue Leukotriene-induced platelet activation and constriction of smooth muscle	anti-inflammatory cytokine. The net inflammatory response is the result from these opposing effects
Release of interleukins	Leukotrienes (receptors on smooth muscle)	Within the first few hours of tissue injury	Increased vascular permeability and leukocyte attraction	
	IL-1β, IL-6, IL-8, IL-10 (peripheral nociceptors)[101]		Stimulation of the production of pro- inflammatory mediators such as PGE ₂ , COX-2, and matrix metallo- proteases (MMP)	

Process and underlying mechanism	Major neurotransmitter/s (target /tissue)	Time of release/ activation	Consequences	Importance/Remarks		
	Pain processing					
Central sensitisation (spinal cord)	Glutamate (Presynaptic opioid, glutamate receptors) Substance P (Calcium channels- $(\alpha_2-\delta)$) Protein kinase C (NMDA receptors) and purinoceptors [22, 23, 102]	Unknown	Dynamic mechanical allodynia Punctate mechanical allodynia	Spread of spinal hyper-excitability Expansion of neuronal fields [22,23,102]		
Phenotypical switch Nociceptor peptides normally expressed by A δ and C fibres are expressed by large myelinated A β fibres	Calcitonin gene-related peptide, substance P (dorsal horn receptors)	Unknown	Input from mechanoreceptor A fibres is perceived as pain (dynamic and punctuate allodynia)	Increased synaptic transmission, which is considered the most important steps in the development of chronic pain [25]		

Process and underlying mechanism	Major neurotransmitter/s (target /tissue)	Time of release/ activation	Consequences	Importance/Remarks
Descending dysinhibition	GABA (GABA receptors) Endogenous opioids (μ receptors)	Late manifestation, months to years after neurological insult[103]	Loss of inhibitory synaptic currents	Selective apoptotic loss of GABAergic neurons in superficial dorsal horn of the spinal cord
Functional degeneration of interspinal inhibitory interneurons	Serotonin/norepinephrine, dopamine (α -2, 5-HT receptors at the dorsal horn inhibitory interneurons)	Protracted several weeks after peripheral nerve injury [1,26,104]	Enhanced signal transmission in the DRG	Inhibition or prevention of apoptotic loss leading to functional degeneration could provide disease modifying effect in neuropathic pain
Decreased supraspinal descending modulation	Glutamate (glutamate receptors, purinergic receptors [22, 25, 104]			Structures in the mesencephalic reticular formation—possibly the nucleus cuneiformis and the periaqueductal gray area are involved in central sensitisation in neuropathic pain [25]
Descending facilitation				Interestingly, advanced functional MRI (fMRI) techniques show that the same brainstem structures are active in humans with allodynia

Process and underlying mechanism	Major neurotransmitter/s (target /tissue)	Time of release/ activation	Consequences	Importance/Remarks
	Pain	perception/plasticit	y in the brain	
Intense and persistent nociceptive input involving limbic circuitry. Long term down-regulation of dopamine receptors and dopamine production, enhanced glutaminergic transmission from prefrontal cortex to nucleus accumbens. [105]	Dopamine, glutamine	Plasticity onset occurs at a late stage; associated with chronicity of pain	Maintain synaptic plasticity. Develop and maintain inflammatory hyperalgesia	Similar changes occur in the brain, particularly in the cortex and can be measured experimentally and by functional magnetic resonance Imaging or PET. Dramatic alterations in cortical spatial maps can be detected after nerve injury that may contribute to phantom pain[26, 105]

Model	Description	Clinical manifestation	Mechanisms	Limitations /Application
		Me	chanical stimulation models	
Mechanical stimulation (pinprick, pressure)	Cutaneous stimulation using von Frey filaments, cotton swab, pin-prick or pressure algometers	Allodynia, pin-prick hyperalgesia	Stimulation of nociceptors and mechanoceptors Aδ and C fibres are stimulated	 Truly noxious stimuli cannot be induced by non-specific cutaneous stimulation Cutaneous techniques do not mimic nociception NSAIDs systemic ketamine tramadol show analgesic activity
				[57,106]
		Chemical-,	heat- or cold-evoked hyperalges	sia
UVB (ultraviolet B or sunburn)	Hyperalgesia induced by exposing skin area to graded individualised doses of UV B radiation, resulting in dose	Inflammatory response, allodynia and hyperalgesia	Central sensitisation Aδ and C fibres are stimulated	• This model is not sensitive to drugs administered systemically, applied locally or to drug combinations acting via complementary mechanisms of action
	related erythema	Secondary hyperalgesia in erythematous area		• NSAID activity has been identified, but no analgesia produced by opioids[57,58]
Capsaicin- induced pain	Capsaicin is applied topically, intradermally or intramuscularly	Primary or secondary hyperalgesia up to 24 h	Activation of TRPV1 receptor	Hyperalgesia is variable as it depends on capsaicin absorption
	Capsaicin exposure leads to acute severe burning pain		of hyperalgesia observed in neuropathic pain	 Opioids, NMDA receptor antagonists, and calcium channel α2-δ ligands attenuate capsaicin-induced hyperalgesia
				• Limited activity observed with tricyclic antidepressants and cannabinoids
				• More C than Aδ fibres activated
				• Inconsistent results observed during evaluation of drugs with anti-neuropathic pain activity
				• Lamotrigine, desipramine showed no effects, while gabapentin suppressed hyperalgesia[57,58,106]

Table 2: Overview of commonly used experimental models of pain in human subjects.

Mustard oil	Model of acute peripheral sensitisation	Secondary hyperalgesia and allodynia in	Activation of cation channel TRP amkyrin type I in	• It has not been widely used in analgesia testing
	Topical application for a few minutes leads to burning pain followed by an inflammatory	surrounding unaffected area	noiciceptive neurons C fibres thought to mediate burning pain	• Limitations similar to those reported with the capsaicin model[57,58,106]
	reaction in the exposed area		A fibres believed to mediate allodynia to light mechanical stimuli	
Thermode burn	Hyperalgesia secondary to first degree burn by exposing healthy subjects to a heat stimulus using	Primary hyperalgesia at the site of exposure, secondary hyperalgesia	Central sensitisation Aδ and C fibres are stimulated	• NMDA receptor antagonists attenuate mechanical hyperalgesia, but effects are inconsistent with opioids
	a contact thermode	in adjacent tissue	along with co-activation of $A\beta$ fibres	• Intracellular Na channel blockers, opioid receptor antagonists, and purinergic receptor activators [57,58,106]